
1Improving the Quality of Test Suites for ConformanceTests by Using Message Sequence ChartsJens Grabowskia; Dieter Hogrefea, Iwan Nussbaumerb, and Andreas SpichigeraAbstractThe test of a communication system is a complex procedure which comprisesseveral phases with various tasks. The quality of a test depends on the workin the phases and an easy and smooth transition between the phases. In thecurrent test practice the di�erent phases are mainly based on informal docu-ments and they do not always �t together properly. Therefore we intend toimprove the phases and the transition between the phases. This paper showshow the use of Message Sequence Charts (MSCs) may improve the test spec-i�cation phase and facilitate the transition to the test implementation phase.We describe the di�erent phases of testing, sketch the problems of practicaltesting, and explain the use of MSCs for test speci�cation by the example of anISDN switching system. We show how MSC based test speci�cations can betransformed into executable test cases, and present a tool set which supportsthe test speci�cation and automates the test implementation.aUniversit�at Bern, Institut f�ur Informatik, L�anggassstrasse 51, CH-3012 Bern,ph. +41 31 631 86 81, fax. +41 31 631 39 65bSiemens-Albis AG, �O�entliche Vermittlungssysteme, Steinenschanze 2, CH-4051 Basel, ph. +41 61 276 71 11, fax. +41 61 276 76 711 IntroductionTesting is performed to protect users and customers against insecure, inappropriate, oreven erroneous soft- and hardware products. Furthermore, a thorough and comprehen-sive test gives an indication about the quality of a product. In the telecommunicationarea special tests, so-called conformance tests, are often demanded by the customers(mainly national PTTs). A telecommunication system is a distributed system and asoft- or hardware product may become a component of such a system. A conformancetest should ensure the required functions of a component to interwork with other systemcomponents. These functions are de�ned within standards or recommendations providedby international standardization organizations (e.g. ITU-T1, ISO/IEC, or ETSI) and bythe customer which may require additional country speci�c functions.A typical test environment of our application area is shown in Figure 1. We wantto test the functions of the layer 3 protocol Q.931 [CCI89] within a Line Trunk Group(LTG) of an ISDN2 switching system. The Q.931 protocol is implemented within theLTG and there is no direct access to this implementation. Furthermore, each LTG hasonly one standardized interface which may be connected to an ISDN end system (e.g.a telephone). The interface of an LTG to the main processor is proprietary and notstandardized. It is therefore not adequate for testing the conformance to standards.Consequently the test devices are connected directly to the standardized interfaces. Thedevices are controlled by a test manager which also records the test results.1Until March 1993 the ITU Telecommunication Standards Sector (ITU-T) was called Comit�e Con-sultatif International T�el�egraphique et T�el�ephonique (CCITT).2ISDN is an abbreviation for 'Integrated Services Digital Networks'.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 2
Test Manager

Main Processor

LTG LTG

Layer 3 (Q.931)

ISDN Switching SystemTest Device A Test Device B

Figure 1: A test environment of an ISDN switching systemThe analysis of the test results only proves the quality of a protocol implementationif the test itself has a high quality. Additionally, only tests of high quality may lead to animprovement of the protocol implementation itself. In the next section we will thereforeexplain the possibilities to improve the quality of conformance tests.2 Testing in practiceLike the development of soft- and hardware systems, the procedure of testing can bedivided into several phases. As indicated in Figure 2 the whole test procedure can beseen as a puzzle game. Each phase is a piece of this puzzle and should match with theother pieces.2.1 The phases of testingThe test process can be divided into the �ve phases analysis, speci�cation, implemen-tation, execution, and evaluation (cf. Figure 2). A phase performs a certain task anddelivers a document with the phase results as input to the next phase.The objective of the analysis phase is to identify the test cases which are necessary tocheck the relevant requirements of the system. The purpose of each test case is describedby an informal statement, the so-called test purpose. The result of this phase is a list oftest cases together with the corresponding test purposes.In the speci�cation phase for each identi�ed test case it is �xed how it must berealized. In general a test case consists of series or sequences of stimuli and foreseenresponses. Stimuli and responses are called test events. They have to be executed, i.e.sent and observed, by the test devices (cf. Figure 1). However, the test speci�cationphase concerns not only the test events related directly to the test purpose, but also thestart states of system components necessary to interface the implementation which shallbe tested, information of how these states can be reached, and other presuppositionswhich are required for achieving the test purpose. At the end of this phase a documentwith the exact speci�cation of each test case is available.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 3
specification

implementation

execution

evaluation

analyse

specification

implementation

execution

evaluation

analysis

Figure 2: The ideal phase model of the test processIn the implementation phase the test case speci�cations are transformed into exe-cutable test programs, so-called executable test cases. Especially, the sequence of testevents must be enriched with data descriptions, which have not been de�ned in the spec-i�cation phase but which are necessary to execute the test case. Generally, test casesare implemented in a high level language, e.g. C, Pascal, Forth, or TTCN.In the execution phase the executable test cases are run on a test system. A testverdict (pass, fail, or inconclusive) is assigned to each test run. The test runs, i.e. testverdicts and test events, are recorded in a test log.In the evaluation phase the test verdicts from the execution phase are analyzed. Inthe case of a pass verdict the test case has been performed successfully, i.e. the testpurpose is reached. In the case of a fail or inconclusive verdict it must be analyzedwhether the test case or the tested implementation includes errors. The results of thisphase are three lists of test cases. One list contains the test cases which have met thetest purpose. All correctly implemented test cases with inconclusive and fail verdicts areput in the second list. This list is given to the product implementor for his own revisionprocess. The third list includes all test cases, which have been realized incorrectly. Thesetest cases must be revised and the list is therefore fed back to the speci�cation phase.2.2 Problems in implementing the test phase modelUsually, the phases of the test procedure do not accord with each other and a lot ofresources, both manpower and time, are wasted for adapting the results of one phaseto the requirements of the next one and for maintaining redundant information. In the�eld we �nd an implementation of the procedure described in the previous section withunharmonious phase transitions. Figure 3 indicates this situation, by showing a puzzlegame with pieces which do not match.In the analysis phase an informal text document is written. This document is the basisfor the speci�cation phase. The transition from the analysis phase to the speci�cationphase is the simplest transition of all, because both phases use text based documents.For test case speci�cation, informal diagrams as shown at the bottom of Figure 4 arewidely used and well accepted in the telecommunication area [GGR93]. They describethe message ow at the interfaces of the system which shall be tested. Often they areenriched with informal presuppositions. Figure 4 provides a complete example of sucha test case description. The test case EDSAOUX is taken from the Layer 3 test suitefor the LTG. It will be used throughout the rest of this article as an example. In the

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 4
specification

implementation

execution

analyse

evaluation

specification

implementation

execution

analysis

evaluationFigure 3: The phase model in practice�gure Subscriber A and Subscriber B indicate the behavior at the standardized interfaces.During the conformance test the roles of the subscribers are played by testers. A testermight be a software process, a hardware device, or a combination of both.Informal test case speci�cations as shown in Figure 4 can not be used directly in theimplementation phase. The informal information has to be formalized and the missinginformation has to be added. This means that test cases have to be implemented byhand. Usually, the implementation of test cases is rather error prone and requires a lotof resources. For example, the test suite for testing only the country speci�c functionsfor Switzerland of the Layer 3 protocol Q.931 within an LTG (cf. Section 1) includesmore than 1700 test cases. Each of them is implemented by hand.In the execution phase the executable test cases can be taken from the implementationphase as they are. Unfortunately, a test system as shown in Figure 1 is itself a distributedsystem. Therefore often the processes which control the devices at the di�erent interfacesof one test case cannot be implemented in one executable. In such a case the coordinationbetween the di�erent processes must be made manually.Also the evaluation of the test results has to be performed by hand.2.3 Actions to improve the quality of testingTo improve the quality of the test cases and to reduce the time necessary to pass thetest phases it is essential to have a good implementation of the test procedure. However,the previous section shows the incompatible phase transitions in the current practice.These transitions require a lot of manual actions, redundant steps have to be passed andall of them are the source for a lot of errors. In particular the implementation phase isvery error susceptible. It demands a huge manual e�ort to implement all the necessaryinformation for a complete executable test case and a lot of already speci�ed items haveto be rewritten in the high level language. Subsequently, we will present a method,which aims to automate the implementation phase and gives adequate tool support forthe speci�cation phase.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 5Test case identifier: EDSAOUXTest purpose: The test shall ensure that after connection establishmentSubscriber A receives at least three Information messages. The displayparameter within the Information message shall have the format'Fr. x.x0' (0 � x �9).Test configuration: Subscriber-A-SWITCH-Subscriber-BPre-conditions:- The system is in its initial state n(0).- The tax parameter ABS is not set.- The tax units are set for time rates of 0,3 Rp/s.Control: Observation of the tax displayGeneral message flow:
ISDN systemSubscriber A Subscriber B

Setup

Setup Acknowledge

Information

Connect

Connect Acknowledge

Information

Information

Information

Release Complete

Connect

Connect Acknowledge

Setup

EndFigure 4: The speci�cation of the test case EDSAOUX3 Using MSC for test case speci�cationIn our method we use the Message Sequence Chart (MSC) language for the speci�cationof test cases. MSC has been standardized in [ITU92]. An MSC diagram is very similar tothe notation already used for test case speci�cation purposes. A comparison of the testspeci�cation in Figure 4 and the MSC3 in Figure 6 shows the similarities and di�erences.After the implementation phase test cases will be in TTCN (Tree and Tabular Com-bined Notation) which is a standardized notation for test cases [ISO92]. TTCN hasbecome very popular in the telecommunications area. Although TTCN is intended to beused as a test case speci�cation language, it has been recognized, that it can also be usedas test case implementation language. As a consequence there already exist compilersfor di�erent test devices, e.g. [Sie93].For complete test cases it is necessary to describe the parameter values of the ex-changed messages. Since the standardized MSC language includes no possibility for data3The term MSC is used for a diagram written in the MSC language and the language itself. Wherenecessary, we distinguish between both by using the terms MSC language and MSC diagram.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 6
Setup

SYNCHRONIZATION
Setup

Connect

SYNCHRONIZATION

SetupAcknowledge

msc Preamble

B_SAP BA A_SAP

Information

ConnectAcknowledge

Connect

ConnectAcknowledge

CallProceeding

Figure 5: Preamble of the test case EDSAOUXdescriptions, we will explain how data can be introduced in MSC. We use a referencemechanism which relates TTCN data descriptions to the messages within an MSC. Thereference to TTCN is optional. Other data description languages can be taken instead,using the same mechanism.3.1 Adapting MSCs for the needs of testingThe MSC standard is provided by the ITU-T recommendation Z.120 [ITU92]. The MSCrecommendation includes two syntactical forms: MSC/PR as pure textual and MSC/GRas graphical representation. An MSC in MSC/GR representation can be transformedautomatically into a corresponding MSC/PR representation. We use the graphical formin the test case speci�cation and base our algorithms on the MSC/PR form. Because ofsimplicity in this paper we only use the MSC/GR form.Test cases describe sequences of test events which have to be performed by the tester.In the MSCs which form the test case EDSAOUX, the test events are those along theinstances A and B (e.g. Figure 5). They represent Subscriber A and Subscriber B inFigure 4.The automation of the test case implementation requires that the MSCs comprise alltester actions and further relevant information, e.g. information concerning the synchro-nization of the tester. Besides the sending and reception of messages, a tester may alsosupervise timer, or control the number of recurrences of a speci�c message.The investigated examples show that the current MSC standard is in most casessu�cient for describing the message exchange of test cases. But, we also identi�ed situ-ations where additional language constructs might be helpful. Some of these constructsare shorthand notations, some are real extensions and some concern the combination ofMSCs. In the following we introduce them briey.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 7
Information

msc Testbody

B_SAP BA A_SAP

Loop
(1 TO 3 STEP 1)

Loop

(; Di sp la y : Dis p l ay EDSA OUX)Figure 6: Test body of the test case EDSAOUX3.1.1 Extensions of MSCOptional messages. An optional message may occur in exactly one situation. Call-Proceeding in Figure 5 is an optional message which may occur immediately after theInformation message sent by A. Whether the message occurs, depends on the con�gu-ration of the whole ISDN system.Always messages. An always message is a message which always may occur from acertain point in time arbitrarily often. Within our tool the �rst use within the MSCde�nes the point from which it may occur.Synchronization messages The MSC in Figure 5 includes messages which are in-scribed with SYNCHRONIZATION. These synchronization messages are no real mes-sages. They only express the order of send and receive actions on di�erent instance axes.Synchronization messages may be used to synchronize the di�erent testers.Loops Several test cases require that a certain message or a speci�c part of a messageexchange should occur repeatedly. The number of occurrences may be stated explicitly ordetermined by a time limit. Consequently, we introduced a timer loop and a counter loop.The graphical representation of both is the same. We use two trapeziums which enclosethe recurrent message exchange. The termination criterion in the upper trapezium stateswhether the loop is controlled by a counter variable or a time limit. The MSC in Figure6 describes the test purpose of the test case EDSAOUX by using a counter loop. Thetermination criterion (1 TO 3 STEP 1) states that the Information message within theloop should occur 3 times.3.1.2 The combination of MSCsThe purpose of the test case EDSAOUX (cf. Figure 4) is to test the arrival of threeInformation messages4. The test case can be structured into a preamble, a test body,and a postamble. The preamble describes the message exchange from the initial state4The test of the parameter values will be explained in Section 3.2.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 8
msc Postamble1

ReleaseComplete
SYNCHRONIZATION Disconnect

ReleaseComplete

B_SAP BA A_SAP

msc Postamble2

ReleaseComplete
SYNCHRONIZATION ReleaseComplete

B_SAP BA A_SAPFigure 7: Alternative postambles of the test case EDSAOUX(cf. Pre-conditions in Figure 4) into a state from which the Information messages areobservable. This preamble is shown in Figure 5. The test body in Figure 6 comprisesthe observation of the three Information messages. The postamble includes the messageexchange which is necessary to drive the tested system back into the initial state. Forthe test case EDSAOUX exist two alternative postambles (cf. Figure 7). The completetest case description should include both postambles.The message ow of the test case EDSAOUX is described by the MSCs in the Figures5, 6 and 7. Additionally to the MSCs we need a mechanism to specify how the MSCsshould be combined. Such a description could be interpreted as a more general test casedescription since it abstracts from the message ow.Figure 8 presents an example of the graphical notation we use. An arrow betweentwo MSCs speci�es a sequence of two MSCs. In Figure 8 the signal exchange of the MSCPreamble is followed by the MSC Testbody. A branching denotes alternative MSCs.Therefore the MSCs Postamble1 and Postamble2 in Figure 8 may happen alternatively.The supernode ellipsis only indicates the start of the test case description.From our work we know that di�erent test cases often check di�erent aspects of thesame, or at least of almost the samemessage ow. In such situations the test cases includeidentical parts, and it is advantageous to reuse parts of existing test case speci�cations.Due to the operators for combining MSCs structuring and therefore also reuse of MSCsis supported.3.2 MSCs and data descriptionsIn the previous section it is shown how test case speci�cations can be described by MSCs.In order to gain complete test cases the MSCs have to be related to data descriptions.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 9
msc Postamble1

supernode

msc Preamble

msc Testbody

msc Postamble2Figure 8: Combining the MSCs which form the test case EDSAOUX3.2.1 Data descriptions in test casesIn test cases we are confronted with three kinds of data descriptions. These are: datatype de�nitions, default constraint de�nitions, and test case speci�c constraints.During the test the testers and the tested system exchange messages. The messagesmay have a speci�c format and parameters with values of a speci�c data type. Theparameters my also be structured into further components. Roughly spoken the data typede�nitions specify the format and value range of all messages and message parametersused by the test cases. The data type de�nitions are valid for all test cases within a testsuite and therefore they are de�ned globally. The test cases refer to them.For most messages and message parameter values the protocol standard provides de-fault constraint de�nitions. A default constraint is either a default value, or a restrictionof the possible value range. Default constraints are valid for a whole test suite. There-fore they only need to be de�ned once. The test cases may use default constraints byreferring to them, or test case speci�c constraints.Test case speci�c constraints are constraints on messages or message parameter valueswhich are adapted to the speci�c needs of a test case. They are important for two reasons.Sometimes, it is necessary to send speci�c message parameter values to drive the testedprotocol into a state from which the test purpose can be checked, and test purposesoften intend to check requirements on message parameter values. These requirementsare expressed by test case speci�c constraints.3.2.2 Data type and default constraint de�nitionsWe assume that data type and default constraint de�nitions are given in form of TTCNdata types and TTCN constraints. But this is only one possibility. Other data descrip-tions, e.g. ASN.1, can also be adapted to our method.The relations between a message, the data type de�nitions, and the default con-straints are de�ned implicitly by the message name. The message name refers to a typede�nition which itself includes, or refers to the type de�nitions of the message parameters.The message name also provides the relation between message and default constraint.We use name conventions to identify the correct default constraint of a message. But, itshould be noted that default constraints are not available for all messages.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 10Although this implicit reference mechanism is trivial, it is necessary. TTCN test casesrefer explicitly to default constraints and therefore we have to generate the references.We also like to mention that the implicit reference mechanism allows to focus on thetest case speci�c requirements. The test case speci�er shall not bother about defaultconstraints.3.2.3 Test case speci�c constraintsTest case speci�c constraints have to be de�ned explicitly when the test case is imple-mented. Their de�nition is based on the test purposes, the data type de�nitions, therelevant standards, and the additional requirements. Test case speci�c constraints haveto be de�ned manually.Since the de�nitions may become very complex, they cannot be included in an MSC.As a consequence we use TTCN constraint declarations for the constraints de�nitionand refer to these de�nitions. For this purpose we developed a comfortable referencemechanism which� allows to refer to self written test case speci�c constraints,� provides possibilities to de�ne test case speci�c constraints by modifying existingconstraints, e.g. within a default constraint for a message several default constraintsfor parameter values can be replaced by test case speci�c constraints, and� allows to de�ne simple test case speci�c constraints within an MSC, e.g. if a testcase speci�c constraint only comprises one concrete value.Our reference mechanism is a reference language, in the following called RL, which canbe used to specify the mentioned possibilities. Within an MSC the statements of RL arerelated to messages. They can be found in parentheses near the corresponding messagename, or message arrow (cf. Figure 6). This is no extension of the MSC language,because the MSC standard [ITU92] proposes to use expressions in round brackets toassign parameter information to messages.Based on an RL statement it is possible to automate the calculation of the constraintreferences which are necessary for the TTCN test cases, and to generate test case speci�cconstraints which are based on existing constraints. The details of RL can be found in[R�uf94].3.3 The algorithm for generating TTCN from MSCsAfter having shown the use of MSCs for test case speci�cation and the relations of datadescriptions and MSCs, we will now sketch the algorithmwhich automates the generationof TTCN test cases from MSCs. Therefore we will at �rst describe the main principlesof TTCN53.3.1 The main principles of TTCNA TTCN test case describes the sequences of test events which may happen when thetest case is executed. The sequences are arranged in a tree-like manner. A path from the5A tutorial on TTCN can be found in [KW91].

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 11root to a leaf represents one possible sequence of test events. The branches cope withalternative test events.The test events of a TTCN test case are related to data type and constraint de�ni-tions. The relation of a test event to a data type de�nition is given by the name of theinvolved message. The relation to the constraints has to be de�ned explicitly.For modularization purposes TTCN introduces the concept of test steps. A test stepalso describes a tree of test events and can be reused in di�erent test cases.3.3.2 MSCs and TTCN test stepsThe test case speci�cation comprises several MSCs which have been combined togetherto the test case. In general, each MSC is translated into one TTCN test step. The TTCNtest case description combines the test steps by referring to them. The generation of thereferences is based on the diagram which de�nes the combination of the MSCs. For thetest case EDSAOUX the combination has been de�ned in Figure 8.3.3.3 Generating TTCN test steps from MSCsFor each MSC a TTCN test step has to be generated. A test step is characterized bythe tree of test events, which is generated in �ve steps.1. An MSC describes a partial ordered set of send and receive actions. The partialorder is de�ned by the message arrows and by the order of actions along the instanceaxes. Based on this information we calculate all sequences of actions which includethe actions of the MSC and which are consistent with the partial order de�ned bythe MSC.2. For the test case description only the actions of the testers, i.e. the test events, areof interest. Therefore in the second step from each sequence we remove all actionswhich are not performed by the testers.3. MSC and TTCN are di�erent languages with di�erent semantics. For TTCN someof the sequences which have been generated in step 2 are redundant. During a testrun they can not be distinguished. In this step the non-redundant sequences haveto be selected.4. The selected sequences are transformed into the TTCN notation.5. Finally, the references to the default and test case speci�c constraints are generatedand added to the TTCN test case description.For the complete understanding of step 3 more knowledge concerning the TTCN seman-tics might be necessary. The details can be found in [ISO92] and [Sut94].4 Tool supportThe success of our method depends on various factors. To improve the acceptance bythe users during the development of the method we try to be as close as possible toexisting and well established procedures. The success also depends on the availabilityof tools which support the method. The choice of the standardized languages MSC

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 12
MSC edi tor

MSC/TTCN generator

TTCN/MP test case
descript ion (dynamic part)

ASN.1 or TTCN data type
and constraints definitions

 MSC/PR tes t
case specification

executable
TTCN/MP test case

TTCN bu i lderFigure 9: A set of prototype tools for test case speci�cation and implementationand TTCN allows to use commercial tools for test case speci�cation and test execution.Furthermore, we developed a set of prototype tools which implement our method.The tool set is shown schematically in Figure 9. The core of the tool set is a graphicalMSC editor which can be used to specify MSCs, to refer to, or de�ne test case speci�cconstraints, and to combine MSCs to test case speci�cations. The editor transforms testcase descriptions in the graphical MSC/GR form into the textual MSC/PR form. TheMSC/PR �les are the input for the MSC/TTCN generator which generates TTCN testcase without data descriptions in TTCN/MP (Machine Processable) form. The TTCNbuilder combines the output of the MSC/TTCN generator, the data type de�nitions,and all constraint declarations to complete TTCN test cases.All tools have been implemented on a PC in a Windows 3.1 environment. Figure10 gives an impression of the tool interfaces. On the right hand side it presents theuser interface of the MSC editor. The shown MSC is the preamble of the test caseEDSAOUX. A part of the corresponding generated TTCN/MP code can be seen on theleft hand side of the �gure.5 Summary and outlookThe presented method improves the test case speci�cation and automates the test caseimplementation. With the MSC language a graphical notation is provided which is closeto the informal diagrams which are already used for test case speci�cation. MSCs havea standardized syntax and semantics and are therefore suitable for further processing.We introduced a reference mechanism which allows to relate MSCs to data descriptions.With the aid of a tool set it is possible to specify test cases by means of MSCs and to

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 13

Figure 10: The user interface of the MSC editorgenerate executable test cases in the TTCN notation.For the application of our method in an industrial environment the interface to thereference mechanism for test case speci�c constraints should be improved. Complicatedmessage constraints may lead to complex statements of the reference language RL. Fur-thermore, without detailed knowledge of the message structure the RL statements arenot easy to read. But, an RL statement can be considered the minimum information togenerate the references to test case speci�c constraints within the TTCN tables, and tode�ne new constraints which are based on existing ones.However, we believe that the reference mechanism should have no inuence on thetest case speci�cation process. We have started to extend the MSC editor by a graphicalinterface for message constraints. With this interface the user will be able to check, de�neand modify the message constraints without any knowledge of the underlying referencemechanism.AcknowledgementsThe elaboration of this paper is partially funded by the KWF{Project No. 2555.1 'Graph-ical Methods in the Test Process'. The authors would like to thank F. Bosatta, Ch. R�ufe-nacht, Dr. R. Sch�onberger, S. Suter and Ch. Zehnder for their valuable comments andsuggestions.

Fourth European Conference on Software Quality, Basel, Switzerland, Oct. 17-20, 1994 14References[CCI89] CCITT. Recommendations Q.930- Q.940: Digital Subscriber Signalling SystenNo. 1 (DSS 1), Network Layer, User-Network Management. The InternationalTelegraph and Telephone Consultative Committee (CCITT), Geneva, 1989.[GGR93] J. Grabowski, P. Graubmann, and E. Rudolph. The Standardization of Mes-sage Sequence Charts. In Proceedings of the IEEE Software Engineering Stan-dards Symposium 1993, September 1993.[ISO92] ISO/IEC JTC 1/SC21. Information Technology - Open Systems Interconnec-tion - Conformance Testing Methodology and Framework - Part 3: The Treeand Tabular Combined Notation. International Standard 9646-3, ISO/IEC,1992.[ITU92] ITU Telecommunication Standards Sector SG 10. ITU-T RecommendationZ.120: Message Sequence Chart (MSC). ITU, Geneva, June 1992.[KW91] J. Kroon and A. Wiles. A Tutorial on TTCN. In Proceedings of the 11thInternational IFIP WG 6.1 Symposium on Protocol, Speci�cation, Testing andVeri�cation, 1991.[R�uf94] Ch. R�ufenacht. Extending MSCs with Data Information in order to Specify TestCases. Diploma Thesis (written in German), University of Berne, Institute forInformatics, February 1994.[Sie93] Siemens AG. Product Information K1197, K1103. Siemens AG Berlin, 1993.[Sut94] S. Suter. The MSC Based Generation of the Dynamic Part of TTCN TestCases. Diploma Thesis (written in German), University of Berne, Institute forInformatics, January 1994.

