
The Standardization of Core INAP CS-2by ETSIJens Grabowski and Dieter HogrefeInstitute for Telematics, University of Lübeck, Ratzeburger Allee 160,D-23538 Lübeck, Germany, eMail: {jens,hogrefe}@itm.mu-luebeck.deAbstractThe development of the Core INAP CS-2 standard and the corresponding confor-mance test suites by expert teams at the European Telecommunications StandardsInstitute (ETSI) are historical breakthroughs for the use of SDL and MSC withinthe international telecommunications standardization process. For the �rst time, thetextual description of a standard has no priority over the corresponding SDL speci-�cation, which in the case of Core INAP CS-2 is published as a normative annex tothe protocol standard. The power of a standard SDL speci�cation has been shownby the successful application of computer aided test generation methods for the pro-duction of the necessary standard conformance test suites. This paper introduces theCore INAP CS-2 protocol speci�cation and describes the test generation procedure.Keywords: SDL, MSC, TTCN, ASN.1, conformance testing, automatic test gener-ation, standardization, ETSI, ITU-T1 IntroductionWith a complete SDL model for the European version of the Intelligent Net-work Application Protocol (Core INAP), the European TelecommunicationsStandards Institute (ETSI) is exploring new grounds. Traditionally, the spec-i�cations published by ETSI have used SDL [28] only in an informal andillustrative way. This has advantages and disadvantages. The advantages are,e.g., that compared to formal speci�cations, informal descriptions are moreunderstandable and require less development time. Disadvantages are, e.g.,that the speci�cations are not machine processable and sometimes includeambiguities.The SDL work for Core INAP at ETSI was done in the Technical (Sub-)Com-mittee SPS3 (TC SPS3) on a voluntary basis with support from the PermanentExpert Group (PEX) at ETSI and the ETSI Technical Committee Methodsfor Testing and Speci�cation (TC MTS). Unlike other SDL models for INAP,2nd February 1999



the ETSI model has been done as part of the standardization process andis published together with the standard as a normative (electronic) annex ofthe ETSI standard [5]. The work started in the middle of 1995, and the SDLmodel was approved as the normative de�nition of the protocol behaviour inNovember 1997.Reasons for ETSI to develop the Core INAP SDL speci�cation have been thefacilitation of service development, feature interaction studies, switch designand test case generation. Traditionally, the development of test suites for con-formance tests of standardized protocols has been a major activity of ETSI.Unfortunately, this test suite development has not been successful in somecases. There are some reasons for this: First, test suites have often been de-veloped too late. Therefore, they have been of limited value for the industrywhich makes products based on a particular speci�cation. The products arealready on the market before the test suite is published. A second reason iscost. Because of the risk that the value is limited, the motivation of the compa-nies to participate in the development of a test suite voluntarily is sometimeslow. This means that ETSI has to set up project teams in the paid workprogram in order to develop test suites. A third reason is quality. Informal de-scriptions tend to contain ambiguities which may lead to misinterpretations.For the development of test cases based on informal protocol speci�cations, ahuman interpretation of protocol standards is required. Even though the ap-proval of a conformance test suite by ETSI requires several reviews at di�erentstages of the test suite development process, the consistency between protocolspeci�cation and corresponding test suite cannot always be guaranteed. Thedevelopment of complete formal SDL descriptions as the normative part ofprotocol or service speci�cations is a possibility to tackle these problems.In most cases, the development of a conformance test suite starts with theidenti�cation of the test purposes of the individual test cases. A commonrepresentation for test purposes is the Message Sequence Chart (MSC) lan-guage [30]. Most commercial SDL tools, like SDT from Telelogic [22] or Ob-jectGEODE from Verilog [24], also support MSC and provide possibilities tocheck whether an MSC diagram 1 describes a behaviour included in an SDLdescription.The development of the test suite should start in parallel with the SDL mod-elling. The MSC test purpose descriptions are requirements for the SDL spec-i�cation and their validation against the SDL description ensures that theserequirements are met. In case of changes in the SDL speci�cation, the re-validation of the MSCs can be seen as regression testing, which helps to en-sure and improve the quality of the protocol standard. After the �nalizationof the SDL speci�cation and the MSC test purposes, computer aided test gen-1 The term MSC is used for a diagram written in the MSC language and thelanguage itself. Where necessary, we distinguish between both by using the termsMSC language and MSC diagram. 2



eration (CATG) methods can be applied for the automatic generation of theconformance test suite.The strength of such a methodology has been tested at ETSI by applyingCATG methods to the SDL speci�cation of Core INAP. The development ofthe test suites was done by an expert team at ETSI. It started in March 1997and will end with the approval of the test suites in spring 1999. During testsuite development, the validation of the MSC test purposes helped to detectand correct several errors in the protocol speci�cation. Although Core INAPwas the �rst application of CATG methods within ETSI, it was shown thatthe cost for the test suite development can be reduced signi�cantly.The remaining parts of this article are organized as follows: Some basics aboutIntelligent Networks (IN) and the description techniques used for speci�cationare explained in Section 2. The development of the Core INAP SDL speci�ca-tion at ETSI and the SDL speci�cation itself are described in Section 3. Thetest generation procedure is presented in Section 4. Finally, in Section 5, asummary and an outlook are given.2 Application area and description techniquesTo understand the complex working procedures for the development of theCore INAP CS-2 SDL speci�cation and the corresponding conformance testsuites, some knowledge of IN, INAP and the languages and notations SDL,MSC, ASN.1 and TTCN is required. It can not be assumed that a reader hasexpertise in all these areas. Therefore, this section provides an introduction tothe most important concepts of IN, SDL, MSC, ASN.1 and TTCN.2.1 Intelligent Networks and INAPIntelligent Networks (IN) is currently one of the most important topics in thetelecommunications area. IN provides a complete framework for the creation,provision and management of advanced telecommunication services. 2 ITU-T(International Telecommunication Union � Telecommunications StandardsSector) and ETSI standardize IN in several series of standards. These seriesare known as capability sets (CS) and they are distinguished by numbers.Currently, the capability sets 1 (CS-1) and 2 (CS-2) are published and thecapability set 3 (CS-3) is under development.Examples of CS-1 services are abbreviated dialling (allows the use of shortnumbers for outgoing calls), time-dependent routing (allows incoming calls tobe routed based on time, day, week, etc.), reverse charging (allows call chargesto be allocated to the called party), call queueing (allows incoming calls to2 Detailed introductions to IN can be found in, e.g., [17] and [23].3



O-BCSM T-BCSM O-BCSM T-BCSM

Calling party Called party

Switch A Switch B

ISUP connection

DSS1 connectionDSS1 connection

Figure 1. O-BSCM and T-BCSM in SSFsbe queued when a called line is busy), or call transfer (allows a call to betransferred to another destination line).Instead of adding new services, CS-2 identi�es several service categories. Thecategories refer to internet working services, call party handling services (al-lowing to manage various parties' participation within a call), mobility ser-vices, broadband services, bearer services, and other service features outsidethe range of �single ended� calls and/or calls with �single point of control�that were not fully addressed within CS-1.A main principle of IN is to separate the control of a call and the basic callprocessing. Conceptually, the control of a call is given to a Service ControlFunction (SCF), whereas the basic call processing is done in Service Switch-ing Functions (SSFs). On the implementation side, an SCF is implemented ina Service Control Point (SCP) and an SSF is implemented in a Service Switch-ing Point (SSP). The SCP is typically a fault-tolerant transaction-processingdatabase that provides call-handling information in response to SSP queries.An SSP is implemented within a normal switch. The following descriptiononly refers to the conceptual view, i.e., to SSF and SCF.Based on call characteristics like call origin or called party number, the SSFdetects if a call is an IN call, i.e., the call should be controlled by the SCF.For IN calls, the SSF sends queries to the SCF and asks for information aboutthe handling of the call. Depending on the IN service to be realized for thecall, queries have to be sent in di�erent states of the call, and speci�c callinformation has to be provided within the queries.Within the SSF, a call is handled by means of two Basic Call State Models(BCSMs) which are called Originating Basic Call State Model (O-BCSM) andTerminating Basic Call State Model (T-BCSM). The O-BCSM describes theincoming side of a call and the T-BCSM models the outgoing side. As shownin Figure 1, the calling party is connected to an O-BCSM and the called partyis connected to a T-BCSM.The BSCMs are �nite state machines and are used to control the basic callprocessing within the SSF. In order to know where to send queries to anSCF, the BCSMs include detection points (DPs). Some DPs have to be armedstatically (trigger detection points) and some can be armed dynamically (eventdetection points). If an armed DP is reached during the call, the SSF knowsthat a special treatment of the call is required. In most cases, the SSF has to4
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Figure 2. INAP as part of the CCS7 protocol architectureask the SCF for further instructions. As a result of such a query, the SCP mayprovide new information, e.g., a new called party number if a call is transferedto a new destination, or force the SSF to arm a DP.The communication between an SSP and an SCP is performed by using theIntelligent Network Application Protocol (INAP). INAP is de�ned for di�erentcapability sets and for di�erent regions of the world. For example, the termCore INAP CS-2 refers to the European version (ETSI indicates this by usingthe pre�x Core) of the INAP protocol for the capability set 2 (CS-2).INAP is normally used within CCS7 3 networks and it is implemented withinthe Transaction Capabilities Part (TCAP) [25] of the CCS7 protocol stack.As shown in Figure 2, INAP is realized on CCS7 level 4 or, with regard to theOSI basic reference model [3], on the application layer (layer 7).INAP is de�ned for the communication between various IN components andnot only for the communication between SCF and SSF. However, the CoreINAP CS-2 SDL modelling work at ETSI concentrates on the communica-tion between SSF and SCF. Furthermore, a test suite for the communicationbetween an SSF and a Specialized Resource Function (SRF) has been devel-oped. SRFs are used for providing service speci�c additional resources likeannouncements or music.2.2 Description techniquesFor the development of Core INAP CS-2 SDL speci�cations and the corre-sponding test suites within ETSI, the description techniques Speci�cation and3 CCS7 is an abbreviation for ITU-T's Common Channel Signalling System No. 7(see, e.g., Chapter 10 in [15]). 5



Description Language (SDL) [11,28], Message Sequence Chart (MSC) [19,30],Abstract Syntax Notation One (ASN.1) [21,26,27] and Tree and Tabular Com-bined Notation (TTCN) [1,14] have been used. SDL and MSC are formaldescription techniques (FDTs), i.e., they have standardized formal syntax andsemantics de�nitions. ASN.1 and TTCN are only notations. They have a stan-dardized formal syntax de�nition, but the semantics is given informally. ASN.1and TTCN are well accepted in the telecommunications community for thede�nition of protocol data and conformance test suites. For the acceptance offormal description techniques by this community, a smooth interworking withASN.1 and TTCN is required.SDL, MSC and TTCN have two syntactical forms: a pure textual and a graph-ical representation. The graphical forms are mainly used for editing purposesand documentation. The textual forms are mainly used for the transfer of di-agrams and for code generation. Throughout this article, only the graphicalrepresentations of SDL, MSC and TTCN are used.2.2.1 SDLThe formal description technique SDL is standardized by ITU-T as Recom-mendation Z.100 [28]. SDL evolved from an informal notation to a completeand complex speci�cation language with formal syntax and semantics de�ni-tions.SDL is used to specify the behaviour of a system. Such a system is a collectionof SDL processes which communicate asynchronously by exchanging messages.The reception of a message may force a process to change its state. Duringsuch a state transition, the SDL process may send new messages and/or per-form operations on local variables. Figure 3 presents a state transition of anSDL process speci�cation. If the process CallSegment is in the Forward stateand receives the message SetupReq Ind, it calls the procedure SetLegStatus toperform some operation on a local data structure, sends the message SetupReqand goes into the state Transfer.SDL processes are combined to (sub-)systems by means of block diagrams. Ina block diagram, the process speci�cations are referenced and the communica-tion links among the processes and between the processes and the system en-vironment are de�ned. In Figure 8 the block type SSF CCF is de�ned. The sixinscribed octagons refer to process de�nitions and the solid arrows de�ne com-munication links. The dashed arrows denote dynamic process creation, e.g.,in Figure 8 process CS(0,):CallSegment may create process SSF(0,):SSF FSM.SDL blocks may be combined to bigger blocks or to the �nal system. Figure 9de�nes the system CS1 INAP. The rectangles refer to block de�nitions and thesolid lines with the attached arrow heads de�ne communication channels.SDL allows to specify systems in an object-oriented manner. For this, SDL hasa type concept for processes, blocks and systems. These types can be reusedby means of inheritance and rede�nition. SDL types can be collected in SDL6
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stateFigure 3. State transition of an SDL processpackages. The SDL Core INAP CS-2 speci�cation makes extensive use of theseobject-oriented concepts.The SDL de�nition includes many additional language constructs which can-not be introduced here. A complete language description can be found in [11]or [2].2.2.2 MSCThe MSC language is de�ned in the ITU-T recommendation Z.120 [30]. Fig-ure 4 shows an example of an MSC. The diagram describes the message �owbetween the instances SCF, CS2 SSF, SigCon A and SigCon B. The instancesare represented by vertical axes. The messages are described by horizontalarrows. An arrow origin and the corresponding arrow head denote the sendingand consumption of a message. In addition to the message name, parame-ters may be assigned to messages (see values in square brackets below themessage arrows). The send and receive actions along an instance axis are to-tally ordered. The order of events on di�erent instance axes is mediated by themessages, i.e., a message must be sent before it can be received and consumed.The rounded rectangles in Figure 4 which cover all instances are MSC ref-erences. They refer to the MSCs O OS and ReleaseCallAB. MSC O OS canbe seen as the prehistory of MSC IN2 A BASIC RN CA 01 and MSC Release-CallAB as its continuation.Further constructs of the MSC language denote instance actions, timer han-dling, instance creation, instance termination, the order of events along aninstance axis (coregion), and the re�nement of instance axes by means of sub-mscs. Individual MSC sections within one MSC can be combined by means ofinline expressions. Complete MSCs can be combined by means of High-levelMSCs. A complete introduction to the MSC language can be found in [19].7
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Figure 4. MSC test purpose IN2 A BASIC RN CA 012.2.3 ASN.1The Abstract Syntax Notation One (ASN.1) [21,26,27] is a notation for thedescription of structured information intended to be conveyed across someinterface or communications medium. ASN.1 allows to specify structured datatypes and values of the speci�ed types. By means of encoding rules, it ispossible to de�ne how data types and values have to be implemented. Theclose relation to the actual implementation may be one of the reasons whyASN.1 is very popular in industry, but not very well known by scientists.An ASN.1 speci�cation is structured in modules which can be seen as col-lections of data types and data values. Modules are allowed to import othermodules. The use of ASN.1 is supported by TTCN and SDL. For SDL, a spe-cial ITU-T recommendation Z.105 [29] exists which de�nes the use of ASN.1types and ASN.1 values within SDL.INAP data types and operation calls are speci�ed in ASN.1. The following8



ASN.1 data type description de�nes the argument of the RequestNoti�cation-Charging operation. It can be found in [5] and is referenced in the Core INAPCS-2 SDL speci�cation.-- Direction: SCF->SSF, Timer: Trnc-- This operation is used by the SCF to instruct the SSF on-- how to manage the charging events which are received from-- other FE's and not under control of the service logic-- instance.RequestNotificationChargingEventArg ::=SEQUENCE SIZE(1..numOfChargingEvents) OF ChargingEvent2.2.4 TTCNThe Tree and Tabular Combined Notation (TTCN) is de�ned in Part 3 [14] ofthe well established 'OSI Conformance Testing Methodology and Framework'(CTMF), which has been developed and standardized by ISO and ITU-T[13]. TTCN is a notation for the speci�cation of abstract test suites for OSIconformance testing. Abstract means that a test suite should be independentfrom any concrete implementation. A TTCN test suite consists of� a test suite overview which mainly is a table of contents of the test suite,� a declarations part which includes the message and data type de�nitions,� a constraints part which consists of conditions on message parameters, i.e.,default values or value ranges which should be tested, and� a dynamic part which for each test case describes the sequence of exchangedmessages.As indicated by the name 'Tree and Tabular Combined Notation' (TTCN), aTTCN test suite is a collection of di�erent tables. Figures 5 and 6 present twoexamples of TTCN tables. They will be explained below.TTCN has its own data type and value assignment concept. It includes verypowerful matching mechanisms to express conditions on parameter values.These matching mechanisms are comparable with the wild cards used in UNIXshells. For practical purposes, TTCN allows to use ASN.1 in the declarationsand constraints part.The dynamic part of a TTCN test suite includes the test cases. A TTCNtest case describes the sequences of events which should be performed by thetesters. In general, these are send and receive events at Points of Control andObservation (PCOs). A PCO can be seen as an interface to the System UnderTest (SUT). The event sequence is speci�ed by means of a tree notation.Figure 5 shows an example. The tree notation can be found in the BehaviourDescription column.The tree structure is determined by the ordering and the indentation of thespeci�ed events. In general, events with identical indentation denote a branch-ing (i.e., alternative events, for example, lines Nr. 8 and 15) and an increased9



Test Case Dynamic Behaviour

Test Case Name: IN2_A_BASIC_RN_CA_01

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS

2 SCF ! TC_InvokeReq CIR_RequestNotificationCha

rging_002( 1 , 51  )

3 SCF ! TC_InvokeReq CIR_Continue_004( 2 , 51  )

4 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

51  )

5 SigCon_B ? SetupReq C_SetupReq( { callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

 )

6 SigCon_B ! SetupConf C_SetupConf( { callRef 2 }  )

7 SigCon_B ! ChargingEventInd C_ChargingEventInd_002

8 SCF ? TC_ContinueInd C_TC_ContinueInd_003( 51

 )

9 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

10 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  ) (PASS)

11 +ReleaseCallAB

12 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  )

13 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

(PASS)

14 +ReleaseCallAB

15 SigCon_A ? SetupResp C_SetupResp( { callRef 1 }  )

16 SCF ? TC_ContinueInd C_TC_ContinueInd_003( 51

 )

17 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001( 102 , 51  )

(PASS)

18 +ReleaseCallAB

Detailed Comments:Figure 5. Dynamic behaviour description of test case IN2 A BASIC RN CA 01indentation denotes a succeeding event (e.g., lines Nr. 2 and 3). Events arecharacterized by the involved PCOs (i.e., SCF, SigCon A and SigCon B), bytheir kind ("!" denotes a send event and "?" describes a receive event) and bythe message which should be sent or received.The table in Figure 5 includes further information. The entries in the Con-straints Ref. column refer to TTCN or ASN.1 constraints. An example of anASN.1 constraint is shown in Figure 6. An entry in the Verdict column as-signs a test verdict to a test run. The verdicts indicate the success of the testrun. A pass verdict denotes that the test purpose is reached, a fail states thatan unexpected event has happened and an inconclusive describes a situationwhere neither a pass nor a fail can be assigned. The example in Figure 5 only10



ASN.1 ASP Constraint Declaration

Constraint Name : CIR_RequestNotificationCharging_002( Invoke_ID : InvokeIDtype; Dialog_ID : DialogIDtype )

ASP Type : TC_InvokeReq

Derivation Path :

Comments :

Constraint Value

{ invokeIDtype1 Invoke_ID, dialogIDtype2 Dialog_ID, opClassType3 2, opCodeType4 RNC, timeoutValType5 short,
argType6 rNCArg : { { eventTypeCharging PIX_EventTypeCharging1, monitorMode interrupted } } }

Detailed Comments :Figure 6. TTCN constraint CIR RequestNoti�cationChargingincludes pass verdicts (lines 10, 13, 17). The fail cases are speci�ed in the de-fault behaviour description OtherwiseFail, which is referenced in the test caseheader.TTCN allows to structure test case descriptions by means of test steps. Atest step is a behaviour tree which can be added to other behaviour trees bymeans of tree attachment. The tree attachment procedure is comparable to aprocedure call in a conventional programming language. The TTCN test casein Figure 5 includes four tree attachments. In Line 1, the test step O OS iscalled and in lines 11, 14 and 18, the test step ReleaseCallAB is attached tothe test case behaviour.TTCN supports concurrency by allowing to execute several behaviour treesin parallel. For this, a main test component (MTC) is allowed to create sev-eral parallel test components (PTCs). The test components can coordinatethemselves during test execution by exchanging coordination messages. Thebehaviour of an MTC is de�ned within a Test Case Dynamic Behaviour De-scription table and the behaviour of PTCs is speci�ed within Test Step Dy-namic Behaviour Description tables. For the exchange of coordination mes-sages, the same notation as for normal messages is used.2.3 Tool supportThe combined use of SDL, MSC, ASN.1 and TTCN stands and falls with theavailability of powerful tools. Within ETSI, Telelogic's Tau package is used[22]. Tau contains two tool sets: SDT on the one hand consists of SDL- andMSC-related applications (including support of the combined use of SDL andASN.1 according to [29]); ITEX on the other hand is used to work with TTCNtest suites (including support for the use of ASN.1 within TTCN).Due to the use of Tau within ETSI, the following sections provide a Tauoriented view. However, other toolsets provide comparable functionality. Asan alternative tool chain, we would like to mention Verilog's ObjectGEODEfor the SDL/MSC side [24] and Expert Telecoms' EXPERT*TTCN [8] for theTTCN side.Tau provides graphical editors, syntax and semantic checkers, code generators11
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TTCN TTCN EditorFigure 7. Part of Telelogic's Tau toolset(for several target programming languages), and simulation and validationtools for all of the mentioned description techniques. The most importanttools for the scope of this paper are shown in Figure 7.2.3.1 Graphical editors and SDL simulatorGraphical editors provide functions to edit and analyse SDL, MSC and TTCNspeci�cations. Furthermore, they allow to generate the textual format from thegraphical format of the notations and languages.The textual representation of an SDL speci�cation can be translated into asimulator and a validator application. The SDT simulator provides the possi-bilities to follow a simulation run by means of an MSC, or by �highlighting�the SDL symbol which has been executed last in the SDL editor. For furtheranalysis or reuse in another context, a simulation run can be stored in formof an MSC.2.3.2 The SDT validatorOne of the main purposes of the validator is to detect dynamic and logical er-rors in an SDL system. Some of the potential problems are deadlocks, implicitsignal consumptions 4 and the sending of signals to non-existing processes.The Validator is based on state space exploration techniques [12]. The statespace of an SDL system is built up in the form of a directed graph, calledreachability graph. The reachability graph describes the behaviour of the SDLsystem. Its nodes correspond to global system states and its edges representthe transitions between global system states.During validation, the reachability graph is analysed. For example, a deadlockis found if a node in the graph does not have any outgoing edges.Veri�cation of an SDL speci�cation against its requirements is one main pur-pose of the Validator [9]. Most requirements can be expressed in form of MSCdiagrams. The Validator explores the state space and searches for a path inthe reachability graph complying to the MSC which is checked. The MSC isveri�ed if such a path exists.4 SDL processes are allowed to discard signals which are received but not explicitlyexpected in the actual state. 12



2.3.3 AutolinkAutolink [10,16,20] is part of the SDT validator. The objective of Autolinkis to provide an easy-to-use yet powerful tool to generate TTCN test suitesfrom an SDL speci�cation. Potential users are engineers who have a goodunderstanding of the system they have speci�ed, but who do not have detailedknowledge of TTCN. Specialized test suite designers also bene�t from usingAutolink. They can concentrate on the correct description of test purposeswhile leaving the error-prone task of writing TTCN code to the tool.Test generation with state space explorationAutolink uses the state space exploration techniques and the MSC veri�cationmechanism provided by the SDT validator. The generation of a TTCN testcase is based on a path. In the Autolink context, a path is de�ned as a sequenceof events which have to be performed in order to go from a start to an endstate in the state space of the SDL speci�cation. The externally visible eventsof a path describe the test sequence to which a TTCN pass verdict is assigned.Paths are stored as system level MSCs. A system level MSC shows the desiredinteraction between the SUT and its environment during the execution of a testcase. It consists of one instance for the SUT and one instance for every PCO,i.e., all channels in the SDL system which are connected to the environmentare considered to be PCOs. The use of system level MSCs corresponds to theconformance testing method, where the internals of the SUT are not known.Autolink uses a modi�ed version of the MSC veri�cation algorithm to computeall relevant transitions in the state space. Each transition is analysed: Eventswhich are visible at the environment are added to an internal data structurewhich represents a test case. If an event satis�es the MSC, it is added as a passevent; if it violates the MSC, it is added as an inconclusive event. Additionally,a constraint is created for every visible event.After the generation of all test cases, the test suite can be translated into theTTCN format. The declarations part is deduced from the SDL speci�cation;the constraints and dynamic part is a translation of the Autolink internaldata structure. The production of the overview part can be done afterwardsby using a TTCN tool like ITEX.Direct translation of MSCs into TTCNIn order to use a state space exploration to generate test cases from MSCs,a complete SDL speci�cation is required. However in the real (standardiza-tion) world, only partial speci�cations exist for most systems; often there isno SDL speci�cation at all. Standardized protocols like Core INAP CS-2 (seeSection 3) cannot be speci�ed completely, e.g., error handling or charging func-tions remain unspeci�ed or are speci�ed partially. Nonetheless, to guarantee13



a uniform test suite development process, all test purposes can be formalizedas MSCs.Autolink supports the processing of manually developed MSC test purposes byproviding a function which translates MSCs directly into TTCN (MSC!TTCNtranslation). Although it does not perform a state space exploration, Autolinkstill needs information about the interface between the system and its environ-ment. Therefore, a minimal SDL speci�cation has to be provided which de�nesat least the channels to the environment, i.e., the PCOs, and the signals whichare sent via these channels.Constraint handlingBasically, a constraint with a generic name is created automatically for everysend and receive event in all test cases. Considering the readability of a testsuite, this is far from optimal. Autolink provides commands to rename con-straints manually. But if a test suite has to be regenerated because of a changein the SDL speci�cation, then the whole manual work is lost. Therefore, somespecial constraint handling mechanisms have been implemented in Autolink.If several test cases are processed consecutively, a lot of constraints are cre-ated. Autolink compares each new constraint with all existing constraints. Incase of identical constraints, the new constraint is removed and all referencesin the test case are updated. Usually, the number of constraints is reducedsigni�cantly through constraints merging.Autolink includes a special constraint description language. By de�ning rulesin a con�guration �le, the test designer can control the naming and parame-terization of constraints.3 The Core INAP CS-2 SDL modelIn this section, the working method for the development of the Core INAPCS-2 SDL description and the SDL speci�cation itself are explained.3.1 Working methodIN is standardized by ITU-T within Study Group 11 (SG 11). The relevantstandards are the Recommendations Q.1211-Q.1215, Q.1218-Q.1219 for CS-1and Q.1221-Q.1225, Q.1228-Q.1229 for CS-2. The ITU-T INAP speci�cationscan be found in the Q.12X8 Recommendations. For the European telecommu-nications market, the ETSI Technical (Sub-)Committee SPS3 selects an INsubset and adds speci�c European requirements.14



The ETSI work on the Core INAP CS-2 SDL model started in the middle of1995. It was done in close cooperation with ITU-T SG 11. 5 6 The goal of thework was to develop a high quality standard which can serve as a basis forvalidation and test generation, in less than two years.To reach these goals, it was decided to use ASN.1 as data description languageand SDL as speci�cation language for the protocol behaviour. Core INAP CS-2 should be developed in an object-oriented manner. As a result, Core INAPCS-1 was developed �rst and Core INAP CS-2 was modelled on the basisof Core INAP CS-1 by using the SDL mechanisms of inheritance, virtualityand rede�nition. A prerequisite for this procedure was the availability of high-quality SDL tools, like SDT [22] or ObjectGEODE [24], with simulation andvalidation facilities.The modelling work was mainly done by a group of voluntary experts fromBritish Telecom, France Telecom, Ericsson, Siemens, Alcatel, Hewlett Packardand Nokia. The group met approximately one week per month at ETSI. Thework was supported by an SDL specialist of the ETSI PEX group and resourcesfrom ETSI TC MTS. Workstations and SDL tools were also o�ered by ETSI.The modelling work was based on U.S. requirements. As a consequence, a closeworking relationship with BellCore was set up. The work was structured insuch a way that the INAP experts concentrated on the protocol requirementsand provided their intentions to the SDL specialists in form of informal SDL.The informal SDL was formalized and the result was discussed and reviewedby the whole group.All technical discussions were based on the SDL descriptions. Simulation runswere used to identify errors and ambiguities in the textual description and tojudge whether the SDL descriptions were correct. In case of general problems,the SDL description was also used to produce contributions for ITU-T and toperform on-the-�y simulations during ITU-T meetings.Further input on problems and errors was given from the experts group whichdeveloped the Core INAP CS-2 conformance test suites. The test suite de-velopment by means of CATG techniques started in February 1997, i.e., inparallel to the last phase of the Core INAP CS-2 de�nition. On the one hand,the work of the test development group lead to changes and corrections ofthe SDL speci�cation. On the other hand, changes of the SDL speci�cationrequired some reassessment of the test development group. There is no doubtthat the mutual in�uence of the two groups of specialists 7 helped to improveboth the SDL speci�cation and the corresponding TTCN conformance testsuites.5 Some European IN experts contribute to both ETSI SPS3 and ITU-T SG 11.6 Please note, the INAP CS-2 models of ITU-T and ETSI SDL are di�erent, al-though their development started at the same time with almost the same experts.7 It should be noted that only one expert was member of both groups.15



The result of the entire modelling work is the SDL Core INAP CS-2 descrip-tion which consists of more than 450 pages of SDL diagrams. The textual SDLrepresentation is about 1.6 MByte large (approximately 570 KByte withoutcomments). When translating the speci�cation into C with SDT's code gen-erator, about 350 000 lines or 13.6 MByte of source code are generated.ETSI SPS3 is con�dent of the technical solution. Several serious errors weredetected in the original BellCore speci�cation. They would have been unno-ticed if SDL had not been used.Although the main work is �nished, the �nal publication as standard requiredand still requires some time. ETSI approved Core INAP CS-2 in November1997 to go to public enquiry. Public Enquiry was from 20th March 1998 to 17July 1998. The vote by the ETSI members is planned in February 1999, whichmeans that publication as European Norm (EN) should be in May 1999.The corresponding ITU-T INAP CS-2 SDL speci�cation was approved byITU-T in September 1997 for determination at the following Study Groupmeeting. The �nal decision to publish the INAP CS-2 speci�cation as an ITU-T Recommendation was made in May 1998. However, in both standards, theSDL description is published as normative annex with the same status asthe textual description. As already mentioned by Dave Rayner in [18], thedevelopment of the INAP CS-2 SDL description was a breakthrough for theuse of SDL in standardization.3.2 The SDL speci�cationIn a layered architecture, a protocol provides its service to the upper layersby using the service of the lower layers. The provided service is described ina service speci�cation. A protocol speci�cation describes the behaviour of aprotocol entity at standardized interfaces. In case of a symmetrical protocol,the protocol entities are of the same kind and only one speci�cation for allentities is needed.Core INAP CS-2 is not a symmetrical protocol. It is used for the commu-nication of di�erent IN components, e.g., SSF, SCF or SRF, with di�erentfunctions. One would expect di�erent INAP standards for di�erent IN com-ponents, but ETSI and ITU-T decided to develop one INAP speci�cation forthe SSF only. The reason is simple: In an IN-based network 8 , the SSF has tobe implemented on all switches, whereas only a few SRF or SCF entities areneeded. Therefore, for most telecom operators and manufacturers, the SSFhas higher priority than the other components.8 IN-based means that an IN architecture is used. Some telecommunication servicesdescribed in IN standards can still be implemented in a conventional environment,i.e., without IN architecture. 16



The Core INAP CS-2 SDL speci�cation contains the speci�cation of CoreINAP CS-1. The CS-1 is inherited and behaviour is added and rede�ned asrequired for the CS-2 functionality. In such a way, the Core INAP CS-2 spec-i�cation can be seen as a delta document to CS-1.As described in Section 2.1 and shown in Figure 1, an SSF handles a call bymeans of two BCSMs, i.e., the logic of a call is structured into two half-calls.Figure 8 presents the half-call structure of the Core INAP CS-1 speci�ca-tion. The process references for originating BCSM (O BCSM) and terminat-ing BCSM (T BCSM) can be found at the bottom of the block diagram. Theyare dynamically created and depending on the role of the half-call, either anO BCSM or a T BCSM is created. Figure 8 also includes references to the pro-cesses IH of type Interface Handler, CSA of type CallSegmentAssociation, CS oftype CallSegment and SSF of type SSF FSM.The IH is a permanent manager of the call control function of the CS-1 half-callview. When the simulation of the SDL speci�cation starts, the IH is the onlyprocess of a half-call that exists. During a call setup and after having receivedthe appropriate messages from the half-call environment, the IH creates a CSA.The IH is modelled in such a way that it is able to handle half-calls from severalcalls. Besides the creation of CSA processes, the IH handles the dialogue withthe SCF (via SCF Interface), manages the dialogue with the other half-callview (via IBI Interface) and passes messages between the signalling controlinterface (SigCon Interface) and the CSAs.A CSA manages the creation of call segments, i.e., CS processes, and thedialogue with the IH. A CS creates an SSF and a O BCSM or a T BCSM.Furthermore, the CS is responsible for the �ltering of detection points (seeSection 2.1). An SSF process manages the processing of IN operations, i.e, itsets detection points and extracts/stores call information. Furthermore, it isresponsible for the handling of detection points, i.e, it controls the arming anddisarming of detection points.For modelling the complete SSF behaviour of a switch, two half-call viewshave to be combined. This is done in Figure 9. The blocks SSF CCF A andSSF CCF B are instances of the SSF CCF blocktype shown in Figure 8. Addi-tionally, Figure 9 includes a third block instance called TCAP Adapter of typeTCAP Simulator. The reason for this block has been explained in Section 2.1.Within a CCS7 protocol architecture, INAP is normally implemented on topof TCAP. This means that on a standardized interface at the SCF side, INAPprimitives are encoded in TCAP messages. In the model this encoding is doneby the functionality of the TCAP Adapter block.The Core INAP CS-1 system in Figure 9 has �ve interfaces to the environment:SCF, SigCon A, SigCon B,Management A andManagement B. The exchange ofINAP primitives within TCAP messages is performed at interface SCF. Theinterfaces SigCon A and SigCon B are abstract signalling control interfaces.They are used to handle the calls itself. In a real-world implementation, such17



Virtual Block Type <<System Type CS1_INAP>> SSF_CCF 1(6)

/* Note: The functional architecture of the
         SSF/CCF is in line with Q.1228 (IN
         CS-2) and not Q.1218 (IN CS-1). */
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Figure 8. Core INAP CS-1 SSF half-call viewan interface is connected either to another switch (via SS7) or to a terminal (viaDSS1). The interfaces Management A and Management B have no counterpartin reality. They are used to set the system into states which cannot be reachedby normal message exchange at the other interfaces. They can be comparedwith some sort of operator terminal at a switch.Up to here, only the Core INAP CS-1 part of CS-2 has been described. CS-1 services can be characterized by the property that they are applicable to�single-ended� calls and/or calls with �single point of control� only. This meansthat in one SSF, only two half-calls can be involved in a call. Services wheremore than two parties are involved, cannot be realized in CS-1. Therefore, the18



System Type CS1_INAP 1(8)

/* The SSF consists of two half call views,
   SSF/CCF-A and SSF/CCF-B.

Notes:

  - The functional architecture is in line with
    Q.1228 and not with Q.1218.
  - Only the behaviour at the SCF channel is normative.
    All other information is informative.

/* Note: The TCAP Adapter models the
behaviour of the TCAP service at the
SCF side, i.e. the endpoint of the SCF
channel is the interface SCF <-> TCAP. */

/* Note: The ManagementInterfaces are informative
interfaces, they model the possibility of static trigger
table manipulation. */
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Figure 9. Core INAP CS-1 system diagrammain extension in the SDL speci�cation of Core INAP CS-2 to CS-1 is callparty handling (CPH), i.e., the possibility to handle services with more thantwo parties involved.For CPH, multiparty calls have to be made visible to the SCF. This is doneby introducing the abstract connection view. From the perspective of call-related signalling, the connection view is a half-call view. That is, each leg 9of a multiparty call is associated with a BCSM. In a multiparty call, a leg9 Legs and half-calls are not exactly identical, but for the understanding of thispaper we can assume that they are similar.19



can have the status joined, pending, shared or surrogated and it may have acontrolling or passive role in the call. 10In CS-2, connection view states for multiparty calls are de�ned by the legsinvolved, their status and their roles. CS-2 provides operations to change thestate of a multiparty call by using the connection view abstraction, i.e., theoperations refer to connection view state changes.Figure 10 shows the SSF half-call view of the Core INAP CS-2 SDL speci�-cation. Compared to Figure 8, the structure doe not change much. The CS-1half-call view is reused and the processes are rede�ned. In most cases, therede�nitions add behaviour to the processes in order to handle the additionalCS-2 operations. The connection view handling as described above is per-formed by the CS process. The CS handles the legs and is responsible for theprocessing of connection view oriented IN operations.4 Test generation for Core INAP CS-2For the understanding of the test generation procedure, it is necessary to havesome basic knowledge about the relation between the SDL speci�cation andthe test architectures for which the test suites are developed. This is explainedin the �rst part of this section. Then, the test suite development procedure isexplained, and �nally, the test suites are described.4.1 Multi-party testing context and Core INAP CS-2The conformance test suites for Core INAP CS-2 are written for a multi-partycontext. The multi-party context is one of the abstract test methods de�nedin CTMF [13]. An abstract test method is an implementation-independentdescription of a test con�guration. Test cases for the multi-party context arespeci�ed by using concurrent TTCN (see last paragraph of Section 2.2.4).Figure 11 shows a CoreINAP SSF test con�guration for a two party call. Thereare three test components (MTC SCF, PTC A and PTC B), which control andobserve the System Under Test (SUT) via standardized interfaces. The TCsdescribe protocol peer entities of entities which reside within the SSF. Thestandardized interfaces (SCF, A PCO and B PCO in Figure 11) are used asPCOs. They are realized by using standardized communication services. Inour case, these services are provided by TCAP, ISUP and/or DSS1.The Core INAP behaviour of the SSF is controlled and observed via TCAP byMTC SCF at PCO SCF. As indicated by the name, MTC SCF is the main testcomponent in this test con�guration and plays the role of the SCF. PTC Aand PTC B are parallel test components. They manage the call signalling.10A multiparty call can only have one controlling, but several passive legs.20



Redefined Block Type <<System Type CS2_INAP>> SSF_CCF 1(4)

/* Notes:
    - Dashed symbols refer to
      entities defined in the
      IN CS-1 SDL specifica-
      tions.
    - The functionality and
      interfaces of all entities
      are extended to incorpo-
      rate the IN CS-2
      functionality. */
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Figure 10. Core INAP CS-2 SSF half-call viewDepending on the con�guration of the SSF, each of them either plays the roleof a terminal or the role of another switch. In case of a switch, ISUP is usedfor the communication with the SSF; in case of a terminal, DSS1 is used.As a consequence, four di�erent variants of the same Core INAP test suite areneeded. The di�erent variants are the result of the di�erent roles PTC A andPTC B may play, i.e., PTC A is a terminal and PTC B is a switch, PTC B is aterminal and PTC A is a switch, both are terminals and both are switches. 11However, ETSI does not provide di�erent variants of the same Core INAP11 Please note, the objective is to test Core INAP and not ISUP or DSS1. Thedi�erent roles of the PTCs have no in�uence on the TCAP/Core INAP interface.21
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Figure 11. Core INAP SSF test con�guration for a two party calltest suites. Instead, Core INAP abstracts from the concrete ISUP and DSS1message �ow by introducing abstract signalling control messages which areexchanged at abstract signalling control interfaces. In Figure 9, these abstractsignalling control interfaces are represented by the channels SigCon A andSigCon B. In a concrete test implementation, the abstract signalling controlmessages have to be mapped to ISUP or DSS1 messages by the PTCs. 12The functionality of the PTCs is reduced to simple mapping functions, sincethe MTC and PTCs coordinate themselves by exchanging the abstract sig-nalling control messages: A PTC reports the reception of ISUP or DSS1 mes-sages by sending the corresponding abstract signalling control messages to theMTC; the MTC forces a PTC to send ISUP or DSS1 messages by sending thecorresponding abstract signalling control messages to the PTC. This meansthat the SDL system in Figure 9 speci�es the mirror behaviour of the MTCshown in Figure 11.The test architecture in Figure 11 describes the situation for two party callsonly. For CPH in Core INAP CS-2, multiparty calls have to be handled also.In the abstract test architecture, further PTCs, CPs and PCOs have beenintroduced. Similar to the situation above, the test suite for CPH only includesthe MTCs of the test cases.4.2 Test suite development working procedureThe purpose of the SDL model was not only to provide a �rm basis for theINAP standard (Annex A of [5]), but also to facilitate work in other areas.ETSI has particular interest in test case generation. The expectation wasthat through the use of advanced tools, the development of a test suite could12 To the knowledge of the authors, some telecom operators have de�ned a map-ping of ISUP and DSS1 messages to abstract signalling control messages, but thismapping has been done for internal use only and has not been published o�cially.22



be simpli�ed. The tool which has been used for the Core INAP test suitedevelopment was Autolink (Section 2.3.3).For this, an group with experts from Siemens, Alcatel, Telefonica and the Uni-versity of Lübeck was set up in the paid work program of ETSI. Additionally,a permanent expert of the ETSI PEX group joined the experts group. Thepermanent expert was also a member of the SDL modelling group and, there-fore, was responsible for the communication between the modelling group andthe test experts.The test suite development for Core INAP CS-2 by means of computer aidedtest generation methods required knowledge of IN, IN testing, Core INAP,SDL, MSC, TTCN, ASN.1 and CATG tools. None of the experts had deepknowledge in all these areas. Therefore, during the work sessions, a lot ofcommunication between the experts was required. The experts group startedto work in February 1997 in parallel to the last phase of the SDL development,and met approximately two consecutive weeks every two months at ETSI.The goal of the work was to develop four test suites: one for the CS-1 func-tionality within CS-2, one for CPH, one for SRF and one for CTM (cordlessterminal mobility). Due to changes in the SPS3 priority list, the developmentof the test suite for CTM was cancelled later.The test suite development procedure for the remaining three test suites wasalmost identical. It was structured into three phases: Identi�cation and de-velopment of test purposes, test generation and manual postprocessing of thetest suite.4.2.1 Identi�cation and development of test purposesThe development of conformance test suites at ETSI is oriented on test pur-pose. A test purpose describes a part of the behavior of a protocol for whicha test case has to be developed. In a �rst step, test purposes are speci�edinformally. Afterwards the informal test purposes are formalized by means ofMSCs.Based on the Core INAP CS-2 protocol requirements, the test purposes wereidenti�ed manually and documented in tables which structure the informaltext. As shown in Figure 12, the table entries may refer to pre- and postambles,describe the pass criteria and may provide further information.Then, MSCs were created for all test purposes. Whenever possible, this wasdone by simulation of the SDL speci�cation of Core INAP CS-2. An advantageof creating test purpose MSCs by simulation is that the consistency betweenthe informally developed test purposes and the protocol is guaranteed. A num-ber of errors in the informal test purpose descriptions were detected with thismethod.Since the SDL speci�cation of the Core INAP CS-2 protocol does not in-clude error handling and due to standardization politics, some of the protocol23



IN2 A BASIC RN CA 01Purpose: Test of RequestNoti�cationChargingEvent base procedureRequirement refPreamble: O OSSelection Cond.Test description SCF sends RequestNoti�cationChargingEvent invoke to SSF containingmandatory parameters only, with:- ChargingEventeventTypeCharging,monitorMode (interrupted)Pass criteria After triggering of charging event from SigCon A, check that SSF sends to SCFan EventNoti�cationCharging with the indication of eventTypeChargingPostamble: ReleaseCallABFigure 12. Informal test purpose description of test case IN2 A BASIC RN CA 01functions are only speci�ed rudimentary. The MSC test purposes related tothese protocol aspects were speci�ed manually in order to apply the directMSC!TTCN translation feature of Autolink. However, these manually gen-erated MSC test purposes look like the ones created by simulation.The MSC test purposes provided the input for the Autolink tool and were alsoincluded in the test purpose document [6]. The inclusion of the MSCs was arequirement from organizations which do not use TTCN for testing, but whichneed a formal description of each test purpose.Figure 4 shows an MSC which formalizes the test purpose of Figure 12. TheMSC refers to the preamble O OS and the postamble ReleaseCallAB, whichare also described by MSCs.During the development of the MSC test purposes, the SDL speci�cation ofCore INAP CS-2 and the test purposes were validated also. As a result, theSDL speci�cation had to be corrected and modi�ed several times. This changedthe behavior of the SDL speci�cation and some of the already developed MSCtest purposes became invalid. In order to detect invalidMSCs after each changeof the SDL model, all MSC test purposes which had been developed by simu-lation were revalidated against the SDL model. This was done automaticallyovernight or at weekends by using a shell script. For each MSC test purpose,the script started the SDT Validator in the command mode (without graphi-cal user interface) and performed an MSC veri�cation. Due to the complexityof the SDL model, the validation of all MSCs took some time. To reduce it,MSC test purposes were validated in parallel on several computers.4.2.2 Test generationFigure 13 presents the test generation procedure from the perspective of thetool. The Core INAP SDL speci�cation was developed by the SDL modellinggroup. The test purposes (or paths in the Autolink terminology) in form of24
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Figure 13. Test generation procedureMSCs had been developed by the test experts group. Additionally, the test ex-perts de�ned an Autolink con�guration �le. A con�guration �le set validatoroptions for test cases which had been generated by a state space explorationand de�ned the rules for the constraints handling, i.e., naming and parame-terization. Based on these inputs the test cases were calculated.State space exploration was performed by Autolink to generate TTCN testcases for the MSC test purposes created by simulation. The manually speci�edMSC test purposes were translated directly into TTCN code. Apart fromthe fact that the test cases related to the manual MSC test purposes do notinclude event sequences leading to an inconclusive verdict, all TTCN test caseslook very similar. Many constraints are shared by several test cases, becauseAutolink merges identical constraint de�nitions for di�erent test cases.25



4.2.3 Postprocessing of the testsuiteThe TTCN output needed postprocessing, because the Autolink version avail-able at that time did not support concurrent TTCN, test suite parameteriza-tion by means of Protocol Implementation Conformance Statement/ProtocolImplementation eXtra Information for Testing (PICS/PIXIT) and timers. ThePICS/PIXIT parameterization and the change to concurrent TTCN, i.e., thespeci�cation of test con�gurations, the declaration of CPs and the de�nition ofcoordination messages, were performed automatically with a shell script oper-ating on the TTCN �le. The timers were introduced manually. The result wasanalysed for consistency by using TTCN analysers and semantics checkers. Incase of errors, the necessary modi�cations were performed.A test case after post-processing is shown in Figure 5. This test case is theresult of a direct MSC!TTCN translation of the MSC test purpose presentedin Figure 4. The corresponding informal test purpose description is shown inFigure 12.Figure 5 de�nes the MTC of the test case IN2 A BASIC RN CA 01. The testcase should run on a test architecture as shown in Figure 11. The send andreceive events in the Behaviour Description column of Figure 5 refer to thePCO SCF and the CPs SigCon A and SigCon B.A TTCN expert might be a little bit confused by looking at the MTC descrip-tion, because the creation of the PTCs is missing. The creation of PTCs isnot speci�ed, because the PTCs are not de�ned in the test suite. For the testcase implementation, the consequences of using generic names or omitting thecreate statements are the same. In both cases, the test case description has tobe modi�ed manually.4.3 The generated test suitesThree conformance test suites have been developed for Core INAP CS-2 [7].In this section, an overview of the complexity and e�ort spent by the expertteam is given.4.3.1 CS-1 functionality within CS-2The �rst conformance test suite developed by the ETSI experts group had theobjective to test the Core INAP CS-1 functionality within Core INAP CS-2.In total, 126 test purposes were speci�ed [6]. For 67 test purposes, the MSCscould be simulated in order to produce the corresponding test cases by usingstaste space exploration. The remaining 59 MSC test purposes had to bespeci�ed manually and translated directly into TTCN due to unspeci�ed partsin the SDL model.The test suite resulted from a repetitive process of SDL/MSC re�nementsand modi�cations, MSC veri�cations and test generation runs. For making26
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Figure 14. Computation time for MSC veri�cations and test generationsstatistics, some MSC veri�cation and test generation runs were performed atthe University of Lübeck. The test results discussed below were obtained onSUN ULTRA 2 workstations with 300 MHz processors.Figure 14 shows the computation time for both the MSC veri�cation andthe test generation with Autolink. The time needed for the veri�cation of anMSC ranged from 1min 24 sec to 2 h 15min. It took between 6min 44 sec and51 h 49min (= 3109 min) to generate a test case.The larger amount of time needed for test generation is not surprising: DuringMSC veri�cation, a path in the state space graph is truncated as soon as anevent in an SDL transition con�icts with the MSC. During test generation,the path needs to be extended until an observable event occurs.Interestingly, there is no general correlation between the computation time forMSC veri�cation and test generation. For example, MSC no. 57 in Figure 14can be veri�ed comparably fast, whereas its test case generation takes about5 hours.Veri�cation of all MSCs on a single machine would have taken about a day;27



generation of all test cases would have taken about a week. Therefore, theprocessing of test purposes was distributed among up to �fteen workstations.With the help of shell scripts, test generation runs were executed in batchmode, so no manual intervention was needed to start the generation of eachsingle test case. This way, most test cases could be generated overnight. Inaddition, information about previous test generation runs was used in orderto minimize computation time by placing time-consuming test cases on fastmachines �rst. By using this strategy, the time for a complete test generationrun was restricted by the processing time of the most time-intensive test case.With regard to the whole development process, the time e�ort for the actualtest generation was not relevant. Most time was spent on re�nements of theSDL speci�cation and the test purposes.For the Core INAP CS-1 test suite, the relation between the number of testcases and manpower spent was one test case per man-day. This includes thedevelopment of the test purposes, the set-up of the whole working procedureat the beginning of the test suite development, manual post-processing of thetest suite and the production of all documents. In total, ETSI estimates thatabout 20% of the expenses for the development of the Core INAP CS-1 testsuite have been saved by tool support in comparison with manual test suitedevelopment.4.3.2 Core INAP CS-2 CPH test suiteThe objective of the second Core INAP test is to test CPH functionality of theSSF. In total, 120 MSC test purposes were de�ned. 107 MSC test purposescould be simulated and 13 MSC test purposes were speci�ed manually. All testpurposes were developed by three experts within two weeks, i.e., 30 man-days.Additionally, 10 man-days were needed for the setup of the test generation,for the post-processing of generated test suite and for the documentation.However, the relation between the number of test cases and manpower spentwas three test cases per man-day. There are several reasons for this impres-sive result. The working procedure was known and the experts could use theirexperience from the CS-1 test suite development to optimize their work. Fur-thermore, the SDL model was much more stable due to the corrections whichhad been made during the CS-1 test suite development. Only a few errors inthe SDL speci�cation were detected and corrected during the development ofthe CPH test suite.4.3.3 Core INAP CS-2 SRF test suiteThe third test suite checks the INAP connection with an SRF. The test suiteconsists of 33 test cases. All MSC test purposes were de�ned manually andthe test cases are the result of direct MSC!TTCN translation. The wholetest suite including postprocessing and documentation was developed in 20man-days. 28



5 Summary and outlookCore INAP CS-2 is the �rst protocol in standardization history for which aformal SDL speci�cation has the same normative status as the textual de-scription. Furthermore, Core INAP CS-2 is the �rst protocol for which thecorresponding standard conformance test suites have been developed basedon CATG methods for SDL speci�cations and MSC test purposes.Core INAP CS-2 is a good example to show that formal description tech-niques like SDL and MSC are applicable to complex real-world examples,if their smooth interworking with well established techniques like TTCN andASN.1 is guaranteed. Although the development procedures are complex, CoreINAP CS-2 is a success story. The developed SDL speci�cation is also usedoutside standardization for the evaluation of service logic, as a tutorial, forthe development of in-house tests and as a basis for product design.The next step in the IN development will be CS-3. It was decided that CoreINAP CS-3 (ETSI) and INAP CS-3 (ITU-T) should be identical. A CoreINAP CS-3 SDL speci�cation will be developed at ETSI, which again willhave the same normative status as the textual description. The correspondingtest suites will also be generated automatically.As a result of the experience with Core INAP CS-2, ETSI TC SPS3 decidedthat for its own work every new protocol shall be developed by using SDL asnormative de�nition. Furthermore, test suites, if required, shall be generatedautomatically by using CATG methods.AcknowledgementsThe authors would like to thank Stefan Heymer, Beat Koch and MichaelSchmitt for proofreading and valuable comments on earlier versions of thisarticle.References[1] B. Baumgarten, A. Giessler. OSI conformance testing methodology and TTCN.Elsevier, 1994.[2] R. Bræk, O. Haugen. Engineering Real Time Systems. Prentice-Hall, 1993.[3] U. Black. OSI : A Model for Computer Communications Standards. Prentice-Hall,1991.[4] Cinderella AB. Cinderella SDL product description. http://www.cinderella.dk[5] European Telecommunications Standards Institute. ETSI Core INAP CS-2; Part1: Protocol Speci�cation. Draft European Norm (DEN) 03038-1, ETSI, 1998.29
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