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Abstract

The development of the Core INAP CS-2 standard and the corresponding confor-
mance test suites by expert teams at the European Telecommunications Standards
Institute (ETSI) are historical breakthroughs for the use of SDL and MSC within
the international telecommunications standardization process. For the first time, the
textual description of a standard has no priority over the corresponding SDL speci-
fication, which in the case of Core INAP CS-2 is published as a normative annex to
the protocol standard. The power of a standard SDL specification has been shown
by the successful application of computer aided test generation methods for the pro-
duction of the necessary standard conformance test suites. This paper introduces the
Core INAP CS-2 protocol specification and describes the test generation procedure.
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1 Introduction

With a complete SDL model for the European version of the Intelligent Net-
work Application Protocol (Core INAP), the European Telecommunications
Standards Institute (ETSI) is exploring new grounds. Traditionally, the spec-
ifications published by ETSI have used SDL [28] only in an informal and
illustrative way. This has advantages and disadvantages. The advantages are,
e.g., that compared to formal specifications, informal descriptions are more
understandable and require less development time. Disadvantages are, e.g.,
that the specifications are not machine processable and sometimes include
ambiguities.

The SDL work for Core INAP at ETSI was done in the Technical (Sub-)Com-
mittee SPS3 (TC SPS3) on a voluntary basis with support from the Permanent
Expert Group (PEX) at ETSI and the ETSI Technical Committee Methods
for Testing and Specification (TC MTS). Unlike other SDL models for INAP,
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the ETSI model has been done as part of the standardization process and
is published together with the standard as a normative (electronic) annex of
the ETSI standard |5]. The work started in the middle of 1995, and the SDL
model was approved as the normative definition of the protocol behaviour in
November 1997.

Reasons for ETSI to develop the Core INAP SDL specification have been the
facilitation of service development, feature interaction studies, switch design
and test case generation. Traditionally, the development of test suites for con-
formance tests of standardized protocols has been a major activity of ETSI.
Unfortunately, this test suite development has not been successful in some
cases. There are some reasons for this: First, test suites have often been de-
veloped too late. Therefore, they have been of limited value for the industry
which makes products based on a particular specification. The products are
already on the market before the test suite is published. A second reason is
cost. Because of the risk that the value is limited, the motivation of the compa-
nies to participate in the development of a test suite voluntarily is sometimes
low. This means that ETSI has to set up project teams in the paid work
program in order to develop test suites. A third reason is quality. Informal de-
scriptions tend to contain ambiguities which may lead to misinterpretations.
For the development of test cases based on informal protocol specifications, a
human interpretation of protocol standards is required. Even though the ap-
proval of a conformance test suite by ETSI requires several reviews at different
stages of the test suite development process, the consistency between protocol
specification and corresponding test suite cannot always be guaranteed. The
development of complete formal SDL descriptions as the normative part of
protocol or service specifications is a possibility to tackle these problems.

In most cases, the development of a conformance test suite starts with the
identification of the test purposes of the individual test cases. A common
representation for test purposes is the Message Sequence Chart (MSC) lan-
guage [30]. Most commercial SDL tools, like SDT from Telelogic [22] or Ob-
jectGEODE from Verilog [24], also support MSC and provide possibilities to
check whether an MSC diagram ! describes a behaviour included in an SDL
description.

The development of the test suite should start in parallel with the SDL mod-
elling. The MSC test purpose descriptions are requirements for the SDL spec-
ification and their validation against the SDL description ensures that these
requirements are met. In case of changes in the SDL specification, the re-
validation of the MSCs can be seen as regression testing, which helps to en-
sure and improve the quality of the protocol standard. After the finalization
of the SDL specification and the MSC test purposes, computer aided test gen-

1 The term MSC is used for a diagram written in the MSC language and the
language itself. Where necessary, we distinguish between both by using the terms
MSC language and MSC diagram.



eration (CATG) methods can be applied for the automatic generation of the
conformance test suite.

The strength of such a methodology has been tested at ETSI by applying
CATG methods to the SDL specification of Core INAP. The development of
the test suites was done by an expert team at ETSI. It started in March 1997
and will end with the approval of the test suites in spring 1999. During test
suite development, the validation of the MSC test purposes helped to detect
and correct several errors in the protocol specification. Although Core INAP
was the first application of CATG methods within ETSI, it was shown that
the cost for the test suite development can be reduced significantly.

The remaining parts of this article are organized as follows: Some basics about
Intelligent Networks (IN) and the description techniques used for specification
are explained in Section 2. The development of the Core INAP SDL specifica-
tion at ETSI and the SDL specification itself are described in Section 3. The
test generation procedure is presented in Section 4. Finally, in Section 5, a
summary and an outlook are given.

2 Application area and description techniques

To understand the complex working procedures for the development of the
Core INAP CS-2 SDL specification and the corresponding conformance test
suites, some knowledge of IN, INAP and the languages and notations SDL,
MSC, ASN.1 and TTCN is required. It can not be assumed that a reader has
expertise in all these areas. Therefore, this section provides an introduction to
the most important concepts of IN, SDL, MSC, ASN.1 and TTCN.

2.1 Intelligent Networks and INAP

Intelligent Networks (IN) is currently one of the most important topics in the
telecommunications area. IN provides a complete framework for the creation,
provision and management of advanced telecommunication services.? ITU-T
(International Telecommunication Union — Telecommunications Standards
Sector) and ETSI standardize IN in several series of standards. These series
are known as capability sets (CS) and they are distinguished by numbers.
Currently, the capability sets 1 (CS-1) and 2 (CS-2) are published and the
capability set 3 (CS-3) is under development.

Examples of CS-1 services are abbreviated dialling (allows the use of short
numbers for outgoing calls), time-dependent routing (allows incoming calls to
be routed based on time, day, week, etc.), reverse charging (allows call charges
to be allocated to the called party), call queueing (allows incoming calls to

2 Detailed introductions to IN can be found in, e.g., [17] and [23].
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Figure 1. O-BSCM and T-BCSM in SSFs

be queued when a called line is busy), or call transfer (allows a call to be
transferred to another destination line).

Instead of adding new services, CS-2 identifies several service categories. The
categories refer to internet working services, call party handling services (al-
lowing to manage various parties’ participation within a call), mobility ser-
vices, broadband services, bearer services, and other service features outside
the range of "single ended” calls and/or calls with "single point of control”
that were not fully addressed within CS-1.

A main principle of IN is to separate the control of a call and the basic call
processing. Conceptually, the control of a call is given to a Service Control
Function (SCF), whereas the basic call processing is done in Service Switch-
ing Functions (SSFs). On the implementation side, an SCF is implemented in
a Service Control Point (SCP) and an SSF is implemented in a Service Switch-
ing Point (SSP). The SCP is typically a fault-tolerant transaction-processing
database that provides call-handling information in response to SSP queries.
An SSP is implemented within a normal switch. The following description
only refers to the conceptual view, i.e., to SSF and SCF.

Based on call characteristics like call origin or called party number, the SSF
detects if a call is an IN call, i.e., the call should be controlled by the SCF.
For IN calls, the SSF sends queries to the SCF and asks for information about
the handling of the call. Depending on the IN service to be realized for the
call, queries have to be sent in different states of the call, and specific call
information has to be provided within the queries.

Within the SSF, a call is handled by means of two Basic Call State Models
(BCSMs) which are called Originating Basic Call State Model (O-BCSM) and
Terminating Basic Call State Model (T-BCSM). The O-BCSM describes the
incoming side of a call and the T-BCSM models the outgoing side. As shown
in Figure 1, the calling party is connected to an O-BCSM and the called party
is connected to a T-BCSM.

The BSCMs are finite state machines and are used to control the basic call
processing within the SSF. In order to know where to send queries to an
SCF, the BCSMs include detection points (DPs). Some DPs have to be armed
statically (¢rigger detection points) and some can be armed dynamically (event
detection points). If an armed DP is reached during the call, the SSF knows
that a special treatment of the call is required. In most cases, the SSF has to
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Figure 2. INAP as part of the CCST protocol architecture

ask the SCF for further instructions. As a result of such a query, the SCP may
provide new information, e.g., a new called party number if a call is transfered
to a new destination, or force the SSF to arm a DP.

The communication between an SSP and an SCP is performed by using the
Intelligent Network Application Protocol (INAP). INAP is defined for different
capability sets and for different regions of the world. For example, the term
Core INAP CS-2 refers to the European version (ETSI indicates this by using
the prefix Core) of the INAP protocol for the capability set 2 (CS-2).

INAP is normally used within CCS7? networks and it is implemented within
the Transaction Capabilities Part (TCAP) |25 of the CCS7 protocol stack.
As shown in Figure 2, INAP is realized on CCS7 level 4 or, with regard to the
OSI basic reference model [3], on the application layer (layer 7).

INAP is defined for the communication between various IN components and
not only for the communication between SCF and SSF. However, the Core
INAP CS-2 SDL modelling work at ETSI concentrates on the communica-
tion between SSF and SCF. Furthermore, a test suite for the communication
between an SSF and a Specialized Resource Function (SRF) has been devel-
oped. SRFs are used for providing service specific additional resources like
announcements or music.

2.2 Description techniques

For the development of Core INAP CS-2 SDL specifications and the corre-
sponding test suites within ETSI, the description techniques Specification and

3 CCST is an abbreviation for ITU-T’s Common Channel Signalling System No. 7
(see, e.g., Chapter 10 in [15]).



Description Language (SDL) [11,28], Message Sequence Chart (MSC) [19,30],
Abstract Syntaz Notation One (ASN.1) [21,26,27| and Tree and Tabular Com-
bined Notation (TTCN) |[1,14] have been used. SDL and MSC are formal
description techniques (FDTs), i.e., they have standardized formal syntax and
semantics definitions. ASN.1 and TTCN are only notations. They have a stan-
dardized formal syntax definition, but the semantics is given informally. ASN.1
and TTCN are well accepted in the telecommunications community for the
definition of protocol data and conformance test suites. For the acceptance of

formal description techniques by this community, a smooth interworking with
ASN.1 and TTCN is required.

SDL, MSC and TTCN have two syntactical forms: a pure textual and a graph-
ical representation. The graphical forms are mainly used for editing purposes
and documentation. The textual forms are mainly used for the transfer of di-
agrams and for code generation. Throughout this article, only the graphical
representations of SDL, MSC and TTCN are used.

2.2.1 SDL

The formal description technique SDL is standardized by ITU-T as Recom-
mendation Z.100 [28|. SDL evolved from an informal notation to a complete
and complex specification language with formal syntax and semantics defini-
tions.

SDL is used to specify the behaviour of a system. Such a system is a collection
of SDL processes which communicate asynchronously by exchanging messages.
The reception of a message may force a process to change its state. During
such a state transition, the SDL process may send new messages and/or per-
form operations on local variables. Figure 3 presents a state transition of an
SDL process specification. If the process CallSegment is in the Forward state
and receives the message SetupReq_Ind, it calls the procedure SetlLegStatus to
perform some operation on a local data structure, sends the message SetupReq
and goes into the state Transfer.

SDL processes are combined to (sub-)systems by means of block diagrams. In
a block diagram, the process specifications are referenced and the communica-
tion links among the processes and between the processes and the system en-
vironment are defined. In Figure 8 the block type SSF_CCF is defined. The six
inscribed octagons refer to process definitions and the solid arrows define com-
munication links. The dashed arrows denote dynamic process creation, e.g.,
in Figure 8 process CS(0,):CallSegment may create process SSF(0,):SSF_FSM.
SDL blocks may be combined to bigger blocks or to the final system. Figure 9
defines the system CS1_INAP. The rectangles refer to block definitions and the
solid lines with the attached arrow heads define communication channels.

SDL allows to specify systems in an object-oriented manner. For this, SDL has
a type concept for processes, blocks and systems. These types can be reused
by means of inheritance and redefinition. SDL types can be collected in SDL
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packages. The SDL Core INAP CS-2 specification makes extensive use of these
object-oriented concepts.

The SDL definition includes many additional language constructs which can-
not be introduced here. A complete language description can be found in [11]
or [2].

2.2.2 MSC

The MSC language is defined in the ITU-T recommendation Z.120 [30]. Fig-
ure 4 shows an example of an MSC. The diagram describes the message flow
between the instances SCF, CS2_SSF, SigCon_A and SigCon_B. The instances
are represented by vertical axes. The messages are described by horizontal
arrows. An arrow origin and the corresponding arrow head denote the sending
and consumption of a message. In addition to the message name, parame-
ters may be assigned to messages (see values in square brackets below the
message arrows). The send and receive actions along an instance axis are to-
tally ordered. The order of events on different instance axes is mediated by the
messages, i.e., a message must be sent before it can be received and consumed.

The rounded rectangles in Figure 4 which cover all instances are MSC' ref-
erences. They refer to the MSCs O_OS and ReleaseCallAB. MSC O_OS can
be seen as the prehistory of MSC IN2_A_BASIC_RN_CA_01 and MSC Release-
CallAB as its continuation.

Further constructs of the MSC language denote instance actions, timer han-
dling, instance creation, instance termination, the order of events along an
instance axis (coregion), and the refinement of instance axes by means of sub-
mscs. Individual MSC sections within one MSC can be combined by means of
inline expressions. Complete MSCs can be combined by means of High-level
MSCs. A complete introduction to the MSC language can be found in [19].
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Figure 4. MSC test purpose IN2_A_BASIC_RN_CA 01
2.2.83 ASN.1

The Abstract Syntaz Notation One (ASN.1) [21,26,27| is a notation for the
description of structured information intended to be conveyed across some
interface or communications medium. ASN.1 allows to specify structured data
types and values of the specified types. By means of encoding rules, it is
possible to define how data types and values have to be implemented. The
close relation to the actual implementation may be one of the reasons why
ASN.1 is very popular in industry, but not very well known by scientists.

An ASN.1 specification is structured in modules which can be seen as col-
lections of data types and data values. Modules are allowed to import other
modules. The use of ASN.1 is supported by TTCN and SDL. For SDL, a spe-
cial ITU-T recommendation Z.105 |29] exists which defines the use of ASN.1
types and ASN.1 values within SDL.

INAP data types and operation calls are specified in ASN.1. The following



ASN.1 data type description defines the argument of the RequestNotification-
Charging operation. It can be found in [5] and is referenced in the Core INAP
CS-2 SDL specification.

-- Direction: SCF->SSF, Timer: Trnc
-- This operation is used by the SCF to instruct the SSF on
-- how to manage the charging events which are received from
-- other FE’s and not under control of the service logic
-- instance.
RequestNotificationChargingEventArg ::=

SEQUENCE SIZE(1..numOfChargingEvents) OF ChargingEvent

2.2.4 TTCN

The Tree and Tabular Combined Notation (TTCN) is defined in Part 3 [14] of
the well established ’OSI Conformance Testing Methodology and Framework’
(CTMF), which has been developed and standardized by ISO and ITU-T
[13]. TTCN is a notation for the specification of abstract test suites for OSI
conformance testing. Abstract means that a test suite should be independent
from any concrete implementation. A TTCN test suite consists of

a test suite overview which mainly is a table of contents of the test suite,
a declarations part which includes the message and data type definitions,
a constraints part which consists of conditions on message parameters, i.e.,
default values or value ranges which should be tested, and

a dynamic part which for each test case describes the sequence of exchanged
messages.

As indicated by the name "Tree and Tabular Combined Notation’ (TTCN), a
TTCN test suite is a collection of different tables. Figures 5 and 6 present two
examples of TTCN tables. They will be explained below.

TTCN has its own data type and value assignment concept. It includes very
powerful matching mechanisms to express conditions on parameter values.
These matching mechanisms are comparable with the wild cards used in UNIX
shells. For practical purposes, TTCN allows to use ASN.1 in the declarations
and constraints part.

The dynamic part of a TTCN test suite includes the test cases. A TTCN
test case describes the sequences of events which should be performed by the
testers. In general, these are send and receive events at Points of Control and
Observation (PCOs). A PCO can be seen as an interface to the System Under
Test (SUT). The event sequence is specified by means of a tree notation.
Figure 5 shows an example. The tree notation can be found in the Behaviour
Description column.

The tree structure is determined by the ordering and the indentation of the
specified events. In general, events with identical indentation denote a branch-
ing (i.e., alternative events, for example, lines Nr. 8 and 15) and an increased
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Group

Pur pose

Configuration :

Def aul t : OtherwiseFail

Conment s

Nr Label Behavi our Description Constraints Ref Ver di ct Conment s

1 +0_0S

2 SCF ! TC_InvokeReq CIR_RequestNotificationCha
rging_002(1,51 )

3 SCF ! TC_InvokeReq CIR_Continue_004( 2, 51 )

4 SCF | TC_ContinueReq C_TC_ContinueReq_001(

51)

5 SigCon_B ? SetupReq C_SetupReq( { callRef 2,
calledPartyNumber '2000'H,
callingPartyNumber '1000'H }

)

6 SigCon_B ! SetupConf C_SetupConf( {callRef2} )

7 SigCon_B ! ChargingEventind C_ChargingEventind_002

8 SCF ? TC_Continuelnd C_TC_Continuelnd_003( 51
)

9 SCF ? TC_Invokelnd ClII_EventNotificationChargin
g_001(102,51 )

10 SigCon_A ? SetupResp C_SetupResp({callRef1} ) (PASS)

11 +ReleaseCallAB

12 SigCon_A ? SetupResp C_SetupResp({callRef1} )

13 SCF ? TC_Invokelnd CII_EventNotificationChargin (PASS)
g_001(102,51 )

14 +ReleaseCallAB

15 SigCon_A ? SetupResp C_SetupResp({callRef1} )

16 SCF ? TC_Continuelnd C_TC_Continuelnd_003( 51
)

17 SCF ? TC_Invokelnd ClI_EventNotificationChargin (PASS)
g_001(102,51 )

18 +ReleaseCallAB

Det ai | ed Comment s:

Figure 5. Dynamic behaviour description of test case IN2_A_BASIC_RN_CA_01

indentation denotes a succeeding event (e.g., lines Nr. 2 and 3). Events are
characterized by the involved PCOs (i.e., SCF, SigCon_A and SigCon_B), by
their kind ("!" denotes a send event and "?" describes a receive event) and by
the message which should be sent or received.

The table in Figure 5 includes further information. The entries in the Con-
straints Ref. column refer to TTCN or ASN.1 constraints. An example of an
ASN.1 constraint is shown in Figure 6. An entry in the Verdict column as-
signs a test verdict to a test run. The verdicts indicate the success of the test
run. A pass verdict denotes that the test purpose is reached, a fail states that
an unexpected event has happened and an inconclusive describes a situation
where neither a pass nor a fail can be assigned. The example in Figure 5 only

10



ASN.1 ASP Constraint Declaration

Constraint Name : CIR_RequestNotificationCharging_002( Invoke_ID : InvokelDtype; Dialog_|ID : DialogIDtype )
ASP Type : TC_InvokeReq

Derivation Path

Comments

Constraint Value

{ invokelDtypel Invoke_lID, dialoglDtype2 Dialog_ID, opClassType3 2, opCodeType4 RNC, timeoutValType5 short,
argType6 rNCArg : { { eventTypeCharging PIX_EventTypeChargingl, monitorMode interrupted } } }

Detailed Comments :

Figure 6. TTCN constraint CIR_RequestNotificationCharging

includes pass verdicts (lines 10, 13, 17). The fail cases are specified in the de-
fault behaviour description OtherwiseFail, which is referenced in the test case
header.

TTCN allows to structure test case descriptions by means of test steps. A
test step is a behaviour tree which can be added to other behaviour trees by
means of tree attachment. The tree attachment procedure is comparable to a
procedure call in a conventional programming language. The TTCN test case
in Figure 5 includes four tree attachments. In Line 1, the test step O_OS is
called and in lines 11, 14 and 18, the test step ReleaseCallAB is attached to
the test case behaviour.

TTCN supports concurrency by allowing to execute several behaviour trees
in parallel. For this, a main test component (MTC) is allowed to create sev-
eral parallel test components (PTCs). The test components can coordinate
themselves during test execution by exchanging coordination messages. The
behaviour of an MTC is defined within a Test Case Dynamic Behaviour De-
seription table and the behaviour of PTCs is specified within Test Step Dy-
namic Behaviour Description tables. For the exchange of coordination mes-
sages, the same notation as for normal messages is used.

2.3 Tool support

The combined use of SDL, MSC, ASN.1 and TTCN stands and falls with the
availability of powerful tools. Within ETSI, Telelogic’s Tau package is used
[22]. Tau contains two tool sets: SDT on the one hand consists of SDL- and
MSC-related applications (including support of the combined use of SDL and
ASN.1 according to [29]); ITEX on the other hand is used to work with TTCN
test suites (including support for the use of ASN.1 within TTCN).

Due to the use of Tau within ETSI, the following sections provide a Tau
oriented view. However, other toolsets provide comparable functionality. As
an alternative tool chain, we would like to mention Verilog’s ObjectGEODE
for the SDL/MSC side 24| and Expert Telecoms’ EXPERT*TTCN |[8] for the
TTCN side.

Tau provides graphical editors, syntax and semantic checkers, code generators

11



Simulator

@ MSC Editor
Validator / :
Autolink ° TTCN Editor

Figure 7. Part of Telelogic’s Tau toolset

(for several target programming languages), and simulation and validation
tools for all of the mentioned description techniques. The most important
tools for the scope of this paper are shown in Figure 7.

2.3.1 Graphical editors and SDL simulator

Graphical editors provide functions to edit and analyse SDL, MSC and TTCN
specifications. Furthermore, they allow to generate the textual format from the
graphical format of the notations and languages.

The textual representation of an SDL specification can be translated into a
simulator and a validator application. The SDT simulator provides the possi-
bilities to follow a simulation run by means of an MSC, or by "highlighting”
the SDL symbol which has been executed last in the SDL editor. For further
analysis or reuse in another context, a simulation run can be stored in form

of an MSC.

2.8.2 The SDT validator

One of the main purposes of the validator is to detect dynamic and logical er-
rors in an SDL system. Some of the potential problems are deadlocks, implicit
signal consumptions? and the sending of signals to non-existing processes.

The Validator is based on state space exploration techniques [12]. The state
space of an SDL system is built up in the form of a directed graph, called
reachability graph. The reachability graph describes the behaviour of the SDL
system. Its nodes correspond to global system states and its edges represent
the transitions between global system states.

During validation, the reachability graph is analysed. For example, a deadlock
is found if a node in the graph does not have any outgoing edges.

Verification of an SDL specification against its requirements is one main pur-
pose of the Validator [9]. Most requirements can be expressed in form of MSC
diagrams. The Validator explores the state space and searches for a path in
the reachability graph complying to the MSC which is checked. The MSC is
verified if such a path exists.

4 SDL processes are allowed to discard signals which are received but not explicitly
expected in the actual state.
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2.3.3 Autolink

Autolink [10,16,20] is part of the SDT validator. The objective of Autolink
is to provide an easy-to-use yet powerful tool to generate TTCN test suites
from an SDL specification. Potential users are engineers who have a good
understanding of the system they have specified, but who do not have detailed
knowledge of TTCN. Specialized test suite designers also benefit from using
Autolink. They can concentrate on the correct description of test purposes
while leaving the error-prone task of writing TTCN code to the tool.

Test generation with state space exploration

Autolink uses the state space exploration techniques and the MSC verification
mechanism provided by the SDT validator. The generation of a TTCN test
case is based on a path. In the Autolink context, a path is defined as a sequence
of events which have to be performed in order to go from a start to an end
state in the state space of the SDL specification. The externally visible events
of a path describe the test sequence to which a TTCN pass verdict is assigned.

Paths are stored as system level MSCs. A system level MSC shows the desired
interaction between the SUT and its environment during the execution of a test
case. It consists of one instance for the SUT and one instance for every PCO,
i.e., all channels in the SDL system which are connected to the environment
are considered to be PCOs. The use of system level MSCs corresponds to the
conformance testing method, where the internals of the SUT are not known.

Autolink uses a modified version of the MSC verification algorithm to compute
all relevant transitions in the state space. Each transition is analysed: Events
which are visible at the environment are added to an internal data structure
which represents a test case. If an event satisfies the MSC, it is added as a pass
event; if it violates the MSC, it is added as an inconclusive event. Additionally,
a constraint is created for every visible event.

After the generation of all test cases, the test suite can be translated into the
TTCN format. The declarations part is deduced from the SDL specification;
the constraints and dynamic part is a translation of the Autolink internal
data structure. The production of the overview part can be done afterwards
by using a TTCN tool like ITEX.

Direct translation of MSCs into TTCN

In order to use a state space exploration to generate test cases from MSCs,
a complete SDL specification is required. However in the real (standardiza-
tion) world, only partial specifications exist for most systems; often there is
no SDL specification at all. Standardized protocols like Core INAP CS-2 (see
Section 3) cannot be specified completely, e.g., error handling or charging func-
tions remain unspecified or are specified partially. Nonetheless, to guarantee

13



a uniform test suite development process, all test purposes can be formalized
as MSCs.

Autolink supports the processing of manually developed MSC test purposes by
providing a function which translates MSCs directly into TTCN (MSC—TTCN
translation). Although it does not perform a state space exploration, Autolink
still needs information about the interface between the system and its environ-
ment. Therefore, a minimal SDL specification has to be provided which defines
at least the channels to the environment, i.e., the PCOs, and the signals which
are sent via these channels.

Constraint handling

Basically, a constraint with a generic name is created automatically for every
send and receive event in all test cases. Considering the readability of a test
suite, this is far from optimal. Autolink provides commands to rename con-
straints manually. But if a test suite has to be regenerated because of a change
in the SDL specification, then the whole manual work is lost. Therefore, some
special constraint handling mechanisms have been implemented in Autolink.

If several test cases are processed consecutively, a lot of constraints are cre-
ated. Autolink compares each new constraint with all existing constraints. In
case of identical constraints, the new constraint is removed and all references
in the test case are updated. Usually, the number of constraints is reduced
significantly through constraints merging.

Autolink includes a special constraint description language. By defining rules
in a configuration file, the test designer can control the naming and parame-
terization of constraints.

3 The Core INAP CS-2 SDL model

In this section, the working method for the development of the Core INAP
CS-2 SDL description and the SDL specification itself are explained.

3.1 Working method

IN is standardized by ITU-T within Study Group 11 (SG 11). The relevant
standards are the Recommendations Q.1211-Q.1215, Q.1218-Q.1219 for CS-1
and Q.1221-Q.1225, Q.1228-Q.1229 for CS-2. The ITU-T INAP specifications
can be found in the Q.12X8 Recommendations. For the European telecommu-
nications market, the ETSI Technical (Sub-)Committee SPS3 selects an IN
subset and adds specific European requirements.
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The ETSI work on the Core INAP CS-2 SDL model started in the middle of
1995. It was done in close cooperation with ITU-T SG 11.° ® The goal of the
work was to develop a high quality standard which can serve as a basis for
validation and test generation, in less than two years.

To reach these goals, it was decided to use ASN.1 as data description language
and SDL as specification language for the protocol behaviour. Core INAP CS-
2 should be developed in an object-oriented manner. As a result, Core INAP
CS-1 was developed first and Core INAP CS-2 was modelled on the basis
of Core INAP CS-1 by using the SDL mechanisms of inheritance, virtuality
and redefinition. A prerequisite for this procedure was the availability of high-
quality SDL tools, like SDT [|22] or ObjectGEODE |[24], with simulation and
validation facilities.

The modelling work was mainly done by a group of voluntary experts from
British Telecom, France Telecom, Ericsson, Siemens, Alcatel, Hewlett Packard
and Nokia. The group met approximately one week per month at ETSI. The
work was supported by an SDL specialist of the ETSI PEX group and resources
from ETSI TC MTS. Workstations and SDL tools were also offered by ETSI.

The modelling work was based on U.S. requirements. As a consequence, a close
working relationship with BellCore was set up. The work was structured in
such a way that the INAP experts concentrated on the protocol requirements
and provided their intentions to the SDL specialists in form of informal SDL.
The informal SDL was formalized and the result was discussed and reviewed
by the whole group.

All technical discussions were based on the SDL descriptions. Simulation runs
were used to identify errors and ambiguities in the textual description and to
judge whether the SDL descriptions were correct. In case of general problems,
the SDL description was also used to produce contributions for [TU-T and to
perform on-the-fly simulations during I'TU-T meetings.

Further input on problems and errors was given from the experts group which
developed the Core INAP CS-2 conformance test suites. The test suite de-
velopment by means of CATG techniques started in February 1997, i.e., in
parallel to the last phase of the Core INAP CS-2 definition. On the one hand,
the work of the test development group lead to changes and corrections of
the SDL specification. On the other hand, changes of the SDL specification
required some reassessment of the test development group. There is no doubt
that the mutual influence of the two groups of specialists” helped to improve
both the SDL specification and the corresponding TTCN conformance test
suites.

® Some European IN experts contribute to both ETSI SPS3 and ITU-T SG 11.

6 Please note, the INAP CS-2 models of ITU-T and ETSI SDL are different, al-
though their development started at the same time with almost the same experts.
7 It should be noted that only one expert was member of both groups.
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The result of the entire modelling work is the SDL Core INAP CS-2 descrip-
tion which consists of more than 450 pages of SDL diagrams. The textual SDL
representation is about 1.6 MByte large (approximately 570 KByte without
comments). When translating the specification into C with SDT’s code gen-
erator, about 350 000 lines or 13.6 MByte of source code are generated.

ETSI SPS3 is confident of the technical solution. Several serious errors were
detected in the original BellCore specification. They would have been unno-
ticed if SDL had not been used.

Although the main work is finished, the final publication as standard required
and still requires some time. ETSI approved Core INAP CS-2 in November
1997 to go to public enquiry. Public Enquiry was from 20th March 1998 to 17
July 1998. The vote by the ETSI members is planned in February 1999, which
means that publication as European Norm (EN) should be in May 1999.

The corresponding ITU-T INAP CS-2 SDL specification was approved by
ITU-T in September 1997 for determination at the following Study Group
meeting. The final decision to publish the INAP CS-2 specification as an ITU-
T Recommendation was made in May 1998. However, in both standards, the
SDL description is published as normative annex with the same status as
the textual description. As already mentioned by Dave Rayner in [18|, the
development of the INAP CS-2 SDL description was a breakthrough for the
use of SDL in standardization.

3.2 The SDL specification

In a layered architecture, a protocol provides its service to the upper layers
by using the service of the lower layers. The provided service is described in
a service specification. A protocol specification describes the behaviour of a
protocol entity at standardized interfaces. In case of a symmetrical protocol,
the protocol entities are of the same kind and only one specification for all
entities is needed.

Core INAP CS-2 is not a symmetrical protocol. It is used for the commu-
nication of different IN components, e.g., SSF, SCF or SRF, with different
functions. One would expect different INAP standards for different IN com-
ponents, but ETSI and [TU-T decided to develop one INAP specification for
the SSF only. The reason is simple: In an IN-based network® | the SSF has to
be implemented on all switches, whereas only a few SRF or SCF entities are
needed. Therefore, for most telecom operators and manufacturers, the SSF
has higher priority than the other components.

8 IN-based means that an IN architecture is used. Some telecommunication services
described in IN standards can still be implemented in a conventional environment,
i.e., without IN architecture.
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The Core INAP CS-2 SDL specification contains the specification of Core
INAP CS-1. The CS-1 is inherited and behaviour is added and redefined as
required for the CS-2 functionality. In such a way, the Core INAP CS-2 spec-
ification can be seen as a delta document to CS-1.

As described in Section 2.1 and shown in Figure 1, an SSF handles a call by
means of two BCSMs, i.e., the logic of a call is structured into two half-calls.
Figure 8 presents the half-call structure of the Core INAP CS-1 specifica-
tion. The process references for originating BCSM (O_BCSM) and terminat-
ing BCSM (T_BCSM) can be found at the bottom of the block diagram. They
are dynamically created and depending on the role of the half-call, either an
O_BCSM or a T_-BCSM is created. Figure 8 also includes references to the pro-
cesses |H of type Interface_Handler, CSA of type CallSegmentAssociation, CS of
type CallSegment and SSF of type SSF_FSM.

The IH is a permanent manager of the call control function of the CS-1 half-call
view. When the simulation of the SDL specification starts, the IH is the only
process of a half-call that exists. During a call setup and after having received
the appropriate messages from the half-call environment, the IH creates a CSA.
The IH is modelled in such a way that it is able to handle half-calls from several
calls. Besides the creation of CSA processes, the IH handles the dialogue with
the SCF (via SCF_Interface), manages the dialogue with the other half-call
view (via IBl_Interface) and passes messages between the signalling control
interface (SigCon_Interface) and the CSAs.

A CSA manages the creation of call segments, i.e., CS processes, and the
dialogue with the IH. A CS creates an SSF and a O_BCSM or a T_BCSM.
Furthermore, the CS is responsible for the filtering of detection points (see
Section 2.1). An SSF process manages the processing of IN operations, i.e, it
sets detection points and extracts/stores call information. Furthermore, it is
responsible for the handling of detection points, i.e, it controls the arming and
disarming of detection points.

For modelling the complete SSF behaviour of a switch, two half-call views
have to be combined. This is done in Figure 9. The blocks SSF_CCF_A and
SSF_CCF_B are instances of the SSF_CCF blocktype shown in Figure 8. Addi-
tionally, Figure 9 includes a third block instance called TCAP_Adapter of type
TCAP_Simulator. The reason for this block has been explained in Section 2.1.
Within a CCS7 protocol architecture, INAP is normally implemented on top
of TCAP. This means that on a standardized interface at the SCF side, INAP
primitives are encoded in TCAP messages. In the model this encoding is done
by the functionality of the TCAP_Adapter block.

The Core INAP CS-1 system in Figure 9 has five interfaces to the environment:
SCF, SigCon_A, SigCon_B, Management_A and Management_B. The exchange of
INAP primitives within TCAP messages is performed at interface SCF. The
interfaces SigCon_A and SigCon_B are abstract signalling control interfaces.
They are used to handle the calls itself. In a real-world implementation, such
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Figure 8. Core INAP CS-1 SSF half-call view

an interface is connected either to another switch (via SS7) or to a terminal (via
DSS1). The interfaces Management_A and Management_B have no counterpart
in reality. They are used to set the system into states which cannot be reached
by normal message exchange at the other interfaces. They can be compared
with some sort of operator terminal at a switch.

Up to here, only the Core INAP CS-1 part of CS-2 has been described. CS-
1 services can be characterized by the property that they are applicable to
"single-ended” calls and /or calls with "single point of control” only. This means
that in one SSF', only two half-calls can be involved in a call. Services where
more than two parties are involved, cannot be realized in CS-1. Therefore, the
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Figure 9. Core INAP CS-1 system diagram

main extension in the SDL specification of Core INAP CS-2 to CS-1 is call
party handling (CPH), i.e., the possibility to handle services with more than
two parties involved.

For CPH, multiparty calls have to be made visible to the SCF. This is done
by introducing the abstract connection view. From the perspective of call-
related signalling, the connection view is a half-call view. That is, each leg?
of a multiparty call is associated with a BCSM. In a multiparty call, a leg

9 Legs and half-calls are not exactly identical, but for the understanding of this
paper we can assume that they are similar.

19




can have the status joined, pending, shared or surrogated and it may have a
controlling or passive role in the call.

In CS-2, connection view states for multiparty calls are defined by the legs
involved, their status and their roles. CS-2 provides operations to change the
state of a multiparty call by using the connection view abstraction, i.e., the
operations refer to connection view state changes.

Figure 10 shows the SSF half-call view of the Core INAP CS-2 SDL specifi-
cation. Compared to Figure 8, the structure doe not change much. The CS-1
half-call view is reused and the processes are redefined. In most cases, the
redefinitions add behaviour to the processes in order to handle the additional
(CS-2 operations. The connection view handling as described above is per-
formed by the CS process. The CS handles the legs and is responsible for the
processing of connection view oriented IN operations.

4 Test generation for Core INAP CS-2

For the understanding of the test generation procedure, it is necessary to have
some basic knowledge about the relation between the SDL specification and
the test architectures for which the test suites are developed. This is explained
in the first part of this section. Then, the test suite development procedure is
explained, and finally, the test suites are described.

4.1  Multi-party testing context and Core INAP CS-2

The conformance test suites for Core INAP CS-2 are written for a multi-party
context. The multi-party context is one of the abstract test methods defined
in CTMF [13]. An abstract test method is an implementation-independent
description of a test configuration. Test cases for the multi-party context are
specified by using concurrent TTCN (see last paragraph of Section 2.2.4).

Figure 11 shows a CoreINAP SSF test configuration for a two party call. There
are three test components (MTC_SCF, PTC_A and PTC_B), which control and
observe the System Under Test (SUT) via standardized interfaces. The TCs
describe protocol peer entities of entities which reside within the SSF. The
standardized interfaces (SCF, A_LPCO and B_PCO in Figure 11) are used as
PCOs. They are realized by using standardized communication services. In
our case, these services are provided by TCAP, ISUP and/or DSS1.

The Core INAP behaviour of the SSF is controlled and observed via TCAP by
MTC_SCF at PCO SCF. As indicated by the name, MTC_SCF is the main test
component in this test configuration and plays the role of the SCF. PTC_A
and PTC_B are parallel test components. They manage the call signalling.

10 A multiparty call can only have one controlling, but several passive legs.
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Depending on the configuration of the SSF, each of them either plays the role
of a terminal or the role of another switch. In case of a switch, ISUP is used

for the communication with the SSF; in case of a terminal, DSS1 is used.

As a consequence, four different variants of the same Core INAP test suite are
needed. The different variants are the result of the different roles PTC_A and

PTC_B may play, i.e., PTC_A is a terminal and PTC_B is a switch, PTC_B is a
terminal and PTC_A is a switch, both are terminals and both are switches. !*

However, ETSI does not provide different variants of the same Core INAP

! Please note, the objective is to test Core INAP and not ISUP or DSS1. The
different roles of the PTCs have no influence on the TCAP /Core INAP interface.
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Figure 11. Core INAP SSF test configuration for a two party call

test suites. Instead, Core INAP abstracts from the concrete ISUP and DSS1
message flow by introducing abstract signalling control messages which are
exchanged at abstract signalling control interfaces. In Figure 9, these abstract
signalling control interfaces are represented by the channels SigCon_A and
SigCon_B. In a concrete test implementation, the abstract signalling control
messages have to be mapped to ISUP or DSS1 messages by the PTCs. !2

The functionality of the PTCs is reduced to simple mapping functions, since
the MTC and PTCs coordinate themselves by exchanging the abstract sig-
nalling control messages: A PTC reports the reception of ISUP or DSS1 mes-
sages by sending the corresponding abstract signalling control messages to the
MTC; the MTC forces a PTC to send ISUP or DSS1 messages by sending the
corresponding abstract signalling control messages to the PTC. This means
that the SDL system in Figure 9 specifies the mirror behaviour of the MTC
shown in Figure 11.

The test architecture in Figure 11 describes the situation for two party calls
only. For CPH in Core INAP CS-2, multiparty calls have to be handled also.
In the abstract test architecture, further PTCs, CPs and PCOs have been
introduced. Similar to the situation above, the test suite for CPH only includes
the MTCs of the test cases.

4.2 Test suite development working procedure

The purpose of the SDL model was not only to provide a firm basis for the
INAP standard (Annex A of [5]), but also to facilitate work in other areas.
ETSI has particular interest in test case generation. The expectation was
that through the use of advanced tools, the development of a test suite could

12To the knowledge of the authors, some telecom operators have defined a map-

ping of ISUP and DSS1 messages to abstract signalling control messages, but this
mapping has been done for internal use only and has not been published officially.
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be simplified. The tool which has been used for the Core INAP test suite
development was Autolink (Section 2.3.3).

For this, an group with experts from Siemens, Alcatel, Telefonica and the Uni-
versity of Liibeck was set up in the paid work program of ETSI. Additionally,
a permanent expert of the ETSI PEX group joined the experts group. The
permanent expert was also a member of the SDL modelling group and, there-
fore, was responsible for the communication between the modelling group and
the test experts.

The test suite development for Core INAP CS-2 by means of computer aided
test generation methods required knowledge of IN, IN testing, Core INAP,
SDL, MSC, TTCN, ASN.1 and CATG tools. None of the experts had deep
knowledge in all these areas. Therefore, during the work sessions, a lot of
communication between the experts was required. The experts group started
to work in February 1997 in parallel to the last phase of the SDL development,
and met approximately two consecutive weeks every two months at E'TSI.

The goal of the work was to develop four test suites: one for the CS-1 func-
tionality within CS-2, one for CPH, one for SRF and one for CTM (cordless
terminal mobility). Due to changes in the SPS3 priority list, the development
of the test suite for CTM was cancelled later.

The test suite development procedure for the remaining three test suites was
almost identical. It was structured into three phases: Identification and de-
velopment of test purposes, test generation and manual postprocessing of the
test suite.

4.2.1 Identification and development of test purposes

The development of conformance test suites at E'TSI is oriented on test pur-
pose. A test purpose describes a part of the behavior of a protocol for which
a test case has to be developed. In a first step, test purposes are specified
informally. Afterwards the informal test purposes are formalized by means of
MSCs.

Based on the Core INAP CS-2 protocol requirements, the test purposes were
identified manually and documented in tables which structure the informal
text. As shown in Figure 12, the table entries may refer to pre- and postambles,
describe the pass criteria and may provide further information.

Then, MSCs were created for all test purposes. Whenever possible, this was
done by simulation of the SDL specification of Core INAP CS-2. An advantage
of creating test purpose MSCs by simulation is that the consistency between
the informally developed test purposes and the protocol is guaranteed. A num-
ber of errors in the informal test purpose descriptions were detected with this
method.

Since the SDL specification of the Core INAP CS-2 protocol does not in-
clude error handling and due to standardization politics, some of the protocol
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IN2_A_BASIC_RN_CA_01

Purpose: Test of RequestNotificationChargingEvent base procedure

Requirement ref

Preamble: 0_0s

Selection Cond.

Test description | SCF sends RequestNotificationChargingEvent invoke to SSF containing
mandatory parameters only, with:

- ChargingEvent
eventTypeCharging,

monitorMode (interrupted)

Pass criteria After triggering of charging event from SigCon_A, check that SSF sends to SCF
an EventNotificationCharging with the indication of eventTypeCharging

Postamble: ReleaseCallAB

Figure 12. Informal test purpose description of test case IN2_A_BASIC_RN_CA_01

functions are only specified rudimentary. The MSC test purposes related to
these protocol aspects were specified manually in order to apply the direct
MSC—TTCN translation feature of Autolink. However, these manually gen-
erated MSC test purposes look like the ones created by simulation.

The MSC test purposes provided the input for the Autolink tool and were also
included in the test purpose document [6]. The inclusion of the MSCs was a
requirement from organizations which do not use TTCN for testing, but which
need a formal description of each test purpose.

Figure 4 shows an MSC which formalizes the test purpose of Figure 12. The
MSC refers to the preamble O_OS and the postamble ReleaseCallAB, which
are also described by MSCs.

During the development of the MSC test purposes, the SDL specification of
Core INAP CS-2 and the test purposes were validated also. As a result, the
SDL specification had to be corrected and modified several times. This changed
the behavior of the SDL specification and some of the already developed MSC
test purposes became invalid. In order to detect invalid MSCs after each change
of the SDL model, all MSC test purposes which had been developed by simu-
lation were revalidated against the SDL model. This was done automatically
overnight or at weekends by using a shell script. For each MSC test purpose,
the script started the SDT Validator in the command mode (without graphi-
cal user interface) and performed an MSC verification. Due to the complexity
of the SDL model, the validation of all MSCs took some time. To reduce it,
MSC test purposes were validated in parallel on several computers.

4.2.2  Test generation

Figure 13 presents the test generation procedure from the perspective of the
tool. The Core INAP SDL specification was developed by the SDL modelling
group. The test purposes (or paths in the Autolink terminology) in form of
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MSCs had been developed by the test experts group. Additionally, the test ex-
perts defined an Autolink configuration file. A configuration file set validator
options for test cases which had been generated by a state space exploration
and defined the rules for the constraints handling, i.e., naming and parame-
terization. Based on these inputs the test cases were calculated.

State space exploration was performed by Autolink to generate TTCN test
cases for the MSC test purposes created by simulation. The manually specified
MSC test purposes were translated directly into TTCN code. Apart from
the fact that the test cases related to the manual MSC test purposes do not
include event sequences leading to an inconclusive verdict, all TTCN test cases
look very similar. Many constraints are shared by several test cases, because
Autolink merges identical constraint definitions for different test cases.
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4.2.3 Postprocessing of the testsuite

The TTCN output needed postprocessing, because the Autolink version avail-
able at that time did not support concurrent TTCN, test suite parameteriza-
tion by means of Protocol Implementation Conformance Statement/Protocol
Implementation eXtra Information for Testing (PICS/PIXIT) and timers. The
PICS/PIXIT parameterization and the change to concurrent TTCN, i.e., the
specification of test configurations, the declaration of CPs and the definition of
coordination messages, were performed automatically with a shell script oper-
ating on the TTCN file. The timers were introduced manually. The result was
analysed for consistency by using TTCN analysers and semantics checkers. In
case of errors, the necessary modifications were performed.

A test case after post-processing is shown in Figure 5. This test case is the
result of a direct MSC—TTCN translation of the MSC test purpose presented
in Figure 4. The corresponding informal test purpose description is shown in
Figure 12.

Figure 5 defines the MTC of the test case IN2_A_BASIC_RN_CA_01. The test
case should run on a test architecture as shown in Figure 11. The send and

receive events in the Behaviour Description column of Figure 5 refer to the
PCO SCF and the CPs SigCon_A and SigCon_B.

A TTCN expert might be a little bit confused by looking at the MTC descrip-
tion, because the creation of the PTCs is missing. The creation of PTCs is
not specified, because the PTCs are not defined in the test suite. For the test
case implementation, the consequences of using generic names or omitting the
create statements are the same. In both cases, the test case description has to
be modified manually.

4.3 The generated test suites

Three conformance test suites have been developed for Core INAP CS-2 [7].
In this section, an overview of the complexity and effort spent by the expert
team is given.

4.3.1 CS-1 functionality within CS-2

The first conformance test suite developed by the ETSI experts group had the
objective to test the Core INAP CS-1 functionality within Core INAP CS-2.

In total, 126 test purposes were specified [6]. For 67 test purposes, the MSCs
could be simulated in order to produce the corresponding test cases by using
staste space exploration. The remaining 59 MSC test purposes had to be
specified manually and translated directly into TTCN due to unspecified parts
in the SDL model.

The test suite resulted from a repetitive process of SDL/MSC refinements
and modifications, MSC verifications and test generation runs. For making
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Figure 14. Computation time for MSC verifications and test generations

statistics, some MSC verification and test generation runs were performed at
the University of Liibeck. The test results discussed below were obtained on
SUN ULTRA 2 workstations with 300 MHz processors.

Figure 14 shows the computation time for both the MSC verification and
the test generation with Autolink. The time needed for the verification of an
MSC ranged from 1 min24sec to 2h 15 min. It took between 6 min 44 sec and
51h49min (= 3109 min) to generate a test case.

The larger amount of time needed for test generation is not surprising: During
MSC verification, a path in the state space graph is truncated as soon as an
event in an SDL transition conflicts with the MSC. During test generation,
the path needs to be extended until an observable event occurs.

Interestingly, there is no general correlation between the computation time for
MSC verification and test generation. For example, MSC no. 57 in Figure 14
can be verified comparably fast, whereas its test case generation takes about
5 hours.

Verification of all MSCs on a single machine would have taken about a day;
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generation of all test cases would have taken about a week. Therefore, the
processing of test purposes was distributed among up to fifteen workstations.
With the help of shell scripts, test generation runs were executed in batch
mode, so no manual intervention was needed to start the generation of each
single test case. This way, most test cases could be generated overnight. In
addition, information about previous test generation runs was used in order
to minimize computation time by placing time-consuming test cases on fast
machines first. By using this strategy, the time for a complete test generation
run was restricted by the processing time of the most time-intensive test case.

With regard to the whole development process, the time effort for the actual
test generation was not relevant. Most time was spent on refinements of the
SDL specification and the test purposes.

For the Core INAP CS-1 test suite, the relation between the number of test
cases and manpower spent was one test case per man-day. This includes the
development of the test purposes, the set-up of the whole working procedure
at the beginning of the test suite development, manual post-processing of the
test suite and the production of all documents. In total, ETSI estimates that
about 20% of the expenses for the development of the Core INAP CS-1 test
suite have been saved by tool support in comparison with manual test suite
development.

4.3.2 Core INAP CS-2 CPH test suite

The objective of the second Core INAP test is to test CPH functionality of the
SSFE. In total, 120 MSC test purposes were defined. 107 MSC test purposes
could be simulated and 13 MSC test purposes were specified manually. All test
purposes were developed by three experts within two weeks, i.e., 30 man-days.
Additionally, 10 man-days were needed for the setup of the test generation,
for the post-processing of generated test suite and for the documentation.

However, the relation between the number of test cases and manpower spent
was three test cases per man-day. There are several reasons for this impres-
sive result. The working procedure was known and the experts could use their
experience from the CS-1 test suite development to optimize their work. Fur-
thermore, the SDL model was much more stable due to the corrections which
had been made during the CS-1 test suite development. Only a few errors in
the SDL specification were detected and corrected during the development of
the CPH test suite.

4.3.83 Core INAP CS-2 SRF test suite

The third test suite checks the INAP connection with an SRF. The test suite
consists of 33 test cases. All MSC test purposes were defined manually and
the test cases are the result of direct MSC—TTCN translation. The whole
test suite including postprocessing and documentation was developed in 20
man-days.
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5 Summary and outlook

Core INAP CS-2 is the first protocol in standardization history for which a
formal SDL specification has the same normative status as the textual de-
scription. Furthermore, Core INAP CS-2 is the first protocol for which the
corresponding standard conformance test suites have been developed based
on CATG methods for SDL specifications and MSC test purposes.

Core INAP CS-2 is a good example to show that formal description tech-
niques like SDL and MSC are applicable to complex real-world examples,
if their smooth interworking with well established techniques like TTCN and
ASN.1 is guaranteed. Although the development procedures are complex, Core
INAP CS-2 is a success story. The developed SDL specification is also used
outside standardization for the evaluation of service logic, as a tutorial, for
the development of in-house tests and as a basis for product design.

The next step in the IN development will be CS-3. It was decided that Core
INAP CS-3 (ETSI) and INAP CS-3 (ITU-T) should be identical. A Core
INAP CS-3 SDL specification will be developed at ETSI, which again will
have the same normative status as the textual description. The corresponding
test suites will also be generated automatically.

As a result of the experience with Core INAP CS-2, ETSI TC SPS3 decided
that for its own work every new protocol shall be developed by using SDL as
normative definition. Furthermore, test suites, if required, shall be generated
automatically by using CATG methods.
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