
Formal Methods and Conformance Testing� or �What are we testing anyway?Stefan Heymer Jens GrabowskiUniversity of Lübeck, Institute for TelematicsRatzeburger Allee 160, D�23538 Lübeck, GermanyeMail: {heymer, grabowsk}@itm.mu-luebeck.deWWW: http://www.itm.mu-luebeck.deAbstractIn this paper, we will show the correlation between the notion of implementation relationsknown from formal methods and ideas of conformance testing. We will show that theimplementation relations realized through the practical testing of systems come from afamily of parameterized implementation relations. We will also show that for glass boxtesting, implementation relations parameterized by test purposes converge to the may�testing preorder of DeNicola and Hennessy [7], while for black box testing, implementationrelations parameterized by test cases converge to a may�testing preorder of the behaviorvisible at the interface to the environment.1 MotivationWhen developing concurrent systems with formal methods, the notion of correctness of animplementation with respect to a speci�cation plays a major role. Many of such implementationrelations can be found in literature, e. g., bisimulation equivalence [6], failure equivalence andpreorder [4], testing equivalence and preorder [7], as well as many others [11].To ensure properties of implementations, given implementation relations between a speci-�cation and its implementation have to be checked. For implementations for which a formalmodel exists this can be done by tools like the Concurrency Workbench [2]. Yet, most im-plementations, especially those in the �eld of telecommunication systems, are black boxes �only the behavior visible to the environment can be modeled. Hence the implementation rela-tion between speci�cation and implementation can only be con�rmed by means of testing theimplementation.But the testing of systems has to be done in �nite time. Therefore often the tests doneon the implementation cannot be exhaustive. So, what are the relations for which tests canbe performed? The work found for example in [1] or [9] strives for �nding tests that exactlydiscriminate between correct and erroneous implementations based on a given implementationrelation.Yet in practical testing, test cases are formulated to validate the presence of some speci�cproperties in implementations, the so�called test purposes. This clearly does not root out



all possible causes for errors or non�conformant behavior of the implementation, but it doesgive some certainty about some chosen aspects of the desired system. How does this kind ofpractical testing relate to the known implementation relations? In the scope of this paper, wewill examine the relationship between the idea of test generation based on test purposes andthe idea of implementation relations between speci�cations and their implementations.Our paper proceeds as follows: First, we give some preliminaries and recapitulate somenotions from conformance testing. Then, we show how these notions correlate to those knownfrom the �eld of formal methods, and how they induce a family of parameterized implementationrelations. We investigate the relationship of these parameterized relations to one of the wellstudied implementation relations known from formal methods. We close this paper with someconclusions and outlook on further work.2 Conformance TestingBefore investigating the connection between the implementation relations known from formalmethods and practical conformance testing, we want to remind the reader of some of the centralpoints in the formal theory for conformance testing. We give a short de�nition of the notion ofconformance, as it can be found in [5].The de�nition of conformance concerns implementations under test (IUT ) and speci�ca-tions. We make the so�called test assumption that implementations under test IUT can bemodeled by a formal objects iIUT in a formalism MODS , to which we refer as the universe ofmodels. Yet, this assumption only assumes that such models exist, but not that they are knowna priori.The test assumption allows us to reason about implementations as if they were formalobjects. The conformance of implementations with respect to formal speci�cations can beexpressed by means of an implementation relation. An implementation relation imp is arelation between the set of models of implementations MODS and the set of speci�cationsSPECS , i. e., imp � MODS � SPECS :An implementation IUT now is considered imp�correct with respect to a speci�cation s 2SPECS , if and only if iIUT imp s.The behavior of a concrete implementation is investigated by performing experiments onthe implementation, observing the reactions of it to these experiments. Such experiments arecalled tests, and are formally speci�ed as elements of an universe of test cases TESTS . A set oftest cases is called a test suite. The process of running a test against a concrete implementationis called test execution, and it gives rise to an observation in a domain of observations OBS .The result of the test execution is de�ned by a verdict assignment verd t, which may depend onthe test case t. This assignment has the signatureverd t : OBS ! fpass; inconclusive; failg:An implementation under test IUT passes a test case t, if and only if the test execution of theIUT with t leads to an observation O 2 OBS to which verd t assigns a pass verdict:IUT passes t () verd t(O) = pass (1)



For the interpretation of test case execution, a function has to be de�ned. The functionexec calculates the observations for models iIUT of implementations under test contained in amodel of a test context C. This function has the signatureexec : TESTS �MODS ! OBS :With this function de�nition (1) can be made more concrete, i. e.IUT passes t () verd t(exec(t; C(iIUT ))) = pass:The subset of models inMODS for which test execution yields a pass verdict is called the formaltest purpose Pt of t: Pt = fm 2 MODS j verd t(exec(t; C(m))) = passgThus, the objective of testing an IUT with a test case t is to conclude whether the model iIUTof the IUT is a member of the formal test purpose Pt of t, i. e.IUT passes t () iIUT 2 Pt:In the following sections, we abstract from the test context C, assuming it to be encoded intothe test case. Note that the de�nitions given above only de�ne the signatures of the functionsverd t and exec. Hence, in Section 3.3 and Section 3.4 we will instantiate the classes for models,tests and observations as well as these functions. The goal is to �nd out which implementationrelations are tested in practical testing.3 Conformance Testing in the Light of Formal MethodsAfter having recapitulated some of the notions of the formal treatment of conformance testing,we are now going to examine which implementation relations are tested in conformance testing,directed by the use of test suites related to certain test purposes. With conformance testing werefer in the context of this paper to functional black box testing, not the formalization shownin the previous section. We �rst de�ne some languages for the description of systems and tests,and will then take a look at the situation found in testing from a formal perspective. Then, wewill examine implementation relations based on test purposes and test cases.3.1 Languages for the Description of Systems and TestsFor the description of systems, test purposes and test cases we need some languages. Sincewe are interested in linking our intuitions on conformance testing to the notions known fromformal methods, we need a uni�ed model for systems and tests. Thus we are going to use aprocess algebraic one instead of standardized ones like SDL, MSC or TTCN.So let us start by developing a process algebra for describing the behavior of systems. As abasis, we choose the process algebra given by Winskel and Nielsen in [12]. Its syntax is givenby p ::= nil j ap j p0 � p1 j p0 � p1 j p � � j pf�g j x j rec x:p;



where a is a label, � is a subset of labels and � is a total function from labels to labels. We willdenote the class of processes generated with this syntax with Pproc. In this language, nil denotesa process that terminates instantly; ap denotes a process that performs the action a and thenbehaves like p; p0 � p1 denotes the choice between the behaviors of the processes p0 and p1;p0 � p1 denotes the behavior of two processes p0 and p1 observed in parallel, the observationsbeing pairs of labels or �, � being an idling action of a process; p � � denotes the restriction ofthe behavior of p to just those actions labelled with symbols in �; pf�g denotes a relabelling ofthe actions in p according to the labelling function �; and rec x:p denotes a recursive behaviorwith x being a process variable.For this process algebraic language, we give a structural operational semantics along thelines of [8]. First, we introduce a notation concerning the combination of labels forced by theproduct operator �. For labels a; b, we de�ne:a� b = � � if a = b = �,(a; b) otherwiseThis notation together with the use of idle transitions results in a compact SOS rule for theproduct operator. The transitions between states of a system, which are identi�ed with closedterms of the process algebraic language, are given by the following rules:ap a�! p p ��! pp0 a�! p00p0 � p1 a�! p00 a 6= � p1 a�! p01p0 � p1 a�! p01 a 6= �p0 a�! p00 p1 b�! p01p0 � p1 a�b�! p00 � p01p a�! p0p � � a�! p0 � � a 2 � p a�! p0pf�g �(a)�! p0f�gp[rec x:p=x] a�! p0rec x:p a�! p0 a 6= �A closed term p determines a transition system with initial state p consisting of all states andtransitions reachable from p. The usual parallel composition operator kA synchronizing onactions labelled with symbols in A known from process algebra can be recovered from theseoperators as a combination of product, restriction and relabelling.For the description of test purposes and test cases, we need a slightly di�erent processalgebraic language, the syntax of which is given byt ::= pass j fail j inconclusive j at j t0 � t1 j t0 � t1 j t � � j tf�g j x j rec x:p;where again a is a label, � is a subset of labels and � is a total function from labels to labels.We denote the class of processes generated with this syntax with Pte. As one can see, the onlydi�erence between the two languages are the exclusion of the process constant nil from thelanguage t and the inclusion of the constants pass, fail and inconclusive. This is done becausewe want to force test purposes and test cases to end in one of the test verdicts pass, fail orinconclusive. We will interpret the constructions in the same way as for those used for theconstruction of Pproc, except for the new processes pass, fail and inconclusive. For these, we givethe follownig SOS rules:



pass pass�! nil fail fail�! nil inconclusive inconclusive�! nilSo now we have a language to describe systems with and another one to describe tests. Weimbed these two langauges into a third one, describing systems and executions of test cases.The syntax of this language is given by s ::= t�� p j p;where � is a parameterized operator denoting the application of a test to a system and � is asubset of labels. The class of processes generated with this syntax will be denoted with Psys.The new SOS rules for the operator � are the following:t a�! t0t�� p a�! t0 �� p a 62 � p a�! p0t�� p a�! t�� p0 a 62 �t a�! t0 p a�! p0t�� p a�! t0 �� p0 a 2 �Hence, this new operator acts as a typed kind of parallel composition operator, expecting atest as its left argument and a process as its right argument.In the following, we will use � to denote the set of labels for actions. We assume thatfpass; fail; inconclusiveg � �, but that only processes in Pte are allowed to synchronize on pass,fail or inconclusive, as is needed for concurrent test architectures. Furthermore, � 2 � denotesa special silent action, which cannot be used to synchronize on.In the context of the formal theory of conformance testing presented in Section 2, we willinstantiate the class of models MODS with Pproc and the class of tests TESTS with Pte.3.2 The Situation in TestingWhen investigating the relationship between a speci�cation and an implementation, we haveto di�erentiate between two scenarios. On the one hand, if we can see the inner workings ofspeci�cation and implementation, we are able to state the implementation relation betweenspeci�cation s and implementation i as iv1 sfor some given implementation relation v1. This glass box view of speci�cations and imple-mentations is usually used for veri�cation purposes.Yet, often we only are able to observe events at the interface of an implementation. If weassume �IO � � to be the set of events observable on the interface of the implementation, wemay state the implementation relation between these two �black boxes� asif�IOg v2 sf�IOg;with �IO being the relabelling function de�ned as�IO(a) = � a; a 2 �IO�; a 62 �IO;� being used to abstract from internal actions. Hence, with respect to this relation the imple-mentation may do some radically di�erent things internally as long as the visible behavior is



conforming to that of the speci�cation. Thus, we want this new implementation relation to beweaker than v1, i. e. iv1 s) if�IOg v2 sf�IOg:So far, we only look at the complete behaviors of the systems. If we reduce our interest tojust those behaviors that follow a speci�c purpose, we get some di�erent results. In praxi, testpurposes are used to de�ne narrowly de�ned objectives of testing, focusing on a single or someclosely related conformance requirements. Here we assume a test purpose to be a process inPte whose behavior re�ects the desired properties.When looking at just one test purpose, we may state an implementation relation asp�� iv3 p�� s;hence we restrict the behavior of s and i to just the �interesting� parts where they behave likep. We expect this implementation relation to be weaker than the original one, asiv1 s) p�� iv3 p�� s:Similarly, we want to �nd a weaker counterpart for the relation v2 by restricting the focusof interest to just speci�c behaviors. Here, we synchronize a test process with speci�cation andimplementation. While the test purpose used in the de�nition of v3 is able to observe evenevents internal to speci�cation and implementation, the test process only may observe eventsat the interface to the environment. Hence, we may state a fourth implementation relation v4as t��IO if�IOg v4 t��IO sf�IOgfor some test process t. Here, we want v4 to be weaker than v2, i. e.if�IOg v2 sf�IOg ) t��IO if�IOg v4 t��IO sf�IOg:The relationship between these four views of speci�cation, implementation, test purposesand test cases can be visualized as in Figure 1. There, the dotted lines show the implementa-tion relations, while the solid arrows denote inclusion functions mapping processes onto otherprocesses, e. g. by hiding internal behavior.3.3 Implementation Relations Based on Test PurposesNow we have languages for the description of systems and tests at our disposal and we haveinvestigated the view from the �eld of formal methods onto conformance testing. Therefore wecan go on to develop an implementation relation that re�ects what is being tested in practicalconformance testing.Before doing this, we have to translate some of the terms from Section 2 to the settingdescribed above. This especially holds for the functions exec and verd t. We also have to de�nethe notion of observability which we follow in our model.As our notion of observability (and hence class of observations OBS) we choose traces,de�ning for a process p 2 Psys the set of traces of p asTraces(p) = f� j p �=)g;
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Figure 1: Relationship between Testing Scenarioswith the transition relation =) being de�ned asp �=) p0 () 9n 2 N :9a1 ; : : : ; an 2 �; p0; p1; : : : ; pn 2 Psys:p = p0 a1�! p1 a2�! : : : an�! pn ^ � = (a1a2 : : : an) � (�� f�ggand the shorthand notation p �=)() 9p0 2 Psys:p �=) p0:The �ltering function � � � used in the de�nition above is de�ned recursively as" � L = "aw � L = � a(w � L); a 2 Lw � L; a 62 L:Next, we de�ne the application exec(t; p) of a test t to an implementation i as the set oftraces of the (process algebraic) application of t to i, i. e.exec(t; i) = Traces(t�� p):Now, the verdict function verd t can be de�ned asverd t(O) = � pass; if 8� 2 O:A��fpass;fail;inconclusiveg = fpassgfail; otherwise,



where A� is the alphabet of the trace �, i. e. the set of labels constituting �. Hence, anapplication of a test case to an implementation results in a pass verdict only when the applicationcannot lead to a fail result.So, which implementation relation in the sense known from formal methods is checked withthis kind of testing? From the computation of the test verdict, one can de�ne a two placepredicate passes de�ned asi passes t () verd t(exec(t; i)) = pass:Hence, we can de�ne an implementation relation based on a test t ass v s0 () s0 passes t) s passes t:Moreover, we de�ne a parameterized implementation relation vT ass vT s0 () 8t 2 T:s0 passes t) s passes t;where the relation is parameterised over a set of tests T to be executed.How does this compare to the implementation relations known from formal methods? Theclosest match is the may�testing preorder vmay from [7], for whichsvmay s0 () Traces(s0) � Traces(s)holds. An alternative formulation (adapted to the notation we are using) of this relation issvmay s0 () 8t 2 Pte:s0 passes t) s passes t:Comparing this to the relation presented above, one sees thatsvmay s0 ) svT s0 (2)for every set of tests T .Clearly, the reverse direction of this implication does not hold. Yet, looking at a sequence ofsets of tests (Ti)i2N with Ti � Ti+1 for i 2 N, we get the following result (abusing mathematicalnotation a bit): limn!1vTn = vmayHence, increasing the size of the test sets would approximate the may�testing preorder vmay.So now we are able to de�ne an implementation relation that catches the situation inglass box testing, when we are able to control even the inner workings of speci�cation andimplementation. Here we de�ne a weaker version of the may�testing preorder, restricting thetests applied to the systems to a set of test purposes, henceivPmay s () 8p 2 P:s passes p) i passes p:This way, we get the desired propertyivmay s) ivPmay s;and inherit the convergence property limn!1vPnmay = vmayrewritten from above for some sequence of test purposes (Pn)n2N increasing with respect to setinclusion.



3.4 Implementation Relations Based on Test CasesNow we know which implementation relation can be tested by glass box testing using testpurposes. Next, we transfer these results to black box testing, that is, conformance testing.For this, we �rst have to de�ne an implementation relation parameterized by sets of test casesinstead of sets of test purposes. Next, we have to investigate how this new preorder relates tothe one de�ned in the previous section.Let s 2 Psys be a system and p 2 Pte be a test purpose. A test case t 2 Pte for p is a processlabelled over �IO, the alphabet of the interface of the system to its environment. Citing from[3] with some adjustment of notation, this process basically has to ful�ll the propertiesp k�IO[fpass;fail;inconclusiveg t must succeed; (3)i. e. the test case t has to be a part of the externally visible behavior of p,t��IO s must succeed; (4)i. e. the test runs have to lead to reproducible results, summarised in(t k�IO p)�� s must succeed; (5)i. e. the test process t has to generate a trace in the test purpose p that is guaranteed to endin a pass verdict when synchronized with the speci�cation s.The predicate must succeed used in these properties is de�ned ass must succeed () 8� 2 ��; s0 2 Psys:(s �=) �0 ) 9a 2 � [ fpassg:s0 a=));with the shorthand notations s a�! () 9s0 2 Psys:s a�! s0and s 6 a�! () :9a 2 �:s a�! :The predicate must succeed states that the test application is successful if it cannot deadlockvisibly without having signalled successful termination of the test beforehand.For black box testing, we choose sets of traces over �IO to be our notion of observability.Next, we adapt the de�nition of exec(t; p) from the previous section to the restricted capabilityof the test process, i. e. we de�neexec(t; i) = Traces(t��IO p);while the verdict assignment function verd t can be de�ned as in Section 3.3.Again, we de�ne a two place predicate passes asi passes t () verd t(exec(t; i)) = pass;as well as a parameterized implementation relation vT ass vT s0 () 8t 2 T:s0 passes t) s passes t;



where the relation is parameterized over a set of test cases T to be executed.Now let us compare this new parameterized relation to the may�testing preorder. Here we�nd that 8T � Pte:if�IOg vmay sf�IOg ) ivT s;thus we are able to formulate a convergence property similar to the one presented in Section 3.3.For this, we de�ne an implementation relation v�IO�may, called interface may�testing preorderwith respect to the interface alphabet �IO, aspv�IO�may q () pf�IOg vmay qf�IOg:With this implementation relation, we are able to state the convergence property aslimn!1vTn = v�IO�mayfor some sequence of test cases (Tn)n2N labelled over an interface alphabet �IO, which areincreasing with respect to set inclusion.How does this new implementation relation parameterized over test cases relate to the onegiven in the previous section? We easily see that8p; q 3 Pproc:pvmay q ) pv�IO�may qholds, where �IO is the alphabet of the interface of p and q to their environment. We expectthe same to hold for the parameterized counterparts of these relations.So let P be a set of test purposes, and let T be a set of test cases for a system s and therespective test cases in P . Guaranteed by property 3, we have thativfpg s) ivftg sholds for p being a test purpose from P , t being the test case for p and s and i being animplementation. Hence, we have that ivP s) ivT s;as we postulated in the framework from Section 3.2.Thus we also are able to de�ne an implementation relation that catches the situation in blackbox testing, when we are only able to control the workings of speci�cation and implementationby communicating with their respective interfaces. Here we de�ne a weaker version of theinterface may�testing preorder, restricting the tests applied to the systems to a set of test casesT , hence ivT�IO�may s () 8t 2 T:s passes t) i passes t:This way, we get the desired propertyiv�IO�may s) ivT�IO�may s;as well as inherit the convergence propertylimn!1vTn�IO�may = v�IO�mayrewritten from above for some sequence of test cases (Tn)n2N increasing with respect to setinclusion.
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