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Abstract. Many software quality models use software metrics to determine qual-
ity attributes of software products. A common practice is to use sets of software
metrics with threshold values for the classification of a quality attribute. In this
article, we present a novel approach for the calculation of thresholds for a metric
set that can be used for efficiency optimization of existing metric sets, for the
simplification of complex classification models and the calculation of thresholds
for a metric set in an environment where not metric set yet exists. sets, but also to
determine thresholds for new metric sets.

1 Introduction

Software has become part of our everyday life, be it embedded in modern cars to con-
trol the distance to the next car or the daily news read on the Internet. As users of the
software we expect it to fulfill a certain standard of quality. The International Organiza-
tion for Standardization (ISO) defines quality as the “Degree to which a set of inherent
characteristics fulfills requirements” in the ISO 9000 standard (ISO/IEC, 2005). To up-
hold the required standard of quality, the assessment and assurance of software quality
characteristics are an import part of the execution of software projects. In many models
to assess the quality of software, like the ISO 9126 standard (ISO/IEC, 2001-2004),
the assessment of complex high-level quality attributes, like the maintainability or the
understandability, is on a lower level of the model performed using software metrics.
Software metrics provide means to put numbers on abstract attributes, e.g., the com-
plexity or the size. To effectively analyze quality attributes, often not only one metric
is used, but a set of metrics. These metric sets are then used to determine whether a
quality attribute is fulfilled or if not, problematic. A common and easy to understand
way for this kind of classification is to use thresholds for metric values. In this case a
quality attribute of software is determined to be problematic, if the metrics that are part
of the set violate the defined thresholds.

The contribution of this paper is an algorithmic approach for the optimization of
software metric sets and thresholds. For this, we utilize machine learning. During the
last years, using machine learning techniques for data analysis has become very popular
and it has been successfully applied in many different fields, e.g., gene analysis in bi-
ology or data mining techniques companies use to optimize their marketing. It has also



been used in computer science, e.g., for defect prediction. We use a machine learning
algorithm to define an approach for the calculation of thresholds for a metric sets. In a
previous work, we used a relatively simple brute-force approach for the calculation of
threshold values for a metric set (Werner et al, 2007) for the Testing and Test Control
Notation (TTCN-3) (ETSI, 2007; Grabowski et al, 2003). In this work, we use a more
sophisticated approach, that utilizes the learning of axis-aligned d-dimensional rectan-
gles for the threshold calculation. We then show how our approach can be used in three
ways: the optimization of existing effective metric sets to be more efficient; the reduc-
tion of the complexity of the classification method used to a simple threshold-based
approach; the calculation of thresholds for a completely new metric set.

The structure of this paper is as follows. In section 2 the concepts of software met-
rics and how they can be used in combination with thresholds for quality estimation are
introduced. Afterwards, we give a brief introduction into machine learning and define
the foundations of the learning approach we use in this paper in section 3. In section
4 we define our approach for the optimization of software metric sets with thresholds
and describe how it can be applied to perform different tasks. The applicability and
effectiveness of our approach is validated in two case studies, we present in section 5.
Afterwards, we discuss related work in section 6. Finally, in section 7 we discuss our
results and conclude our paper.

2 Foundations of Software Metrics

According to Fenton and Pfleeger “Measurement is the process by which numbers or
symbols are assigned to attributes of entities in the real world in such a way as to
describe them according to clearly defined rules” (Fenton and Pfleeger, 1997). A way to
measure software is to use software metrics. The IEEE defines software metrics as “the
quantitative measure of the degree to which a system, component, or process possess a
given attribute” (IEEE, 1990). This means, that a software metric is a clearly defined
rule, that assigns values to entities, that are part of a software system, e.g., components,
classes or methods.

Fenton and Pfleeger divided software metrics into three categories (Fenton and
Pfleeger, 1997): process metrics measure attributes of a development process itself;
product metrics measure documents and software artifacts that were produced as part of
a process; resource metrics measure the resources, that were utilized as part of a process.
Furthermore, each metric measures either an internal or an external attribute. Internal
attributes are those, that can be measured by observing only the process, product or re-
source itself, without considering its behavior. On the other hand, external attributes are
those, that rather relate the behavior. In this work, we focus on internal product metrics
that measure source code. Some examples for internal attributes that relate to source
code are: size, reuse, modularity, algorithmic complexity, coupling, functionality and
control-flow structuredness (Fenton and Pfleeger, 1997). Further attributes are method
complexity, cohesion or attributes that relate to object-oriented software, such as usage
of inheritance.



Table 1. Below the metrics that were measured as part of this work are listed. All of the listed
metrics are product metrics, that measure internal attributes.

Metric name Internal attribute
Metrics
for
methods
and
functions

Cyclomatic Number (VG) Control-flow structuredness
Nested Block Depth (NBD) Control-flow structuredness
Number of Function Calls (NFC) Coupling
Number of Statements (NST) Size

Metrics
for classes

Weighted Methods per Class (WMC) Method Complexity
Coupling Between Objects (CBO) Coupling
Response For a Class (RFC) Coupling
Number of Overridden Methods (NORM) Inheritance
Number of Methods (NOM) Size
Lines of Code (LOC) Size
Number of Static Methods (NSM) Staticness

2.1 Metric definitions

In our work, we want to focus on product metrics, that measure source code. We used
4 metrics to analyze methods and functions and 7 metrics for the analysis of classes.
In table 1 the metrics that we used in our work are listed and categorized according to
the internal attributes that they measure. For the analysis of methods and functions, we
selected the metrics Cyclomatic Number (VG), Nested Block Depth (NBD), Number
of Function Calls (NFC) and Number of Statements (NST). For our class analysis, we
planned to use the whole metric suite proposed by (Chidamber and Kemerer, 1994),
consisting of the metrics Weighted Methods per Class (WMC), Coupling Between Ob-
jects (CBO), Response For a Class (RFC), Depth of Inheritance Tree (DIT), Number of
Children (NOC) and Lack of Cohession in Methods (LCOM). However, we excluded
the latter three of these metrics, due to various reasons. The metric Depth of Inheritance
Tree (DIT) was poorly distributed, over 97% of the classes we measured had a value
for DIT of 0 or 1. NOC is only a measure for the reuse of a class and is therefore irrev-
elant for our aim to determine its quality. Finally, we excluded LCOM, because it was
found to be poorly distributed (Basili et al, 1996). In addition to the Chidamber and Ke-
merer metrics, we used the metrics Number of Overridden Methods (NORM), Number
of Methods (NOM), Lines of Code (LOC) and Number of Static Methods (NSM) for the
evaluation of classes.

2.2 Metrics for functions and methods

In this sections, we will introduce the metrics we used that can be measured on functions
and methods. Since the four metrics that we describe do not take object-orientation or
any of the properties that distinguish methods from functions into account, we will
hereafter only speak of methods.

Nested Block Depth (NBD) The metric NBD measures the structural complexity of a
method through the maximum nested block depth. A structural block of source codes



is usually defined by condiditional statements, through nested conditional statements
nested blocks are created. Figure 1 shows a short example of a Java method with a
maximum nesting level of 2. . The block with the depth 0 is the method definition itself.
The first nested block is defined by the while loop, in this block two blocks are nested
at a level of 2, defined by the if and the else statement. In both the if and the else
block, no further block is nested, therefore the maximum nesting level of the method is
2.

1 p u b l i c i n t g g t ( i n t x , i n t y ) {
2 whi le ( x != y ) {
3 i f ( x > y ) {
4 x = x−y ;
5 }
6 e l s e {
7 y = y−x ;
8 }
9 }

10 re turn x ;
11 }

Fig. 1. Above, a simple Java method and its control flow graph are shown, which is used as an
example for the metrics NBD, VG and NST

The Cyclomatic Number (VG) Similar to the metric NBD, the metric VG measures the
structural complexity of a method. The metric was first proposed by (McCabe, 1976)
and is hence also commonly known as McCabe complexity. While NBD only measures
the maximum level of nested blocks, VG measures the branching of paths in the control-
flow. Each branching increases the value of VG. To measure VG, the control flow graph
of a method is utilized. Let G = (V,E) the control flow graph of a method M with
vertices V and edges E. Let p the number of the points of entry and exit of M, then

V G(M) = |E|− |V |+ p. (2.1)

Figure 1 shows the listing of a method and its associated control flow graph. It has
|E| = 10 edges, |V | = 9 vertices and one point of entry as well as one point of exit,
therefore p = 2. Thus, the value of VG is 3.

Number of Function Calls (NFC) An aspect different to the control-flow structured-
ness is the coupling. Coupling is the degree of interdependence between modules (Your-
don and Constantine, 1979). The metric NFC is a measure for the coupling of methods.
The value of NFC is the sum of all methods calls of a method. If a method is called
more than once, each of these calls is counted. As a method depends on each method
that it calls, NFC is a measure for the coupling. Furthermore, it could also be under-
stood as a measure for the complexity of a method, since the complexity increases with



each method call, due to the fact that at least the parameters and return value have to be
understood.

Number of Statements (NST) A third attribute of methods is their size. The metric NST
measures the size of a method by counting the number of its statements. Therefore, it is
independent of how the source code is formated, which makes it more robust than the
metric LOC, which is also a commonly used measure for the size of methods. The value
of NST for the method shown in figure 1 is 6 and the statements are: the while(x!=y)
statement in line 2; the if(x>y) statement in line 3; the two computational statements
x=x-y; and x=y-x in the lines 4 and 7; the else statement in line 6; the return
statement in line 10.

2.3 Metrics for classes

In this section, we want to introduce the metrics for classes we used. The metrics do
not nessecarily measure attributes that are associated with object orientation, but also
general attributes like the size. First, we will describe the metrics of the Chidamber
an Kemerer metric suite that we use (Chidamber and Kemerer, 1994). Then we will
introduce 4 metrics, we use in addition to the Chidamber and Kemerer metrics.

Weighted Methods per Class (WMC) WMC is a measure for the complexity of a class.
The complexity of a class is measured indirectly using the sum of the complexity of its
methods. For a class C that defines the set of methods M WMC is computed as

WMC(C) = ∑
m∈M

complexity(m) (2.2)

where complexity(·) is a measure for the complexity of a method. In our work, we
choose VG as the underlying complexity metric.

Coupling Between Objects (CBO) As has been said, coupling describes the interde-
pendence between modules. In case of classes, we say that two classes are coupled if
at least one of them uses the other class. The metric CBO measures the coupling of a
class by counting the classes, with which it is coupled.

Response For a Class (RFC) This metric measures the size of the response set of a
class. The response set consists of all methods that can be invoked by calling a method
from the class. Chidamber and Kemerer suggest, that only one level of nesting is consid-
ered. Therefore, for a class C only the methods that are called by methods of C directly
are part of the response set. Obviously, the response set of a class includes all of its
public methods and usually also of all its methods with a lower visibility. Otherwise it
is an indicator for poor design or dead code.

Number of Overridden Methods (NORM) The metric NORM counts the number of
methods, that are overridden by a class., i.e., already defined by one of its parent classes.



Lines of Code (LOC) LOC is probably the most intuitive, most used and most contro-
versly discussed metric there is. It measures the size of entities by counting its lines. Of
course this is not only restricted to classes, but can be applied to all kinds of documents.
In our work, we used LOC as a measure for the size of classes. We counted only lines,
that were neither empty nor contained only comments.

Number of Methods (NOM) Another measure for the size of a class is defined by the
metric NOM. It counts the number of methods defined by a class. The rational behind
this metric is, that classes with more methods are larger.

Number of Static Methods (NSM) A metric that measures an attribute unrelated to
all of the above is NSM. It counts the number of static methods defined by a class and
thereby measures its staticness.

Fig. 2. This figure illustrates the part of the ISO 9126 standard that is responsible for internal and
external quality. The quality is described using 6 characteristics, which have sub-characteristics.
The fulfillment of the sub-characteristics is determined using metrics.

2.4 Thresholds for software metrics

In general, thresholds are a simple method to separate values. The values that are greater
than a threshold value are considered to be problematic, the values below are okay.
Thus, by defining thresholds a simple analysis of measured values is possible. This



mechanism can also be applied to software metrics. For example, by defining a thresh-
old for a metric that measures the size of an entity, all metric values that are above the
threshold mark the entity as too large. Thresholds for software metrics are often used
in the context of fault-proness. This means that a measured entity is less fault-prone,
if it violates a threshold. Even so, thresholds can also be used to define other aspects
as problematic, e.g., the maintainability or the understandability. For simplicity, we as-
sume that thresholds are upper bounds. However, this is no restriction. Let m a metric
with threshold t that defines a lower bound, i.e., entites x are considered to be problem-
atic if m(x) < t. This is equivalent to 1/m(x) > 1/t if m(x) and t are non-negative, as
metrics and thresholds usually are. By defining a new metric m′(x) = 1/m(x) and a new
threshold t ′ = 1/t a new metric with the opposite order is defined and with t ′ a threshold
is obtained that defines an upper bound.

There are a few problems with thresholds. The first is the generality of threshold
values. It cannot be said that a given threshold value is good in every setting. Depending
on the organization, the programming language, the tools used, the qualification of the
developers and other factors that are project dependent a different threshold value might
be better. This is a problem, as each organization – and maybe even each project – has
to define thresholds that are choosen depending on its environment. This issue directly
relates to a second issue. As good thresholds depend on so many factors, the definition
of thresholds itself is a problem. In section 4.4 we will show how thresholds can be
computed based on previous experience.

Table 2. This table shows the threshold values that were used in this work. If possible, we based
our thresholds on previous research. For those that were adapted the source is given in the last
column.

Metric name Programming language Threshold Source

Metrics
for
methods
and
functions

VG C 24 (French, 1999)
C++ 10 (French, 1999)
C# 10 (French, 1999)

NBD C 5 (French, 1999)
C++ 5 (French, 1999)
C# 5 (French, 1999)

NFC C 5 -
C++ 5 -
C# 5 -

NST C 50 -
C++ 50 -
C# 50 -

Metrics
for classes

WMC Java 100 (Benlarbi et al, 2000)
CBO Java 5 (Benlarbi et al, 2000)
RFC Java 100 (Benlarbi et al, 2000)
NORM Java 3 (Lorenz and Kidd, 1994)
LOC Java 500 -
NOM Java 20 -
NSM Java 4 (Lorenz and Kidd, 1994)



In table 2 thresholds are given for the metrics we use in this work. Most of the
thresholds are taken from previous work by (Lorenz and Kidd, 1994; French, 1999;
Benlarbi et al, 2000). For the metrics NFC and NST, we did not find reference values in
the literature, therefore we defined them ourselves with values we think are reasonable.
The thresholds we used for the metrics LOC and NOM are based on thresholds that are
used by PMD (Copeland, 2005). For the lines of code including empty and comment-
only lines PMD uses a threshold value of 1000. We adapted this value to 500 lines
for our definition of LOC, in which only lines that contain source code statements are
counted. Similarly, PMD defines a threshold of 10 for the number of methods excluding
methods, that start with “get” or “set”. As our metric NOC has no such restriction, we
adapted the value to 20 to account for these methods.

2.5 Metric sets with thresholds for software quality estimation

In most software quality models, e.g., the ISO 9126 standard (ISO/IEC, 2001-2004) or
the FCM model (Factors, Criteria, Metrics) by (McCall et al, 1977) the assessment of
quality attributes is done using metrics. For this assessment, sets of software metrics
with thresholds can be used. The quality of the assessment then depends on the quality
of the metric set. Therefore, it is important to have effective and efficient metric sets.
As part of our work, we analyzed two concrete metric sets, one for methods and one
for classes. The metric set for methods contains the metrics VG, NBD, NFC and NST
with thresholds as defined in table 2. These four metrics cover the internal attributes of
control-flow structuredness, coupling and size. Together, these attributes can be used to
describe the complexity of a method: if it is not well structured, has to much coupling
or is too large, it has a complexity problem.

The metric sets we used for the analysis of classes contains the metrics WMC, CBO,
RFC, NORM, LOC, NOM and NST with thresholds as defined in table 2. These seven
metrics cover the internal attributes of method complexity, coupling, inheritance, size
and staticness. Thus, this set analyzes if the sum of the methods are too complex, the
coupling of a class is dangerously high, whether inheritance is wrongly used, indicated
by too many overwritten methods, the class is too large or if it has too many static
methods. If this is the case, it is problematic due to high complexity generated by misuse
of object-orientation or simply the overall complexity.

3 Foundations of Machine Learning

In this section, we introduce the concepts of machine learning we use in this work.
After we briefly describe machine learning, we define the framework we use in general.
Finally, an algorithm to learn axis-aligned d-dimensional rectangles will be introduced.
Our approach for the optimization of metric sets is based on this algorithm.

Using computer technology, the analysis of large amounts of data is no longer a
problem. One way to analyze data is machine learning. The assumption of learning
theory is that the observed data can be described by an underlying process. The type of
the process can vary and depends on the type of learning. For example, tt could be an
automaton, but also a stochastic process. The aim of machine learning is to identify this



process. Often, this is not accurately possible. However, in most cases it is still possible
to detect patterns within the data. Assuming that the underlying stochastic process does
not change, it is possible to predict properties of unseen data using the detected patterns.
A more detailed into machine learning in general can be found in the literature (e.g.
Devroye et al, 1997; Shawe-Taylor and Cristianini, 2004; Schölkopf and Smola, 2002).

In this work, we use concept learning. A concept defines a rule how to divide vectors
from the Rd into positive and negative examples. The task of a learning algorithm is
to infer a target concept g out of a concept class C . The target concept can also be
interpreted as the baysian classifier (Duda and Hart, 1973) of the concept. A concept
can also be understood as a map g : Xd → {0,1}, where Xd ⊂ Rd denotes the input
space. A learning sample is of the form U = (X ,Y ) ∈ Xd ×{0,1}, where the input
element X is randomly distributed according to the sample distribution D defined over
the input space X, Y is the random label or output element associated with X . In a noise
free setting, the value of Y depends only on the random vector X and the target concept
g and Y = g(X). To obtain samples U , the concept of an oracle is used. On request, an
oracle EX(D ,g) randomly draws an input element X according to the distribution D
and classifies it using g and returns a sample U = (X ,g(X)).

Real-life applications are usually not noise-free, i.e. the property Y = g(X) is not
always fulfilled. Most algorithms designed to work on noise-free data often perform
poorly or do not work at all in the presence of noise. Therefore it is important to have
models for noise and algorithms that use these models for learning in the presence
of noise. One way to introduce noise into a learning model is the classification noise
model, which was first formalized by (Angluin and Laird, 1988). Further details to
noise models can be found in (e.g. Mammen and Tsybakov, 1999; Tsybakov, 2004).
In the classification noise model, the label of the output variable Y is changed with a
fixed probability and Y = g(X)⊕ S, where ⊕ denotes the symmetric difference. The
random noise S ∈ {0,1} is 1 with probability η , i.e. P(S = 1) = η , where η denotes
the noise rate. In the classification noise model, S is independent of the input element
X . It follows directly that P(Y 6= g(X)) = η . In combination with oracles, noise can be
seen as an attacker, that corrupts the output element of a sample generated by an oracle.
Figure 3 visualizes this concept.

Fig. 3. This figure visualizes how an imaginary attacker manipulates samples provided by an or-
acle by randomly switching the labels. On the left hand side: Classification noise model, random
noise independent of the input element. On the right hand side: Extended noise model, random
noise depends on the input element.



In the Statistical Query Model (SQM) proposed by (Kearns, 1998) query functions
of the form χ : Xd ×{0,1} → [a,b] are used to infer information about the data. The
learner works through querying the oracle EX and evaluation the query function χ for
the (possibly noisy) samples obtained from the oracle.

In this work we use a generalization of the classification noise model, the transparent
noise model (Waack, 2009). The restriction that S is independent of the input element X
is dropped. Instead, we introduce a random noise rate η(X) that depends on the input
element. Now, P(S = 1|X = x) = η(X) and thus the random noise depends on the input.
For a given x ∈ Xd the noise rate is η(x) = P(Y 6= g(X)|X = x) and for y0 ∈ {0,1} the
conditional expected noise rate given g(X) = y0 is

ηy := E(η(X)|g(X) = y0). (3.1)

Using the conditional expected noise rates η0,η1, the expected noise rate can be calcu-
lated as η := Eη(X) = η0P(g(X) = 0)+η1P(g(X) = 1).

We furthermore assume that the query functions are admissible. We say that a query
function χ is admissible, if it is not correlated to the noise rate η(X) conditioned on the
concept g(X). This means, that it is not possible to infer the value of χ by simply con-
sidering the noise rate η(X). This is a reasonable assumption, as usually no information
about the result of a query is obtained by simply considering the noise rate.

Now that all the required concepts and definitions are introduced, we will state
one of the central theorems of our learning approach. This theorem describes how the
expected value of an admissible query can be calculated, if the conditional expected
noise rates η0 and η1 are known.

Theorem 1. Let χ admissible with respect to g ∈ C , y0 ∈ {0,1}. Then

E(χ(X ,y0)|g(X) = y0) =
(1−ηȳ0)E[1{Y=y0}χ(X ,y0)]−ηȳ0E[1{Y=ȳ0}χ(X ,y0)]

P(Y = y0)−ηȳ0
(3.2)

The proof of theorem 1 as well as further details concerning learning with trans-
parent noise can be found in (Waack, 2009). For this paper, only the application of this
theorem is of interest. On a learning sample, the expected values ey0 := P(Y = y0),
eχ,y0 := E[1{Y=y0}χ(X ,y0)] and eχ̄,y0 := E[1{Y=ȳ0}χ(X ,y0)] can be estimated using
standard ML-estimators. Using the estimated values, the conditional expected value of
a query E(χ(X ,y0)|g(X) = y0) can be calculated for y0 ∈ {0,1} according to theorem
1 as

E(χ(X ,0)|g(X) = 0) =
(1−η1)eχ,0−η1eχ̄,0

e0−η1
(3.3)

and

E(χ(X ,1)|g(X) = 1) =
(1−η0)eχ,1−η0eχ̄,1

e1−η0
. (3.4)

The conditional noise rates η0 and η1 are usually unknown and estimated by guessing.
In practical applications, the noise rates are guessed by sampling. For example, if the
noise rates are estimated to be between 0.1 and 0.2, hypotheses for all pairs of noise
rates η0,η1 = 0.1,0.11, . . . ,0.19,0.2 could be calculated. Afterwards, the best of these
hypothesis is selected.



3.1 A rectangle learning algorithm

In our work, we use an adaption of the rectangle learning algorithm for the SQM pro-
posed by (Kearns, 1998) for the learning of axis-alligned d-dimensional rectangles.
The algorithm uses the distribution D of the training data to partition the d-dimensional
real-space, such that

P(Xi ∈ Ii,p) = P(Xi ∈ Ii,q) =
1
d1/εe

≈ ε (3.5)

for each dimension i = 1, . . . ,d and p,q = 1, . . . ,d1/εe for X ∈Rd randomly distributed
according to D , where Xi donates the i-th component of X . This means that it is equally
likely that the i-th component of the randomly drawn vector x falls into any of the inter-
vals Ii,·. In our implementation of the algorithm, we utilize sorting algorithms to obtain
these intervals according to the empirical distribution of a discrete training sample. We
sort the values for each dimension and obtain sorted values x′i,1, . . . ,x

′
i,n. The intervals

can then be defined as
Ii,p = [x′i, n

d1/εe (p−1),x
′
i, n
d1/εe p]

for p = 1, . . . ,d1/εe. These intervals fulfill the property defined by equation 3.5. If
there are n samples in a training set, the complexity of the first phase is O(dn logn), as
for each dimension the samples have to be sorted and efficient sorting algorithms are
O(n logn).

In the second phase, the boundaries of the target rectangle are calculated. For each
dimension separately, the probability pIi,p = P(Xi ∈ Ii,p|g(X) = 1) is calculated, i.e.,
the probability that the target rectangle intersects an interval Ii,p. This probability is
calculated using admissible queries and equation 3.4. If the target rectangle intersects
an interval the probability pIi,p should be significantly larger than 0. Thus, for each di-
mension i, the probabilities pIi,p are calculated from the left, i.e. p = 1,2, . . .. The first
interval, for which pIi,p is significant defines the left, i.e. lower boundary li of the rect-
angle in the i-th dimension. The same done from the right, i.e. p = d1/εe,d1/εe−1, . . .
to determine the right, i.e. upper boundary ui. Using this procedure for each dimension
boundaries (li,ui) are calculated.

As for the complexity of the algorithm, the first stage is O(dn logn), because for
each dimension d the samples have to be sorted, which is O(n logn). In the second
stage, for each dimension, the probability pIi,o has to be calculated for at most d1/εe
intervals from the left and analogously from the right. The estimation of this probability
is O(n). Thus the complexity of the second stage is O(dn 1

ε
) and the overall complexity

of the algorithm is O(dn logn+dn 1
ε
).

4 Optimization of Metric Sets and Thresholds

In this section, we want to introduce our machine learning based approach to optimize
metric sets with thresholds for the detection of problematic entities. First we describe
how we utilize the noise tolerant algorithm to learn d-dimensional axis-aligned rectan-
gles to calculate thresholds. Then we show how this can be used in three ways. The



first is to reduce the size of a metric set to obtain an effective and efficient subset. The
second way is to reduce the complexity of the method that is used to classify entities
as problematic. The threshold approach we use defines an easy-to-understand classi-
fication method, where the reason why an software entity is classified as problematic
is obvious, if only the metric values are considered. Other classification methods may
not be as easy to understand, they could even be defined by some black box like algo-
rithm. With our approach it is possible to determine thresholds for a metric set, such
that the classification of an arbitrary complex classification method is reduced to a sim-
ple threshold approach with an error as low as possible. The third way our approach
can be used is to introduce a threshold based and environment specific classification
method where no classification has been available yet. Even if no classification method
is not available, it is possible to manually classify a sample of software entities based
on experience. This sample can then be used to determine thresholds for a metric set.

4.1 Calculation of thresholds using rectangle learning

Our analysis approach is based on a given metric set M = {m1, . . . ,md} and a set of
software entities X with given classifications Y. The set X could for example consist of
components, classes or methods. The aim is to obtain thresholds for the metrics in M
such that the metric set can be used to discriminate software entities in the same way,
as it is done by the pair (X,Y). Using the metric set M it is possible to transform the
set of software entities into a set of vectors in the n-dimensional real space, such that
M(X) := {(m1(x), . . . ,md(x)) : x ∈ X} ⊂ Rn. The pair (M(X),Y) can then be used as
input for the axis-aligned rectangle learning algorithm, which we introduced in section
3.1. As result the algorithm will yield pairs of upper and lower bounds (li,ui) for each
dimension i = 1, . . . ,d. As the i-th dimension represents the values the software entities
calculated using the metric mi and under the assumption that high metric values are bad,
the upper bound of the rectangle in the i-th dimension can be interpreted as a threshold
for the metric mi. Therefore, with ti = ui a set of thresholds T = {t1, . . . , td} for the
metric set M is obtained. For an entity x, the classification of the metric set M and the
thresholds T is defined as

f0(x,M,T ) =

{
1 if |{ i ∈ {1, . . . ,d} : mi(x) > ti }|= 0
0 if |{ i ∈ {1, . . . ,d} : mi(x) > ti }|> 0.

(4.1)

Under the assumption that metric values are positive, this classification describes a
rectangle with upper bounds ti and the 0 as lower bound. Figure 4 visualizes this in
a 2-dimensional setting to clarify the relationship between rectangle learning and the
usage of metric thresholds for the classification of software entities.

The classification error is defined as the probability, that a randomly drawn sample
(X ,Y ) is classified wrong, thus

ε = P( f0(X ,M,T ) 6= Y ) (4.2)

and consequently the empirical classification error on a given training sample (X,Y) is
defined as

εX,Y =
1
|X| ∑

(x,y)∈(X,Y)
1 f (x,M,T )6=y (4.3)



Fig. 4. Right hand side: classification using two metrics with thresholds at 10, respectively 6. On
the left hand side: classification using only the second metric.

with

1{cond} =

{
1 if cond is true
0 if cond is f alse.

(4.4)

This approach can be used to determine thresholds for a metric set given any training
sample (X,Y) and any metric set, regardless of how the training sample or the metric
set were determined.

4.2 Optimization of the efficiency of metric sets with thresholds

The first way to utilize the approach to determine thresholds for a given metric set and
a classification as it was introduced in the previous section, is to optimize an already
existing effective metric set M with thresholds T . In this case, optimization means that
an effective and efficient subset M′ of M with thresholds T ′ is determined. We say that
a metric set is effective, if it yields the correct classification and efficient if it is the
smallest set to do so. For this, the first step is to create a training sample (X,Y) that can
be used by the method to calculate thresholds we introduced in the previous section.
For a given metric set M with thresholds T , the learning sample (X,Y) can be defined
using f0 as (X,Y) = {(x, f0(x,M,T )) : x ∈ X}. Thus, a training sample can be created
using a given set of software entities X.

The aim is to determine a subset of M that is as effective as M, but of smaller size and
therefore more efficient. The effectiveness of a metric set with threshold with respect to
a given classification can be interpreted as its classification error. Therefore, we need to
determine a set M′ = {m′1, . . . ,m′d′} with thresholds T ′ = {t ′1, . . . , t ′d′} that yields a low
classification error. To achieve this, we apply our learning approach with the training
set (X,Y) to all subsets of M, or in other words all sets that are element of the power
set M′ ∈P(M)\ /0. For each of the subsets, the approach will yield thresholds T ′. The
empirical classification error for M′,T ′ can then be calculated as

εX,Y =
1
|X| ∑x∈X

1 f0(x,M,T )6= f0(x,M′,T ′) (4.5)



Subsets M′ of M are effective if their classification error is close to 0. Therefore, the
smallest subset M′ that is effective is an effective and efficient subset of M and can be
used to replace M and gain an equally effective, but more efficient metric set. In figure
4 an example of how the classification of two metrics can be expressed using only one
metric and how entities may be misclassified.

4.3 Reduction of the classification complexity

Another way to utilize our approach is to reduce the complexity of the classification
that is used. With thresholds, a rather kind of classification is described: if a threshold is
violated, an entity is problematic. This makes it clear why an entity is problematic and
also gives an indicator what the problem might be. A slightly more complex approach is
to say that a given number of infractions λ is allowed, thus λ thresholds my be violated.
The classification defined by a metric set M with thresholds T can then be described by
a function

fλ (x,M,T ) =

{
1 if |{ i ∈ {1, . . . ,n} : mi(x) > ti }| ≤ λ

0 if |{ i ∈ {1, . . . ,n} : mi(x) > ti }|> λ .
(4.6)

which is a generalization of the definition of f0.
A reason for such a rule might be, to grant the developers more freedom, e.g., they

may write short methods with a high structural complexity or long methods with a low
structural complexity. But methods that are both long and have a high structural com-
plexity are not allowed. The classification using λ allowed infractions introduces a cer-
tain complexity to understand why a problematic entity was classified as such and which
counter measures should be taken. With more complex approaches, that are maybe not
only based on thresholds, there is a further increase in the complexity. In general, the
classification could be performed by an arbitrary complex function f . A metric set that
yields the same classification but where no infraction whatsoever are allowed is prefer-
able, because as Occams Razor suggests, the simplest solution is preferable. There are
many examples for these more complex models, that are used for defect prediction, e.g.
models using neural networks or regression models (see section 6).

Our method to calculate thresholds for a metric set can be used to determine such a
metric set. Let f : X → {0,1} the function used to classify software entities from an
entity space X , e.g., X could be the space of Java classes. Then a training set (X,Y)
can be determined for a given set of software entities similarly to how it is done in 4.2
as (X,Y) = {(x, f (x)) : x ∈ X}. This training set can be used in exactly the same way
as it is done in 4.2 to determine a good set of metrics M′ ⊂M with thresholds.

4.4 Learning of environment specific thresholds

An important aspect of thresholds for metrics is, that they are often dependent on the
project environment, such as the requirements, the developer qualification or the pro-
gramming language. Therefore, the best results can be achieved with thresholds tailored
to the own environment. In the previous two sections, we only showed how our ap-
proach can be used to optimize already existing classification methods. However, it can



Fig. 5. Right hand side: classification using two metrics with thresholds at 10, respectively 6,
where one infraction is allowed. On the left hand side: classification using the second metric with
no infractions allowed.

also be used to determine thresholds were currently no method of classification exists.
For this, an expert has to manually create a training set (X,Y). The expert has to choose
software entities that are typical for the project environment and manually discriminate
them the good and the bad ones. This way a training set is defined, that can then be
used the same way as in the previous two sections to determine a good set of metrics
M′ ⊆M with thresholds T ′. This combination of metrics and thresholds is optimal for
the given entities that are part of the training sample. If the entities in the training set
are typical for the project environment, they will also be optimal for the whole project
environment.

5 Case Studies

For the validation of our approach for the optimization of metric sets, we performed two
case studies consisting of 6, respectively 3 experiments. After the general methodology
we used to perform the case studies is described, the results of the case studies are
presented.

5.1 Methodology

Our case studies are based on metric data measured for large scale open source software
projects. That way, we obtained sets of software entities X with metric values M(X) that
can be used for our optimization approach. How the classification Y is obtained depends
on the aim of the threshold calculation (see sections 4.2, 4.3 and 4.4). To guarantee the
validity of our results we randomly split the measured data into three disjunctive sets: a
training set (Xtrain,Ytrain) that contains 50% of the data; a selection set (Xsel ,Ysel) that
contains 25% of the data; an evaluation set (Xeval ,Yeval) that contains 25% of the data.
Each of these three sets is used at a different stage of our learning approach. The training
set is used to calculate a set of hypotheses hp,q for sampled noise rates η0,p,η1,q using



the rectangle learning algorithm. The selection set is then used to select the best of these
hypotheses, i.e., an optimal hypothesis h∗ with respect to the empirical classification
error εXsel ,Ysel . The empirical classification error εXeval ,Yeval the error of h∗ is calculated
to evaluate the performance of h∗.

By splitting the data into three sets, we ensure that no overfitting occurs. Overfit-
ting is the effect that a hypothesis is specific to a training set and not generalized. For
example, consider the learning of the structure of credit card numbers, based on the
sample {1111222233334444, 1234567812345678}. A correct and general assumption
that credit card number consist of 16 digits. This assumption would also be correct on
any other learning sample, therefore it would also yield a low error – in this case no er-
ror at all. Thus, with this hypothesis no overfitting occured. Another possible hypothesis
would be, that only the number 1111222233334444 and 1234567812345678 are valid
credit card numbers. While this is a correct hypothesis on the training data, it is not gen-
eralized and would indeed be incorrect for every other credit card number. However, if
only the error on the training set is considered both of the above presented hypothesis
would be equally good. By splitting the available data this effect is prevented. Once
yet unseen credit card numbers are checked for validity, the first hypothesis will still
yield the correct results and the error will remain zero. However, for the second hypoth-
esis, the error would increase with every other credit card number seen, thus making
it obvious that the hypothesis is tailored specifically to the training data and invalid in
a generalized setting. For algorithms that compute a whole set of hypothesis like the
rectangle learning algorithm we use, a split into three sets that contain 50%, 25% and
25% of the data for the training, selection and evaluation is a commonly used method
to prevent overfitting.

5.2 Optimization of a metric set for methods

In the first case study we analyzed a metric set for C++ and C# methods and C functions
and performed a total of 6 experiments. We did not consider C++ functions. As metric
set, we used the set M = {V G,NBD,NFC,NST} as it was introduced in section 2.5. As
thresholds T , we used the values shown in table 2. The rational of using this set is, that
it is effectively able to determine the overall complexity of a method by analyzing its
structure, its coupling and its size.

For this case study, we measured software from various domains implemented in the
three language C, C++ and C#. The measurement was performed using the tool Source-
Monitor (Campwood Software, 30.4.2009). For C we measured the Apache HTTP
Server (The Apache Software Foundation, 30.4.2009a), an open source HTTP server
for *nix and windows systems, which is developed and maintained by the Apache Foun-
dation (The Apache Software Foundation, 30.4.2009b). C++ methods were measured
for two of the main components of the K Desktop Environment (KDE) (The KDE De-
velopers, 30.4.2009) for Linux, the kdebase and the kdelibs component. The kdebase
component contains most of the core applications of KDE, e.g. the window manager,
an X terminal emulator and the file manager Dolphin. The kdelibs provides a library of
important core functions that is used by KDE, e.g., for networking, printing and multi-
threading. For C# we measured three projects. The first C# project we measured is



AspectDNG (CollabNet, 30.4.2009), an aspect weaver that allows Aspect Oriented Pro-
gramming (Kiczales et al, 2002) in C#. The second is the NetTopologySuite (NetTopol-
ogySuite Contributors, 30.4.2009), a Geographic information system (GIS) solution for
the .NET platform. Additionally, we measured SharpDevelop (SharpDevelop Contrib-
utors, 30.4.2009), an Integrated Development Environment (IDE) for C#, VB.NET and
Boo. Detailed informations about the versions and the sizes of the measured software
projects are shown in table 3, statistical information about the measured metric data is
shown in table 4.

Our first three experiments were to apply our approach to reduce the size of a metric
set to improve its efficiency (see section 4.2) to the metric set M in the languages C, C++
and C#. We used the function f0 to classify the data according to M and T . The metric
with the best performance in this setting is NFC. By using only the metric NFC instead
of the whole metric set M, it is possible to achieve nearly the same classification, with
an empirical error of 0.78%, 0.06% and 0.59% for C, C++ and C# respectively. The
computed threshold equals the original threshold and stays 5 for all three languages.
Thus, we were able to reduce the size of the metric set by 75% with nearly no loss. In
fact, the loss of below 1% can be interpreted as noise.

In the other three experiments that we performed on the method data, we validated
our approach to reduce the complexity of the classification method, as introduced in
section 4.3. For this, we classified our data in such a way, that λ = 1 threshold infraction
is allowed. Therefore, the classification can be described by fλ . While in the previous
experiment the metric NFC was the best for all three languages, in this experiment the
metric NST has the best performance in case of C with an error of 0.84%. For C++ and
C# the metric VG yields the best results with an error of 0.87% and 1.36% respectively.
This shows that it is not only possible to describe the one-infraction-allowed model in
a zero infraction model, but also that the set size could be reduced by 75% for all three
languages.

More information on six experiments is shown in table 5. The complete table of
results can be found under (Herbold et al, 2009).

Table 3. Below, informations about the the projects that were analyzed as part of our case studies
presented in the sections 5.2 and 5.3 are given.

Project name Version Language Number of Methods
Apache Webserver 2.2.10 C 6718
kdebase 12/05/2008 C++ 21404
kdelibs 12/05/2008 C++ 37444
AspectDNG 1.0.3 C# 2759
NetTopologieSuite 1.7.1.RC1 C# 3059
SharpDevelop 2.2.1.2648 C# 15700
Project name Version Language Number of Classes
Eclipse Java Development Tools 3.2 Java 5195
Eclipse Platform Project 3.2 Java 7618



Table 4. This table lists some statistical information about the measured C, C++ and C# methods.

Metric Language Median Arithmatic Mean Max value Threshold
VG C 2 5.74 734 24

C++ 1 3.09 366 10
C# 1 2.18 134 10

NBD C 2 2.15 21 5
C++ 2 1.76 13 5
C# 3 2.71 11 5

NFC C 2 6.1 410 5
C++ 2 7.81 997 5
C# 1 2.44 230 5

NST C 2 15.61 1660 50
C++ 3 8.33 1132 50
C# 1 4.78 544 50

Table 5. The table below shows the results of the first case study. It lists the number of methods
used in the learning process, the best metric on its own and the best subset of metrics together
with their respective empirical errors.

λ Language Number of Methods Best metric εsingle Best subset εcombination
0 C 6718 NFC 0.78% VG, NFC, NST 0.48%
0 C++ 21404 NFC 0.06% VG, NFC, NST 0.02%
0 C# 21503 NFC 0.59% VG, NFC 0.22%
1 C 6718 NST 0.84% VG, NST 0.66%
1 C++ 21404 VG 0.87% VG, NST 0.56%
1 C# 21503 VG 1.36% VG. NBD, NFC 1.14%



5.3 Optimization of a metric set for classes

The second case study was performed on the class level of Java, where we performed
three experiements. The metric set we analyzed and optimized is M = {WMC,CBO,
RFC,NORM,NOM,LOC,NSM} as defined in section 2.5. The thresholds T were de-
fined as in table 2. This metric set determines whether the complexity of a class is
problematic by analyzing its method complexity, coupling, misuse of inheritance, size
and and staticness.

For the measurement of the metrics two tools were used. We used ckjm (Diomidis
D. Spinellis, 30.4.2009), a tool for the measurement of the Chidamber and Kemerer
metric suite for Java to measure the metrics CBO, RFC and NOM. The metric NOM
could be measured using this tool, as it assigns a complexity of 1 to each method, there-
fore its value for WMCckjm is nothing else but our metric NOM. For the measurement
of the other four metric WMC, NORM, LOC and NSM we used the Eclipse Metrics
Plug-in (Frank Sauer, 30.4.2009). We measured two large-scale and well defined open-
source projects, both run by the Eclipse Foundation (Eclipse Foundation, 30.4.2009b):
the Eclipse Platform (Eclipse Foundation, 30.4.2009a) and the Eclipse Java Develop-
ment Tools (JDT) (Eclipse Foundation, 30.4.2009c). The Eclipse Platform project is re-
sponsible for many of the main components for the Eclipse Platform, like the handling
of resources, the workbench or the editor framework. However, we did not measure
the whole project, but excluded the Standard Widget Toolkit (SWT), a framework for
user-interface programming. Formally, SWT is part of the Eclipse Platform Project, but
it is mainly independent. The Eclipse JDT defines an IDE for the development of Java
software on top of the Eclipse Platform. Additional information about the measured
versions of both projects is shown in table 3.

The first experiment was to apply our approach for the optimization of the efficiency
of a metric set (see section 4.2 to the set M. We used f0 to classify the measured metric
data according to M and T . The metric with the best performance was CBO with an
empirical error of 1.22%. This would be a set size reduction of 83%. With the metric
set M′ = {WMC,CBO,NOM,NSM} an empirical error of 0.31% is achieved by M′ and
the set size is reduced by 33%. Thus, depending on the empirical error that shall be
achieved the size of the metric set can be reduced by up to 83%.

In a two further experiments, we validated that the approach to reduce the complex-
ity of the classification as defined in section 4.3 to this metric set as well. Similarly
to how we validated the approach in the first case study, we allowed threshold infrac-
tions. In the first of these two experiments, we allowed λ = 1 infraction, in the second
λ = 2 infractions. For the classification of the measured data, we used the function fλ .
In case of λ = 1 the metric NOM yields the best results on its own with an empirical
error of 4.91%. The best results are obtained using the metrics RFC, NORM, NOM
and NSM, with an error of 2.64%. Again, this shows that it is possible to describe the
one-infraction-allowed model as a zero infraction model, while reducing the size of the
metric set by 33%. In case of two allowed infractions, all subsets of our metric set M
can be used with a very low error, which is between 1.92% and 6.42%. That the error
for all possible metric sets is this low, is due to the fact that only 7% of the data is
classified negatively. Hence, even the trivial hypothesis that classifies all data as posi-
tive would yield an error of only 7%. However, using only the metric RFC this can be



further improved to an error of 1.99% while reducing the set size by 83%. The metric
set RFC and LOC achieves an error of 1.92% while reducing the set size by 66%.

Additional information for all the results is shown in table 7. The complete table of
results can be found under (Herbold et al, 2009).

Table 6. This table lists some statistical information about the measured Java classes.

Metric Median Arithmatic Mean Max value Threshold
WMC 12 23.25 814 100
DIT 0 0.49 5 -
NOC 0 0.31 131 -
CBO 8 12.08 197 5
RFC 20 33.54 620 100
NORM 0 0.68 35 3
LOC 26 70.98 2755 500
NOM 6 10.54 205 20
NSM 0 0.65 58 4

Table 7. The table below shows the results of the second case study. It lists the number of classes
used in the learning process, the best metric on its own and the best subset of metrics together
with their respective empirical errors.

λ Number of Classes Best metric εsingle Best subset εcombination
0 5399 CBO 1.22% WMC, CBO, NOM, NSM 0.31%
1 5399 NOM 4.91% RFC, NORM, NOM, NSM 2.64%
2 5399 RFC 1.99% RFC, LOC 1.92%

5.4 Discussion of the case study results

As we showed in our case studies, our approach can be used to determine effective and
efficient metric sets as well as reduce the classification complexity. We were able to
significantly reduce the size of two metric sets, while keeping their generality. Further-
more, we demonstrated that it is possible to use a model with zero allowed infractions
instead of a model where some infractions are allowed. In our experiments, the expo-
nential nature of the approach was no threat to its applicability. The execution of all
9 experiments performed as part of both case studies combined took 2 minutes and
19 seconds on a normal desktop workstation running on an Intel Core2 Duo E8400
processor.

In the experiments for the optimization of metric sets the metrics NFC and CBO
were the ones with the best performance. This coincides with the user intuition that in
most cases coupling is responsible for most of the complexity and therefore mostly the
reason while entities are considered to be problematic. The reason for this is that non-
local communication is often complex. If you consider methods, in modern languages



not nessecarily the length or its structural complexity is what defines its complexity
and understandability. Of course, short methods with a low structural complexity are
usually simple. But even on-line methods can be difficult to understand, if in this one
line another method is called. This is due to the fact, that at least the parameters and
the return values of a method have to be understood. Furthermore, method calls also
have an effect on the internal state of on object, which has to be considered. Therefore,
the understandability of a method call can be anywhere between “very easy” and “very
difficult”.

For example, consider a method double calculateAverage(double[] array).
What exactly this method calculates is unclear, only that it is some kind of average
value. However, the term average is ambiguous. It could mean the arithmetic mean
value, the geometric mean value, the median or even some other definition of an aver-
age value. So what the method actually calculates, needs to be inferred from another
source. If the documentation is available and sufficient, this is no problem. But it is
also possible, that the the documentation is unavailable or insufficient, e.g., “Calculates
the average value of the array”. In this case, there are only two means left to infer the
meaning of “average” in this context: if available, analyze the source code of the method
directly, otherwise it has to be determined using reverse engineering. As this example
shows, the seemingly simple method call could in fact be very difficult to understand.
Of course, this example exaggerates the possible problems. But even so, when using
external libraries the reality is often very similar.

As for the coupling of classes measured using CBO, the metric NFC is obviously
related to CBO. On of the criteria defining the coupling of a class is the number of
classes, from which methods are called. Statistically speaking, this increases with the
number of method calls with a high probability. Thus, high values of NFC lead to high
values of CBO in probability. Vice versa, if methods from many different classes are
called, it is highly probable that many methods are called. Furthermore, (Binkley and
Schach, 1998) validated that coupling is a good predictor for the complexity of software.
In conclusion, it is therefore not surprising that these two metrics were the ones with the
best performance, as it validates the user intuition, they are related and previous studied
showed, that coupling metrics are indeed good for this purpose.

Another interesting result is the behavior of the metric NSM in our results. While it
is useless on its own, due to the fact that most classes do not have any static methods,
it is part of the best subset of metrics and also most other good results. This shows, that
this aspect of a class cannot be sufficiently expressed using the other six metrics.

The result of the experiment with two allowed infractions in the second case study
shows, that two infractions are in fact two much in this setting. Only 7% of the enti-
ties are classified as problematic. This distribution of positive and negatively classified
entities is a problem for effective learning, as most learning algorithm require a better
balance of positive and negative entities. This is due to the fact, that otherwise the trivial
hypothesis already yields a good enough result and it becomes difficult to detect noise.



6 Related Work

The metric suite proposed by (Chidamber and Kemerer, 1994) has been the subject
of many studies. A literature overview about the analysis of the Chidamber and Ke-
merer metric suite was performed by (Subramanyam and Krishnan, 2003). Since their
overview, the metric suite has been used in further studies. The capability to predict
faults was analyzed by (Gyimothy et al, 2005), using various statistical and machine
learning methods. A neural network based approach for fault prediction using object-
oriented measures, including the Chidamber and Kemerer metrics, was introduced by
(Kanmani et al, 2007). In (Olague et al, 2007) the authors analyzed and compared the
Chidamber and Kemerer metrics and two other metric suites, the MOOD metrics (Abreu
and Carapuça, 1994) and the QMOOD metrics (Bansiya and Davis, 2002) with respect
to their capabilities to predict faults.

Independent of any specific metric sets, like MOOD and the Chidamber and Ke-
merer metrics, many researchers are concerned with defining predictor models based
on historical data, e.g. for defect prediction. Most of these models are – at least to some
degree – based on software metrics in general (e.g. Denaro et al, 2002; Ostrand et al,
2004; Nagappan et al, 2006; Zimmermann et al, 2007).

Research on how to obtain an environment specific metric set can be obtained
was performed by (Basili and Selby, 1985). In contrast to our work, the authors use
a Goal/Question/Metric (GQM) (Basili and Weiss, 1984; Basili and Rombach, 1988)
approach to determine a metric set and condense it using factor analysis (Mulaik, 1972).
In an earlier work, we used a simpler machine learning based approach for the optimiza-
tion of a metric set for TTCN-3 (Werner et al, 2007). This work is different, as we use
a more complex algorithmic approach and apply it in different settings, i.e., other pro-
gramming languages and also other task, e.g., the simplification of the classification
method.

There is also work, that directly uses or defines thresholds. In (Lorenz and Kidd,
1994) the authors define thresholds for many metrics. Further work on thresholds was
performed by (French, 1999). French introduced a statistical method to obtain thresh-
olds and used this method to define thresholds for object-oriented and procedural soft-
ware. In another study (Benlarbi et al, 2000) give an overview over the thresholds that
have been defined for the Chidamber and Kemerer metrics and perform an analysis on
threshold effects. Some statical analysis tools, like PMD use software metric thresholds
as part of their software analysis Copeland (2005).

7 Conclusion

We present a novel high-level approach for the calculation of thresholds for a metric
set. These sets can than be used to classify software entities as problematic with respect
to quality attributes, e.g., fault-proneness. Our approach is able to yield a predefined
classification with a high accuracy of over 95%, while reducing the size of the metric
sets used, thus making it simpler and more effective. In two case studies, we proved
that our approach can be used to optimize metric sets or simplify classification models.
Another possible application of our approach is to calculate thresholds where no formal
classification model exists yet, but experts determine the classification manually.



Studies on how well our approach works for the simplification of currently existing
classification models are an interesting topic for further research. It would be interest-
ing to see how good a simple threshold approach performs in comparison to complex
classification approaches, like neural networks or support vector machines. Especially
the comparison to algorithms where the classification method is a black-box and it is
unclear why an entity was classified the way it was is interesting. With thresholds, ad-
ditional information would be gained as to what the problem is: the attributes that are
measured by metrics that violate their thresholds are the problem.

Altogether, our results are very good and as our case studies included various pro-
gramming languages and projects from different domains, we conclude that our ap-
proach can be successfully used in other settings as well.

A Table of Acronyms

NFC Number of Function Calls

NBD Nested Block Depth

VG Cyclomatic Number

WMC Weighted Methods per Class

NST Number of Statements

DIT Depth of Inheritance Tree

CBO Coupling Between Objects

RFC Response For a Class

LCOM Lack of Cohession in Methods

NOC Number of Children

NOM Number of Methods

NORM Number of Overridden Methods

LOC Lines of Code

NSM Number of Static Methods

KDE K Desktop Environment

GIS Geographic information system

IDE Integrated Development Environment

SQM Statistical Query Model

FCM Factor, Criteria, Metrics

SWT Standard Widget Toolkit

ISO International Organization for Standardization

GQM Goal/Question/Metric

TTCN-3 Testing and Test Control Notation



B Glossary

Rd d-dimensional real-space
g target concept
C concept class
Xd input space defined over the d-dimensional real-space Rd

U = (X ,Y ) learning sample, U ∈ Xd×{0,1}
X input element
Y output element, random label
D sample distribution
EX(D ,g) oracle
S random noise
η noise rate
P probability
η(X) random noise rate
η0,η1 conditional expected noise rate
E expected value
χ query function
M a set of metrics {m1, . . . ,mn}
(X,Y) a discrete learning sample
(Xtrain,Ytrain) a training set used to calculate hypotheses
(Xsel ,Ysel) a selection set used to select the best hypothesis
(Xeval ,Yeval) an evaluation set, used to evalute the quality of the selected hypothesis
M(X) the transformation of software entities into the n-dimensional using M

M(X) := {(m1(x), . . . ,mn(x))t : x ∈ X} ⊂ Rn

(li,ui) the pair of lower and upper bound of an axis aligned rectangle in the i-th dimension
ti threshold value for the metric mi
f0(x,M,T ) classification of a software entity x using a metric set M with thresholds T
fλ (x,M,T ) classification of a software entity x using a metric set M with thresholds T , with λ allowed infractions.
ε classification error
εX,Y empirical classification error
P(M) power set of the set M
X space of software entities, e.g. methods or classes
h∗ optimal hypothesis
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