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Abstract

For a long time Message Sequence Charts (MSCs) have been part of auxiliary diagrams within
the SDL-recommendations, but only recently their standardization in graphical and textual form
has been decided within the CCITT. MSC is a trace language which in graphical form admits
a particularly intuitive representation of system runs in distributed systems. Within a software
development process for (tele)communication systems MSCs are used primarily for the require-
ments definition describing the required system behaviour in form of traces. However, in Ppractice
the requirements definition by means of MSCs often was restricted to the specification of few
selected system runs, the ‘standard cases’, since each MSC only describes a partial behaviour, In
order to overcome this restriction, composition mechanisms are introduced by means of global
and local conditions. Standard building blocks, so called Sequence Chart segments, are defined
as means for structuring the composition and to obtain an overview about the specified system,
The aim of this paper is to prove the usefulness of these concepts by applying then to the spec-
ification of the INRES-Service. Beyond that, the power of the composition rules is increased
considerably by taking over the asterisk concept from SDL to MSC-conditions.
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Abstract: For a long time Message Sequence Charts (MSCs) have been part of auxiliary diagrams
within the SDL-recommendations, but only recently their standardization in graphical and textual form
has been decided within the CCITT. MSC is a trace language which in the graphical form admits a
particularly intuitive rep‘resentation of system runs in distributed systems. Within a software development
process for (tele)communication systems MSCs are used primarily for the requirement definition descri-
bing the required system behaviour in form of traces. However, in practice the requirement definition by
means of MSCs often was restricted to the specification of few selected system runs, the 'standard
cases’, since each MSC only describes a partial system behaviour. In order to overcome this restriction,
composition mechanisms are introduced by means of global and local conditions. Standard building
blocks, so called Sequence Chart segments, are defined as a means for structuring the composition and
to obtain an overview about the specified system.

The main aim of this paper is to prove the usefulness of these concepts by applying them to the specifica-
tion of the INRES-Service. Beyond that, the power of the composition rules is increased considerably by
taking over the asterisk concept from SDL to MSC-conditions.

1. Introduction

Within the software life cycle increasing attention is paid to the stage of software design
since the quality of all following stages is depending on it. In particular in the field of
telecommunication this has been taken into account by the introduction of a special
design language 'SDL’ (Specification and Description Language). An SDL-design, how-
ever, is useful only if it is checked with respect to syntactical and semantical correctness.
Apart from a general correctness proof (e.g. absence of deadlocks) the consistency of the
SDL-specification with respect to a prescribed system behaviour has to be checked. A
convenient way to describe the system behaviour is offered by system traces which are
suitably presented in form of signal flow diagrams called Message Sequence Charts
(MSCs). MSCs are a widespread means for the description and particularly graphical
visualization of selected system runs within distributed systems, especially telecommuni-
cation systems. A Message Sequence Chart shows sequences of messages interchanged




cation systems. A Message Sequence Chart shows sequences of messages interchanged
between entities (such as SDL services, processes, blocks) and their environment (cf.
figure 2.2). Formally MSCs describe the causal partial ordering of message events i.e.
message sending, message reception and consumption.

MSCs have been used for a long time by CCITT Study Groups in their recommendations
and within industry, according to different conventions and under various names such as
Signal Sequence Chart, Message Flow Diagram and Arrow Diagram. Only recently the
development of a standardized form has been tackled [11, 12]. The recommendation for
the new CCITT-standard language MSC will be provided in 1992, the end of the present
CCITT-study period.

The reason to standardize MSCs is to make it possible to provide tool support for them,
to exchange MSCs between different tools and to ease the mapping to and from SDL
specifications.

One part of the standardization work is to provide a clear definition of the meaning of a
MSC. This is done by means of relating MSCs to SDL specifications (cf. figure 2.1), as
follows:

Each sequentialization of an MSC describes a trace from one equivalence class of
nodes to another eqivalence class of nodes of an Asynchronous Communication
Tree (ACT) presenting the behaviour of an SDL system specification.

According to the above definition, a MSC can be derived from an existing SDL system
specification. However, a MSC is generally created before the system specification, and
then serves as

e a statement for requirements for SDL specifications, or

® a basis for automatic generation of skeleton SDL specifications, or

® a basis for selection and specifications of test cases, or

® a semi-formal specification of communication, or

® an interface specification.

2 Message Sequence Charts

2.1 Basic Concepts

Message Sequence Charts show the signal flow between entities like processes. In gene-
ral, MSCs are related to SDL-systems. Let us consider the MSC in figure 2.2 which
describes a selected trace piece of the connection set-up in the INRES-Service specifica-
tion [2]. It could equally be represented using SDL-diagrams with certain additions /
modifications (cf. figure 2.1, dashes stand for not followed branciies, bold arrows indica-
te the signal flow).

The diagram in figure 2.1 contains at least the same information as the MSC in figure
2.2. Obviously, however, the MSC is much more transparent, since it concentrates on the



relevant information, namely the entities (INITIATOR, RESPONDER) and the signals
involved in the selected trace piece (ICONreq, ICON, ICONind). Beyond that, what is
even more important, the relation of MSCs to SDL-diagrams may be rather sophistica-
ted. The entities very often are collections of (SDL-)processes on a higher level of ab-
straction such as blocks, since MSCs in general are created before the SDL-specificati-
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Figure 2.1: (Nonstandard) combined SDL - signal flow diagram

Nevertheless the correspondence between figure 2.1 and figure 2.2 may serve to give a
good intuitive idea about the meaning of a Message Sequence Chart. It also demonstrates
that a Message Sequence Chart describing one possible scenario can also be looked at as

an SDL-skeleton [1,7].
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Figure 2.2: Message Sequence Chart

The most basic language constructs of Message Sequence Charts are entities, i.e. instan-
ces of certain SDL-types or environments, and messages describing the signal events. In
the graphical form the instances and environments are represented by vertical lines or
alternatively by columns. The signal flow is presented by horizontal arrows with a possi-
ble bend to admit signal overtaking or crossing. The message arrow denotes the signal
consumption, the opposite end (message origin) the signal sending.

One MSC in general describes a small section of a 'complete system run’. Therefore the
MSC has to be characterized by the specification of the initial and final conditions and
possibly by intermediate conditions. Graphically a condition is characterized by a rectan-
gle containing the condition name (cf. 'DISCONNECTED’ in fig. 2.2).

In addition in MSCs the actions triggered by signal consumption and timeouts may be
indicated.

2.2 Additional concepts

Sequence Charts in the pure message form may be extended by some additional con-
cepts, mainly coming from SDL-process diagrams [5,6]. Eventually one trace in an
SDL-system can be described completely by an Extended Sequence Chart (cf. fig. 2.3
which is the due extension of fig. 2.2). By means of the inclusion of an SDL-input-sym-
bol both message reception and message consumption may be represented.

It should be noted that there is an essential difference between SDL-states used in Exten-
ded Sequence Charts (cf. fig. 2.3) and conditions used in MSCs : Whereas SDL-states
only appear at the beginning of a state transition, MSC-conditions may appear every-
where between. Thus e.g. conditions may be used also to indicate the result of a decision.
Therefore both concepts are graphically well distinguished.

For system engineering it is important that Extended Sequence Charts admit a stepwise
refinement of the system specification. Thus within the software development process
Extended Sequence Charts are used apart from requirement definition for system con-



struction, analysis, simulation, animation and test case definition [6,8]. Both Message
Sequence Charts and Extended Sequence Charts already are a central part of SDL-tool-
sets within industrial practice [6].
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Figure 2.3: Extended Sequence Chart

3. Methods for system design using Message Sequence Charts
and SDL

MSCs are commonly used as a requirement language to describe the purpose of a system
in form of trace examples. As basis for implementation however, a different view is
preferable. Such a view is offered by SDL which describes the system from the point of
view of communicating processes. Within a software development process for telecom-
munication systems both MSC and SDL are used in parallel, supplementing each other
and being correlated in many ways [6]. In the sequel a systematic MSC-methodology
based on composition mechanisms is developed. The conditions introduced for this pur-
pose may be employed also for the derivation of SDL-skeletons [1,7].

3.1 MSC-composition and decomposition

Since one MSC only describes a partial system behaviour, MSCs are primarily used for
the description of selected normal cases. The shortcoming of MSCs in system enginee-
ring, namely the often restricted application to only a few ’standard’ cases, has been



pointed out several times in the literature [1]. In order to overcome this drawback, com-
position mechanisms have been introduced within the CCITT MSC-standardization do-
cument (cf. figure 3.1) [11]. For each MSC initial, intermediate and final conditions may
be introduced defining possible continuations by means of condition name identification.
In industrial practice the use of global conditions referring to global system states is most
common. E.g. in figure 3.1 'DISCONNECTED’ and "WAIT_FOR_RESP”’ are global con-
ditions. Opposite to the global condition, the local condition is attached to just one instan-
ce. In general, however, conditions may refer to an arbitrary subset of instances defined
within the MSC in order to gain more flexible composition rules and also to support the
constructional approach [11]. Examples for local conditions are provided in chapter 4.
MSCs can be composed by (name)-identification of final and initial conditions. The
other way round MSCs can be decomposed at intermediate conditions.

MSC connection_req MSC connection_set_up
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| WAIT_FOR_RESP 1 I Wall POk aEee —I
S— FICON“MLICOM ICONTresp
: CONNECTED
MSC connection_conf L ]
ENV_I INITIATOR REE:?EEFER ENV_R I ‘
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<
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Figure 3.1: Message Sequence Chart-composition

3.2  Structured MSC-composition using Sequence Chart
segments

A set of MSCs developed in an early stage of design, employing conditions for compositi-
on, may still lack sufficient transparency. Such a collection of MSCs in general can be



rather unstructured: The chosen MSC-pieces may be too small to provide a good over-
view about the system. But also in the opposite case if the MSCs describe rather extensi-
ve system runs they often contain many large MSC-fragments in common (due to subcy-
cles), a redundancy which could be avoided by an appropriate decomposition. In both
cases the description does not give hints about its completeness.. Although composition
rules are defined formally and hence all resulting system runs can be derived there is no
sufficient overview about all of them.

In order to overcome these shortcomings standard building blocks, so called MSC-seg-
ments, are defined out of the given set of MSCs using possible decompositions and
compositions. The resulting set of MSC-segments describes the same system behaviour
as the original set of MSCs, taking into account the composition rules: in this sense the
set of MSC-segments is equivalent to the original set of MSCs.

The set of these building blocks is maximal in the sense that all possible traces can be
constructed out of its elements and minimal in the sense that no element can be compo-

sed from others in this set.

For the definition of MSC-segments the close relationship between SDL and Petri Nets,
on the one hand, and between Message Sequence Charts and Petri net processes, on the
other hand [5], has been exploited. For clarification it should be noted that Petri net
processes describe system runs in Petri nets [8], whereas MSCs describe system traces of
SDL-systems. Standard building blocks and a corresponding structured composition me-
thod has been suggested already for Petri net processes by means of process segments
[3]. Process segments are basic behaviour structures of Petri net processes from which
all possible Petri net processes can be composed. These ideas can be carried over to
MSCs with MSC-segments as basic behaviour structures [10].

Basic behaviour structures essentially are maximal trace pieces which are inseparable in
the sense that they always appear as a whole without (cyclic) inserts. They can be charac-
terized in the following way: They describe

(a) (inseparable) sequential trace segments,

(b) (inseparable) cyclic trace segments,

(c) sections of sequential and

(d) cyclic trace segments in which other trace segments are embedded.
This is illustrated in figure 3.2 where the reachability graph of a given system is indicated
schematically (the numbered circles refer to global system states). In this example, par-
allelism is hidden in global state transitions (described by MSCs). A simple comparison
of the trace segments in figure 3.3 with the reachability graph shows that all possible
traces can be composed from the presented segments. This construction procedure can
be represented in form of a graph (fig. 3.4).
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Figure 3.3: Trace segments for fig. 3.2

The figures 3.3 and 3.4 merely serve as an illustration of the mentioned ideas. For nontri-
vial systems the situation is not that simple.



Moreover, at the beginning of a system design the reachability graph which forms the
basis for the generation of characteristic trace segments in the original definition of
process periods [3] normally is not given. MSC-segments are defined in such a way that
it is possible to generate them automatically from a given set of MSCs at each stage of
system specification. Thus, MSC-segments represent standard building blocks which
may be carried seperately and in parallel with the specified MSC fragments.

system start

@
©
©

0008
060
600

Figure 3.4: Composition graph

The set of generated MSC-segments represents the desired system behaviour. Beyond
that, the computer aided composition of MSC-segments offers the possibility of an im-
mediate simulation of the specified behaviour. Besides that, MSC-segments may be used
for test case generation and test case selection. Viewing segments as the smallest units
admits the abstraction from details of communication and the analysis of the essential
behaviour structures of the system. MSC-segments are interesting also for system analy-
sis providing an alternative to the reachability graph since they represent the concurrency
aspects of the system in an obvious manner.



4. Example for MSC-composition and MSC-segments:
INRES-Service:

As an example we use the requirement specification for the INRES—Service which shows
a (simplified) connection set up and a following data transfer between INITIATOR and
RESPONDER. Due to an unreliable medium between both the signal transfer may fail
(cf. section 4.2 for failure cases) [2]. ,

The MSCs specified in section 4.1 and 4.4 are closely related to the time sequence dia-
grams listed in [2]. However, compared with to time sequence diagrams they contain
more information: besides actions and timeouts in particular conditions provide again
the basis for composition mechanisms. :

4.1 Standard cases

The first step is the specification of ’standard cases’ (non-error cases). In order to obtain
a description which can be enhanced easily by failure cases, local conditions are em-
ployed. However, if we would restrict ourselves to standard cases only, global conditions
seem to be more transparent. For the INRES-Service example we obtain five standard
cases (cf. fig. 4.1a - e).

MSC connection_request
ENV_I  INITIATOR RESPONDER ENV_R
LENY ] CEvv]
ICONreq
ICON
SET T ICONind
o2 <eaced ‘ S
Figure 4.1a
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SC connection_confirm
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] CEnv] MSC timeout
ENV_I  INITIATOR
WAIT WAIT L_ENV [
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I RESET T I TIMEOUT
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T e
Figure 4.1b Figure 4.1c

MSC disconnection
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Figure 4.1d -« Figure 4.1e

4.2 Asterisk-Conditions

Within the MSC disconnection (cf. fig. 4.1e) we have taken over the asterisk-abstraction
mechanism from SDL [2] to MSC-conditions. The asterisk—condition is a short-hand-
notation to denote that for possible compositions the asterisk—-condition can take on any
name out of the set of specified condition-names (only conditions referring to the same
set of instances are considered). E.g. for the MSCs specified in section 4.1 and their
possible combinations the asterisk conditions may take on the following condition-na-
mes (in pairs for INITIATOR/RESPONDER): WAIT/WAIT, CONNECTED/CONNEC-
TED, DISCONNECTED/DISCONNECTED, DISCONNECTED/WAIT. After including
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the failure cases of section 4.4. this set would be much enlarged. Analogously to SDL,
exceptions may be specified for asterisk conditions. The asterisk construct is useful espe-
cially for the specification of system abortion, in a sense corresponding to the disabling-
operator in LOTOS.

4.3 MSC-Segments

According to section 3.2 MSC-segments for the standard cases are constructed. This
provides a first overview about the system (cf. fig. 4.2a - c)

For the construction of MSC-segments it should be noted that ’null-transitions’ (signal-
consumption causing no transition) are discarded.

We obtain five MSC-segments whereby MSC datq‘;_tmnsfer (cf. fig. 4.2d) and MSC
disconnection (cf. fig. 4.2e) already present segments.

MSC connection_establishment

ENV_I  INITIATOR RESPONDER ENV_R
E CEnv] I e CEsY]
4‘ MSC request_rejection
DISCONNECTED DISCONNECTE ENV I  INITIATOR RESPONDER ENV_R
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WAIT | WAIT i [ SET T I ol ad
WAIT WAIT
ICONresp [ ! [_ I
_ IDISreq -
ICONF
IDIS
EESE’I‘ T I
IRESETT |
: ICONconf _IDISind
CONNECTED l Commn| [bisconnected [ pisconnEcTED|
= =3 == —= —= — == —

Figure 4.2a Figure 4.2b
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MSC request_timeout
ENV_I  INITIATOR RESPONDER ENV_R
I DI_SCONNBCTEDI I DISCONN'ECTED]
1CONreq
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Ewar 31" [ wiw ]
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IDIS
IDISind @
| pisconwEcTED| | pisconnecTED |
fricenema] T
Figure 4.2¢

In order to obtain an overview about all possible system runs the connection between the
derived MSC-segments has to be shown. Such a description is provided in fig. 4.3 where
the MSC-segments are represented as transitions within a graph .

)
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4.4 Failure cases

MSC response_fallure
RESPONDER ENV_R
MSC request_failure [ ] CEnvV]
ENV_I INITIATOR
LENV] - | ]
| wr
DISCONNECTED
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>
IDISind
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Figure 4.4a Figure 4.4b

MSC data_transfer_failure
MSC disconnection_failure
ENV_I INITIATOR
RESPONDER ENV_R | ENV] - | ]
= ] CENV] I
] CONNECTED
X
IDATreq
E—
1D{8ren IDISind
DISCONNECTED DISCONNECTED
Figure 4.4c Figure 4.4d

Constructing the MSC-segments which we now obtain in addition to section 4.3, we first
observe that MSC request failure (cf. fig. 4.4a) itself is a MSC-segment. MSC response
failure (cf. fig. 4.4b) yields two additional segments which can be obtained from the
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segments ‘request-rejection’ (cf. fig. 4.2b) and 'request-timeout’ (cf. fig. 4.2¢c) by a
corresponding insertion of 'response_failure’ at condition 'WAIT’ within the RESPON-
DER-instance. The MSC data_tranfer_failure (cf. fig. 4.4d) composed with a subsequent
"disconnection’ (cf. fig. 4.1e) produces one segment.

The MSC disconnection_failure (cf. fig. 4.4c) leads to a lot of MSC-segments. In practice
a separate treatment of such error exits, using further abstraction mechanisms, is recom-
mendable.

5. Conclusion

For a comprehensive system specification by means of MSCs an extensive use of local
conditions seems to be most appropriate. Global and semiglobal conditions are transpa-
rent shorthand notations which are more useful on a less detailed level, e.g. vforthe
description of standard cases.

Including an MSC-asterisk-construct the described composition mechanisms make a
far reaching comprehensive MSC-system specification feasible which also includes non-
standard cases. Applying the idea of MSC-segments to the INRES-service in general
they have proven to be very useful for a system overview and analysis. Whereas the
MSC-pieces, originally defined, primarily provide a local system view, MSC-segments
together with their transition graph give a global system view in a structured manner.
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