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Abstract

Currently, the need for a powerful and scalable infrastructure that resolves compu-
tational and data intensive tasks and provides on-demand scalable resources increases
rapidly. We think that the integration of existing technologies, such as grid and cloud
infrastructures instead of building a new infrastructure can fulfill this demand.

This thesis is concerned with the integration of such infrastructures. It investigates pos-
sible and relevant consolidation scenarios of grid and cloud systems. Possible interoper-
ability approaches that can be used to realize any of these consolidation scenarios are pre-
sented and discussed. One of these consolidation scenarios is the extension of an existing
grid system with resources provided by a cloud infrastructure. This scenario is imple-
mented as a case study for the integration of Globus Toolkit 4 grid system and Eucalyptus
cloud infrastructure. Different design scenarios for extending Globus Toolkit 4 grid system
with a Virtual Runtime Environment provided by Eucalyptus framework are introduced
and discussed. A description of the implementation of the selected design scenario is pro-
vided. We show the successful deployment of the case study. This includes the execution
of an application on grid resources as well as on Virtual Runtime Environment provided
by Eucalyptus framework.
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1 Introduction

As a result of the advances in different scientific domains and the increasing need for re-
sources that are able to resolve computational intensive tasks, a large computation and
processing power over large data sets are demanded. Therefore, the concept of grid com-
puting was initiated in the late 1990s to utilize geographically-distributed heterogeneous
computational and storage resources. These resources are harnessed by grid to solve large-
scale problems and to achieve better performance and throughput.Recently, the cloud
computing paradigm has been developed to provide businesses and users with on-demand
scalable resources such as networks, servers, storage, applications, and services.

Nowadays, researches have become more concerned with the relation between grid and
cloud computing paradigms. Some researches see them in competition, while others insist
that they complete each other. The similarity of the goals of both technologies is the ori-
gin of such a confusion about the relationship between grid and cloud technologies. For
example, minimizing the computation costs is a common goal of both technologies.

At present, cloud computing infrastructure offer only services based on Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) service
models and within one domain. Furthermore, users are responsible for the management of
these services and resources provided by cloud infrastructure. However, grid computing
is concerned with different issues, such as federated interoperation of computing facilities,
security, shared data management, system monitoring, and application scheduling and
execution.

The need for a powerful and scalable infrastructure that resolves scientific computa-
tional and data intensive tasks and provides on-demand scalable resources is increasing
rapidly. Therefore, we think of the combination of existing technologies such as grid and
cloud infrastructures instead of developing a new infrastructure can fulfill such a demand
and provides better services.

1.1 Motivation

A hybrid platform combining grid and cloud technologies would provide benefits to re-
source providers, as well as to end users. By using cloud technologies, grid systems can
mitigate their limitations. To fulfill different and several users demands, grid systems
need to provide dynamically scalable resources and services. Furthermore, the develop-
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1 Introduction

ment and the deployment of grid-based applications face challenges of working over large
sets of heterogeneous resources, which belong to different organizations and include dif-
ferent access levels. By applying cloud technologies including virtualization on the top
of grid resources, a level of homogenization can be achieved, which simplifies resources
management. In addition, grids can gain benefits from cloud technologies via a virtualiza-
tion layer, which enables users to customize their environments in order to avoid failure
from misconfigured systems or from insufficient allocation of disk space and memory.
Cloud systems can also benefit from grid features and services, such as security, shared
data management, system monitoring, and application or job scheduling and execution.

1.2 Goal Description

This thesis investigates the possible consolidation scenarios of grid and cloud technologies
according to user needs. It also examines interoperability approaches between grids and
clouds. It concentrates on providing services offered by cloud technologies to grid users.
The extension of a Globus Toolkit 4 (GT4) [44] grid system with resources provided by
Elastic Utility Computing Architecture Linking Your Programs to Useful Systems (Euca-
lyptus) [5] cloud technology, a consolidation scenario is carried out as a case study in this
thesis. Possible design scenarios of the extension are investigated. In order to validate the
proposed design, we show the execution of an application on grid resources, as well as on
a Virtual Runtime Environment (VRE) provided by Eucalyptus framework.

1.3 Thesis Structure

This thesis is structured as follows: Chapter 2 describes the underlying technologies cov-
ered for the achievement of the thesis goals. It presents mainly the cluster computing
paradigm, the grid computing paradigm, virtualization technology concepts, and the cloud
computing paradigm. Chapter 3 explains the consolidation of grid and cloud systems. This
includes possible integration scenarios of grid and cloud systems and interoperability ap-
proaches between them. The possible scenarios for extending a GT4 grid system with a
VRE provided by Eucalyptus framework are introduced in Chapter 4. Chapter 5 describes
the realization of the thesis goal by implementing a case study. This includes an overview
of the system and the environment setup. It also describes how grid users can use a VRE
to execute their jobs. Chapter 6 concludes this work by providing a summary and outlook.
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2 Foundations

This chapter introduces the underlying technologies serving the main goal of this thesis.
Section 2.1 presents the cluster computing paradigm. The grid computing paradigm and
the GT4 middleware are depicted in Section 2.2. In addition, Section 2.3 describes virtual-
ization technology and its concepts. The cloud computing paradigm and its services are
presented in Section 2.4.

2.1 Cluster Computing

In the 1980s, the cluster computing approach gains momentum by merging high-performance
microprocessors, high-speed networks and standard tools for high performance distributed
computing. In addition, the need of processing power for computational intensive applica-
tions raises. Furthermore, the high cost and lack of availability of traditional supercomput-
ers force researchers to find alternative solutions, where the production and development
of processors are limited by light speed, thermodynamic laws and costs.

The recent progress and availability of high-speed networks and high-performance mi-
croprocessors make cluster computing a good solution, where using parallel architectures
is much cheaper than the use of sequential supercomputing and achieves equivalent per-
formance level as these supercomputers [61, 78].

Pfister’s [61] and Buyya’s [39] work defines clusters as follows: "A cluster is a type of
parallel or distributed computer system, which consists of a collection of interconnected
stand-alone computers working together as a single integrated computing resource".

Typically, cluster resources are homogeneous, are connected via Local Area Network
(LAN), locate in a single administrative domain and are managed by a single entity. Fur-
thermore, clusters are built by using off-the-shelf hardware components and commonly
used software to offer parallel-distributed platforms for high-performance, high-throughput
and high-availability computing.

The common architecture of a cluster is shown in Figure 2.1. The main components of
a cluster are the standalone computers (e.g. Personal Computer (PC)s or Workstations),
operating systems, high-performance networks, parallel programming environments (e.g.
compilers), applications (e.g. system management tools) and the middleware, which con-
sists of two layers (Single System Image (SSI) and Availability Infrastructure). SSI rep-
resents the distributed system as a single unified computing resource. The availability
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2 Foundations

infrastructure provides all nodes of the cluster with cluster fault-tolerant services such as
the automatic recovery from failures [34].

Figure 2.1: Cluster architecture (R. Buyya [39])

2.1.1 Resource Management System Middleware

A Resource Management System (RMS) performs as a cluster middleware that implements
the SSI [40] for the underlying distributed system. Via RMS, users can execute their jobs
on the cluster without the need to understand the complexities of cluster architecture. In
addition, it manages the cluster through four capabilities, i.e., resource management, job
queuing, job scheduling, and job management.

The basic RMS architecture is built using the client-server paradigm [34], where the
client daemons (i.e., service requester) submit tasks and the server daemon distributes
tasks between resources (i.e., service providers). These daemons maintain tables, which
store information about the whole underlying distributed system. Once a job has been
submitted to the RMS, the job is placed, scheduled and executed according to the submit-
ted requirement. A job [36] is defined as, it is the main execution object, which consists of
a collection of related processes, that it is managed as a one unit. The life cycle of a job can
be divided into four states. The states are creation, submission, execution and finalization
(e.g. retuning results) states. At creation state a script contains all of the parameters of the
job is prepared.

Figure 2.2 represents a common architecture of cluster RMS [78]. A RMS manages re-
sources such as processors and disk storage in the cluster. Furthermore, it maintains sta-
tus information of resources. Therefore, jobs can be assigned to available machines. The
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2 Foundations

RMS software on server node consists of two components a resource manager and a job
scheduler, where the resource manager is responsible for locating and allocating resources,
authentication, as well as job execution and migration. The job scheduler component is
concerned with specifying which execution nodes to use and when to start the job.
The users submit jobs to the RMS, where they are hold by queues until there are available
resources. Afterwards, the RMS invokes a job scheduler to choose one of the jobs from
queues to be executed on available machines. Then it becomes responsible for managing
job execution and returning the results to users.

Figure 2.2: Cluster RMS architecture [78]

The Portable Batch System (PBS) [36], CONDOR [59] and Load Share Facility (LSF) [41]
are leading examples of implemented RMS middleware.

2.1.2 Portable Batch System

PBS [36] is a widely used cluster RMS software package and a resource management sys-
tem. It was developed by the National Aeronautics and Space Administration (NASA)
[56] to fit to the Portable Operating System Interface for UNIX (POSIX) batch environment
standards . PBS has a flexible scheduler module that can be replaced by another to enable
sites of selecting the more appropriate scheduling policies. PBS software consists of the
following components:

• The pbs_server acts as the resource manager (see Figure 2.2), which creates and mod-
ifies information about the jobs and the resources. It is responsible for failure toler-
ance by storing a copy of completed jobs in the backing store.
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2 Foundations

• The pbs_sched is the job scheduler, where it makes scheduling decision depending
on information submitted with the job. Usually pbs_server and pbs_sched run on
the same machine.

• Submit nodes (pbs_client) which have client interfaces that enable users to submit
and track their jobs.

• Worker nodes (pbs_mom1), where their main task is to manage and execute submit-
ted jobs. Furthermore, pbs_mom communicates with pbs_server on the manager
node and it delivers the result to the client.

The pbs_sched job scheduler can be replaced with the Maui scheduler[63], which is an
open source and external job scheduler designed to work with resource management sys-
tem such as PBS. In comparison with pbs_sched scheduler, the Maui scheduler supports
powerful scheduling policies described in the following:

• Reservation is a method of allocation resources for specific time. This policy has an
enforcement nature.

• Fairshare gives equal priority to each one of the jobs in a queue.

• Backfill allows the scheduler to run low priority jobs on the available nodes without
delaying the higher priority jobs.

• Throttling Policies control resource consumption in order not to make the system
being dominated by individual user, group, account, Quality of Service (QoS) by
limiting the total number of jobs assigned to each of them.

2.2 Grid Computing

As a consequence of the scientific advances in different domains, such as unlocking the
genetic code, exploring the structure of the matter and the universe as well as the environ-
mental simulations, the need of short-term and very large computational intensive power
increases. Furthermore, the vast data generated and analyzed within e-Science programs
would exceed the capacity of any centralized storage system. For example, CERN Large
Hadron Collider (LHC) [25] is a particle accelerator, that can generate about 10 Petabytes
of information a year. Performing such data intensive and computationally intensive tasks
requires highly expensive resources (supercomputers), which typically could not be af-
forded. Such challenges motivate the creation of a powerful, inexpensive and flexible com-
putational infrastructure -known as grid computing- by joining geographically-distributed

1Machine Oriented Miniserver (MOM)
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heterogeneous computational and storage resources such as databases, storage servers,
supercomputers and clusters for solving large-scale problems and achieving greater per-
formance and throughput by coupling resources from different distributed organizations.
Before grid computing each organization could only use the resources, over which it has
direct control [37, 68].

Foster [45] defines grid system in three check points as followed:

A grid is a system that:

• coordinates resources that are not subject to centralized control by integrating re-
sources from different administrative domains, and addressing security, member-
ship and policy.

• uses standard, open, general-purpose protocols and interfaces to address authenti-
cation, authorization, resources discovery/access, etc. Protocols/interfaces must be
standard and open (interoperable).

• then delivers nontrivial qualities of service by using its software and hardware re-
sources in such a way they are capable of delivering various QoSs to meet complex
user requirements.

2.2.1 A Grid System taxonomy

Grid systems can be classified into three types as shown in Figure 2.3: 1) computational
grid [47], 2) data grid [73], and 3) service grid. Computational grids offer high throughput
and reliable distributed supercomputing capabilities. Data grids enable the combination
of the existing data scattered in a wide area networks, and make these data available as
digital libraries and data warehouses. The service grids offers services which are not of-
fered by any single resource. Service grids are divided into three types, i.e., on-demand,
collaborative, and multimedia [65].

Figure 2.3: A grid systems taxonomy [54]
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2.2.2 Grid Architecture

A general grid architecture has been defined by Foster [48]. It emphasizes that the com-
ponents of grid are classified according to functionality and purpose. Figure 2.4 gives an
overview of the grid architecture in terms of layer by analogy to the Internet Architecture.
A description of each layer is summarized in the following [48]:

Figure 2.4: Layered Grid Architecture [48]

• Fabric: represents the sharing of resources in the grid such as computers, cluster and
storage.

• Connectivity: represents the protocols that allow the communication among the re-
sources such as Transmission Control Protocol/Internet Protocol (TCP/IP), X509 cer-
tificates and Grid Security Infrastructure (GSI). Furthermore, this layer includes ad-
ditional security protocols that emerged in grid community in response the security
challenges.

• Resources: represents all the protocols and services needed for the individual re-
source management. For instance, it enables the initiation, monitoring, and account-
ing of resources. There are two classes of protocols in this layer:

– Information Protocols: Allow accessing the information of resources such as
Central Processing Unit load in the case of computers.

– Management Protocols: Allow the control of resources to a specific degree. The
degree of control corresponds to the organization’s policies.

• Collective: represents the set of protocols and services which enables the manage-
ment of multiple resources. The services of this layer are built on the services of the

14
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resource layer to allow taking a collection of resources that work together to solve
some common task. Samples of the services found in this layer are:

– Resource Registry: discover resources in a Virtual Organization (VO) and their
properties.

– Allocation and scheduling of services: allocate resources to jobs instead of the
random selection. For this purpose a scheduler decides what jobs run where
and when.

– Monitoring services: monitor the proper work of all resources.

– Data management services: keep track of datasets which are required for the
processing of jobs, and transfer them to the resource that needs them.

• Application: refers to the real applications that run on a grid. These applications can
interact with the lower layers and call their services.

2.2.3 Open Grid Service Architecture

Grid systems should enable the dynamic integration, virtualization and management of
their resources and services, in spite of the heterogeneity and geographical-distribution of
them [48]. Therefore, it became clear that the services provided by grid systems need to
be independent of implementations and applications. Standardization is the solution to
enable the discovery, access, allocation and monitoring of grid environment [46].

For this task, researchers and users in the Global Grid Forum (GGF) [23] met to define
grid specifications that result in adaption of standards and interoperable applications.

Open Grid Service Architecture (OGSA) [46] is developed by the GGF to address the
interoperability between grids by merging grid and web service technologies in order to
create sophisticated distributed systems. These grids could be built by different toolkits.
OGSA is an extension of a set of services which are composed in different ways to satisfy
the needs of VOs which operates them.

OGSA developers aimed at defining the core loosely-coupled services, their interfaces,
and the semantics, behavior and interaction of these services, while they did not specify
programming language or execution environment. These services are: execution manage-
ment services (e.g. Job manager and execution planning services ), data services (e.g. Data
storage, access and transfer), resource management service, security services (e.g. Au-
thorization and authentication) and information service (e.g. Discovery and monitoring ).
Furthermore, OGSA represents standard mechanisms for creating and naming grid service
instances [46].
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2 Foundations

2.2.4 Web Services Resource Framework

The Web Services Resource Framework (WSRF) [12] is a combined effort of both Grid and
Web services communities to provide a standard infrastructure for grid environments.
The Web service term describes an important emerging distributed computing paradigm
Business-to-business (B2B) that differs from other approaches such as CORBA, and Java
RMI. Web services depend on open standards to ensure the interoperability between dif-
ferent software applications, running on heterogeneous platforms.

Grid services can be defined with Web service description language (WSDL), communi-
cate with each other using Simple Object Access Protocol (SOAP) messages and use web
services security layer. However, grid services disagree with typical web services in two
special characteristics, that they are often transient and stateful. The Implementation of
such stateful services is based on the WSRF standard.

Figure 2.5: Relationship between OGSA, WSRF, GT4 and Web Services [68]
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2.2.5 Globus Toolkit 4

"The Globus Toolkit 4 (GT4) is a software toolkit -open source-, developed by the Globus
Alliance [44]. which can be used to create grid systems" [68]. The relation between OGSA
and WSRF and how they relate the GT4 and Web services is shown in Figure 2.5, where
OGSA standardizes all the services, that can be found in a grid system, while WSRF spec-
ifies and provides the stateful services that OGSA needs. In other words, OGSA is the
architecture, while WSRF is the infrastructure on which that architecture is based. In ad-
dition, GT4 includes a few of high-level services that meet the requirements of OGSA and
can be used to build Grid applications. Therefore, it includes resource monitoring, service
discovery, job submission, security, and data management services. GT4 implements most
of these services on top of WSRF, in addition to other services that are not implemented on
to of WSRF and are called non-WS components [44].

Figure 2.6: Globus Toolkit 4 (GT4) components [44]

The GT4 is organized as a set of loosely coupled components. These components are
composed of services, programming libraries and development tools for building grid ap-
plications. The GT4 components [44] cover five wide domain areas, are shown in Figure 2.6
and explained in the following:

• Security components: refer to the GSI which facilitates the secure communications
and applications. They include authentication and authorization, delegation, com-
munity authorization, and credential management.
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2 Foundations

• Data Management components: enable the discovery, transfer, and access of data.
They include GridFTP, Reliable Transfer Service (RFT), Replica Location, Data Repli-
cation, and Open Grid Services Architecture Data Access and Integration (OGSA-
DAI).

• Execution Management components: handle the deployment, scheduling, and mon-
itoring program execution, i.e. jobs. They include Grid Resource Allocation and
Management (GRAM), Community Scheduler Framework (CSF), Workspace Man-
agement, and the Grid Telecontrol Protocol.

• Information Services: monitor, index and discover the resources in Virtual Organization
(VO). They include Index Service, Trigger Service, and WebMDS.

• Common runtime components: provide libraries and tools to host existing services
and develop new ones. They include C Runtime, Java Runtime, and Python Runtime.

Components marked as "Tech previews" in Figure 2.6 are not well tested as other com-
ponents and may change in the future.

2.2.6 Gridification

The grid community certainly aims and attempts to simplify and accelerate the develop-
ment of grid applications. However, it sounds better to transform conventional applica-
tions (e.g. desktop applications and legacy applications) to be able to work on grid infras-
tructures, in order to benefit from grid features, such as computational intensive power
and massive storage resources. In addition, this adaptation could save the costs and effort
of software development [55].

"Gridification" is the process of adapting an existing application to be executed on grid
environments. This process involves handling not only the execution of an application but
also the execution speed-up through the acquisition of resources from outside, which were
not accessible before [67].

The main idea of gridification process the is the parallelization of the task by dividing
it into several smaller jobs [67]. The gridification process involves a management system
and grid middleware services, i.e., components.

The division process is carried out by a management system. This system determines
all jobs and their descriptions is the management system responsibility and the synchro-
nization of the jobs as well. The management system should guarantee the correct and the
right order of execution of the jobs considering the job dependencies. These dependencies
have to be entered by user and the rules of the division of the task into smaller jobs as
well. The entry of these data can be hard and time-consuming, because of the necessity
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of management system readapting for similar applications or new management system
implementing.

After the determination of the jobs and their order according to their dependencies the
management system uses the services of the grid middleware. For job submission the
execution service of the grid middleware is used. Each grid middleware usually has a
command line tool to call its services. This command line calls includes the job description
file which contains for instance the application name, the input data etc.

In addition, the management system inquires the status of the jobs (e.g. running, fin-
ished or failed) using the monitoring services provided by grid middleware. Then it col-
lects the output data from finished jobs via grid data and execution services. The collection
of data means copying files or transferring data from nodes [65, 67].

The gridification of an application may face some difficulties, which may make the ap-
playing of the process is infeasible. The application may be restricted by a license agree-
ment. Furthermore, the application can have hidden security weaknesses, which will be
very dangerous in case of remote grid job execution. In addition, some applications use
non-standard communication protocols or may depend on some libraries or executables
which are not available by default on worker nodes. In some cases, there is a need to
change the source code of the application.

The gridification process [74] should be applied on computationally intensive, data in-
tensive and time-consuming applications. Such applications need many calculations, long
run-time as well as huge disk space. Furthermore, the application should have a single
interface to be gridified, from which the user can invoke the main function, specify input
and configuration parameters, and get the output data files. The functionality of an appli-
cation is known by users, but often they have no idea about the implementation. In other
words, the application is considered as a black box, where the users are concerned only
with the input and the output parameters.

The deployment of applications on the grid can be derived in a static or a dynamic man-
ner. They can be pre-installed on grid machines by the system administrators. Otherwise,
the applications can be wrapped in compiled executables, which should be submitted at
run-time to grid machines with jobs.

2.3 Virtualization

In the 1960s, virtualization concept was first introduced by IBM to allow logically parti-
tioning of large mainframe hardware. These partitions allow mainframe computers to run
several tasks simultaneously. By the 1990s, virtualization was used mainly to recreate end
user environments on a mainframe computer. For example if the IT administrator wants
to introduce a new software and check its workability on different operating systems, he
could apply virtualization technologies to create these different environments [71].
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As Susanta [71] defines virtualization as follows: "Virtualization is a technology that
combines or divides computing resources to present one or many operating environments
using methodologies like hardware and software partitioning or aggregation, partial or
complete machine simulation, emulation, time-sharing, and others". The virtualization
provides a logical view of resources instead of the physical view. For example, it splits
up a single physical server into multiple logical ones, where each logical server can run an
operating system and applications independently [28].

The use of virtualization technologies has many advantages but also disadvantages.
Some arguments for the use of virtualization technologies are listed in the following [71]:

• Server Consolidation: increases utilization rates, due to the run of multiple Virtual
Machines (VMs) on one physical hardware. As a result of server consolidation, costs
are saved and the administration costs is reduced.

• Support Legacy applications: legacy applications can continue to run on old Operating
System s (OSs) that run as a guest operating systems on VMs.

• Testing and development: by using VMs the deployment and development of ap-
plications could be accelerated because of the isolation in known and controlled en-
vironments. Unknown factors such as mixed libraries caused by numerous installs
can be eliminated. Severe crashes that required hours of reinstallation take moments
by copying a preconfigured virtual image.

• Improving System Reliability and Security: The virtualization technologies encap-
sulates each guest operating system in a VM, which offers a higher reliability: If one
VM crashed, the other VMs and the host system will not be affected.

• Simplify Deployment: the deployment of a new server, usually needs the hardware
must be acquired, the software to be installed and then the new server must be con-
nected to the network. But creating a new VM is possible within minutes, VMs can
also be copied or moved to another host.

Some disadvantages of virtualization are licensing issues, virtual server sprawl, network
complexity issues, hardware start-up costs, and failover costs. In the following, a brief
descriptions of the disadvantages of virtualization are introduced [51, 38]:

• Licencing issues: virtualization enables several instances of software to run con-
currently on one location (e.g. server). This fact enlarges the possibility of license
violations. Software is implicitly created or moved at each time a VM is created or
moved.

• Virtual server sprawl: is a situation when the number of VMs on a network reaches a
point where the administrator can no longer manage them effectively. Virtual server
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sprawl emphasises on management rather than physical proliferation, which is the
case in the traditional server model.

• Network complexity: VMs require the same networking requirements as the phys-
ical servers. For example, twenty VMs running on two servers require the same
number of Virtual LANS (VLANS) as twenty physical servers. Another problem of
virtual machines is, the fact that the failure of a physical server, will cause the failure
of all hosted VMs by it as well.

• Hardware costs: the reduction of the hardware in virtualization does not necessarily
result in cost savings, since virtualization requires a high end server for supporting
virtualization. Such type of high end and multicore servers is more expensive than
midrange dualcore servers.

• Failover costs: costs of a failure in virtualization is very high compared with failure
of a physical server. For example, if ten physical servers are consolidated into one
single virtual server, which is subject to fail. The consequences influence the ten
physical servers. Manipulating such a problem leads to additional high costs.

2.3.1 Virtual Machine Monitor (Hypervisor)

Virtualization technologies abstract the underlying hardware for VMs. The Virtual Ma-
chine Monitor (VMM) (also known as hypervisor) creates interfaces, which represent the
virtualized resources such as Central Processing Units (CPUs), physical memory, network
connections, and block devices. The hypervisor offers secure environments to meet the
requirements of resources in recent computing systems [32].

The main approaches for virtualization implementation are:

• Full virtualization: provides a total abstraction of the physical resources and creates
a complete virtual system in which the guest operating systems can run. There is
no need to modify the guest OS or the applications. This approach enables the com-
plete decoupling of the OS from the hardware. As a consequence, the migration of
workloads between different physical systems is possible. In addition, the different
applications could be isolated completely, which make this approach highly secure.
However, the full virtualization may cause a decline in performance. An image of the
whole system must be provided to the VMs, including virtual BIOS, virtual memory
space, and virtual devices [32].

• Para-virtualization: provides an abstraction of the physical resources, which is sim-
ilar but not identical to the underlying hardware. This approach provides higher
performance than the full virtualization approach, although the host operating sys-
tems require modifications to be able to run as VMs on Xen [31]. However, there is no
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need to apply any modifications on the Application Binary Interface (ABI). Existing
user applications can run without any modification [32].

2.3.2 Xen Virtualization Technology

Xen [31] is a widely-used high performance hypervisor developed at the University of
Cambridge. It an open source software based on para-virtualization technology [35].

The Xen-based system architecture [52] is illustrated in Figure 2.7 and described in the
following:

• Xen hypervisor VMM: is above the hardware layer and has a direct access to it,
which means that Xen hypervisor runs in the most privileged processorlevel. Then,
the Xen domains VMs are running at the top of Xen hypervisor.

• Domain0 (Dom0): is starting at boot time, and is permitted to access Xen control
interface. It administrates the creation, termination, and migration of guest domains
(User Domain (DomU)) through the control interface.

• User Domain (DomU): is the guest domain and a VM, which typically has no direct
access to physical hardware on the machine. It is often referred to as unprivileged.
All para-virtualized VM instances running on a Xen hypervisor must be ported to
be Xen-based distributions. Sometimes allowing the User Domain (DomU) guests to
have direct access to hardware is required (e.g. a sound card or graphic card).

Figure 2.7: Xen-based system architecture [31]

2.4 Cloud Computing

What does the cloud computing term actually mean? So far, this question is still a matter
of discussion among researchers. These discussions are nearly coming to an end. The US
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National Institute of Standards and Technology (NIST) [11] has defined cloud computing
as: "a model for enabling convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or service
provider interaction" [70].

The provided definition by Vaquero [72] is, clouds are a collection of usable and acces-
sible virtualized resources. These resources can be reconfigured in a dynamic manner to
fit different loads (scales). This would optimize the resource utilization. The pay-per-use
model is typically exploited in order to offer guarantees by the infrastructure provider as
customized Service Level Agreements (SLAs).

Sriram and Hosseini [70] definition describes the main characteristics of all cloud sys-
tems. These features are presented in the following:

• Virtualization: the virtualization is an abstraction of the different resources, such as
computing and storage of the cloud. The end-user does not realize, where the phys-
ical machines and the different types of hardware are located. The Virtualization is
intended to disconnect the processing of users in a way that they do not affect each
other. Virtualization is a prerequisite for the scalability which is explained below.

• Scalability: the scalability represents how the cloud corresponds to changes in the
size of a user’s needs. In case of larger user demands, additional virtual machines can
be started. Scalability is a very important issue in cloud computing, since it enables
users to use all resources that they need, which leads to a higher performance at peak
demands. Due to the payment nature of cloud applications (i.e., pay per use), there
is no loss due to idle time.

• Accessibility: resources for cloud applications can be accessed via the Internet. This
means, they are available at every time and from everywhere in the world. Acces-
sibility improves the resource sharing. However, the Internet connection may influ-
ence the usage of these resources.

• Quality of Service: the QoS is a feature offered by most cloud application providers.
Negotiations between customers and providers or brokers can take place, and are
specified via the SLAs. For example, this specifies guaranteed levels of up-time and
penalties against the provider in case of non-compliance with the agreement.

An overview of the deployment and service models of cloud computing systems are
presented in Figure 2.8, where three service models could be deployed on top of any of
four deployment models. These service models and deployment models are described in
the following.

Each cloud provides users with services at a different level of abstraction. In the follow-
ing the abstraction levels are represented by models known as service models.
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Figure 2.8: Cloud computing deployment and service models [70]

• SaaS: at the SaaS model, by using a web-browser, users can access software that
others offer as a service over the web. In addition, users do not have the right to con-
trol or access the underlying infrastructure, where the software is running [72, 70].
SaaS enables accessing software and data from everywhere without installing soft-
ware. Therefore, users do not have to care about software updates. Salesforce’s [18]
Customer Relationship Management software and Google Docs [7] are popular SaaS
examples.

• PaaS: the PaaS model delivers a cloud platform, which offers a comprehensive en-
vironment for users to be able to design, test, and deploy applications. In addition,
PaaS hides different types of complexities from the users, such as database access.
However, like the SaaS model, users are not allowed to control or access to the un-
derlying infrastructure, which hosts their applications [72]. These applications might
be running in the cloud, or in a traditional enterprise data center. The services offered
by PaaS are typically virtualized, in order to achieve the scalability required within
a cloud. Examples for PaaS model are Microsoft Azure [30], and Google App En-
gine [6].

• IaaS: at the IaaS model, IaaS providers deliver computing resources (e.g. processing
power, memory and storage) to users, where they can use these resources to deploy
and run their applications. Comparing with the other service models, IaaS model
allows users to access the underlying infrastructure through the use of VMs [72, 70].
In addition, users are responsible for updating and upgrading of the OS. Small com-
panies can take an advantage of services based on this model, where they do not
have to care about hardware management and its costs (i.e., buying new hardware).
Amazon Elastic Compute Cloud (Amazon EC2) [1], Nimbus [10], and Eucalyptus [5]
are popular IaaS examples.

Cloud computing deployment models [70] can be classified as private, public, hybrid,
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and community clouds. The private cloud offers systems and services that are used ex-
clusively by one organization. In contrast, the public cloud offers systems and services
that are available to the general public usage and can be free or charged. Public clouds
are usually owned by large corporations such as Microsoft, Google [6] or Amazon [1]. The
hybrid cloud is a combination of public and private cloud. In this case, the organization
that owns a private cloud can access a public cloud to gain benefits from the services of
external providers. The last deployment model is the community cloud, which is used
and managed by a group of organizations that have shared interests.

Cloud technologies face some of the burden associated with the lack of standardization,
where customers are obliged to use cloud providers’ proprietary interfaces. Furthermore,
security and privacy issues are also arguable, since customers do not know, on which
physical machines their data are stored and where these physical machines are located. In
case of large amounts of data the reliance on Internet connections results in performance
issues. In addition, data and applications can not be accessed if the Internet connection
fails [75].

2.4.1 Elastic Utility Computing Architecture Linking Your Programs to Useful
Systems (Eucalyptus)

Different custom-made interfaces are provided by cloud system vendors. And the lack
of research tools motivates building and developing a common and flexible cloud com-
puting framework to formulate experiments and to address open questions in cloud com-
puting [58]. Eucalyptus [5] is a research-oriented open-source cloud computing system
that utilizes resources that are available. It implements IaaS model to provide a solid
foundation of cloud systems can be developed and extended. Furthermore, Eucalyptus
enables users to create and control VM instances deployed across different physical re-
sources within cloud [57].

The main characteristics of Eucalyptus framework are described in the following:

• The implementation of Eucalyptus components uses Web services technologies, where
each component is a stand-alone Web service [57].

• Eucalyptus interfaces are compatible with Amazon EC2 [1]. Amazon EC2 is about to
be the origin of cloud computing systems at the market and implements IaaS. Euca-
lyptus developers want to make it possible to test its functionality and performance
against one of the commercial examples of cloud computing systems [58].

• Eucalyptus system supports Kernel-based Virtual Machine (KVM) [9] and Xen [31]
virtualization technologies. Eucalyptus components instruct Xen hypervisor to run
VMs [57].
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• Eucalyptus is designed from the beginning to be easy to install and to be highly
modularizable. In this way, researchers can modify existing components (modules)
or replace them with their own to address challenging topics in cloud computing
systems (VM instance scheduling, construction of virtual networks and definition
and execution of SLAs) [57].

2.4.1.1 Eucalyptus Components

An Eucalyptus system [5] has four main components as depicted in Figure 2.9: Node
Controller (NC), Cluster Controller (CC), Walrus Storage Controller (Walrus SC), and
Cloud Controller (CLC), each has its own WSDL interface. These components are de-
scribed in the following:

Figure 2.9: Eucalyptus system components [58]

The Node Controller is responsible for the creation and the termination of VMs on a
physical host. Each machine runs a NC, should have a hypervisor as well. After receiving
requests to run or to terminate a VM from the CC, the NC controls the hypervisor, which
installed on the same machine, to run or terminate the VM [58].

The Cluster Controller runs on a machine that has network connectivity with the ma-
chine running the CLC and the nodes running NCs. The CC has three main jobs: the first
job is scheduling the requests to run instances on specific NCs. The second one is manage-
ment of the instance virtual network endpoints as described in Section 2.4.1.2. In addition,
it reports information about its NCs. Each CC has a set of NCs. When it receives a request
to start an instance, it contacts all NCs belonging to it through describeResource operation

26



2 Foundations

and then sends runInstances request to the first NC that has enough free resources [58].

The Walrus Storage Controller is a storage service included with Eucalyptus system.
The Walrus SC interface is compatible with the Amazon Simple Storage Service (Amazon
S3) [2]. Walrus allows users to stream data in/out of the cloud and instances. Furthermore,
it enables users to manage Eucalyptus VM images (Kernel, Ramdisk and Root filesystem
images) [58].

The Cloud Controller administrates the whole cloud. Every Eucalyptus system has only
one CLC, which is the only visible entry point for users. The CLC makes decisions in Eu-
calyptus cloud, since it is in charge of handling requests from users and administrators.
Furthermore, it is responsible for the high-level scheduling of VM instances by submit-
ting requests to CCs, as well as processing SLAs and maintaining the system and user’s
metadata [57]. The CLC itself contains of a collection of services as follows [58]:

• Resource Services: manage and monitor VMs instances. They communicate with data
services to determine and check the references of user request parameters. For exam-
ple ssh key pairs’ parameter to create a VM instance.

• Data Services: handle persistent system and user metadata, such as discovering avail-
able resource information (VM images and clusters) and handling abstract parame-
ters (e.g., ssh key pairs, security groups and network definitions).

• Interface Services: provide web service (SOAP) and web-based interfaces, which han-
dle authentication and protocol translation. These interfaces offer users with differ-
ent services, such as signing up for cloud access, downloading the cryptographic cre-
dentials, which are required for the programmatic interface. In addition, using these
interfaces users can query the system (e.g. disk images). Administrators can also
manage user accounts and inspect the available system components. Furthermore,
Eucalyptus command line tools (Euca2ools) are Linux based text commands, which
let users control and manage cloud operations via a standard terminal interface [57].

These services are not static configuration parameters. For example, a user can change
the firewall rules that influence the ingress of traffic. These changes are derived in offline
mode or are provided as inputs to a resource allocation request.

2.4.1.2 Networking in Eucalyptus System

The VM instance interconnectivity is one of the challenging points in designing a cloud
infrastructure. The main characteristics of VM instance network are the connectivity and
the isolation [57].
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• Connectivity: every virtual machine, which is controlled by the Eucalyptus must have
a network connectivity to each other and to the public Internet in someway.

• Isolation: this means, that VMs belonging to a single cloud allocation have to be able
to communicate, but VMs that belong to separate allocations (i.e., users) have to be
isolated.

In Eucalyptus system, the CC component is responsible for the set up and tear down of
VM instance network interfaces in three different modes. These modes are depicted in the
following [57]:

• SYSTEM Mode: in this mode, Eucalyptus assigns a random Media Access Control
(MAC) address to the VM instance before booting. The VM network interface will
be attached to a software Ethernet bridge, which is already connected to the real
physical machine’s network device. This configuration allows VM network Dynamic
Host Control Protocol (DHCP) requests to be performed in the same way as non-VM
(non-Eucalyptus) DHCP requests. Then, the VM instances obtain Internet Protocol
(IP) addresses.

• STATIC Mode: this configuration allows the Eucalyptus administrator to define a
static list of MAC address/IP address pairs. Thus, each VM instance at booting ob-
tains a free MAC/IP pair. The allocation of this pair is in first come, first served
manner. For each instantiated VM instance, Eucalyptus will maintain a DHCP server
with a static entry. Afterwards, the VM network interface will be attached to the real
physical network device on the node via the software Ethernet bridge. This mode
is useful for assigning of the same list of MAC/IP pairs to the virtualized resources
(VMs).

• MANAGED Mode: This mode enables the Eucalyptus administrator of fully control-
ling, managing of VM networks and users of defining of ingress rules (configurable
firewalls) for their VM instances. In agreement with the network administrator, the
Eucalyptus administrator should specify an IP subnet range that is free for Euca-
lyptus system to use. Typically this subnet range is a private IP range. Eucalyptus
users can define a named network or a security group. Then, they can associate
network ingress rules (e.g. Secure Shell (SSH) connection) which apply to any VM
running within that named network. Furthermore, the MANAGED mode allows the
Eucalyptus administrator of specifying a pool of public IP addresses that users may
allocate and assign to their VM instances either at boot or dynamically at run-time.

2.4.2 Comparison between Grid Computing and Cloud Computing

In grid systems, the heterogeneity within the environment (e.g. hardware and software)
increases the complexity involved in programmatic and management perspectives. The
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development and deployment of grid applications is still difficult and time consuming.
Moreover, by using grid middleware applications and libraries, a level of homogenization
is applied on the grid fabric layer, i.e., grid resources. As a result of this, resource manage-
ment inside a particular VO becomes simple. However, developing of grid applications
that can be handled by different VOs is still difficult. For example, the co-scheduling of
resources across more than one VO is not supported.

In addition, grid interfaces reveal too many details that increase the complexity and time
of development. Typically grid interfaces represent the inner capabilities, specially in the
case of general purpose grids. Different users perform different usage modes. Therefore,
the interfaces should present the complete set of functionalities provided by grid infras-
tructure. Furthermore, these detailed interfaces hinder the evolution of the middleware
and its applications, where many configurations require coding or manual intervention.
In addition, users require some level of expertise.

Developing the data and information layers and their services needs a higher abstraction
level of the underlying resources in order to automate some actions and interactions that
take place inside VOs. Conventional grid systems face some challenges associated with
two factors, the resource security settings and the user access privileges (e.g. application
deployment on resources).

Wang [75] provides a comparison between grid and cloud computing paradigms. This
comparison is summarized in Table 2.1.
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Grid Cloud
Definition Targets the sharing of distributed

computing resources for remote
job execution in solving large scale
problems.

Offers the users a centric functionality
and services to enable building cus-
tomized computation environments.
Cloud targets industry and follows an
application driven model.

Infrastructure Decentralized system distributed in
a wide geographical areas. The het-
erogeneity of hardware and software
resources.

Single computing server with a single
access point. Centrally controlled de-
spite its spanning several computing
centers.

Middleware Grid has different middleware, such
as Globus Toolkit, gLite, and Unicore.
These middleware provide different
functionalities for resource manage-
ment, security control and monitoring
and discovery.

Cloud has no certain middleware.
This is due to the lack of standards.
Different issues are still open and
unresolved, such as distributed vir-
tual machines management, and
distributed storage management.

Accessibility Grid computing seeks to offer con-
sistent and inexpensive access to
large number of reliable distributed
resources. However, it is not easy for
users to gridify their applications.

Cloud offers customized, scalable, and
accessible environments for users.

Application Grid has several successful applica-
tions, such as the LCG project.

Amazon EC2 has gained popularity.
However, it is still immature and
more applications are necessary to
justify the cloud computing paradigm.

Table 2.1: A comparison between grid and cloud computing paradigms
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Recently, many researches investigate the relationship between grid and cloud comput-
ing technologies [50]. Some consider them as competing technologies, where eventually
cloud technology will replace grid. Others see that they are complementary. The origin
of the confusion about the relationship between grid and cloud technologies is caused by
the similarity of their goals, such as minimizing the computing costs and increasing the
flexibility, i.e., instead of buying computers using third-party operated hardware.

Grid technology was initiated in the late 1990s. Since that time, it has been highly devel-
oped and widely-used. Grid systems enable the dynamic sharing, selection, and aggrega-
tion of geographically distributed resources owned by different organizations in order to
solve computational and data intensive problems [50].

Although cloud computing technology has appeared few years ago, it has rapidly de-
veloped. Cloud technology offers on-demand provisioning of resources such as networks,
servers, storage, applications, and services. Virtualization is the factor for enabling cloud
computing technology, because it supports the on-demand acquisition of resources and
the security by isolation.

Currently, grid systems face some challenges with following scopes: the handling of
peak demands, the customization of resources according to users needs, and the burden-
some management of heterogeneous resources.

The realization of a hybrid platform combining grid and cloud technologies will pro-
vide better services and will be beneficial to resource providers, as well as to end users.
On one side, grid systems need to be able to provide dynamically scalable resources and
services to end users. This can be accomplished by using cloud technologies for resource
provisioning, thus users can customize their environment in order to avoid failure from
misconfigured systems or from insufficient allocation of disk space and memory. On the
other side, cloud computing systems can benefit from grid computing concepts and ser-
vices, where they offer federated platforms, geographically distributed computing and
storage resources, for distributed and collaborative work. Furthermore, grids provide a
set of services, such as such as security, shared data management, system monitoring, and
application scheduling and execution. In addition, grid community offers a collection of
standard protocols and interfaces, that facilitate interoperability between systems.
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3.1 Consolidation Scenarios

The consolidation of cloud and grid systems can be applied in several ways. These ways
are classified into four scenarios depending on the use cases of the cloud and grid infras-
tructure. These scenarios are described in the following:

1. In the first scenario, the user of a cloud system can request the services provided by
an existing grid system as illustrated in Figure 3.1. AS described in Section 2.2.2, grid
systems provide different functionalities for resource management, security control
and monitoring and discovery, which can be accessed via specific services imple-
mented within cloud system.

In some cases, cloud users request resources with specific requirements such as soft-
ware protected by licenses. These requirements do not exist in the cloud, rather they
exist in the grid. Therefore, the cloud needs to extend its capabilities with external
resources provided by existing grid systems to resolve such a problem. Another ex-
ample for this scenario, the cloud user asks for a scheduling service provided by a
grid system to manage the execution on VM instances.

Figure 3.1: The first scenario: the cloud user requests services from a grid system

2. The second scenario enables users of a grid system using services offered by a cloud
as presented in Figure 3.2. A cloud system provides users with services at a different
level of abstraction, i.e., IaaS, PaaS, and SaaS as presented in Section 2.4. For these
services, an access point within grid system needs to be implemented.

One of the implementations of the second scenario is concerned with extending the
computing capacity in a real grid site with dynamic and scalable resources provided
by cloud systems as illustrated in Figure 3.3. In other words, the cloud system pro-
vides resources deployed in IaaS environment to the grid. For example, RESERVOIR
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Figure 3.2: The second scenario: the user of a grid system asks for services provided by a cloud system

project [16] supports the on-demand setup and deployment of virtualized resources
across administrative domains.

Figure 3.3: Cloud system provides the grid with IaaS model

3. The third scenario is a combination of the previous two scenarios, where the user
of a system (i.e., grid or cloud) requests services provided by the other one and vice
versa as shown in Figure 3.4. This scenario theoretically is possible. However, the
implementation of such a system seems to be infeasible, because of difficulty of man-
aging the synchronization of requests from both grid and cloud users. Furthermore,
there are many open issues and questions required to be solved and answered to
enable the implementation of this scenario. These issues and questions are related
to the following domains: open standards, security concerns, resource management,
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user management and accounting, which are out of the scope of this thesis.

Figure 3.4: The third scenario: users of both grid and cloud systems can request services offered by the other party

4. The fourth scenario looks similar to the first scenario. However, this is not really
the case, where the cloud user requests a grid system as depicted in Figure 3.5. The
provided grid is built on the VM instances offered by the cloud. In this way, we can
consider, that a grid system is provided to cloud users as a service, which imposes a
Middleware as a Service (MaaS) concept. We proposed the name MaaS, because this
service offers a lower level of abstraction than PaaS and a higher level than IaaS. This
service, i.e., MaaS virtualizes the whole grid and runs all grid services such as secu-
rity, monitoring, and scheduling inside the cloud. At IaaS service model the users
obtain resources that are delivered to users as a service without a management layer
above them, while at PaaS users receive a development environment, i.e., platform
as a service to be able to design, test, and deploy their applications.

This scenario is carried out by the StratusLab collaboration [20], where they conduct
an experiment [60] to run a virtual grid inside an Amazon EC2 [1] cloud.

This scenario increases rapidly the allocation of resources on demand. In addition,
cloud systems benefit from grid concepts by federated access control and distributed
resource sharing. However, creating a virtual grid site in a cloud raises many ques-
tions. The resolve of interoperability problems between virtual grids on different
clouds is difficult to implement, because of the lack of cloud computing open stan-
dards. In addition, cloud systems are under centralized control, which clearly con-
flicts with grid system characteristics. Furthermore, cloud systems provide a limited
set of features, where the typical cloud storage service, e.g., Amazon S3 [2] is consid-
ered as a limited data grid compared to CERN [25] data grid [72].
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Figure 3.5: The fourth scenario: a cloud system provides users with a grid as service

This thesis adopts the second scenario, i.e., extending grid resources with cloud re-
sources. In the following, benefits that can be gained by employing virtualization and
cloud technologies in grid infrastructures are presented [43]:

• Security: security classification into system and user level, ensures a high level of
security control. At the system level, the host resources consider the VM instances
as a complement element. In addition, the VM administrator configures the access
privileges inside the VM instance at user level.

• Performance isolation: VMs guarantee the performance for both users and applica-
tions. Applications that run on VMs do not suffer from the performance perturba-
tion, which is normally invoked by resources competing the concurrent processes on
traditional multi-programmed computers.

• On-demand creation and customization: VM images can be created and customized
by administrators. This results in resource provision for the users. Furthermore,
VMs offer reconfigurable infrastructure, which is a concrete advantage for software
developers and testers.

• Legacy system support: VMs can support legacy environments, i.e., hardware, op-
erating system, and other applications. This can be accomplished by on-demand
creation of the relevant VM.
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• Administration privileges: users of VMs can get the privileges of administrators.
Therefore, they can work flexible.

• Resource Control: specific VMs are assigned to one user or application. Therefore, it
is not necessary to account and control the usage of the resources.

In this Section the combination between grid and cloud has been classified into four
scenarios depending on users needs. Section 3.2 illustrates the approaches, that can be
applied to realize these scenarios.

3.2 Interoperability Approaches between Grid and Cloud Systems

Interoperability focuses on bringing technologies together in order to benefit from the co-
operation features. Wegner [77] defines interoperability term as followed: "Interoperabil-
ity is the ability of two or more software components to cooperate despite differences in
language, interface, and execution platform". Several approaches can be applied to address
software components (e.g. of grid and cloud systems) interoperability such as standard-
ization and transformation logic.

Considering a standardization approach, the implementation of open standards does
not necessarily mean that the system is interoperable, but rather these standards need to
be engineered or improved for interoperability [42]. Standardization approach is a long
term solution for interoperability problems. Defining an acceptable standard without prior
experience and in-depth study is a difficult mission. In addition, standardization is a slow
process, where the standards require time to mature and to get acceptance.

Many organizations support the development of standards for cloud computing such as
Open Cloud Consortium (OCC) [14], Open Grid Forum (OGF) OGF Open Cloud Comput-
ing Interface Working Group (OCCI) [13], Cloud Security Alliance (CSA) [3], Distributed
Management Task Force (DMTF) [4], TeleManagement Forum (TM Forum) [21], and Storage
Networking Industry Association (SNIA) [19].

The other transformation logic approach builds an additional component that translates
a protocol or schema into another one supported by the receiving component. Adapters
and gateways are examples that adopt this concept [64].

An adapter is an extra layer which enables two software components to be connected
and translates exchanged information in order to be understandable.

The adapter approach can be implemented either as services within grid and cloud sys-
tems or as a stand-alone component. Implementing an adapter as a service within grid
and cloud systems means that each system needs to be modified or extended to be able
to understand and cooperate the other party. Because of the variety of the custom-made
interfaces offered by cloud providers it is not advisable to modify grid systems. There-
fore, carrying out the adapter approach within a stand-alone component is the preferable
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Figure 3.6: Adapter-based approach for grid/cloud systems integration

solution. In Figure 3.6, the user interact with the cloud and the grid through an adapter
implemented outside these systems.

A gateway agrees with adapter in terms of concept, but it is implemented as independent
entity, that acts as a bridge between different software components.

Figure 3.7: Multiple grid/cloud systems integration using a broker

The gateway approach as illustrated in Figure 3.7 named grid/cloud broker. This broker
provides a single interface which ca be used by the user to manage and control multiple
grids and clouds as well as can benefit from services provided by these grids and clouds.
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The main drawback of adapters is that it is a short term solution. A change in the imple-
mentation of a component can make the adapter useless. Furthermore, it can be used only
by the same components. Since gateways are bridges, they act as a single point of failure
or scalability bottleneck.

As described in Section 2.4, cloud systems provide several level of services (SaaS, PaaS,
and IaaS). But due to the rapid change and the commercial origination of cloud systems
they do not have settled open standard interfaces. Therefore, it is too early to discuss
service-level standards considering interoperability. In addition, grid and cloud systems
are already built and there is an increasing demand for combining these systems. The
market does not have time to wait for standards to appear, but rather, using the other
approaches (adapter and gateway) to gain experiences, which later can be used as valuable
inputs to the standardization process.
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The conventional execution of grid jobs takes place directly on a cluster of nodes. This
way of execution has some limitations. For example, the resources may not be enough
to fulfill the requirements of users, operating system of the node may not appropriate or
jobs isolation is required. This chapter presents possible design scenarios to allow the
execution of grid jobs on virtual clusters. In this way, the above mentioned limitations of
the traditional grid systems are addressed. Better job isolation is provided and nodes are
customized to fulfill job requirements.

4.1 System Overview

This thesis provides a case study, which focuses on the extension of a grid system by re-
sources provided by a cloud infrastructure. The realization of the case study will follow
the adapter interoperability approach described in Section 3.2. The like-adapter solution
has to be responsible for handling user requests, i.e., VMs creation and job execution. Fur-
thermore, we will show the successful deployment of the case study by the execution of an
application installed on all resources, i.e., grid resources and resources provided by cloud
technologies.

Figure 4.1: The existing system in our infrastructure
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A grid system represented in Figure 4.1 is already built in our infrastructure. This sys-
tem consists of the Grid Application Management (GAM), which carries out the gridifi-
cation process described in Section 2.2.6. Users submit large tasks to the GAM, where it
divides them into smaller jobs. Afterwards, the GAM submits jobs according to their de-
pendencies to grid middleware, which transmits them to the Local Resource Management
System (LRMS) to be later executed on Worker Nodes (WNs). Furthermore, the GAM
monitors the execution of the jobs, as well as collects and composes the results of these
tasks.

Grid Application
Management

WN1 WNn

GT4

PBS-MOM

PBS-Server

Application

User

Figure 4.2: The GT4 middleware and the PBS resource manager are technologies installed on the existing system

Figure 4.2 illustrates the deployed technologies on our infrastructure, where GT4 repre-
sents the grid middleware, and PBS plays the role of the LRMS.

The drafted schema for our case study is illustrated in Figure 4.3. It consists of two main
subsystems a typical grid system and an infrastructure built by cloud and virtualization
technologies. In our existing system, the functionality of GAM is extended to enable users
to start their VMs and to execute jobs on these VMs.

The GAM should resolve the following issues to perform its functions:

• Security and accounting: the communication within the system should be secured
and users should be authorized and authenticated to use grid and cloud resources.

• Data Management: data storage, access, and transfer have to be enabled, such as
data staging in/out for jobs and VM images access.

• Information Services: discovery and monitoring of resources should be available.

• Execution Management: the deployment, scheduling, and monitoring program exe-
cution i.e., jobs and VMs must be handled.
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Figure 4.3: The system schema consists of virtualized and non-virtualized subsystems

4.2 System Specifications

In this thesis, several technologies are specified to achieve system goals, i.e., extending grid
resources with resources provided by cloud technologies. As mentioned in Section 4.1, our
infrastructure has a subsystem which already exists and is based on GT4 as a grid middle-
ware and Tera-scale Open Source Resource and Queue Manager (Torque) PBS as LRMS.
Therefore, GT4 plays the role of grid middleware in our infrastructure. In addition, Torque
resource manager represents the LRMS, which is responsible for managing (virtualized
and non-virtualized) resources and handling job execution in our system.

The extension of resources is performed via cloud technologies, such as Nimbus [10],
Eucalyptus, and OpenNebula [15]. All of them are open source cloud computing tech-
nologies. Nimbus and Eucalyptus are cloud management toolkits that provide remote and
secure interfaces for creating, controlling, and monitoring virtualized resources on their
clouds, while OpenNebula is a Virtual Infrastructure Manager (VIM) that provides fea-
tures to schedule and manage VM instances across multiple physical resources and lacks
remote interfaces as the ones provided by cloud toolkits. In other words, cloud toolkits
can use VIMs, such as OpenNebula and VMware vSphere [29] instead of managing VM
instances directly and can benefit from VIM features [69]. Nimbus toolkit is known as a vir-
tual workspace service, which is developed by globus team and works in conjunction with
GT4 services, such as Protocol Extensions to FTP for the Grid (GridFTP) service, which is
used by Nimbus storage service [53].
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Eucalyptus cloud does not depend on another toolkit as Nimbus and it has remote inter-
faces, which enable users to interact with the cloud on the contrary of OpenNebula. There-
fore, Eucalyptus framework is used to provide our system with virtualized on-demand
resources. Eucalyptus was originally developed for research purposes. In addition, its in-
terfaces are compatible with Amazon interfaces to enable the test of performance against
one of the popular commercial cloud systems. Xen virtualization technology provides
our system with the virtualization layer required by the cloud infrastructure Eucalyptus,
where, until now, Eucalyptus supports Xen and KVM virtualization technologies.

In our infrastructure, there are some restrictions, where the resources are low-budget
computers. In addition, network settings are configured to guarantee a high level of secu-
rity, where, on the network, each public IP address is mapped to a specific MAC address.
Furthermore, the allocation of public IP addresses is limited.

The relationships and the interactions between these technologies is described in the rest
of this chapter and the next one.

4.3 Design Scenarios

The design of the system was through several amendments until it reached its final form,
taking into account the working environment and the used technologies. In this section
three design scenarios are described to establish a VRE extension for grid. As mentioned
earlier in Section 4.1, the system consists of two main parts: virtualized and non-virtualized
subsystems. The non-virtualized one is considered as a fixed system. Therefore, it is not
further discussed or analyzed. However, the following analysis focuses on the virtualized
environment.

4.3.1 One Head-Node for Virtualized and Non-Virtualized Resources

Figure 4.4 represents the first design scenario, where the user specifies and configures the
virtualized environment, such as the number of VMs and the operating system of the each
VM. After receiving a request from a user, the GAM forwards it to the Eucalyptus system
(CLC component) via the command line tool (euca2ools). The GAM waits until all VMs
are booted and the PBS-MOM daemons are configured and started. Afterward, the Fully
Qualified Domain Names (FQDNs) of VMs are added in the PBS-nodes file of the PBS-
server running within the non-virtual environment. In consequence, the PBS-server can
monitor and control VM instances throughout their life-cycle via the PBS-MOM running
on them. The GAM gives the user a signal, which indicates that the setup of the virtualized
environment is done. Afterwards, the user is able to submit jobs to be executed on the VM
instances.
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Figure 4.4: The first design: one head-node for virtualized and non-virtualized resources

The implementation of this scenario results in high management effort and costs for
maintaining public IP addresses, where each VM instance must have a public IP address to
allow PBS-server to manage its PBS-MOM. In addition, on the fixed part (non-virtualized)
of the system some modifications should be applied to allow PBS-server to assure, that
each user uses only his own VM instances. Therefore, the isolation of jobs execution is dif-
ficult to be fulfilled. Furthermore, the modification on PBS-nodes file requires root read-
/write privileges to add or remove of FQDNs of VMs. The PBS-server can be considered
as a bottleneck in this design, since it handles and manages all jobs execution requests in
the whole system (i.e., virtual and non-virtual runtime environments).

4.3.2 A Virtual Cluster for Each User

As shown in Figure 4.5, the user customizes his own virtual cluster including the head
node, such as the number of VMs and VM images (head node and worker node VM in-
stance image). Then, the GAM sends a request to Eucalyptus system (CLC component)
to start the head node VM instance. When the head node VM instance is booted, the
PBS-server daemon and GT4 services (e.g. GridFTP service and globus container) will be
started. This is followed by the start of the worker node VM instances including PBS-
MOM daemons. The GAM waits until all VM instances run without problems. After that,
the FQDNs of worker node VM instances are added to the PBS-nodes file of the PBS-server
in the head node VM instance. Afterwards, the PBS-server can monitor and control VM
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instances via the PBS-MOM running on them. In addition, the worker node VM instances
are informed with PBS-server information, such as IP address and the FQDN. Only the
head node VM instance needs a public IP address. After setting up the virtual cluster, the
GAM and the user are provided with the public IP address of the virtual cluster’s head
node in order to enable the use of these virtualized resources.

Virtual Cluster
head-node

WNn VMnWN1 VM2 VM3 VMn-1

Grid Application
Management

EUCALYPTUS
Cloud Controller

VM1

GT4

GT4
PBS-MOM

PBS-Server

PBS-Server

PBS-MOM

Application

Application

NC.....NC

User

Figure 4.5: The second design: a virtual cluster for each user

The goal of this scenario is to provide a separate virtual cluster owned and managed by
the user through the GAM to avoid the bottleneck problem addressed in the first design.
Furthermore, this design assures execution environment isolation, where each user has
his own cluster. However, after the boot of instances, many configurations have to be
carried out. For example, the PBS-MOM daemons must be configured with PBS-server
information, as well as the PBS-nodes file should be updated with the new entries (i.e.,
the FQDNs of VM instances). Furthermore, some of the GT4 configurations can not be
automatically derived and human intervention is still needed. For example, certificate
requests must be signed by a trusted party (an existing Certificate Authority (CA)) in our
site. The required certificate is a host certificate for the head node VM instance, where
many GT4 services rely on the existence of this certificate to verify that a host is truly, who
it claims to be.

To avoid human intervention and non-automatic configurations, the design can be mod-
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ified by placing the GT4 in a non-virtualized resource instead of the head node VM in-
stance. This non-virtualized resource must be within the same network of VM instances.
Then, the user or the GAM interact with this non-virtualized resource, where the GT4 ex-
ists. This resource hasto be able to communicate with every new PBS-server that starts on
a VM instance. Therefore, any of VM instances do not need to allocate a public IP address,
since this non-virtualized resource , where GT4 is installed, have a public IP address.

User

Figure 4.6: The modified second design: a virtual cluster for each user

4.3.3 A User Specific Cluster Queue

The third design scenario is illustrated in Figure 4.7, where two static PBS head nodes are
installed. One of them manages the virtualized resources, while the other one manages
the non-virtualized resources. The user sends a request to the GAM to create a cluster of
virtualized nodes. Therefore, some information, such as the number of VM instances, the
VM instance image, and user cryptographic credentials, have to be provided.

The GAM redirects the request to the Eucalyptus component, i.e., CLC to start the VMs
and asks the PBS-server to add a queue for this user. This means, the PBS-server manages
all VM instances. After the start-up of all VM instances, the FQDN of the VMs will be
added to the PBS-nodes file on the machine, where PBS-server runs.

However, more specific configurations in comparison with the two previous design sce-

45



4 A Virtual Runtime Environment for Grid Systems based on Cloud Technology

narios (Sections 4.3.1 and 4.3.2) are required, since queues of users are mapped to their
VM instances. At this point, users can submit jobs only to their queues. Each queue has a
unique hash coded name, which is not predictable. Therefore, the usage of queues are re-
stricted by their owners. Figure 4.7 represents the mapping of the VM instances to different
users (queues) distinguished by circles and stars.

User

Figure 4.7: The third design: a user specific cluster queue

In this design, as a result of using the queuing method, a satisfactory level of job isolation
can be accomplished. However, users may not be able to access their VM instances directly.
Furthermore, the sharing of the static cluster head node with other users may result in a
bottleneck problem.

4.4 Design Decisions

In order to select one of the proposed design scenarios for implementing the case study, we
need to take a close look on system specifications and restrictions placed on our resources
and network configurations.

General properties of the test-bed are: the resources are low-budget computers and the
network administration requires specific restrictions to increase security level on the net-
work. For example, the allocation of a public IP address is limited. Furthermore, it is
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carried by the network administrator and requiring a static and specific MAC address. At
this step, the analysis of design scenarios in terms of Eucalyptus networking modes, de-
scribed in Section 2.4.1.2, is very important, since it validates the appropriate design.

At the first design scenario, each VM instance must have a public IP address. According
to the test-bed characteristics , the networking mode within the Eucalyptus cloud must be
set to the STATIC mode. In agreement with the network administrator, the cloud admin-
istrator defines manually a static list of MAC addresses/public IP addresses mappings,
which are allocated to VMs at boot time in a first come, first served manner.

The implementation of the first design is infeasible to integrate in our existing infras-
tructure for the following reasons: There is no strategy that restricts the use of resources
by their owners only. In addition, the costs of allocation of public IP addresses for all VMs
is high. Furthermore, root privileges on the head node of the non-virtual enviroment are
required to add the FQDNs of VMs in the PBS-nodes file.

The second design scenario provides a better isolation of jobs. The jobs of users can only
run on their VMs, thus the data and files of these jobs can not be modified or deleted by
other users. Furthermore, this design offer a system that does not suffer from bottleneck
problems. However, the implementation is facing some issues due to the strict security
settings in our infrastructure network. The allocation of MAC address/IP address pairs is
done manually. In this design scenario, only the head node VM instance requires a public
IP address.

One of the advantages of this design scenario is the fact that there is no need for alloca-
tion of public IP addresses to all VM instances excluding the head node VM instances. In
other words, there is no need to reserve a large set of public IP addresses for the Eucalyptus
cloud. Therefore, applying of Eucalyptus STATIC mode to allocate IP addresses is infea-
sible. One of the solutions for allocation of public IP addresses provided by Eucalyptus
is the MANAGED mode, which is described in Section 2.4.1.2. In MANAGED mode the
administrator can specify a pool of public IP addresses. Users can dynamically at run-time
allocate and assign them to their VM instances besides the private IP addresses. However,
this mode does not attach the VM instances with MAC addresses. Therefore, we can not
allocate public IPs dynamically, which makes it difficult to implement the second design.

Some of the proposed methods for allocation of the public IP addresses from outside
Eucalyptus components control are: a) Network Address Translation (NAT) facilities (i.e.
Destination NAT (DNAT) and Source NAT (SNAT)), and b) replacing or changing the
MAC address for a running VM instance. The new MAC address is supposed to be
mapped to a public IP address. However, these methods lead to the unreliability of the
VM instance information, since the MAC addresses could be changed without informing
the Eucalyptus cloud.

Figure 4.6 represents one change on the second design in order to minimize the required
configurations after the boot of VM instances. Although this design does not require allo-
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cation of public IP addresses to VM instances, each installation of GT4 can communicate
with one and only one PBS resource manager. Therefore, this design can’t be implemented.

The most convenient and adequate design scenario is the third one, i.e., A User Specific
Cluster Queue, it does not require the allocation of public IP addresses, since the private
IP addresses are considered sufficient for implementing the case study. This means that
GT4 users are capable of submitting jobs to their VM instances through PBS server. The
implementation of this design is presented and discussed in detail in Chapter 5.
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This chapter introduces the realization of the selected design scenario for achieving the
interoperability between grid and cloud. It presents the execution of grid jobs on a virtual
runtime environment.

This chapter is organized in the following structure. Section 5.1 presents an overview
of our system. Afterwards, the test-bed description is provided in Section 5.2. Then, the
environment setup and configuration are depicted. The last section shows the concrete
execution management on a VRE.

5.1 Overview of System

In order to use the VMs as resources for grid infrastructure, the system provides users with
the following functions:

• users shall be able to create, configure, manage and destroy VM instances.

• users shall be able to use these VM instances and execute jobs on their own virtual
clusters.

The implementation of a grid virtualized environment needs to cover the following do-
main areas:

• Accounting and Security: In our system, the same user can submit jobs to traditional
grid resources and the virtualized ones as well. Therefore, the user needs to obtain
a certificate from the grid and user credentials for using the cloud. The user of GT4
must be authenticated by a pair of public and private keys. Firstly, the user has to get
a user certificate from a CA, which is installed with GT4. After that, the authenticated
user must be authorized for the servers of the grid. The authorization is achieved by
adding one line for each grid user in grid-mapfiles that are present on every machine.
This line states the certificate in double quotes followed by the UNIX user name as
shown in Listing 5.1. These grid-mapfiles map grid certificates to UNIX user names.

Listing 5.1: Registering of a grid user certificate in grid-mapfiles
1 "/O=Grid/OU=simpleCA−eucalyptus/OU= i f i . l o c /CN=eucalyptus " eucalyptus
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GT4 increases the security level, where a user accesses the server with his proxy cre-
dentials. To prevent user’s private key from sending out its secure environment on
the user’s machine, it signs the public key of a new pair of short-lived proxy cre-
dentials. Therefore, the server checks the user’s proxy certificate for authentication.
After that, it searches for the certificate name in the grid-mapfile and maps the user
onto the corresponding UNIX user. GSI provides secure communication that en-
ables single-sign-on. This means, that the user can only login at one machine with
his proxy credentials. During the validity period of the proxy certificate, the user is
able to use the grid resources.

The creation of VMs typically requires Eucalyptus user credentials. To obtain these
credentials, the cloud administrator can add a user by using the Eucalyptus web-
based interface. Afterwards, the user can login, and download his/her own x509
certificates and query interface credentials. Note that a GT4 user must be a UNIX
user. Unlike Eucalyptus accounts (e.g. administrator and users), that have no rela-
tion with user accounts in the operating system. In this thesis, the request to start
a number of VMs is submitted as a grid job. This means that the Eucalyptus user
credentials are staged-in with the job. The RFT service is responsible for the secure
transfer of files. The mechanism of creating VM instances is explained in detail in
Section 5.4.1.

• Data Management: The system should allow the discovery of information about
available VM images and clusters. According to the permissions, which are given to
user by the Eucalyptus administrator, users may upload and register their own VM
images. Only the Eucalyptus administrator can always upload/register kernels or
ramdisks. In Section 5.5, the benefits and drawbacks of allowing the user to upload
and register images are discussed. The inquiry about the available VM images and
clusters, as well as uploading and registering VM images is carried out by using
Eucalyptus query interface (euca2ools command-line tool). However, GT4 users may
submit these requests as grid jobs.

• Information Services: This service facilitates the discovery and monitoring of VM
instances. By using these services, the users can determine the state (e.g. running),
the type (e.g. m1.small), the IP address, the image id of their VM instances. Usually,
users can query about their VM instances through Eucalyptus query interface. The
execution of the euca2ools commands can be performed through a grid job.

• Execution Management: This domain is concerned with handling job execution and
the creation of VM instances. The GT4 GRAM service is responsible for the jobs ex-
ecution on VM instances with PBS resource manager. The creation of VM instances
takes place through Eucalyptus query interface (euca2ools command-line tool). For
the creation of VM instances, this service needs the interaction with other ones, i.e.,
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security and data management. We can establish and run VM instances by submit-
ting grid jobs.

5.2 Test-bed

The implementation took place in the Institute of Computer Science at the Georg-August-
Universität Göttingen. In our infrastructure the used resources for the implementation are
low-budget computers. The properties of these resources are described in Table 5.1.

Resource Properties Head Node: ifi01 Node: ifi02
Processor Type Intel(R) Pentium(R) 4 Intel(R) Pentium(R) 4
Processor Speed 2.4GHz 2.8GHz
Total Memory (RAM) 1005.3MiB 1.7GiB
Operting System Linux 2.6.31.5-0.1-default i686 Linux 2.6.31.12-0.2-xen i686
Distribution openSUSE 11.2 (i586) openSUSE 11.2 (i586)

Table 5.1: A description of system test-bed

5.3 System Setup and Configuration

This section provides a description of the initial steps for the setup and configuration of the
grid VRE. The goal of the system is to enable the creation of a private cloud. The physical
deployment of the components on resources is represented in Figure 5.1. The head node
machine ifi01 is the entry point for users. Therefore, it should be configured to recieve and
perform their requests as described in Scetion 5.3.1. Section 5.3.2 describes the preparing
of the node machine ifi02 with the necessary components, such as Xen hypervisor and the
Eucalyptus NC component to enable hosting the VM instances. Lastly in Section 5.4.1 we
describe, the preparing of the VM instance image to be able to communicate with Torque
server and to execute the jobs.

5.3.1 Head-Node Setup

The head node machine ifi01 is the entry point to the cloud for all users (e.g. administra-
tors, developer and end-users). Therefore, CLC, CC, and Storage Controller (SC) need to be
installed. In case that the design of a system requires more than one cluster in Eucalyptus
cloud, the CC and the SC components can be deployed on another machine. Furthermore,
the entire GT4 is installed on the head node machine ifi01. Torque resource manager will
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Figure 5.1: The physical overview of the system

be installed and configured to manage the jobs on the virtualized resources. The setup of
the head node machine is composed of four main steps, i.e., Eucalyptus installation, net-
work configuration, PBS installation, and GT4 installation. These steps are described in
details in the following.

5.3.1.1 Eucalyptus Installation

CLC, CC and SC have been installed from openSUSE 11 binary packages and according to
the web-based Eucalyptus Administrator’s Guide, which provides a well defined installa-
tion tutorial.

5.3.1.2 Network Configuration

After installing Eucalyptus components on the head node machine Eucalyptus networking
configuration needs to be carried out according to the following: The chosen design does
not require the allocation of public IP addresses. In addition, in our working environment
the allocation of IP addresses typically is restricted by mapping IP addresses to specific
MAC addresses. Furthermore, the cost of specifiying a list of IP/MAC mappings, which
are provided to VM instances, is high. Therefore, we install an internal DHCP server on the
head node ifi01 to provide the private cloud, i.e., VM instances with private IP addresses.
As shown in Figure 5.2 the head node has two Network Interface Cards (NICs). The first
NIC named eth0 allows the public access, i.e., to the Internet and obtains its public IP
address from the external DHCP server. Through the second NIC with name eth1 the
nodes (e.g. ifi02 and the VM instances) contact the internal DHCP server and request IP
addresses.
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Figure 5.2: The setup of our system network

During the boot-time or run-time the VM instances may need internet access to down-
load or update information and packages. Therefore, the following Listing 5.2 defines a
NAT rule to permit private LAN members of public access (Internet) through eth0 NIC.

Listing 5.2: Enabling private LAN members of public access using NAT rules
1 i p t a b l e s −t nat −A POSTROUTING −o eth0 − j MASQUERADE

The sufficient networking mode in our case (see Section 2.4.1.2) is the system mode, be-
cause in this mode the VM instance obtains a random MAC address and a dynamic IP
address given by ifi01 machine’s DHCP server. In Eucalyptus’s configuration file named
eucalyptus.conf, the parameter VNET_MODE is needed to specify the Eucalyptus networking
mode. Furthermore, the variable VNET_PUBINTERFACE is set to the device eth0, which is con-
nected to the public network. Lastly, the parameter VNET_PRIVINTERFACE is set to the device
eth1, which is attached to the same Ethernet network as the node ifi01.

Afterwards, the configuration of the Torque resource manager uses the FQDNs of the
VM instances to communicate with the PBS-MOM daemons. Hence, the installation and
configuration of Domain Name System (DNS) server on the Head node machine is re-
quired and two zones are configured. A DNS zone represents a portion of DNS namespace
over which a DNS server has authority. The first zone is the forward zone (e.g. ifi.loc),
that enables the DNS Server resolving the FQDN to an IP Address. The second is the re-
verse zone that is used to resolve IP addresses to resource FQDNs on the network. To
test the configuration of DNS server dig and host commands can be used. As shown in
Listing 5.3, the dig and host commands query the FQDN of the host 192.168.1.100.

Listing 5.3: The query about the FQDN of a host
1 # dig +shor t @192 . 1 6 8 . 1 . 1 −x 1 9 2 . 1 6 8 . 1 . 1 0 0
2 cloud100 . i f i . l o c .
3

4 # host 1 9 2 . 1 6 8 . 1 . 1 0 0
5 1 0 0 . 1 . 1 6 8 . 1 9 2 . in−addr . arpa domain name pointer cloud100 . i f i . l o c .
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5.3.1.3 PBS Installation

In the third step, the Torque resource manager is installed and configured. However, the
PBS nodes file will be empty and dynamically modified. When a VM instance starts, an
entry with the FQDN of the VM and a tag, which is associated with a specific queue, is
added to PBS nodes file, and is deleted after the termination of the perspective VM. Then,
creating self-extracting tarballs, i.e., torque-package-mom* and torque-package-client* are
built via make packages command. These tarballs will be installed on computing nodes, i.e.
VM instances as illustrated in Section 5.4.1.

In addition, on the head node ifi01 we export a file system via Network File System
(NFS) to the private cloud members, i.e., to the node ifi02 and to VM instances. This
shared file system is used to simplify transferring files and data of jobs within our system.

5.3.1.4 GT4 Installation

In the Last step, a GT4 installation and configuration takes place. This includes the setup of
a Simple Certificate Authority (SimpleCA) for signing Globus users certificates, obtaining
host certificate for head node machine (ifi01), and user certificates. In addition, the globus
GRAM service is connected with the Torque server, so that, jobs can be submitted into the
PBS batch queue. Then, GridFTP server, Web services Container, and RFT web service
need to be configured and started. Afterwards, GT4 users are able to submit jobs, to fork,
and to the pre-configured PBS schedulers as well.

5.3.2 Node Setup

The node machine ifi02 is a physical resource, where Eucalyptus VM instances can run.
As mentioned earlier, Eucalyptus and Xen technologies are responsible for starting VM
instances in our system. Therefore, Xen hypervisor and Eucalyptus NC component, which
communicates with Xen hypervisor to start VMs, are installed. The main steps of the in-
stallation and the configuration are described in the following.

• Xen hypervisor: It controls the execution of VM instances. The OS of the node ifi02

is openSUSE 11.2. Installing Xen hypervisor in openSUSE 11.2 is much easier than
other OSs (e.g. Ubuntu), which has been installed via the graphical user interfaces.

The Xend daemon 1 file /etc/xend/xend-config.sxp is configured as represented in
Listing 5.4 to allow all VM instances, i.e., DomUs to appear on the network as indi-
vidual hosts.

The network-script parameter specifies a script name in /etc/xen/scripts directory
that will be run to setup the whole networking environment. The network-bridge

1The Xend daemon is a python application that is considered as a system manager for the Xen environment.
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script creates a new bridge named eth0 and it separates the physical interface of the
node from the Dom0 interface. Thus, the firewall setup on Dom0 does not affect
the traffic to the VM instances, i.e., DomUs.The vif-script parameter specifies a
script name in /etc/xen/scripts directory that will be run to setup a virtual interface
when it is created or destroyed for a VM instance, i.e., DomU. This needs to work in
collaboration with the network-script.

Listing 5.4: The configuration of Xend daemon
1 / e t c /xend/xend−conf ig . sxp
2

3 ( network−s c r i p t network−bridge )
4 ( v i f−s c r i p t v i f−bridge )

• Eucalyptus NC interacts with the hypervisor in order to manage the VM instances
through libvirt 2. In the NC’s configuration file, the parameter HYPERVISOR is set to
Xen hypervisor. To set up the Eucalyptus network on the node ifi02, the primary
interface is configured to be a bridge, which is typically set up by Xen hypervisor.
The command brctl show displays bridge names, which already exist on the machine.
In addition, this command lists the VM network interfaces, that are attached to this
bridge.

In Eucalyptus NC’s configuration file named eucalyptus.conf, the two parameters
VNET_PRIVINTERFACE and VNET_PUBINTERFACE are set to the physical Ethernet device
that is attached to the Xen bridge. Furthermore, the parameter VNET_BRIDGE is set
to the name of the Xen bridge device that is connected to the local ethernet. The
bridge is connected to an Ethernet network, that has a DHCP server. The DHCP
server is already installed on the head node ifi01 and is configured to allocate IP
addresses dynamically. At this point, the VM instance sends DHCP requests to the
local Ethernet, which is replied by the DHCP server on the head node ifi01.

5.3.3 Virtual Machine Image Setup

Since the aim of our work is the creation of VM instances to extend grid resources, we
prepare the VM image that enables VM instances to act as the other physical resources
in our system. In addition, Xen hypervisor represents the virtualization technology in
our system, which is based on paravirtualization approach. Therefore, this VM image is
configured and customized to be able to run on Xen hypervisor as well.

Our cloud solution is based on the Eucalyptus framework. Therefore, a VM image need
to be prepared, so that it can run within Eucalyptus cloud. Eucalyptus Machine Image
(EMI) is a combination of a root disk image, kernel, and ramdisk images and their xml files

2Libvirt is a C toolkit to interact with the Virtualization capabilities of Linux and it provides a stable C
Application Program Interface (API) for different Virtualization technologies (e.g. QEMU, KVM and XEN)
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containing metadata about them. These images are added separately to Walrus SC and
they are considered as templates for VM instances on cloud. The following steps should
be followed to prepare a VM image:

Creation of a VM image: we used Ubuntu’s vmbuilder package [8] to create the im-
age. It currently supports KVM, Xen, and VMware hypervisors. By using vmbuilder, we
are able to pass command line options to add packages, to specify Ubuntu release, and
to add a user. Listing 5.5 represents the creation of aVM image using vmbuilder. Vm-
builder’s main command line parameter are the virtualization technology (xen) and the
targeted distribution (ubuntu). Futhermore, the example illustrates some optional param-
eters as well such as Ubuntu relaese (jaunty), machine architecture (arch i386 means a 32

bit), a default user and password, required packages (e.g. openssh-server, iptables, and
mencoder), the mirror to speed the build of image, list of all repositories required by the
packages (main,universe,multiverse), and the size of the image (1024 MB).

Listing 5.5: Creation of a VM image using vmbuilder package
1 vmbuilder xen ubuntu −−s u i t e jaunty −−f lavour v i r t u a l −d /home/eucalyptus/ubuntu/
2 −−arch i386 −−user cloud −−pass password
3 −−addpkg python−boto −−addpkg portmap −−addpkg i p t a b l e s −−addpkg acpid
4 −−addpkg python−m2crypto −−addpkg nfs−common −−addpkg openssh−server
5 −−addpkg make −−addpkg mplayer −−addpkg mencoder −−addpkg j o e
6 −−mirror h t t p : //de . archive . ubuntu . com/ubuntu −−components main , universe , mult iverse
7 −−r o o t s i z e 1024

Customization of the image: The resulting image named root.img is copied to the head
node ifi01 and modified to be able to run on Eucalyptus cloud and to communicate with
the PBS-server on the head node as followed:

• Mounting the VM image: First of all, we create a mount point on the head node
machine for the image, then associate a free loop block device to the image (e.g.
root.img) and finally mount it. The steps are presented in Listing 5.6.

Listing 5.6: Mounting of a VM image
1 mkdir mount−point
2 losetup /dev/loop5 root . img
3 mount /dev/loop5 mount−point

• Installation of packages: On the head node machine (ifi01), where PBS-server is in-
stalled, we have created self-extracting tarballs, i.e., torque-mom* and torque-client*.
After mounting the image we use chroot command to install these packages into it.
At this point the PBS-MOM is installed on the image. Afterwards, the PBS-server
information on this image is configured. Listing 5.7 depicts the configuration of the
PBS-MOM, where two files are provided with PBS-server information, i.e., the FQDN
of the host where PBS-server runs.
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When a job completes, the PBS-MOM copies the output files into the directory from
which the job was submitted. By default, copying of this file is accomplished by a
remote copy facility such as the secure copy (scp). However, we configure the PBS-
MOM to take advantage of the available shared file system NFS on the head node
ifi01 by specifying the usecp directive inside the PBS-MOM configuration file as
illustrated in Listing 5.7.

Listing 5.7: Configuration of PBS-MOM
1 c a t /var/spool/torque/server_name
2 i f i 0 1 . i f i . l o c
3

4 c a t /var/spool/torque/mom_priv/conf ig
5 $ pbsserver i f i 0 1 . i f i . l o c # n o t e : IP address of host running pbs_server
6 $ logevent 255
7 $ r e s t r i c t e d i f i 0 1 . i f i . l o c # n o t e : IP address of host running pbs_server
8

9 $usecp ∗ . i f i . l o c : /home/∗ /home/∗

We enable the start of PBS-MOM daemon on VM instances at boot time by adding
the path of PBS-MOM daemon at the end of /etc/rc.local file, otherwise we need to
start PBS-MOM daemon manually.

• Xen-based configuration: Eucalyptus community provides pre-packaged VM im-
ages (e.g. Ubuntu9.04, CentOS5.3, Debian5.0, and Fedora10) that are ready to run
in the Eucalyptus framework. Each package contains a VM image (*.img), a Xen-
compatible kernel/ramdisk pair (xen/vmlinuz* and xen/initrd*), and kvm-compatible
kernel/ramdisk pair (kvm/vmlinuz* and kvm/initrd*).

The re-configuration and re-customization of these pre-packaged images to fit our re-
quirements is not a trivial task. We use the Xen-compatible kernel/ramdisk pair pro-
vided with Ubuntu9.04 package offered by Eucalyptus community for the prepared
VM image via vmbulider. By using this kernel/ramdisk pair, we assure that our VM
instance works properly within Eucalyptus framework, as well as with Xen hypervi-
sor. Furthermore, we need the kernel-modules associated with this kernel/ramdisk
pair, so that the VM image will be configured correct. We can obtain these kernel-
modules by mounting of the pre-packaged image, then copy them outside the mount
point. After that, we copy these kernel-modules ./mount-point/lib/modules/ into our
customized image.

• Unmounting the image: Once all the packages are installed and the modification
take place into the image, we should unmount the image and free the loop block
device /dev/loop5

VM image management within Eucalyptus: To run VM instances from the customized
images, we add the disk image (e.g. root.img) and the Xen-compatible kernel/ramdisk pair
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to Walrus SC using three Elastic Cloud Computing (EC2) commands. Listing 5.8 illustrates
an example for bundling, uploading, and registering of an image (root.img). In addition,
the image is associated with the registered kernel/ramdisk images using their Ids.

Listing 5.8: Registering VM image
1 euca−bundle−image − i root . img −−kernel eki −48681661 −−ramdisk e r i−ABBA17AC
2 euca−upload−bundle −b ubuntu −m /tmp/root . img . manifest . xml
3 euca−r e g i s t e r ubuntu/root . img . manifest . xml

5.4 Execution Management in a Virtual Runtime Environment

This section provides a detailed description of our system in terms of execution manage-
ment. The user in our system is considered as a grid and a cloud user at the same time.
Section 5.4.1 represents the mechanism of creating a VRE via Eucalyptus cloud. The han-
dling of user requests to run a task on the VRE through GT4 middleware is described in
Section 5.4.2.

5.4.1 Creation of the Virtual Runtime Environment

To start a VM instance in an Eucalyptus cloud, we need to specify the VM image ID and to
whom belongs this instance, i.e., user credentials. However, in our system the user should
provide the GAM with VM image ID VM type, user credentials, the number of VM in-
stances to run, and a seed. This seed is used to generate a unique hash-coded name for the
user specific queue, which guarantees the use of instances only by its owner. This Section
is concerned with starting VM instances as well as enabling GT4 middleware of submitting
jobs to these instances through the PBS-server. The creation of a VRE consists of a sequence
of steps: parameter check, adding a queue, starting VM instances, and Integration of VM
instances into PBS. A detailed description of these steps is provided in the following.

Parameters check: First of all, we check that all the parameters have valid values. In an
Eucalyptus cloud, each user has a limited number of VMs, that can be run. This number
is configured via Eucalyptus web-based interface. In our system, the allowed number of
VMs is between 1 and 5. Furthermore, we check the validity of user credentials, as well
as the existence of the VM image in Walrus SC using euca-describe-images command.
Listing 5.9 represents an example for user credentials check using corrupted credentials
.euca/eucarc-old. In order to carry out the user credentials check, we can use euca2ools
other commands such as: euca-describe-instances, euca-describe-availability-zones.

Listing 5.9: User Credentials Check
1 i f i 0 1 : /home/cloud # euca−descr ibe−images −−conf ig . euca/eucarc−old emi−B50F148D
2 Warning: f a i l e d to parse e r r o r message from AWS: <unknown> : 1 : 0 : syntax e r r o r
3 EC2ResponseError: 403 Forbidden
4 F a i l u r e : 403 Forbidden
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Furthermore, we verify the provided VM image ID as well. The euca-describe-images

command depicts information about the registered VM image, such as the owner of the
image, using its ID (e.g. emi-B50F148D) as shown in Listing 5.10. If there is no return output
of euca-describe-images command, this means that, the VM image ID is invalid.

Listing 5.10: VM Image Existence Check
1 i f i 0 1 : /home/cloud # euca−descr ibe−images −−conf ig . euca/eucarc emi−B50F148D
2 IMAGE emi−B50F148D ubuntu/ubuntu . img . manifest . xml admin a v a i l a b l e publ ic
3 x86_64 machine e r i−ABBA17AC eki −48681661

Adding a queue: Using the seed provided by the user, the name of his queue is com-
puted via md5sum command, which computes and checks 128-bit MD5 3 hashes. With
this name, a new PBS queue can be created. Listing 5.11 represents a set of qmgr com-
mands, that creates and configures a queue named eucafd1594c829. In addition, the 8th
line in the Listing maps the queue eucafd1594c829 to a subset resources using resources_-

default.neednode queue attribute, setting it to a particular node property euca.

Listing 5.11: A User Specific Queue Creation
1 qmgr −c " c r e a t e queue eucafd1594c829 queue_type=execut ion "
2 qmgr −c " s e t queue eucafd1594c829 s t a r t e d =true "
3 qmgr −c " s e t queue eucafd1594c829 enabled=true "
4 qmgr −c " s e t queue eucafd1594c829 r e s o u r c e s _ d e f a u l t . nodes=1 "
5 qmgr −c " s e t queue eucafd1594c829 r e s o u r c e s _ d e f a u l t . wallt ime =3600 "
6

7 # to map a queue to a subset of resources
8 qmgr −c " s e t queue eucafd1594c829 r e s o u r c e s _ d e f a u l t . neednodes=euca "

Starting VM instances: By using the command line tool euca2ools VM instances can be
started. The euca-run-instances command requires at least the VM image ID emi-XXXXX and
user credentials. In addition, the instance must be launched with the appropriate VM type.
Otherwise, it will terminate during boot time because of the insufficient disk capacity

remaining error, i.e., too small VM type. By default, m1.small is the VM type that is used for
starting a VM. In Listing 5.12, the euca-describe-availability-zones verbose command
represents VM types and their properties, such as number of processors CPUs and amount
of main memory (RAM). In addition, it presents the local cluster (e.g. euca-cluster-a),
availability details (e.g., free/max CPUs).

Listing 5.12: VM types and their properties
1 i f i 0 1 : /home/cloud # euca−descr ibe−a v a i l a b i l i t y −zones verbose
2 AVAILABILITYZONE euca−c l u s t e r−a 1 9 2 . 1 6 8 . 1 . 1
3 AVAILABILITYZONE |− vm types f r e e / max cpu ram disk
4 AVAILABILITYZONE |− m1. small 0001 / 0002 1 128 3
5 AVAILABILITYZONE |− c1 . medium 0001 / 0002 1 256 7
6 AVAILABILITYZONE |− m1. l a r g e 0000 / 0001 2 512 10
7 AVAILABILITYZONE |− m1. x large 0000 / 0001 2 1024 15
8 AVAILABILITYZONE |− c1 . x large 0000 / 0000 4 2048 20

3Message-Digest algorithm 5 (MD5) [66] is a widely used cryptographic hash function with a 128-bit hash
value.
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According to the provided number of VM instances, the euca-run-instances command is
consecutively launched with VM image ID, user credentials, and VM type. In Listing 5.13,
the euca-run-instances command is invoked to run an instance of type c1.medium and us-
ing the image emi-29721256. It returns the instance ID i-435907D6 and the status of the
instance pending. Until now, the instance does not have an IP address.

Listing 5.13: Starting a VM instance using euca-run-instances command
1 i f i 0 1 : /home/cloud # euca−run−i n s t a n c e s −−conf ig eucarc −t c1 . medium emi−29721256
2 RESERVATION r −42160749 admin admin−d e f a u l t
3 INSTANCE i −435907D6 emi−29721256 0 . 0 . 0 . 0 0 . 0 . 0 . 0 pending
4 2010−08−31 T 0 4 : 4 3 : 3 7 . 3 1 3Z eki −48681661 e r i−ABBA17AC

We need to check the state of VM instances (e.g. pending, running, or terminated).
By using the euca-describe-instances command, we check if all VM instances are run-
ning and obtain IP addresses. Listing 5.14 represents all information about the instance
i-435907D6 using euca-describe-instances command, such as the status of the instance is
running with IP address 192.168.1.151 in the zone euca-cluster-a.

Listing 5.14: VM instance description using euca-describe-instances command
1 i f i 0 1 : /home/cloud # euca−descr ibe−i n s t a n c e s i −435907D6
2 RESERVATION r −42160749 admin d e f a u l t
3 INSTANCE i −435907D6 emi−29721256 1 9 2 . 1 6 8 . 1 . 1 5 1 1 9 2 . 1 6 8 . 1 . 1 5 1
4 running 0 c1 . medium 2010−08−31 T 0 4 : 4 3 : 3 7 . 3 1 3Z
5 euca−c l u s t e r−a eki −48681661 e r i−ABBA17AC

Integration of VM instances into PBS: Once all instances run with an allocated IP ad-
dress, we can add their FQDNs to the nodes file of PBS-server. As shown in Listing 5.15
the command dig returns the FQDN of the provided IP address. Then, by using qmgr com-
mands, we can add a node cloud151.ifi.loc. and its property euca dynamically to the
PBS. This property euca can be used for mapping a queue (e.g. eucafd1594c829) to this
resource, i.e., VM instance.

Listing 5.15: VM instances integration into PBS
1 i f i 0 1 : /home/cloud # dig +shor t @192 . 1 6 8 . 1 . 1 −x 1 9 2 . 1 6 8 . 1 . 1 5 1
2 cloud151 . i f i . l o c .
3

4 i f i 0 1 : /home/cloud # qmgr −c " c r e a t e node cloud151 . i f i . l o c . "
5 i f i 0 1 : /home/cloud # qmgr −c " s e t node cloud151 . i f i . l o c . p r o p e r t i e s = euca "

The qmgr commands append the PBS-nodes file with a node and its property as shown
in Listing 5.16:

Listing 5.16: Syntax of PBS-nodes file after adding a node
1 cloud151 . i f i . l o c . euca

After performing the previous steps, the virtualized resources are mapped to a PBS
queue and the VRE is ready to receive and execute user jobs. Figure 5.3 illustrates two
queues, where each queue is mapped to a set of VM instances, so that this queue can only
use these instances to execute jobs submitted to it.
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Figure 5.3: Mapping queues to VM instances

5.4.2 Job Execution using the Virtual Runtime Environment

The GAM is responsible for handling tasks submitted by users. According to their re-
quests, the GAM specifies the executing party of submitted jobs, either virtualized or non-
virtualized resources. Furthermore, the GAM carries out the gridification process of an
application and the parallelization of jobs execution.

The application, which has been installed in our system on the physical resources, as
well as on the virtualized ones, is the MEncoder application. MEncoder application is
a part of MPlayer suite of tools. MPlayer is a free and open source media player. This
application is available for all major operating systems and supports a wide variety of
media formats. MEncoder is a close sibling to MPlayer and is a free command line video
decoding, encoding and filtering tool.

Listing 5.17 describes how to use the MEncoder command. The MEncoder will slice off
the first two minutes of the input movie.

The rest of this section is concerned with integration of MEncoder application into grid
as represented in Section 5.4.2.1. After that, Section 5.4.2.2 illustrates the submission of
a single job through GT4 client. Afterwards, the submission of a task through GAM is
described in Section 5.4.2.3.
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Listing 5.17: An example for using MEncoder application
1 torque@grid:/var/ l o c a l /torque $ mencoder movie . dv −ss 00 : 0 0 : 0 0
2 −endpos 00 : 0 2 : 0 0 −ovc copy −oac pcm −o s l i c e 0 1
3

4 where:
5 the movie . dv i s the input movie
6 −ss the s t a r t p o s i t i o n of the s l i c i n g
7 −endpos the end p o s i t i o n of the s l i c i n g
8 −ovc Output Video Codec copy =do not reencode , j u s t copy
9 compressed frames

10 −oac Output Audio Codec pcm = uncompressed PCM audio
11 −o the name of output f i l e

5.4.2.1 Integration of MEncoder into Grid

The gridification of the MEncoder application is handled by the GAM that communicates
with GT4 middleware. GT4 provides the GAM with required services, such as security,
data management, and execution management of jobs, to be able to perform its task.

As explained in Section 2.2.6, the application can be dynamically deployed directly be-
fore submitting a job or it must be installed beforehand on the resources by administrators.
On one hand the dynamic approaches achieves more flexibility in adaptation and a faster
employment of new resources. In our system, the MPlayer tools (including MEncoder) has
been already installed on all non-virtualized and virtualized resources.

GAM is a script that users can invoke with input parameters (e.g. the input file and the
host). It is responsible for splitting large tasks submitted by users into smaller jobs. After-
wards, it determines parameters of smaller jobs and submits them to GT4. In addition, the
GAM monitors jobs, and collects and composes the results of jobs.

Figure 5.4 presents a UML sequence diagram that represents a MEncoder gridification
process. The user submits a task to the GAM, which splits it into smaller jobs. After that,
the submission of jobs to GT4 is done by invoking globusrun-ws command. These jobs will
be, then, submitted to PBS-server either on the non-virtualized cluster or on the virtualized
one through GT4.

After a job has been finished, the output file can be written in the NFS directory by the
executing resource. Alternatively, it is possible to use the GT4 service GridFTP instead of
the NFS. The GridFTP is a service for staging files between the nodes on the grid. Since the
GT4 only has been installed on head nodes of the non-virtualized and virtualized clusters
and jobs are transmitted to the PBS resource manager, the PBS is responsible for returning
output files.

Once all jobs are completed, the GAM initiates the composition of the results of the jobs.
The composed result is returned to the specified directory by user.
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Figure 5.4: MEncoder Gridification Process

5.4.2.2 Submission of a MEncoder Job through GT4 client

The gridification process, which is carried out by the GAM, results in smaller jobs. These
jobs need to be described in such a way that enables GT4 to execute them. Therefore,
this section concentrates on preparing a template for the job description file of MEncoder
jobs. The MEncoder requires input parameters, such as an input file, an output file, an
audio encoder, and a video encoder. Therefore, the description of MEncoder jobs to be
submitted is provided using the Web Service Grid Resource Allocation and Management
(WS-GRAM) eXtensible Markup Language (XML) description syntax.

GT4 offers an XML-based job description language called Resource Specification Language
(RSL). RSL offers the ability to include file transfers into the job description. The transfer
before and after job execution are called stage-in and stage-out. The RFT service is respon-
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sible for staging in/out of files.
Listing 5.18 represents an RSL file of a MEncoder job, that specifies the executable file

mencoder with some arguments (to achieve the re-encoding of the movie file). In addition,
it includes required file transfers and specifies the data transfer rate using rftOpttions tag.
It should be noted, that all file location are specified from the viewpoint of the execution
host, not of the submission host. In the RSL file we specify a queue (eucafd1594c829) within
PBS, where our job must be queued. As mentioned earlier in Section 5.4.1, by specifying a
queue, the user submits jobs to resources that are already mapped to this queue.

Listing 5.18: An example for MEncoder job description file
1 <job>
2 <executab le>/usr/bin/mencoder</executable>
3 < d i r e c t o r y >${GLOBUS_USER_HOME} </ d i r e c t o r y >
4

5 <argument> s l i c e 0 2 </argument>
6 <argument>−vf</argument>
7 <argument>harddup</argument>
8 <argument>−ovc</argument>
9 <argument>lavc</argument>

10 <argument>−oac</argument>
11 <argument>lavc</argument>
12 <argument>−l avcopts</argument>
13 <argument>vcodec=mpeg4:vqmax=4 :acodec= a c 3 : a b i t r a t e =
14 128</argument>
15 <argument>−of</argument>
16 <argument>avi</argument>
17 <argument>−o</argument>
18 <argument>/home/eucalyptus/torque/mpeg4_slice02</argument>
19

20 <queue>eucafd1594c829</queue>
21

22 <stdout> s l i c e 0 2 . s tdout</stdout>
23 < s t d e r r > s l i c e 0 2 . s t d e r r </ s t d e r r >
24

25 < f i l e S t a g e I n >
26 < t r a n s f e r >
27 <sourceUrl> g s i f t p : // i f i 0 1 . i f i . l o c /var/ l o c a l /torque/ s l i c e 0 2 </sourceUrl>
28 < d e s t i n a t i o n U r l > f i l e : ///${GLOBUS_USER_HOME}/ s l i c e 0 2 </ d e s t i n a t i o n U r l >
29 <r f t O p t i o n s>
30 < p a r a l l e l S t r e a m s >4 </ p a r a l l e l S t r e a m s >
31 </r f t O p t i o n s>
32 </ t r a n s f e r >
33 </ f i l e S t a g e I n >
34 </job>

The submission of a MEncoder job through GT4 client using globusrun-ws -submit com-
mand is presented in Listing 5.19. The job is described in an RSL file and must be trans-
mitted to PBS recourse manager, so that the PBS is responsible for choosing the execution
resources.
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Listing 5.19: Submission of a MEncoder job through GT4 client
1 e u c a l y p t u s @ i f i 0 1 : ~> globusrun−ws −submit −F
2 h t t p s : // i f i 0 1 . i f i . l o c : 1 0 2 4 /wsrf/ s e r v i c e s /ManagedJobFactoryService
3 −Ft PBS −f encode−s l i c e −sample . r s l

5.4.2.3 Job Submission through Grid Application Management

GAM has a Python script used to drive a complete workflow. It initially splits up the
large movie into N pieces, the length of the piece is L minutes. Each piece is submitted to
GT4, where GT4 forwards the job to PBS resource manger to be re-encoded by MEncoder
application. The script waits for the jobs to finish and then combines the results together
into a newly encoded version of the movie file.

Listing 5.20 shows the invoking of this script mencoderWorkflow, where it requires paths
of the input and output movies, the name of the host, where the PBS WS-GRAM job man-
ager runs. In addition, the script requires a PBS queue name in case that virtual parameter
is set to true. The virtual parameter specifies if jobs are supposed to run on the virtualized
or non-virtualized resources. This script is originated from The Globus Consortium [24],
which provides a GT4 compute grid tutorial. This script is adapted and modified to fit our
system.

Listing 5.20: Invoking mencoderWorkflow script
1 e u c a l y p t u s @ i f i 0 1 : ~> ./ mecoderWorkflow −−input =./aMovie . avi
2 −−output =./ re−encoded−aMovie . mp4 −−PBShost= i f i 0 1 . i f i . l o c
3 −−v i r t u a l = true −−Queue=eucafd1594c829

The goal of mencoderWorkflow script is to implement the gridification process, which con-
sists of several steps. These steps are described as follows:

• Proxy credential verification: Firstly, we should check if the user has a valid proxy
credential using the grid-proxy-info -e command.

• Task splitting into smaller jobs: the movie file is sliced into N pieces, where each
one is of L minutes length. Each slice is a MEncoder job that is described in an RSL
file as presented in Section 5.4.2.3. Afterwards, these MEncoder jobs are submitted
to GT4 via globusrun-ws -submit command. Then, GT4 transmits them to PBS with
the provided queue name in case the user want to use the virtualized resources. In
our system, queue solution is implemented to assure that users use only their VM
instances.

• Job status checking: The status of all submitted encoding jobs is queried using
globusrun-ws -status -job-epr-file command. We keep checking and monitoring
their progress until they are all finished. After that, we can stitch back the newly
encoded slices.
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5.5 Discussion

The consolidation solution, i.e., GAM implemented in this thesis is composed of two parts.
The first part is responsible for the creation of the VRE according to user specifications.
The second part is concerned with applying the gridification process for the MEncoder
application and the execution of user tasks.

The realized system depends on Xen hypervisor to create the VRE. Since Xen imple-
ments the paravirtualization approach, the VM image needs to be Xen-based. Therefore,
the creation of a VRE requires providing a registered VM image ID in Eucalyptus Walrus.
In other words, users have to configure and register their VM images in Eucalyptus Walrus
manually before running VM instances. In this way the correct uploading and registering
a VM image is guaranteed and these images can be tested by the user. However, starting
VM instances with an on-the-fly image files is not allowed, and the dynamic customization
of VMs must be done by the users themselves.

In our system, the termination of a VRE is accomplished according to user’s request.
Furthermore, before releasing a VRE, the system checks if each VM instance in this VRE
is free and there is no job running on it. The termination of the VRE is done either after
a long period or a short period of the start-up time of VM instances, which influences the
resources performance in different ways.

For example, using short-lived VM instances several times by users increases the time
required for booting and terminating these instances. This will correspondingly increases
the waste time from the resource perspective. The exact effect of such a problem needs
more investigations. However, it will not be discussed here because it is out of the scope
of this thesis.

The part that applies the gridification process in our system is application-dependent.
Therefore, when the user wants to use or deploy another application on VM instances, this
part has to be adjusted for the new application.

In this thesis, the gridification process of the MEncoder application requires slicing the
task (a media file) into smaller jobs. These jobs are submitted to be transformed into an-
other format according to user requests. There is no specific order needed to be followed
for the execution of these jobs. However, this is not the case for all applications. For ex-
ample, some scientific programs are more sophisticated and require additional considera-
tions, such as BLAST, the bioinformatics application, and Montage, the astronomy appli-
cation. Such applications require additional analysis for the determination of the smaller
jobs. This difficulty is resulted from the high dependency and interconnection inside the
large task. Furthermore, the order of jobs execution has to be determined.

In our implementation, some burdens have been detected. They are described in the
following. The Eucalyptus framework, like other cloud computing technologies, does not
provide users with information about physical hosts of their VM instances, rather it pro-
vides only the zone or the CC, to which the VM belongs. The only possible way to identify
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the location of the VM instance is to search manually in each NC belonging to this CC.
Furthermore, the greedy and round-robin scheduling algorithms are implemented by

Eucalyptus framework for the allocation of VM instances on specific physical hosts. These
algorithms are seen as simple scheduling policies for such advanced systems, where no
load or task information is used when making a scheduling decision.

In addition, the modification on PBS-nodes file and adding a new PBS queue requires
root or PBS-administrator privileges, which may raise security concerns.
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This chapter concludes the thesis by providing a summary for it. Furthermore, an overview
of work related to this thesis is briefly depicted. The chapter finally discusses the possible
extensions for this work as an outlook.

6.1 Summary and Discussion

Over time, researches get more involvement in designing and building the infrastructure
needed to handle computational and data intensive tasks of complex scientific applica-
tions. One of the promising solutions is the grid computing concept, which was initiated
in 1990s. However, the grid community still faces different challenges like fulfillment of
peak demands, customized computing environment provision, and complicated manage-
ment of heterogeneous resources. This increases the awareness to harness cloud technolo-
gies to address grid limitations.

Different consolidation scenarios of grid and cloud systems were discussed in this the-
sis. In addition, the interoperability approaches (e.g., standardization, adapters, and gate-
ways) that can be applied to bring grid and cloud systems together were described. Since
cloud computing standards are still under development, the realization of consolidation
scenarios based on the standardization interoperability approach seems to be infeasible.
The gateway approach is not considered because our system does not integrate multiple
grids and clouds. Based on these facts, the adapter solution is followed to enable the in-
teroperability between cloud and grid systems. Such a solution can be used to gain expe-
riences and to provide valuable inputs for the standardization process.

One of the discussed consolidation scenarios was the extension of a grid system by cloud
services scenario. This scenario was validated in a case study in this thesis. Different de-
sign scenarios for an extension for a GT4 grid environment with VM instances provided
by Eucalyptus framework were presented. The strengths and weaknesses of each scenario
were discussed as well. The selected scenario is based on a user specific cluster queue de-
sign, which defines a queue associated with a set of VM instances for each user. In this
way, the use of VM instances is restricted to their owners only, which provides a better
isolation for jobs, i.e., the files and data of the job can not be modified or deleted by an-
other user.
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A description for the implementation of the selected design scenario was provided in
this thesis. At first, the setup of the working environment including the preparation of the
Xen-based VM image was described. After that, the execution of an application on grid re-
sources as well as on a Virtual Runtime Environment provided by Eucalyptus framework
was carried out to test of the deployment of the system.

In our system, users are responsible for providing the VM image to start the VRE. In this
way, we avoid the mis-configuration of requested resources from cloud-grid infrastructure
perspective. At periods of peak workloads, the user benefits from the creation of a VRE,
since grid conventional and non-virtualized resources are fully occupied. Moreover, the
virtualization layer increases the utilization of the system.

The burdens raised by the implementation in the case study are discussed in the follow-
ing. The implemented system in this thesis provides users, who create VREs, with names
of their PBS-queues, where jobs will be placed. The configuration of these PBS queues and
nodes, i.e., the VM instances requires a root or at least PBS-administrator privileges, which
results in security concerns.

Furthermore, the Xen hypervisor represents the virtualization layer in our system, which
obligates the portion of the VM image to be Xen-based. The build of Xen-based VM images
is not a trivial task, because of the lack of documentations and tutorials describing, such
as configurations. In addition, it requires the expertise in Linux and Xen configurations.
In our work, building a VM image required about three weeks of research and attempts
driven. However, the configuration of a VM image needs to be done all at once. Then, this
image will be registered in the images repository in the cloud system.

One of the common burdens associated with most of cloud computing infrastructures
including the Eucalyptus framework is the inability of obtaining any information about
the physical hosts of VM instances. In addition, this system has to be adjusted in order to
integrate a new grid or cloud infrastructure.

6.2 Related Work

This Section provides a summary of related work that has common features with different
aspects of this thesis.

The integration of virtualization technologies in grid infrastructures has been previously
explored by several projects. For example, the In-VIGO project [33] proposed a distributed
grid infrastructure based on VMs.

In [75], a light weight middleware, the Grid Virtualization Engine (GVE), is designed
and implemented to enable building multiple Virtual Distributed Environments (VDEs)
on grid infrastructures working with virtualization technologies, i.e.,VM hypervisors [76].

The Cumulus project focuses on building a scientific cloud presented by Wang [75].
They integrate existing grid infrastructures with cloud technologies, i.e., Globus Virtual
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Workspace service (Nimbus) and OpenNebula by building frontend and backend services.
The frontend service re-engineers the Globus Virtual Workspace service, while OpenNeb-
ula acts as Cumulus backend.

The StratusLab project [20] aims at developing a toolkit that integrates cloud and vir-
tualization technologies and services within grid sites. StratusLab current activities focus
on the identification and evaluation of different integration scenarios of cloud and grid
infrastructures.

The Enabling Grids for E-sciencE (EGEE) project works with RESERVOIR [16] to support
the EGEE sites. So that, they can benefit from adopting cloud models to meet the changing
needs of users. The RESERVOIR cloud infrastructure solution is built on OpenNebula
project, the open source toolkit for cloud computing [17].

The VGrADS project [27] developed software systems that simplify and accelerate the
development of applications to run on distributed systems such as grid and cloud infras-
tructures [62].

6.3 Outlook

This thesis discussed consolidation scenarios of grid and cloud systems and presented an
initial and promising step toward a better integration between them. The realization of
such an integration requires further extensions for the work described in this thesis. In the
following, an illustration for the possible extensions for this work is provided.
Additional functionalities can be integrated into the solution created in the thesis to act as
a grid/cloud broker. It is supposed to support multiple grid and cloud systems and enable
users to use services provided by them.

A further mechanism can be added to allow the dynamic and automatic creation of a
VRE to handle peak workloads and release when the load decreases. In other words, our
work can be modified to be sensitive and intelligent to the workload.

The integration solution can be extended to support the gridification of more applica-
tions to accomplish users needs. As a result, the system should allow the dynamic de-
ployment of applications on VM instances and be able to handle large tasks that should be
executed by these applications. This can be achieved by integrating workflow frameworks
such as Pegasus [26], Chimera [49], and ActiveBPEL engine [22] with our work. Workflow
frameworks construct abstract high-level descriptions for applications named workflows
and map them onto grid environments. These workflows reflect the structure and the
behavior of the applications in a platform independent manner.
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List of Abbreviations

ABI Application Binary Interface
Amazon EC2 Amazon Elastic Compute Cloud
Amazon S3 Amazon Simple Storage Service
API Application Program Interface
B2B Business-to-business
CA Certificate Authority
CC Cluster Controller
CLC Cloud Controller
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CSA Cloud Security Alliance
CSF Community Scheduler Framework
DHCP Dynamic Host Control Protocol
Dom0 Domain0
DomU User Domain
DMTF Distributed Management Task Force
DNAT Destination NAT
DNS Domain Name System
EC2 Elastic Cloud Computing
EGEE Enabling Grids for E-sciencE
EMI Eucalyptus Machine Image
Eucalyptus Elastic Utility Computing Architecture Linking Your Programs to Useful Sys-

tems
FTP File Transfer Protocol
FQDN Fully Qualified Domain Name
GAM Grid Application Management
GGF Global Grid Forum
GRAM Grid Resource Allocation and Management
GridFTP Protocol Extensions to FTP for the Grid
GSI Grid Security Infrastructure
GT4 Globus Toolkit 4
GVE Grid Virtualization Engine
HaaS Hardware as a Service
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HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IP Internet Protocol
JNDI Java naming and directory interface
KVM Kernel-based Virtual Machine
LAN Local Area Network
LHC Large Hadron Collider
LRMS Local Resource Management System
LSF Load Share Facility
MaaS Middleware as a Service
MAC Media Access Control
MD5 Message-Digest algorithm 5
MMJFS Master Managed Job Factory Service
MOM Machine Oriented Miniserver
MP4 stands for MPEG-4 Part 14
MPEG-4 Motion Picture Experts Group Layer-4 Video
NASA National Aeronautics and Space Administration
NAT Network Address Translation
NC Node Controller
NFS Network File System
NIC Network Interface Card
NIST National Institute of Standards and Technology
OCC Open Cloud Consortium
OCCI OGF Open Cloud Computing Interface Working Group
OGF Open Grid Forum
OGSA Open Grid Service Architecture
OGSA-DAI Open Grid Services Architecture Data Access and Integration
OS Operating System
PaaS Platform as a Service
PBS Portable Batch System
PC Personal Computer
POSIX Portable Operating System Interface for UNIX
QoS Quality of Service
RFT Reliable Transfer Service
RMI Remote Method Invocation
RMS Resource Management System
RSL Resource Specification Language
SaaS Software as a Service
SC Storage Controller
SimpleCA Simple Certificate Authority
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SLA Service Level Agreement
SNAT Source NAT
SNIA Storage Networking Industry Association
SOAP Simple Object Access Protocol
SSH Secure Shell
SSI Single System Image
TCP/IP Transmission Control Protocol/Internet Protocol
TM Forum TeleManagement Forum
Torque Tera-scale Open Source Resource and Queue Manager
UDDI Universal Description, Discovery, and Integration
UML Unified Modeling Language
VDE Virtual Distributed Environment
VIM Virtual Infrastructure Manager
VO Virtual Organization
VM Virtual Machine
VMM Virtual Machine Monitor
VRE Virtual Runtime Environment
Walrus SC Walrus Storage Controller
WebMDS Monitoring and Discovery Service of Globus Toolkit 4 via the Web Browser
WMS workflow management system
WMV Windows Media Video
WN Worker Node
WS Web Service
WSDD Web service deployment descriptor
WSDL Web service description language
WS-GRAM Web Service Grid Resource Allocation and Management
WSRF Web Services Resource Framework
XML eXtensible Markup Language
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