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Abstract

In this paper, we will show the correlation between the notion of implementation relations
known from formal methods and ideas of conformance testing. We will show that the
implementation relations realized through the practical testing of systems come from a
family of parameterized implementation relations. We will also show that for glass box
testing, implementation relations parameterized by test purposes converge to the may—
testing preorder of DeNicola and Hennessy [7], while for black box testing, implementation
relations parameterized by test cases converge to a may—testing preorder of the behavior
visible at the interface to the environment.

1 Motivation

When developing concurrent systems with formal methods, the notion of correctness of an
implementation with respect to a specification plays a major role. Many of such implementation
relations can be found in literature, e.g., bisimulation equivalence [6], failure equivalence and
preorder [4], testing equivalence and preorder [7], as well as many others [11].

To ensure properties of implementations, given implementation relations between a speci-
fication and its implementation have to be checked. For implementations for which a formal
model exists this can be done by tools like the Concurrency Workbench [2]. Yet, most im-
plementations, especially those in the field of telecommunication systems, are black boxes —
only the behavior visible to the environment can be modeled. Hence the implementation rela-
tion between specification and implementation can only be confirmed by means of testing the
implementation.

But the testing of systems has to be done in finite time. Therefore often the tests done
on the implementation cannot be exhaustive. So, what are the relations for which tests can
be performed? The work found for example in [1] or 9] strives for finding tests that ezactly
discriminate between correct and erroneous implementations based on a given implementation
relation.

Yet in practical testing, test cases are formulated to validate the presence of some specific
properties in implementations, the so—called test purposes. This clearly does not root out



all possible causes for errors or non—conformant behavior of the implementation, but it does
give some certainty about some chosen aspects of the desired system. How does this kind of
practical testing relate to the known implementation relations? In the scope of this paper, we
will examine the relationship between the idea of test generation based on test purposes and
the idea of implementation relations between specifications and their implementations.

Our paper proceeds as follows: First, we give some preliminaries and recapitulate some
notions from conformance testing. Then, we show how these notions correlate to those known
from the field of formal methods, and how they induce a family of parameterized implementation
relations. We investigate the relationship of these parameterized relations to one of the well
studied implementation relations known from formal methods. We close this paper with some
conclusions and outlook on further work.

2 Conformance Testing

Before investigating the connection between the implementation relations known from formal
methods and practical conformance testing, we want to remind the reader of some of the central
points in the formal theory for conformance testing. We give a short definition of the notion of
conformance, as it can be found in [5].

The definition of conformance concerns implementations under test (/UT) and specifica-
tions. We make the so—called test assumption that implementations under test IUT can be
modeled by a formal objects i;yr in a formalism MODS, to which we refer as the universe of
models. Yet, this assumption only assumes that such models exist, but not that they are known
a PrioTi.

The test assumption allows us to reason about implementations as if they were formal
objects. The conformance of implementations with respect to formal specifications can be
expressed by means of an implementation relation. An implementation relation imp is a
relation between the set of models of implementations MODS and the set of specifications
SPECS, i. e.,

imp C MODS x SPECS.

An implementation IUT now is considered imp—correct with respect to a specification s €
SPECS, if and only if 7;y7 imp s.

The behavior of a concrete implementation is investigated by performing experiments on
the implementation, observing the reactions of it to these experiments. Such experiments are
called tests, and are formally specified as elements of an universe of test cases TESTS. A set of
test cases is called a test suite. The process of running a test against a concrete implementation
is called test execution, and it gives rise to an observation in a domain of observations OBS.
The result of the test execution is defined by a verdict assignment verd;, which may depend on
the test case t. This assignment has the signature

verd, : OBS — {pass, inconclusive, fail }.

An implementation under test IUT passes a test case t, if and only if the test execution of the
IUT with t leads to an observation O € OBS to which verd; assigns a pass verdict:

IUT passest <= wverd,(O) = pass (1)



For the interpretation of test case execution, a function has to be defined. The function
erec calculates the observations for models i, of implementations under test contained in a
model of a test context C. This function has the signature

exec : TESTS x MODS — OBS.

With this function definition (1) can be made more concrete, i. e.
IUT passest <= wverd,(exec(t,C(ifyr))) = pass.

The subset of models in MODS for which test execution yields a pass verdict is called the formal
test purpose P; of t:

P, ={m € MODS | verd,(exec(t,C(m))) = pass}

Thus, the objective of testing an IUT with a test case t is to conclude whether the model iy
of the IUT is a member of the formal test purpose P, of ¢, i. e.

IUT passest < i;yr € P;.

In the following sections, we abstract from the test context C', assuming it to be encoded into
the test case. Note that the definitions given above only define the signatures of the functions
verd; and ezec. Hence, in Section 3.3 and Section 3.4 we will instantiate the classes for models,
tests and observations as well as these functions. The goal is to find out which implementation
relations are tested in practical testing.

3 Conformance Testing in the Light of Formal Methods

After having recapitulated some of the notions of the formal treatment of conformance testing,
we are now going to examine which implementation relations are tested in conformance testing,
directed by the use of test suites related to certain test purposes. With conformance testing we
refer in the context of this paper to functional black box testing, not the formalization shown
in the previous section. We first define some languages for the description of systems and tests,
and will then take a look at the situation found in testing from a formal perspective. Then, we
will examine implementation relations based on test purposes and test cases.

3.1 Languages for the Description of Systems and Tests

For the description of systems, test purposes and test cases we need some languages. Since
we are interested in linking our intuitions on conformance testing to the notions known from
formal methods, we need a unified model for systems and tests. Thus we are going to use a
process algebraic one instead of standardized ones like SDL, MSC or TTCN.

So let us start by developing a process algebra for describing the behavior of systems. As a
basis, we choose the process algebra given by Winskel and Nielsen in [12]. Its syntax is given
by

pu=nil|ap|po®p1|poxp1|p T A|p{E}| x| rec z.p,



where a is a label, A is a subset of labels and = is a total function from labels to labels. We will
denote the class of processes generated with this syntax with Py.... In this language, nil denotes
a process that terminates instantly; ap denotes a process that performs the action a and then
behaves like p; py @ p1 denotes the choice between the behaviors of the processes py and py;
po X p1 denotes the behavior of two processes py, and p; observed in parallel, the observations
being pairs of labels or *, x being an idling action of a process; p [ A denotes the restriction of
the behavior of p to just those actions labelled with symbols in A; p{=} denotes a relabelling of
the actions in p according to the labelling function =; and rec x.p denotes a recursive behavior
with = being a process variable.

For this process algebraic language, we give a structural operational semantics along the
lines of [8]. First, we introduce a notation concerning the combination of labels forced by the
product operator x. For labels a, b, we define:

b * if a =0=x,
axo= (a,b) otherwise

This notation together with the use of idle transitions results in a compact SOS rule for the
product operator. The transitions between states of a system, which are identified with closed
terms of the process algebraic language, are given by the following rules:

ap —— p p—p
a a
P0—>P6 a % * p1—>p'1
a a
Po®p1 — ) po B p1 — P
b
poiﬂ% p1—>p'1
axb ’
Po X P1 — Py X Py
p——p p—p
A a A a €N _ ﬂ =
pIA—p] PE} — p'{E}

a # *

plrec x.p/x] s

rec T.p — p' af
A closed term p determines a transition system with initial state p consisting of all states and
transitions reachable from p. The usual parallel composition operator ||4 synchronizing on
actions labelled with symbols in A known from process algebra can be recovered from these
operators as a combination of product, restriction and relabelling.
For the description of test purposes and test cases, we need a slightly different process
algebraic language, the syntax of which is given by

t := pass | fail | inconclusive | at | to @ t1 |to x t1 |t [ A|t{Z} | x| rec x.p,

where again a is a label, A is a subset of labels and Z is a total function from labels to labels.
We denote the class of processes generated with this syntax with Pi.. As one can see, the only
difference between the two languages are the exclusion of the process constant nil from the
language ¢ and the inclusion of the constants pass, fail and inconclusive. This is done because
we want to force test purposes and test cases to end in one of the test verdicts pass, fail or
inconclusive. We will interpret the constructions in the same way as for those used for the
construction of P, except for the new processes pass, fail and inconclusive. For these, we give
the follownig SOS rules:



fail

pass . . . . . inconclusive .
pass — nil fail — nil inconclusive " —"" nil

So now we have a language to describe systems with and another one to describe tests. We
imbed these two langauges into a third one, describing systems and executions of test cases.
The syntax of this language is given by

su=t>Ap|p,

where > is a parameterized operator denoting the application of a test to a system and A is a
subset of labels. The class of processes generated with this syntax will be denoted with Pgy.
The new SOS rules for the operator > are the following:

T p—p
T a ¢ A z ;
tDAp—1TD>Ap tDADp —1tD>Ap

ad A

t 25t p—=7p
tDAth'DAp'

a €A

Hence, this new operator acts as a typed kind of parallel composition operator, expecting a
test as its left argument and a process as its right argument.

In the following, we will use A to denote the set of labels for actions. We assume that
{pass, fail, inconclusive} C A, but that only processes in P, are allowed to synchronize on pass,
fail or inconclusive, as is needed for concurrent test architectures. Furthermore, 7 € A denotes
a special silent action, which cannot be used to synchronize on.

In the context of the formal theory of conformance testing presented in Section 2, we will
instantiate the class of models MODS with P, and the class of tests TESTS with P.

3.2 The Situation in Testing

When investigating the relationship between a specification and an implementation, we have
to differentiate between two scenarios. On the one hand, if we can see the inner workings of
specification and implementation, we are able to state the implementation relation between
specification s and implementation ¢ as

1 El S

for some given implementation relation ;. This glass box view of specifications and imple-
mentations is usually used for verification purposes.

Yet, often we only are able to observe events at the interface of an implementation. If we
assume Ao C A to be the set of events observable on the interface of the implementation, we
may state the implementation relation between these two “black boxes” as

i{Z10} Ca s{Z10},

with =;0 being the relabelling function defined as

Zi0(a) = a, a€ Ao
—1o T, @ ¢ AIOJ

7 being used to abstract from internal actions. Hence, with respect to this relation the imple-
mentation may do some radically different things internally as long as the visible behavior is



conforming to that of the specification. Thus, we want this new implementation relation to be
weaker than T, i. e.

iCis=i{Z0} T2 s{=10}-

So far, we only look at the complete behaviors of the systems. If we reduce our interest to
just those behaviors that follow a specific purpose, we get some different results. In prazi, test
purposes are used to define narrowly defined objectives of testing, focusing on a single or some
closely related conformance requirements. Here we assume a test purpose to be a process in
P, whose behavior reflects the desired properties.

When looking at just one test purpose, we may state an implementation relation as

pDAiE3p>A87

hence we restrict the behavior of s and 7 to just the “interesting” parts where they behave like
p. We expect this implementation relation to be weaker than the original one, as

1E1s=ppriEspbys.

Similarly, we want to find a weaker counterpart for the relation Cy by restricting the focus
of interest to just specific behaviors. Here, we synchronize a test process with specification and
implementation. While the test purpose used in the definition of C3 is able to observe even
events internal to specification and implementation, the test process only may observe events
at the interface to the environment. Hence, we may state a fourth implementation relation Cy4
as

t >0 {Z10} Cat >4, s{E10}

for some test process t. Here, we want C, to be weaker than C,, i. e.
i{Ejo} Lo S{E[O} =t >A0 ’L{Ejo} Lyt >A0 S{E[O}.

The relationship between these four views of specification, implementation, test purposes
and test cases can be visualized as in Figure 1. There, the dotted lines show the implementa-
tion relations, while the solid arrows denote inclusion functions mapping processes onto other
processes, e. g. by hiding internal behavior.

3.3 Implementation Relations Based on Test Purposes

Now we have languages for the description of systems and tests at our disposal and we have
investigated the view from the field of formal methods onto conformance testing. Therefore we
can go on to develop an implementation relation that reflects what is being tested in practical
conformance testing.

Before doing this, we have to translate some of the terms from Section 2 to the setting
described above. This especially holds for the functions exec and verd;. We also have to define
the notion of observability which we follow in our model.

As our notion of observability (and hence class of observations OBS) we choose traces,
defining for a process p € Py the set of traces of p as

Traces(p) = {o | p :U>},



Figure 1: Relationship between Testing Scenarios

with the transition relation = being defined as

p==7p <= IneNJay,...,a, € A,po,p1,--,Pn € Pays.
D= Do i>plﬁh..ﬂuon/\az(a,la,g...an) (A= {7}}

and the shorthand notation
p= < I €Pyp==p.
The filtering function - | - used in the definition above is defined recursively as

elL = ¢
aw | L = {a(

w

L), a€L
L, a¢ L.

w
[
Next, we define the application ezec(t,p) of a test ¢ to an implementation i as the set of
traces of the (process algebraic) application of ¢ to i, i. e.
exec(t,1) = Traces(t >, p).
Now, the verdict function verd; can be defined as

verd (O) — pass, if Vo € O-Aor{{pass,fail,inconclusive} = {pass}
t fail, otherwise,



where A, is the alphabet of the trace o, i. e. the set of labels constituting o. Hence, an
application of a test case to an implementation results in a pass verdict only when the application
cannot lead to a fail result.

So, which implementation relation in the sense known from formal methods is checked with
this kind of testing? From the computation of the test verdict, one can define a two place
predicate passes defined as

i passest <= verd;(exec(t,i)) = pass.
Hence, we can define an implementation relation based on a test ¢ as
s C s «— s passest = spassest.
Moreover, we define a parameterized implementation relation CT as
sCT s <= VteT.s passest = s passest,

where the relation is parameterised over a set of tests T to be executed.
How does this compare to the implementation relations known from formal methods? The
closest match is the may-testing preorder T,y from [7], for which

$ Cmay 8 <= Traces(s') C Traces(s)
holds. An alternative formulation (adapted to the notation we are using) of this relation is
§Cmay 8§ <= Vt € P..s' passes t = s passes t.
Comparing this to the relation presented above, one sees that
SCmay 8 = sCT s (2)

for every set of tests 1.
Clearly, the reverse direction of this implication does not hold. Yet, looking at a sequence of
sets of tests (7});eny with T; C T;44 for i € N, we get the following result (abusing mathematical

notation a bit):
lim C™ =C

n—00
Hence, increasing the size of the test sets would approximate the may-testing preorder T,y .
So now we are able to define an implementation relation that catches the situation in
glass box testing, when we are able to control even the inner workings of specification and
implementation. Here we define a weaker version of the may-testing preorder, restricting the
tests applied to the systems to a set of test purposes, hence

may

iCP s <= Vp e P.spassesp = i passes p.

—may

This way, we get the desired property

[ Emay 5=1 Eiay S,

and inherit the convergence property

rewritten from above for some sequence of test purposes (P, ),en increasing with respect to set
inclusion.



3.4 Implementation Relations Based on Test Cases

Now we know which implementation relation can be tested by glass box testing using test
purposes. Next, we transfer these results to black box testing, that is, conformance testing.
For this, we first have to define an implementation relation parameterized by sets of test cases
instead of sets of test purposes. Next, we have to investigate how this new preorder relates to
the one defined in the previous section.

Let s € Py be a system and p € P be a test purpose. A test case t € Py for p is a process
labelled over Ajp, the alphabet of the interface of the system to its environment. Citing from
[3] with some adjustment of notation, this process basically has to fulfill the properties

P || A0 U{pass,fail,inconclusive} ¢ Must succeed, (3)
i. e. the test case t has to be a part of the externally visible behavior of p,
t>a,, s must succeed, (4)
i. e. the test runs have to lead to reproducible results, summarised in
(t]|la,0 P) >a s must succeed, (5)

i. e. the test process ¢t has to generate a trace in the test purpose p that is guaranteed to end
in a pass verdict when synchronized with the specification s.
The predicate must succeed used in these properties is defined as

s must succeed <= Vo € A*,s' € Ps.(s == 0’ = Ja € AU {pass}.s' =),
with the shorthand notations
s~ = 35’ € Pys.s — &'

and
s/ = —Ja€As 2.

The predicate must succeed states that the test application is successful if it cannot deadlock
visibly without having signalled successful termination of the test beforehand.

For black box testing, we choose sets of traces over A;p to be our notion of observability.
Next, we adapt the definition of ezec(t, p) from the previous section to the restricted capability
of the test process, i.e. we define

exec(t,i) = Traces(t >p,, D),

while the verdict assignment function verd; can be defined as in Section 3.3.
Again, we define a two place predicate passes as

i passest <= wverd,(exec(t,i)) = pass,
as well as a parameterized implementation relation C7 as

sCT s <= VteT.s passest = s passest,



where the relation is parameterized over a set of test cases 1" to be executed.
Now let us compare this new parameterized relation to the may—testing preorder. Here we
find that
VT C Py.i{Z10} Cmay s{Z10} = i CT s,

thus we are able to formulate a convergence property similar to the one presented in Section 3.3.
For this, we define an implementation relation Ty, may, called interface may-testing preorder
with respect to the interface alphabet Ajo, as

p EAIofmay q <— p{ElO} Ema,y Q{EIO}-
With this implementation relation, we are able to state the convergence property as

] Tn __
nlggo E — EAIO—may
for some sequence of test cases (7,)nen labelled over an interface alphabet A;o, which are
increasing with respect to set inclusion.
How does this new implementation relation parameterized over test cases relate to the one
given in the previous section? We easily see that

VPJ q> ]P)proc-p Ema.y q=7p EAIO—may q

holds, where A;q is the alphabet of the interface of p and ¢ to their environment. We expect
the same to hold for the parameterized counterparts of these relations.

So let P be a set of test purposes, and let 1" be a set of test cases for a system s and the
respective test cases in P. Guaranteed by property 3, we have that

ig{p} 3 :>7;E{t} s

holds for p being a test purpose from P, t being the test case for p and s and ¢ being an
implementation. Hence, we have that

igpséiETs,

as we postulated in the framework from Section 3.2.

Thus we also are able to define an implementation relation that catches the situation in black
box testing, when we are only able to control the workings of specification and implementation
by communicating with their respective interfaces. Here we define a weaker version of the
interface may—testing preorder, restricting the tests applied to the systems to a set of test cases
T, hence

it s <= Vt € T.s passes t = i passes t.

=Ajo—may

This way, we get the desired property

. . =T
v EAIO_may §=1 EAIO—may 5,

as well as inherit the convergence property

Im C47 ey = Ero-—may

rewritten from above for some sequence of test cases (T,)nen increasing with respect to set
inclusion.



4 Conclusions and Further Work

The work presented here shows how the notion of implementation relations known from formal
methods and ideas of conformance testing correlate. We have shown that the implementation
relations realized through the practical testing of systems come from a family of parameterized
implementation relations. We also have shown that for glass box testing implementation re-
lations parameterized by test purposes converge to the may-testing preorder of DeNicola and
Hennessy [7], while for black box testing implementation relations parameterized by test cases
converge to a may-testing preorder of the behavior visible at the interface to the environment.

But this is just one special implementation relation that is interesting from the formal point
of view. There are a number of other preorders and equivalences formalizing different notions of
the equivalence of observable behavior in specifications and implementations. It is interesting
and an aim for future work to see how these implementation relations could be practically
tested using parameterized implementation relations. Here, a modular approach reminding to
that of van Glabbeek [10, 11] would be preferable.
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