Invest for the Future

The contribution is partially funded by the EFRE (European fund for regional development) of the European Union.

TTCN-3 User Conference 2009
3 – 5 June 2009 - ETSI, Sophia Antipolis, France

Testing Embedded Systems in the Automotive Industry with TTCN-3

Jens Grabowski (Universität Göttingen), Jürgen Großmann (Fraunhofer FOKUS), Friedrich-Wilhelm Schröer (Fraunhofer FIRST), Jacob Wieland (Testing Technologies), Diana Serbanescu (Technische Universität Berlin)

grabowski@informatik.uni-goettingen.de, juergen.grossmann@fokus.fraunhofer.de, f.w.schroeer@first.fraunhofer.de, wieland@testingtech.com, diana.serbanescu@fokus.fraunhofer.de
Test Specification Technology and Methodology for Embedded Real Time Systems in the Automobile

- Testing discrete and continuous real time systems with TTCN-3 embedded.
- Test support for the entire integration process.
- Exchange of test definitions between
 - OEM and supplier
 - various test- and simulation platforms e.g. Model in the Loop (MIL) platforms, Software in the Loop (SIL) platforms, and Hardware in the Loop (HIL) platforms
- Integration with model based development especially with AUTOSAR.
- Analysis and improvements of test quality.
Motivation

- Testing software based embedded systems steadily increase in complexity.
- In addition to that non-functional requirements, especially time related input-output behavior, have to be considered.
- Adequate and standardized test solutions are needed, which at least feature a minimum of flexibility, reusability and abstraction.

GOAL: Provide a standardized testing solution for standardized development environments (e.g. AUTOSAR for Automotive Solutions).
GOAL: Tight Integration of real time testing concepts in an existing test specification environment (i.e. The Test and Testing Control Notation)
TTCN-3 embedded Tasks

- TTCN-3 embedded for real time systems
- TTCN-3 embedded for continuous behavior
- TTCN-3 embedded hybrid behavior
 - Graphical presentation format for TTCN-3 embedded
 - Preparation for standardization
Real Time Test System Requirements

- **Standard**: assessment of functional behavior (e.g. message contents).
- **Additional**: exact measurement, comparison and assessment of message timing.
- **Additional**: temporal control of message dispatching.
Real Time TTCN-3

Simple Real Time Scenario

timer t1,t2;
p_out.send(OUT_MSG_1);
t1.start(t_max);
alt{
 []p_in.receive(IN_MSG_1){setverdict(pass)};
 []t1.timeout{setverdict(fail)}
}
t2.start(twait);
t2.timeout;
p_out.send(OUT_MSG_2);
p_in.receive(IN_MSG_2);
setverdict(pass);

var float r_time,s_time;
p_out.send(OUT_MSG_1);
s_time:=now;
p_in.receive(IN_MSG_1)->timestamp r_time;
if(r_time>s_time+tmax) setverdict(fail);
wait(r_time+twait);
p_out.send(OUT_MSG_2);
p_in.receive(IN_MSG_2);
setverdict(pass);
Formalization of the Test System

$$TS = \{P, Q, C, M, TP, OP\}$$

- a set P of ports to communicate with the System Under Test (SUT),
- a set Q of input queues to organize the order of incoming messages,
- a set C of synchronized clocks to measure time and to simulate TTCN-3 timers,
- a set M of messages,
- a set $TP \subseteq TP_{data} \cup TP_{time}$ of predicates that are used to characterize the properties of incoming messages, and
- a set $OP = \{\text{snap, check, enqueue, dequeue, first, encode, decode, match}\}$ of time-consuming operations that are necessary to organize the handling of messages at ports.
Temporal estimations are only possible on basis of the assumption $t_{\text{receive}} \approx t(c^s)$, i.e. the time point of taking the snapshot approximates the reception time of messages.
Example: Comparison of Message Timing in Standard TTCN-3

- Arrival of messages \(m_0, \ldots, m_n \) and the timeout of timers \(t_0, \ldots, t_m \) are denoted by events \(e_0, \ldots, e_{k+1} \),
- timing is measured by comparison of events, and
- only events that occur in different snapshots are distinguishable.

Duration between two consecutive snapshot denote the best accuracy of time measurement for standard TTCN-3. The duration depends on:

- the **number of messages** that arrive and the **number of ports** (queues) to check,
- the duration of check, decode, match for individual messages where the duration of decode and match is directly dependent on the **content** and **structure** of the **message** under observation.
Problematic Situations: message burst over one or multiple ports.

Each alternative is defined by: \(a_k = (q_{a_k}, t_{pda_k}) \in ALT \subseteq Q_{alt} \times TP_{alt} \)

Simple assumption: a new message has arrived at each port and none of the messages match.

\[
\text{worst}(t(s_{n+1}) - t(s_n)) = \\
\sum_{x=1}^{l} (\text{dur}(\text{check}(q_{ax}^{sn})) + \text{dur}(\text{decode}(m_{ax}^{q_{sn}}))) \\
+ \text{dur}(\text{match}(m_{ax}^{q_{sn}}, t_{pa_x})) + \text{dur}(\text{snap})
\]
Solution

- Seamless access to time
- Explicit measuring and access to the reception time of messages
- Utilities to handle comparison of time and temporal control of statement execution
- Time model based on positive real numbers \(t \in \mathbb{R}^+ \)
- Actual time \(t = t(c_0) \) can be directly obtained by the user (now operator).
- TTCN-3 Language Level:
 - now operator returns time in seconds coded as a float value.
 - we allow arithmetic expressions on time values
 - precision of time measurement can be specified by means of the precision annotation

```c
module{
    ...
    var float myTimeVar;
    testcase myTc runs on myComp{
        ...
        myTimeVar:=now+1.0;
        ...
    }
} with{precision:=0.001}
```
TTCN-3 embedded
Measurement of Time

- ... to retrieve the enqueue time of a message,

  ```
  p.receive(t) -> timestamp myTime;
  // yields the reception time of a message
  ```

- and time measurement at any place in the test

  ```
  var float myTime := now;
  // yields the actual time
  ```
TTCN-3 embedded

Verification of Temporal Behaviour

- Verification of enqueue time for incoming messages, procedure calls etc.

```plaintext
p.receive(t)-> timestamp timevar {
    if (timvar>max){setverdict(fail)}
    else {setverdict(pass)}
};
```
... at any place during test case execution,

```c
wait(timepoint);
```

and similar for message timing

```c
wait(timepoint);
p.send(t);
```
Double check the timing of test system behavior

```c
// test system to slow
wait(timepoint);
p.send(MSG_1);
if(now >= timepoint + tol) setverdict(error);

// SUT to slow
wait(timepoint);
p.send(MSG_1);
if(now >= timepoint + tol) setverdict(fail);

// SUT or test system to slow
wait(timepoint);
p.send(MSG_1);
if(now >= timepoint + tol) setverdict(inconclusive);
```
Use Case: Test of an Indicator

Testing Temporal Properties

- Maximum activation time 60 ms, phase length 600 ms
- Synchronization between signals: distance < 5 ms
testcase tcl() runs on IndicatorTestComponent{
 var float l_actv, r_actv, f_actv;
 const float TMAX = 0.06;
 activate(tc_timeout);
 leverIn.send(LEFT);
 l_actv := now;
 l_actv := now;
 interleave{
 [] FrontOut.receive(ON) -> timestamp f_actv;
 [] RearOut.receive(ON) -> timestamp r_actv;
 }
 if ((f_actv-l_actv > TMAX)
 or (f_actv-r_actv > TMAX)) {setverdict(fail)}
 setverdict(pass);
}
Use Case: Test of an Indicator

Testing Signal Synchronization

testcase tc2() runs on IndicatorTestComponent{
 var float r_actv, f_actv;
 const float TMAX = 0.005;
 activate(tc_timeout);
 leverIn.send(LEFT);
 interleave{
 [] FrontOut.receive(ON) -> timestamp f_actv;
 [] RearOut.receive(ON) -> timestamp r_actv;
 }
 if (abs(r_actv-l_actv) > TMAX){setverdict(fail)}
 setverdict(pass);
}
Summary and Outlook

- RT concepts are tightly integrated with TTCN-3 and provide means for an exact measurement, comparison and verification of the timing of incoming messages, and enables the detection of timing problems during test execution and message dispatching.

- Implementation of Concepts
- Integration with high level modeling techniques (i.e. declarative approaches to specify timing constraints).
- Definition of coding and design guidelines to support the RT-capabilities of the newly introduced TTCN-3 concepts.
Contact and Info

www.temea.org

Contact
Jürgen Großmann
Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31, 10589 Berlin
Tel: +49-30-3463-7390
juergen.grossmann@fokus.fraunhofer.de