
Dealing with the complexity of state space explorationalgorithms for SDL systemsJens Grabowskia, Rudolf Scheurerb,Daniel Toggweilerb, and Dieter HogrefeaaMedizinische Universit�at zu L�ubeck, Institut f�ur Telematik, Ratzeburger Allee 160, D-23538 L�ubeck,Bundesrepublik Deutschland, e-mail fjens,hogrefeg@itm.mu-luebeck.debUniversit�at Bern, Institut f�ur Informatik, Neubr�uckstrasse 10, CH-3012 Bern, Schweiz,e-mail fscheurer,toggweilg@iam.unibe.ch AbstractThe treatment of complexity is one of the main problems in the area of validation and veri�cation offormally speci�ed protocols. The problem can be tackled by using heuristics, partial order simulationmethods, and optimization strategies. We present these mechanisms and describe the way they work.Their usefulness will be discussed by presenting the results of some experiments.1 IntroductionIn the areas of validation, veri�cation and test generation some of the methods rely on a exhaustivesimulation of system speci�cations. This methods have to deal with complex or even in�nite statespaces of protocol speci�cations. The reasons for complexity are (1) the increasing power of modernprotocol functions which have to be described by complex speci�cations, (2) characteristics of the chosenspeci�cation language which may facilitate some development and validation methods, but may notsupport test generation, and (3) missing information of the environment in which the protocol shouldwork.The characteristics mentioned in point 2 may concern the semantics of the speci�cation language or itscommunication mechanisms. We will focus on the characteristics of SDL with its interleaving semantics.The problem of point 3 is that we are dealing with open systems. For an automatic simulation thebehavior of the environment has to be modeled. The simple assumption that the environment is ableto send and receive each valid signal at any time leads to an enormous amount of possible test cases.Complexity due to point 1 cannot be avoided. Our aim is to provide mechanisms for handling thecomplexity due to the points 2 and 3. We distinguish between three classes of reduction mechanismscalled heuristics, partial order simulation, and optimization strategies.Heuristics are based on assumptions about the behavior of the system to be tested, or its environment.They avoid the elaboration of system traces1 which are not in accordance with the selected assumptions.Partial order simulation methods avoid complexity which is caused by an interleaving semantics ofthe speci�cation language. They intend to limit the exploration of traces for concurrent executions2.Optimization strategies intend to reduce the possible behavior of the system environment. This canbe done by using external information, e.g., speci�cations of surrounding services, or by analyzing thespeci�cation in order to generate optimal input data for the test environment.In this paper we describe heuristics, partial order simulation methods and optimization strategies forSDL speci�cations. We implemented some of the described reduction strategies and present the resultsof some experiments.1Throughout this paper a trace is meant to be a totally ordered sequence of events.2A concurrent execution can be seen as a partially ordered set of events. All traces which do not violate the partial orderdescribe the interleaved traces of the concurrent execution. 1



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 22 FoundationsThroughout this paper we will use some terms which may lead to ambiguities and misunderstandings.We introduce them briey by assuming some basic knowledge about SDL.2.1 Describing distributed systems by using SDLA distributed system consists of several processes which work in parallel. In SDL a process is meant to bean extended input/output FSM. Extended FSM means that the FSM is able to store state information inlocal variables. Input/output FSM means that state transitions may be triggered by signals and that theFSM is able to send signals during a state transition. A state transition of an SDL process is describedby a sequence of actions. Such an action may concern the consumption or sending of a signal, the settingor resetting of timers, or the manipulation of local variables.Processes may communicate or synchronize with other processes. SDL processes communicate asyn-chronously by exchanging signals via communication links which are called channels and signalroutes.Signals sent, but not consumed are bu�ered in in�nite FIFO queues. For this purpose each process hasits own in�nite signal queue. A process which wants to send a signal to a certain partner process has toput the signal into the signal queue of the partner.A lot of complexity is introduced by the semantics of SDL that is based on interleaving semantics,i.e. the execution of an SDL speci�cation is described by all interleaved traces of concurrently executableevents. Another SDL specialty which often causes complexity problems is the treatment of time. SDL doesnot �x the duration of state transitions, but for the speci�cation of time conditions a timer mechanismis provided. An SDL timer is an object which is associated with a process. It can be active or inactive.If it is active, after a prede�ned time it will put a timer signal into the signal queue of the process. Thetimer signal can be consumed and thus can trigger state transitions like any other signal. Complexityproblems occur because without a duration for state transitions the duration of a timer set commandcan be treated only as comment, i.e., the timer may expire at any time. This treatment may lead to anenormous amount of possible system states and system traces.2.2 Closed systemsThroughout this paper we assume that we deal with closed SDL systems only, i.e., systems which donot communicate with the system environment. This is no restriction, because it is always possibleto model the behavior of the environment by means of special SDL processes which are able to sendand receive all possible signals at any time. The advantage of this assumption is that we are able totreat the communication with the system environment in the same way as the communication amongSDL processes. In the following processes which model the behavior of the environment are calledenvironmental processes. The other processes are called system processes.2.3 Behavior representationThe entire behavior of a (closed) SDL system can be treated as a labeled transition system (LTS), i.e., anin�nite automaton. It is common practice to describe the behavior of such a system in form of a behaviortree. Figure 1 presents part of a behavior tree. The root S0 of the tree describes the initial state andthe leaves S2 and S3 denote �nal states. The other nodes describe states which are reached during theexecution of the system. State transitions are represented by annotated edges. The annotations describethe events which lead to the corresponding state transition.The meaning of the terms event and state may need some clari�cation. An event denotes an arbitraryatomic SDL event like input, output, or task. A state is meant to be a global system state which comprisesthe local states of the processes, the values of variables, and the contents of all queues. The local statesof the processes are not only SDL states. Intermediate states between two atomic actions, i.e., within anSDL state transition, are considered also.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 3
g

S3

S0

S2

S1 S4 S5

S6 S7

a

b c

d e

f h

i
kFigure 1: Behavior treeIn general, the behavior tree of an SDL system is not �nite. One reason for this is that often anongoing and never terminating behavior is required by the application area, e.g., a telephone systemshould not terminate. Another reason is the existence of in�nite signal queues in SDL, which may leadto an in�nite state space of the system.By using an algorithm which explores for each state all its successor states recursively and an arbitrarySDL simulator which provides the functions initialize, enabled-events, and execute-event the behaviortree of an SDL speci�cation can be generated easily. The generation of the behavior tree may be performedin a depth �rst order. Then the behavior tree is generated in the way shown by the dashed arrow in�gure 1.The behavior tree of an SDL speci�cation grows exponentially. The degree of growth depends onthe indeterminism which is speci�ed in the system. In the case of closed systems it depends on variousbehavior possibilities of the environmental processes, indeterminism due to the interleaving semantics ofSDL, and concurrency within the SDL system.3 Reduction strategiesIn this chapter we present present the investigated reduction strategies. We distinguish heuristics, partialorder simulation methods, and optimization strategies. An overall view is given in section 3.4.3.1 HeuristicsThe �rst method for reducing the complexity of the behavior tree is the use of heuristics. Heuristics makeassumptions about the systems that have to hold. They avoid the elaboration of system traces whichare not in accordance with the assumptions. We distinguish between three kinds of heuristics: limitingheuristics, �ltering heuristics, and SDL speci�c heuristics.3.1.1 Limiting HeuristicsLimiting heuristics restrict the length of the traces to be elaborated, i.e., the behavior tree may be reducedto a �nite depth. The character of limiting heuristics is shown schematically in �gure 2 (a). We presentfour limiting heuristics: maximal number of events, no double �nal state, no double state, and selectionof states.Maximal Number of events. The heuristics 'maximal number of events' de�nes a maximal numberof events to be executed for each trace. If this upper bound is reached the further elaboration of thistrace is stopped. The activation of this heuristics makes the (unlimited) depth search to a k-boundeddepth search, i.e., the behavior tree is limited to the depth of k.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 4
(a) Limiting heuristics (b) Filtering heuristicsFigure 2: Meaning of limiting and �ltering heuristicsNo double �nal State. The heuristics 'no double �nal state' stops the investigation of a trace assoon as a �nal state is reached. But for many systems there are no states de�ned to be �nal states. Insuch cases the initial state of the system may be chosen to be a �nal state. The initial state of an SDLspeci�cation is the �rst stable state reached after having started the system, without performing anyaction of the system environment.No double State (Supertrace). The idea of the heuristics 'no double state' is to stop the explorationof a trace if a state is reached which already has been reached before. This can be done because the(sub-) behavior tree following the already reached state will be the same as the one following the �rstoccurrence of the state. Since a system may have an in�nite amount of states, it is a little bit tricky toimplement this heuristics. Holzmann presents this heuristics in [6].Selection of states. The heuristics 'selection of states' selects a set of states of the speci�ed system.We distinguish between a positive and a negative type of this heuristics. The positive type selects thestates that may be reached during the simulation. If a state is entered which is not contained in theselection, the exploration of the actual trace is stopped. The negative type selects the states which shallnot be taken into consideration. The exploration of a trace is stopped if a state is reached which iscontained in the selection set.3.1.2 Filtering HeuristicsFiltering heuristics reduce the branching factor at some states by suppressing the elaboration of some ofits successors. Roughly spoken, �ltering heuristics make a behavior tree thinner, but usually not �nite.The character of �ltering heuristics is depicted schematically in �gure 2 (b). We present the �lteringheuristics strong reasonable environment, strong reasonable timers, �rst sent �rst consumed, maximallength of signal queues, and selection of signals.Strong reasonable environment. This heuristics makes an assumption about the behavior of theenvironmental processes. It assumes that after sending a stimulus to the system processes the environ-mental processes always waits until the system reaches a stable state. A stable state is meant to be aglobal system state, where the system is blocked until it receives a signal from the environment or until atimer expires. Roughly spoken, this heuristics avoids the overow of signal bu�ers caused by the behaviorof the system environment.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 5Strong reasonable timers. The idea behind the heuristics 'strong reasonable timers' is that timersare usually used for exception handling. Due to the semantics of SDL it is not possible to simulate realtime. Therefore a timer signal may always be sent out when a timer is active. In order to avoid this itis assumed that timers only expire if the system is in a stable state, i.e., timers are not allowed to expirewhile the system is busy.First sent �rst consumed. The heuristics '�rst sent �rst consumed' de�nes an order upon SDL inputevents. During the simulation always the oldest sent signal is consumed �rst. Concurrently enabled SDLinput events are not taken into consideration.Maximal length of signal queues. The heuristics 'maximal length of the signal queue' restricts thelength of the in�nite SDL signal queues. If a queue is full, then a sending event to this queue is notexecutable.3 This heuristics avoids an in�nite state space because of in�nite signal queues. However,in [11] it is shown that under certain conditions the length of the input queues can be reduced withoutrunning the danger to loose concurrent executions.Selection of signals. The heuristics 'selection of signals' selects a set of signals of the speci�ed system.We distinguish between a positive and a negative type of this heuristics. The positive type selects thesignals which may be sent during the simulation. If the next event that should be performed is an outputof a signal not contained in the selection the exploration of the actual trace is stopped. The negative typeselects the signals which shall not be sent during the simulation. The exploration of a trace is stopped ifthe event which should be performed next is an output of a signal which is contained in the selection set.3.1.3 SDL speci�c heuristicsThe heuristics presented above may be applicable to arbitrary speci�cation languages which are basedon extended input/output FSMs which communicate asynchronously by using in�nite signal bu�ers. Inthe following we present the heuristics 'indivisible SDL state transition' and 'no null consumption'. Theyare special �ltering heuristics which make use of SDL specialties.Indivisible SDL state transitions. Our behavior description for SDL systems (cf. Section 2.3) splitsstate transitions of SDL processes, i.e., transitions from one SDL state to another SDL state, into asequence of atomic actions. This means we introduce intermediate states within the speci�ed statetransitions. Due to an interleaving where concurrency is modeled by interleaved traces within a behaviortree branching may also happen at the introduced intermediate states. The heuristics 'indivisible SDLstate transitions' suppresses this branching by executing all atomic SDL events belonging to an SDLstate transition without interruption. The heuristics 'indivisible SDL state transitions' is in line withthe informal semantics of SDL provided by the language de�nition [8]. It only provides problems if inaddition to the signal based communication a communication via global variables is used, i.e., import,export, and view constructs.No null consumptions. The semantics of SDL provides the mechanism of null consumptions. Thismeans that the �rst signal within the signal queue of an SDL process can be discarded if the signal cannotbe consumed in the actual state of the process. It is obvious that such a mechanism facilitates the useof SDL since the speci�er can concentrate on the relevant signals while other signals cause no deadlocksituation. However, a null consumption should be an exception and not the usual case. Therefore theheuristics 'no null consumptions' avoids the elaboration of traces which include null consumptions, i.e.,the behavior tree will be limited to traces which do not include null consumptions.3Another possibility to treat this situation is not to block the send event, but to discard the sent signal.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 63.2 Partial order simulationPartial order simulation methods can be seen as a special kind of �ltering heuristics with a soundmathematical basis. They attempt to reduce complexity which is caused by an interleaving semantics ofthe speci�cation language. SDL is based on interleaving semantics. This means concurrency is introducedby indeterminism, i.e., the execution of an SDL speci�cation is described by all interleaved traces ofconcurrently executed events.Related problems occurred in the area of protocol veri�cation. They have been tackled by the devel-opment of partial order simulation methods [1, 9]. Partial order simulation methods attempt to limit theexploration of traces for concurrent executions. In the best case for each concurrent execution only onetrace is generated.Subsequently, we developed two algorithms which adapt the ideas of partial order simulation methodsto the needs of SDL. The algorithms are called independence prioritizing simulation and condition lockingsimulation. We describe them informally. The details can be found in [11, 12].3.2.1 Independence prioritizing simulationDuring the simulation for each state the concurrently enabled events are identi�ed. If such events neverinuence each others execution they are called to be independent. Independent events can be executedin arbitrary order, there is no inuence in the resulting concurrent execution.The independence prioritizing simulation algorithm takes advantage of this fact. During the simu-lation in each state it looks for an enabled event which is independent of all other enabled events. Ifsuch an event exists it is executed. The other enabled events are not treated as alternatives, i.e., as newbranches in the behavior tree.3.2.2 Condition locking simulationThe independence prioritizing simulation algorithm is not optimal, i.e., it may elaborate more then onetrace for each concurrent execution. It only searches statically for independent events, but it does notconsider actual dependencies. Furthermore only global independence and not the mutual dependenciesbetween events are taken into account. The dependency relation is not a static relation. The execution ofsome events may have an inuence on the dependency relationships between other events. The conditionlocking simulation algorithm always remembers the actual dependencies and therefore elaborates onlyone trace for each concurrent execution.3.3 Optimization strategiesAs mentioned before we assume that we deal with closed SDL systems (c.f. section 2.2). With respect tothe environmental processes there are some optimization areas left to be explored. In the sequel we willfocus on optimization strategies concerning (1) the behavior of the environmental processes, (2) the dataow (between environmental and system processes), and (3) the behavior of environmental processescompared with the service which should be provided by the system processes The points 1 and 2 arerelated to an analysis of the system processes before start of simulation. Point 3 is related to additionalinformation.3.3.1 Behavior of the environmental processesUntil now the environmental processes have been speci�ed in a very simple way, i.e., they are able toreceive and send any signal at any moment in time. In order to reduce the complexity of the simulationdue to this kind of simple environmental processes we aim to avoid the sending of signals that lead to anull consumption on the side of the system processes. Therefore these processes should be analyzed withrespect to this aspect. Although this may result in a more complex environmental process the complexityof simulation will be reduced.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 73.3.2 Data owDuring simulation the environmental processes send signals to the system processes. These signals maycarry parameters, e.g., data packets or sequence numbers. Usually, there is a large range of valid valuesfor these parameters and these values may inuence the behavior of the system processes.For example, after transmitting a data packet the response of a correct sequence number results in anacknowledgment of the transmission. The response of an incorrect sequence number results in a negativeacknowledgment and the data packet is retransmitted. Many parameter values cause the same behavior.For example, there is a large set of incorrect sequence numbers and they all cause a retransmission ofthe data packet, i.e., the same behavior. During test generation often it is impossible to try all possibleparameter values. This may lead to an enormous, sometimes even in�nite, amount of possible traces,i.e., to an in�nite branching of the behavior tree at some state nodes.The idea is to concentrate on essential parameter values, i.e., we intend to select a small set ofsigni�cant parameter values. For example, one parameter value which causes a positive acknowledgmentand one which causes negative acknowledgment. All relevant system states of the system processes remainreachable. In other words, we try to build equivalence classes on parameter values with respect to thebehavior of the system processes. For the simulation only one arbitrary value of each equivalence classwill be used.3.3.3 Service like behavior of the environmental processesThe two optimization strategies discussed before rely on the analysis of the system speci�cation. The thirdpossibility needs additional information about the service the system should provide. According to thespeci�cation of this service the behavior of the test processes can be limited furthermore. The idea is thatthe environmental processes should only show behavior which conforms to the service speci�cation, i.e.,the behavior of a service user making use of the service in a correct manner. For example, if the servicedoes not allow data transmission before a connection has been established the environmental processshould not act like this either. Roughly speaking, the idea is to specify the environmental processes insuch a manner that they show the mirrored behavior of the service speci�cation. However, for such anoptimization a complete service speci�cation is needed.3.4 Overall viewWe presented several reduction strategies which can be used for handling the complexity of SDL speci�-cations. The methods have been classi�ed according to how they work. The classi�cation is summarizedin table 1.4 Experiments4.1 The SAMSTAG methodOur application area is the (semi-) automatic generation of test cases for formally speci�ed protocols.Based on the SaMsTaG4 method [2, 3, 10] a tool has been implemented. The generation of test cases canbe looked at as a search problem within the state space of a speci�cation. For each test case we search asystem trace with speci�c properties which builds the basis for the test case description. The propertiesare mainly given by a test purpose specifying the objective of the test case and additional requirementswhich, for example, may concern start and end state of the test case. Therefore test generation methodshave to deal with the complexity of state spaces of protocol speci�cations.In SaMsTaG we implemented the heuristics '�rst send �rst consumed' (FSFC), 'strong reasonabletimers' (SRT), 'strong reasonable environment' (SRE), 'no double �nal state' (NDFS), 'no null consump-tions' (NNC), 'indivisible SDL state transitions', and the partial order simulation methods independence4SaMsTaG is an abbreviation for 'Sdl And Msc bAsed Test cAse Generation'.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 8Name Heuristics Part. Ord. Opt.Limit. Filt. SDL spec. Simulation Strat.Maximal Number of Events XNo Double Finite State XNo Double State XSelection of States XStrong Reasonable Environment XStrong Reasonable Timers XMaximal Length of Signal Queues XFirst Sent First Consumed XSelection of Signals XIndivisible SDL Transitions XNo Null Consumption XIndependence Prioritizing XCondition Locking XOptimal Behavior of Test Processes XOptimal Data Flow XService Like Behavior XTable 1: Classi�cation of all discussed methods1 Sec 1 Min 1 hour 1 day 1 year under heuristics8 13 18 22 29 NO HEURISTICS9 16 22 27 36 FSFC8 13 18 22 30 SRT15 27 39 48 65 SRE8 13 18 22 29 NDFS8 13 18 22 29 NNC9 16 22 27 36 FSFC+SRT26 49 73 91 125 FSFC+SRE25 47 69 86 117 FSFC+SRT+SRE26 48 71 89 122 FSFC+SRT+SRE+NDFS34 68 102 129 178 FSFC+SRT+SRE+NDFS+NNCTable 2: Explored behavior tree by a given time and a given heuristics combinationprioritizing simulation (IPS) and condition locking simulation (CLS). The e�ects of these methods havebeen tested by means of the Inres protocol (cf. [4, 5]). The results of these experiments are described inthis section.4.2 HeuristicsWe have tested the mentioned heuristics and several combinations of them. The results of these experi-ments are shown in table 2 and �gure 3.5 During the test runs we measured the average branching factorfor the nodes of the behavior tree. Based on this factor some of the presented values are calculated. Alogarithmic scale is used for the y axis in �gure 3. During the experiments the SDL speci�c heuristics'indivisible SDL state transition' always has been turned on.However, table and �gure show how deep the behavior tree of the Inres protocol can be explored in agiven time by using one or a combination of several heuristics. It can be seen that the heuristics 'strongreasonable environment' (SRE) is the most e�cient one.4.3 Partial order simulation methodsThe partial order algorithms IPS and CLS also have been applied to the Inres protocol. We measuredthe speed of the algorithms, the size of the explored behavior tree, and the time for test generation. We5In �gure 3 some lines representing di�erent heuristics combinations overlap and cannot be distinguished. This appliesfor the combinations NO HEURISTICS, NDFS and NNC, and for the combinations FSFC and FSFC+SRT.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 9
1 second

1 hour

1 day

1 year

31709 years

0 50 100 150 200 250 300
depth of searchtree

NO HEURISTICS
FSFC

SRT
SRE

NDFS
NNC

FSFC+SRT
FSFC+SRE

FSFC+SRT+SRE
FSFC+SRT+SRE+NDFS

FSFC+SRT+SRE+NDFS+NNCFigure 3: Needed time to explore the behavior treecompared both algorithms with a normal interleaving simulation (ILS) which explores the behavior treein the way described in Section 2.3.4.3.1 Size of the generated behavior treeIn a second experiment the size of the generated behavior tree was examined. For a given depth wehave counted the number of explored nodes. In a �rst test run all heuristics have been deactivated. Theresults are shown in �gure 4 on the left. In a second test run all heuristics have been turned on. Theresults are presented in �gure 4 on the right.
10

100

1000

10000

100000

1e+06

2 4 6 8 10 12 14 16

nu
m

be
r 

of
 e

xp
an

de
d 

no
de

s

depth of searchtree

ILS
IPS

CLS

10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r 

of
 e

xp
an

de
d 

no
de

s

depth of searchtree

ILS
IPS

CLS

Figure 4: Size of the generated behavior tree without (left) and with (right) heuristics4.3.2 Time for test case generationIn a third experiment we measured the time used by the di�erent algorithms for generating test cases.For this purpose we integrated IPS and CLS into the SDL simulator of the SaMsTaG tool. The basisfor the test generation was a test architecture for the Initiator instance of the Inres protocol according tothe distributed test method (cf. [7]). The test purpose was to test a data transfer with acknowledgmentafter the �rst transmission of the data package. All heuristics have been turned o� during the searchfor unique pass observables (cf. [3, 10]). The ILS algorithm was not able to generate the test case. Therun was interrupted after 7 hours. At this time 10 million states have been explored. The IPS algorithmneeds 8 minutes and 33 seconds for the test case generation, and the CLS algorithm needs only 3 minutesand 39 seconds. The advantage of partial order simulation methods is obvious.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 104.4 DiscussionThe experiments have shown the usefulness of heuristics and partial order simulation methods for testcase generation. However, the e�ects achieved by heuristics and partial order methods may need somediscussion.The e�ects of partial order simulation methods are de�ned clearly. They reduce the number ofinterleaved traces for each concurrent execution of the SDL speci�cation. No concurrent execution getslost, but the explored behavior tree is reduced. Partial order simulation methods reduce complexityintroduced by the interleaving semantics of SDL. They cannot reduce complexity due to the concurrencyin the system. Figure 4 shows that the amount of time still grows exponentially with the depth of theexplored behavior tree. Only the exponent is decreased.The e�ects of heuristics often can not be described exactly. In general heuristics also reduce the sizeof the explored behavior tree, but it cannot be guaranteed that all relevant traces have been examined.For example, consider a situation where we search a trace which passes through a �nal state. By usingthe heuristics 'no double �nal state' no solution will be found. However, we look at heuristics as a sortof tool box. The test speci�er has to select a set of heuristics which is suitable for his problem.5 Summary and outlookWe presented and discussed several methods which can be used for handling the complexity of SDLspeci�cations. The methods have been classi�ed according to how they work. Heuristics and partialorder simulation methods have been implemented in the SaMsTaG tool. Their usefulness for testgeneration is shown by the results of some experiments. Together with Swiss PTT we started to applySaMsTaG to the B-ISDN protocol SSCOP. During the test suite development we intend to implementmentioned optimization strategies.References[1] P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems { An Approach to the State-Explosion Problem (Preliminary Version). PhD thesis, Universite de Liege, October 1994.[2] J. Grabowski. Test Case Generation and Test Case Speci�cation with Message Sequence Charts. PhD thesis,University of Berne, Institute for Informatics and Applied Mathematics, February 1994.[3] J. Grabowski, D. Hogrefe, and R. Nahm. Test Case Generation with Test Purpose Speci�cation by MSCs. InO. Faergemand and A. Sarma, editors, SDL'93 - Using Objects. North-Holland, October 1993.[4] D. Hogrefe. Estelle, LOTOS und SDL - Standard Spezi�kationssprachen f�ur verteilte Systeme. Springer Verlag,1989.[5] D. Hogrefe. OSI formal speci�cation case study: The INRES protocol and service. Technical Report IAM-91-012, University of Berne, May 1991. Update May 1992.[6] G. Holzman. Design and Validation of Computer Protocols. Prentice-Hall International, Inc., 1991.[7] ISO/IEC JTC 1/SC 21 N. Information Technology - Open Systems Interconnection - Conformance TestingMethodology and Framework. International Multipart Standard 9646, ISO/IEC, 1992.[8] ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.100: Speci�cation and Descrip-tion Language (SDL) (formerly CCITT Recommendation Z.100). ITU, Geneva, June 1992.[9] R. Langerak. True concurrency models for LOTOS. In D. Hogrefe and S. Leue, editors, FORTE'94 - TutorialNotes, October 1994.[10] R. Nahm. Conformance Testing Based on Formal Description Techniques and Message Sequence Charts. PhDthesis, University of Berne, Institute for Informatics and Applied Mathematics, February 1994.[11] D. Toggweiler. E�cient Test Generation for distributed systems speci�ed by automata. PhD thesis, Universityof Berne, May 1995.[12] D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulation of SDL speci�cations. In A. SarmaR. Braek, editor, SDL'95 - with MSC in CASE, North-Holland, September 1995.


