
DEVELOPER-CENTRIC
SOFTWARE ASSESSMENT

Philip Makedonski
Jens Grabowski

Software Engineering for Distributed Systems
Georg-August-University of Göttingen

1



OVERVIEW

2



SOFTWARE ASSESSMENT

• Software Assessment

• “the process of posing specific questions about the software 
system under study and carrying out specialized analyses to 
answer these questions” (Nierstrasz, 2012)

• Agile Software Assessment

• “a meta-tooling infrastructure and environment that allows rapid 
and cheap development of custom lightweight tools to support 
software assessment and program understanding” (Nierstrasz, 2012)

3



ARTIFACT-CENTRIC

M1:  Complexity

M2: Size
void checkSize(){
  if (c <= size){
    malloc(size);
    if (UNLIKELY){
      throw e;   
    }
    bufEnd = c;
  }
  return iobuf;
}

Mn: ...

• Metrics

• Clones

• Dependencies

• Domain

• ...

4



CHANGE-CENTRIC

Revision NRevision N-1 Revision N+1

Churn
Density

Frequency
Age

...
Size +5

Complexity -2
...

Fix +1

5



Change
Context

Req
Bug

Law

...

Environment FactorsWhat?

How? Developer Behavior

6



Change
Context

DEVELOPER-CENTRIC

• Behavior

• Experience

• Interactions

• Ownership

• ...

7



DECENT
Developer-Centric Software Assessment

8



An Industrial Study on the Risk of Software Changes

Emad Shihab and
Ahmed E. Hassan
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University, Canada
{emads,

ahmed}@cs.queensu.ca

Bram Adams
Lab on Maintenance,

Construction and Intelligence
of Software (MCIS)

École Polytechnique de
Montréal, Canada

bram.adams@polymtl.ca

Zhen Ming Jiang
Research In Motion

Waterloo, ON, Canada

ABSTRACT
Modelling and understanding bugs has been the focus of much of
the Software Engineering research today. However, organizations
are interested in more than just bugs. In particular, they are more
concerned about managing risk, i.e., the likelihood that a code or
design change will cause a negative impact on their products and
processes, regardless of whether or not it introduces a bug. In this
paper, we conduct a year-long study involving more than 450 de-
velopers of a large enterprise, spanning more than 60 teams, to bet-
ter understand risky changes, i.e., changes for which developers
believe that additional attention is needed in the form of careful
code or design reviewing and/or more testing. Our findings show
that different developers and different teams have their own crite-
ria for determining risky changes. Using factors extracted from the
changes and the history of the files modified by the changes, we
are able to accurately identify risky changes with a recall of more
than 67%, and a precision improvement of 87% (using developer
specific models) and 37% (using team specific models), over a ran-
dom model. We find that the number of lines and chunks of code
added by the change, the bugginess of the files being changed, the
number of bug reports linked to a change and the developer experi-
ence are the best indicators of change risk. In addition, we find that
when a change has many related changes, the reliability of devel-
opers in marking risky changes is negatively affected. Our findings
and models are being used today in practice to manage the risk of
software projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

Keywords
Change Risk, Change Metrics, Code Metrics, Bug Inducing Changes

1. INTRODUCTION
Risk management plays a crucial part in successful project man-

agement. This is especially true for software projects. For example,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11 ...$15.00.

a survey of 600 firms showed that 35% of them had at least one run-
away project [6]. Another study showed that, industry-wide, only
16.2% of software projects are on time and on budget. Of the rest,
52.7% are delivered with reduced functionality and 31.1% are can-
celled before completion. The main reason for this large amount of
late projects is the lack of proper software risk management (i.e.,
activities used to manage the possibility of harm or loss) [6, 10].

Due to the importance of risk management in the success of soft-
ware projects, researchers and industry have become more inter-
ested and active in the area of software risk management [13, 23].
One line of work that received a large amount of attention recently
is software bug prediction, where code and/or historical metrics are
used to predict where bugs might appear in the future (e.g., [26,
35]). In fact a recent literature review showed that in the past ten
years more than 200 papers were published on defect prediction
alone [17].

However, organizations are interested in effective management
of risk in general, which covers more than just bugs. For exam-
ple, a recent initiative on managing technical debt aims at studying
how compromises that developers make today will affect their soft-
ware in the future [30]. Risky changes could introduce bugs but
they could also delay the release of projects, and/or negatively im-
pact customer satisfaction. For example, changes that might have a
widespread impact on the code (e.g., switching threading models)
or on the user (e.g., making the software application autosave every
1 min instead of 30 seconds, for optimization reasons) are consid-
ered risky, regardless of whether or not they introduce bugs. The
risk is caused by the uncertainty introduced by the changes.

A risky change ideally requires additional attention through care-
ful code/design review and possibly more testing. This is why or-
ganizations are interested in identifying risky changes as soon as
possible, so that there are enough time and resources available for
risk mitigation. Although prior work investigated mitigation strate-
gies (e.g., code reviews [32]) and bug-introducing changes [20],
the risk of changes, which is at the core of the software creation
process, has rarely been studied.

In this paper, we sought to better understand risk at a fine gran-
ularity, i.e., the individual software changes. We conducted a year-
long study where developers from a large commercial company
were asked to specify, at commit time, whether or not they consider
their change to be risky. When assigning a change to be risky they
are indicating that they wish additional attention to be considered
for that change throughout the organization. The study involved
more than 450 developers, spanning over 60 teams.

We use this large, unique data set to understand risky changes
and find that:

1

9



An Industrial Study on the Risk of Software Changes

Emad Shihab and
Ahmed E. Hassan
Software Analysis and
Intelligence Lab (SAIL)

Queen’s University, Canada
{emads,

ahmed}@cs.queensu.ca

Bram Adams
Lab on Maintenance,

Construction and Intelligence
of Software (MCIS)

École Polytechnique de
Montréal, Canada

bram.adams@polymtl.ca

Zhen Ming Jiang
Research In Motion

Waterloo, ON, Canada

ABSTRACT
Modelling and understanding bugs has been the focus of much of
the Software Engineering research today. However, organizations
are interested in more than just bugs. In particular, they are more
concerned about managing risk, i.e., the likelihood that a code or
design change will cause a negative impact on their products and
processes, regardless of whether or not it introduces a bug. In this
paper, we conduct a year-long study involving more than 450 de-
velopers of a large enterprise, spanning more than 60 teams, to bet-
ter understand risky changes, i.e., changes for which developers
believe that additional attention is needed in the form of careful
code or design reviewing and/or more testing. Our findings show
that different developers and different teams have their own crite-
ria for determining risky changes. Using factors extracted from the
changes and the history of the files modified by the changes, we
are able to accurately identify risky changes with a recall of more
than 67%, and a precision improvement of 87% (using developer
specific models) and 37% (using team specific models), over a ran-
dom model. We find that the number of lines and chunks of code
added by the change, the bugginess of the files being changed, the
number of bug reports linked to a change and the developer experi-
ence are the best indicators of change risk. In addition, we find that
when a change has many related changes, the reliability of devel-
opers in marking risky changes is negatively affected. Our findings
and models are being used today in practice to manage the risk of
software projects.

Categories and Subject Descriptors

a survey of 600 firms showed that 35% of them had at least one run-
away project [6]. Another study showed that, industry-wide, only
16.2% of software projects are on time and on budget. Of the rest,
52.7% are delivered with reduced functionality and 31.1% are can-
celled before completion. The main reason for this large amount of
late projects is the lack of proper software risk management (i.e.,
activities used to manage the possibility of harm or loss) [6, 10].

Due to the importance of risk management in the success of soft-
ware projects, researchers and industry have become more inter-
ested and active in the area of software risk management [13, 23].
One line of work that received a large amount of attention recently
is software bug prediction, where code and/or historical metrics are
used to predict where bugs might appear in the future (e.g., [26,
35]). In fact a recent literature review showed that in the past ten
years more than 200 papers were published on defect prediction
alone [17].

However, organizations are interested in effective management
of risk in general, which covers more than just bugs. For exam-
ple, a recent initiative on managing technical debt aims at studying
how compromises that developers make today will affect their soft-
ware in the future [30]. Risky changes could introduce bugs but
they could also delay the release of projects, and/or negatively im-
pact customer satisfaction. For example, changes that might have a
widespread impact on the code (e.g., switching threading models)
or on the user (e.g., making the software application autosave every
1 min instead of 30 seconds, for optimization reasons) are consid-
ered risky, regardless of whether or not they introduce bugs. The
risk is caused by the uncertainty introduced by the changes.

A risky change ideally requires additional attention through care-

10

• Year-long study with 450+ developers from 60+ teams at RIM

• Focus on risky rather than buggy changes

• Different developers and teams have their own criteria

• 23 factors across 6 dimensions



OVERVIEW

11



DECENT META-MODEL

12



13

Raw Assets

Facts Extraction

Facts Assets

Facts Translation

Facts Model Instances

Facts Transformation

Assessment Model Instances

Assessment Transformation

Assessment Assets

Assessment Application

Assessment Application

Assessment Results

DECENT



DECENT INFRASTRUCTURE

14

Raw Assets

Facts Extraction

Facts Assets

Facts Translation

Facts Model Instances

Facts Transformation

Assessment Model Instances

Assessment Transformation

Assessment Assets

Assessment Application

Assessment Application

Assessment Results

Git Repository File @Revision

MininGit FX-InFamix FX-DuDe

MySQL MSE @Revision XML @Revision

Hibernate/Teneo MSE/Xtext EOL/ETL

MG FAMIX @Revision DUDE @Revision

MG2DECENT FAMIX2DECENT DUDE2DECENT

BugZilla

BZ-Extractor

MySQL

Hibernate/Teneo

BZ

BZ2DECENT

DECENT

DECENT2ARFF DECENT2XML DECENT2ABM

Weka Clusterer AMP

ARFF XML ABM

Predictions Clusters Simulations

M
et

a-
M

od
els



15

���������������������(YLGHQFH�EDVHG�6RIWZDUH�3URFHVV�5HFRYHU\�

����������$�3RVW�GRFWRUDO�9LHZ

Abram Hindle

Department of Computer Science

University of California, Davis

Davis, CA

ah@softwareprocess.es

Abstract—Software development processes are often viewed
as a panacea for software quality: prescribe a process and a
quality project will emerge. Unfortunately this has not been
the case, as practitioners are prone to push against processes
that they do not perceive as helpful, often much to the dismay
of stakeholders such as their managers. Yet practitioners still
tend to follow some sort of software development processes
regardless of the prescribed processes. Thus if a team wants
to recover the software development processes of a project or
if team is trying to achieve a certification such as ISO9000 or
CMM, the team will be tasked with describing their development
processes. Previous research has tended to focus on modifying
existing projects in order to extract process related information.
In contrast, our approach of software process recovery attempts
to analyze software artifacts extracted from software repositories
in order to infer the underlying software development processes
visible within these software repositories.

I. INTRODUCTION

If one approaches a developer and asks them what soft-
ware development process are they following, how will they
answer? Will they respond with the process that their man-
ager or community has dictated to them? Will they mention
processes that they personally follow but others do not? Will
developers tell you the difference between what they follow
and the process they were supposed to follow? To answer
any of these questions we require knowledge of the software
development processes being followed and we need to speak
to the developers to verify this. Often developers are not
available for interviews, whether they are on vacation, or no
longer employed. In cases where developers are inaccessible
or their time is too valuable we will have to derive the answers
to these questions from another source: artifacts of software
development. By relying on these artifacts we can estimate the
software development process based on actual evidence, thus
enabling us to confirm these results with other stakeholders if
necessary. This attempt to mirror what actually happened is
depicted in Figure 1.

Software Process Recovery [1] is a method of extracting
software process-related information from the software arti-
facts that developers leave behind. Inaccessible programmers,
already existing projects, and limited resources can all col-
lude to make the task of recovering an underlying software
development process very difficult. The work presented here
is intended to help initialize an arm of research dedicated to

extraction and validation of software processes being followed
in practice, based on information extracted from the software
repositories utilized by developers.

A. Stakeholder motivations

Recovering software development processes from existing
projects is useful to many stakeholders who care about the
system and also have some stake in the processes that govern
its development.

Developers care about process in the sense that they are
forced to follow it but also at the same time are forced to rely
upon it. If developers act inconsistently, they create confusion
based on the assumptions that other developers are making
about development. Developers are surprised by behaviour
that does not fit within an accepted process. Many developers
would assume they do not follow any process at all. This is not
the case as many developers, we would claim, follow a natural
process based on routines they like to follow. These actions
might result in greater software quality and thus motivate these
idiomatic actions.

Developers can use software process recovery in order to
acquaint themselves with how work is done on a certain
project. If a developer is new to the project, regardless of their
seniority, maturity or experience, they might want to avoid
hassling or questioning other developers about process related
information such as how tasks are assigned and completed,
what is being worked on right now, or even what are the
historical issues of the project? While what we propose and
describe in this paper cannot solve all of these issues, it can
address some of these higher level concerns.

Managers are the most immediate and relevant stakeholders
since they care about the qualities of a project they control,
manage and are responsible for. Managers often use process
to push developers to produce software of a consistent quality.
Managers can utilize software process recovery for numerous
purposes:

• Software process compliance or adherence — are devel-
opers following the prescribed processes?

• Process discovery — are developers following processes
that the manager does not know about?

• Project dashboard — can a manager get overviews of
their project based on the software development artifacts

978-1-4577-0664-6/11/$26.00 ©2011 IEEE

2011 27th IEEE International Conference on Software Maintenance (ICSM)

562



16

���������������������(YLGHQFH�EDVHG�6RIWZDUH�3URFHVV�5HFRYHU\�

����������$�3RVW�GRFWRUDO�9LHZ

Abram Hindle

Department of Computer Science

University of California, Davis

Davis, CA

ah@softwareprocess.es

Abstract—Software development processes are often viewed
as a panacea for software quality: prescribe a process and a
quality project will emerge. Unfortunately this has not been
the case, as practitioners are prone to push against processes
that they do not perceive as helpful, often much to the dismay
of stakeholders such as their managers. Yet practitioners still
tend to follow some sort of software development processes
regardless of the prescribed processes. Thus if a team wants
to recover the software development processes of a project or
if team is trying to achieve a certification such as ISO9000 or
CMM, the team will be tasked with describing their development
processes. Previous research has tended to focus on modifying
existing projects in order to extract process related information.
In contrast, our approach of software process recovery attempts
to analyze software artifacts extracted from software repositories
in order to infer the underlying software development processes
visible within these software repositories.

I. INTRODUCTION

If one approaches a developer and asks them what soft-
ware development process are they following, how will they
answer? Will they respond with the process that their man-

extraction and validation of software processes being followed
in practice, based on information extracted from the software
repositories utilized by developers.

A. Stakeholder motivations

Recovering software development processes from existing
projects is useful to many stakeholders who care about the
system and also have some stake in the processes that govern
its development.

Developers care about process in the sense that they are
forced to follow it but also at the same time are forced to rely
upon it. If developers act inconsistently, they create confusion
based on the assumptions that other developers are making
about development. Developers are surprised by behaviour
that does not fit within an accepted process. Many developers
would assume they do not follow any process at all. This is not
the case as many developers, we would claim, follow a natural
process based on routines they like to follow. These actions
might result in greater software quality and thus motivate these

2011 27th IEEE International Conference on Software Maintenance (ICSM)

Figure 3.1: An illustration of the reality of development versus what we can infer from
evidence left behind. Developers exhibit behaviour as they attempt to meet goals that
compose the software development processes they follow. Evidence is a side e↵ect of the
developer’s behaviour. Using this evidence we infer the behaviours that the developer
followed as well as the purpose behind this behaviour. By combining both recovered
purpose and behaviour we can infer the recovered process. Thus software process recovery
attempts to recover the actual development by inferring behaviour, purpose, and process
from evidence.

37



OVERVIEW

17



Change
Context

Req
Bug

Law

18

Bug?



DECENT META-MODEL

19



20



21



22



23



24



25



26

DECENT PREDICTION

• Developers as first class citizens in software assessment

• Developer-specific factors contributing to risk

• Personalized and contextualized feedback

• Improvement of software assessment and quality



SUMMARY

27



FURTHER APPLICATIONS

28

TD
U

D



29



DEVELOPER-CENTRIC
SOFTWARE ASSESSMENT

Philip Makedonski
makedonski@informatik.uni-goettingen.de

Jens Grabowski
grabowski@informatik.uni-goettingen.de

Software Engineering for Distributed Systems
Goldschmidtstr. 7
37077 Göttingen

Germany
www.swe.informatik.uni-goettingen.de

Software Engineering for Distributed Systems
Georg-August-University of Göttingen

30

mailto:makedonski@informatik.uni-goettingen.de
mailto:makedonski@informatik.uni-goettingen.de
mailto:grabowski@informatik.uni-goettingen.de
mailto:grabowski@informatik.uni-goettingen.de
http://www.swe.informatik.uni-goettingen.de
http://www.swe.informatik.uni-goettingen.de


31



LITERATURE

• Girba, T., A. Kuhn, M. Seeberger, and S. Ducasse. 2005. “How Developers Drive Software Evolution.” In Eighth International 
Workshop on Principles of Software Evolution, 113 – 122. doi:10.1109/IWPSE.2005.21.

• Hindle, A. 2011. “Evidence-based Software Process Recovery: A Post-doctoral View.” In 2011 27th IEEE International 
Conference on Software Maintenance (ICSM), 562–567. doi:10.1109/ICSM.2011.6080831.

• Hindle, Abram. 2010. “Evidence-based Software Process Recovery”. PhD Thesis, University of Waterloo.

• Nierstrasz, Oscar. 2012. “Agile Software Assessment with Moose.” SIGSOFT Softw. Eng. Notes 37 (3) (May): 1–5. doi:
10.1145/2180921.2180925.

• Shihab, Emad, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. 2012. “An Industrial Study on the Risk of Software 
Changes.” In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 
62:1–62:11. FSE  ’12. New York, NY, USA: ACM. doi:10.1145/2393596.2393670. http://doi.acm.org/10.1145/2393596.2393670.

• Weyuker, Elaine J., Thomas J. Ostrand, and Robert M. Bell. 2007. “Using Developer Information as a Factor for Fault Prediction.” 
In Proceedings of the Third International Workshop on Predictor Models in Software Engineering, 8. IEEE Computer Society. 

• Makedonski, Philip, Fabian Sudau, and Jens Grabowski. 2013. “Towards a Model-Based Software Mining Infrastructure.”  To 
Appear in Proceedings of the 2nd International Workshop on Software Mining, Silicon Valley, CA, USA. 

32

http://doi.acm.org/10.1145/2393596.2393670
http://doi.acm.org/10.1145/2393596.2393670


FURTHER LITERATURE

• H. C. Benestad, B. Anda, and E. Arisholm, “A systematic review of empirical software engineering 
studies that analyze individual changes — simula.no,” 2008.

• A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “If your bug database could talk,” in In 
Proceedings of the 5th International Symposium on Empirical Software Engineering, Volume II: Short 
Papers and Posters, 2006, pp. 18–20.

• A. Schröter, T. Zimmermann, R. Premraj, and A. Zeller, “Where do bugs come from?,” SIGSOFT 
Softw. Eng. Notes, vol. 31, no. 6, pp. 1–2, Nov. 2006.

• T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive software evolution,” in Eighth 
International Workshop on Principles of Software Evolution, 2005, pp. 113 – 122.

• S. Wagner, K. Lochmann, L. Heinemann, M. Kläs, A. Trendowicz, R. Plösch, A. Seidl, A. Goeb, and J. 
Streit, “The quamoco product quality modelling and assessment approach,” in Proceedings of the 
2012 International Conference on Software Engineering, Piscataway, NJ, USA, 2012, pp. 1133–1142.

33



FURTHER LITERATURE

• J. Ekanayake, J. Tappolet, H. Gall, and A. Bernstein, “Time variance and defect prediction in software 
projects,” Empirical Software Engineering, vol. 17, no. 4, pp. 348–389, 2012.

• R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change metrics and 
static code attributes for defect prediction,” in Proceedings of the 30th international conference 
on Software engineering, New York, NY, USA, 2008, pp. 181–190.

• S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of code smells: A case 
study of two open source systems,” in 2009 3rd International Symposium on Empirical Software 
Engineering and Measurement, Lake Buena Vista, FL, USA, 2009, pp. 390–400.

• Sunghun Kim, T. Zimmermann, Kai Pan, and E. J. Whitehead, “Automatic Identification of Bug-
Introducing Changes,” in Automated Software Engineering, 2006. ASE  ’06. 21st IEEE/ACM 
International Conference on, 2006, pp. 81–90.

• A. Hindle, “Evidence-based Software Process Recovery,” PhD Thesis, University of Waterloo, 2010.

34



FURTHER LITERATURE

• E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Using Developer Information as a Factor for Fault 
Prediction,” in Proceedings of the Third International Workshop on Predictor Models in Software 
Engineering, 2007, p. 8.

• C. Görg and P. Weißgerber, “Error detection by refactoring reconstruction,” in Proceedings of the 
2005 international workshop on Mining software repositories, St. Louis, Missouri, 2005, pp. 1–5.

• J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?,” in Proceedings of the 
2005 international workshop on Mining software repositories, St. Louis, Missouri, 2005, pp. 1–5.

• A. Tarvo, “Using Statistical Models to Predict Software Regressions,” in Software Reliability 
Engineering, 2008. ISSRE 2008. 19th International Symposium on, 2008, pp. 259–264.

• A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell Labs Tech. J., vol. 5, no. 2, pp. 
169–180, Apr. 2000.

35



FURTHER LITERATURE

• M. Lungu, J. Malnati, and M. Lanza, “Visualizing Gnome with the Small Project Observatory,” in Mining 
Software Repositories, 2009. MSR  ’09. 6th IEEE International Working Conference on, 2009, pp. 103–106.

• S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting Faults from Cached History,” in 
Proceedings of the 29th international conference on Software Engineering, Washington, DC, USA, 2007, 
pp. 489–498.

• R. Premraj and K. Herzig, “Network Versus Code Metrics to Predict Defects: A Replication Study,” in 
Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium on, 2011, pp. 
215 –224.

• T. Zimmermann and N. Nagappan, “Predicting defects using network analysis on dependency graphs,” in 
Proceedings of the 30th international conference on Software engineering, New York, NY, USA, 2008, pp. 
531–540.

• M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module networks predict failures?,” in Proceedings 
of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, New York, 
NY, USA, 2008, pp. 2–12.

36



37



38

history menu fix
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -147,17 +147,19 @@



39

history menu fix
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -147,17 +147,19 @@



40

history menu fix
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -147,17 +147,19 @@



41

history menu fix
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -147,17 +147,19 @@New history menu code comments

--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -145,6 +145,10 @@



42

history menu fix
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -147,17 +147,19 @@New history menu code comments

--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -145,6 +145,10 @@

Fixing history menu
--- a/src/modelmenu.cpp
+++ b/src/modelmenu.cpp
@@ -155,15 +155,6 @@



43


