
Quality-of-Service TestingSpecifying Functional QoS Testing Requirements by using MessageSequence Charts and TTCNJens Grabowskia and Thomas WalterbaMedizinische Universit�at zu L�ubeck, Institut f�ur Telematik, Ratzeburger Allee 160, 23538 L�ubeck,e-mail: jens@itm.mu-luebeck.debEidgen�ossische Technische Hochschule Z�urich, Institut f�ur Technische Informatik und Kommunikationsnetze,ETH Z�urich/Geb�aude ETZ, 8092 Z�urich, Schweiz, e-mail: walter@tik.ee.ethz.chAbstractWith the upcoming use of multimedia systems, quality-of-service (QoS) architectures and QoS testinghave become a research topic. QoS testing refers to assessing the behavior of a system performingmonitoring of negotiated QoS parameter values. QoS testing extends OSI conformance testing sincenon-functional properties have to be tested, too. We identify requirements for a QoS test speci�cationlanguage and evaluate existing languages against these requirements. We propose the combined useof TTCN (Tree and Tabular Combined Notation) and MSC (Message Sequence Chart) for specifyingfunctional QoS testing requirements. In our approach we use MSC for a high-level overview of thetest system components and their respective interactions that are de�ned in a TTCN test suite. Forspecifying non-functional requirements, e.g., time constraints, we elaborate on a real-time version ofTTCN.1 IntroductionQuality of Service (QoS) de�nes a contract between applications and a service provider or communicationsystem to provide a communication service that meets certain quality requirements which respect tothroughput, delay, delay jitter etc. Negotiation of QoS parameter values is done between applicationsand service provider. A QoS semantics de�nes the procedures how QoS parameter values are negotiatedand how the actual QoS parameter values are handled or are enforced during the lifetime of a connection.1For performing the latter, QoS monitoring functions have to be implemented in the service provider.QoS testing refers to assessing the behavior of a service provider performing QoS monitoring functions.It is not necessary to control and observe the QoS monitoring component directly. It su�ces doing thisimplicitly. Assuming that applications have agreed on a set of QoS parameter values and that the serviceprovider supports a speci�c QoS semantics, i.e., that a connection is aborted if the negotiated QoS cannotbe guaranteed further. A lowering of a negotiated QoS parameter, thus, should be detected by the serviceprovider and, subsequently, the connection should be aborted. Therefore, a test case speci�cation forQoS testing has to cover functional requirements, i.e., negotiation of QoS parameter values and dataexchange over an established connection, and non-functional requirements,i.e., the amount of QoS valuevariation necessary to observe the de�ned behavior of the service provider.Functional requirements de�ne the interactions between a system under test (SUT) and a test system.An SUT is meant to be an implementation under test (IUT), e.g., an implementation of a service provider,together with an underlying communication facility, e.g., an ISDN or ATM network. A test systemcomprises all soft- and hardware components necessary to run the tests on the SUT. Interactions are1A brief summary on these QoS issues can be found in [16].1



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 2de�ned as sequences of stimuli to be sent to an SUT and the foreseen responses of an SUT. Within theISO/IEC standard 9646 Conformance Testing Methodology and Framework [7] stimuli to and responsesfrom the SUT are either abstract service primitives (ASP) or protocol data units (PDU).Non-functional requirements are often related to time constraints.2 In the case of QoS testing timeconstraints are related to the behavior of an SUT and a test system. These time constraints have tobe guaranteed during a test run in order to reach a speci�c test purpose. Time constraints for the testsystem are needed for driving the SUT into states where the foreseen behavior according to a speci�c QoSsemantics can be checked. For instance, a test system may show a behavior which violates some of theactual QoS parameter values so that re-negotiation of these QoS parameter values has to be performed.Time constraints may be related to a single PDU or ASP, e.g., an SUT has to reply to a connectionrequest within some time limit, or to a computation phase which may include the exchange of severalPDUs or ASPs, e.g., if throughput is a negotiated QoS parameter then within some time limits an SUTmust be able to receive and to process a number of PDUs or ASPs.The speci�cation of a test case for QoS testing starts with de�nition of the functional requirements.The functional test speci�cation will be enhanced by time constraints imposed by non-functional re-quirements. The language which is used for the functional QoS test speci�cation should also facilitateexpressing non-functional requirements. This means we need a language which� allows the description of static test information, i.e., the declaration of types, constants, variables,PDU and ASP types, and constraints on PDU and ASP parameter values,� allows the de�nition of dynamic test information, i.e., the exchange of PDUs and ASPs betweenSUT and test system in a structured, intuitive and unambiguous manner,� supports the treatment of test speci�c information, for instance, test verdicts which indicate whetheran SUT conforms to the relevant protocol requirements, and� includes facilities to express non-functional requirements, like time constraints.The test speci�cation language recommended by ISO and ITU-T for the description of conformancetest suites for OSI protocols is the Tree and Tabular Combined Notation (TTCN) [8]. TTCN has twosyntax forms: a graphical and textual machine processable form. In this paper we concentrate on thegraphical form.The graphical form of TTCN gives static, dynamic and speci�c test information in form of tablescontaining textual information. Practice has shown that real test cases may consist of several hundredsof TTCN tables. Practice has also shown that it is possible to express tests for functional requirementsby means of TTCN, but that the notation is not very intuitive, even if tools are used. Furthermore,TTCN is meant to be a notation and not a language. This means that TTCN has an informal semanticsde�nition only which includes severals aws and ambiguities [1]. Particularly, the description of timeconstraints is a problem in TTCN. For QoS testing TTCN is, therefore, not suitable.A second language candidate for covering the functional requirements of QoS testing is MessageSequence Chart (MSC). MSC is a formal language recommended by the ITU-T in Z.120 [18]. MSC alsodistinguishes a graphical and a textual form. In contrast to TTCN, MSC has a formal semantics de�nitionbased on basic process algebra [12, 19]. MSC can be characterized as a trace language which concentrateson message interchange of communicating entities (such as services, processes, or protocol entities) andtheir environment. An advantage of an MSC is its clear graphical layout which immediately gives anintuitive understanding of the described system behavior. MSC has already been used successfully inconformance testing for test purpose de�nition [2], but also for the de�nition of the PDU and ASPexchange between SUT and test system [4].MSC is not meant to be a test speci�cation language. Therefore, static and speci�c test informationcannot be expressed adequately. Furthermore, time is not covered in the formal MSC semantics. We2Besides time constraints non-functional requirements may also be related to error rates, connection establishment failureprobability, or security requirements.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 3

PCO

TCP

TCP

PCO

TCP

PCO

PCO
ASP ASP

ASP

PDU

PDU

PDU

PCO

ASP

PCO
ASP

LTCF

Service Provider

ASP

UT2LT2

LT3 UT3

UT1LT1

IUT

CP

CP
CP

CP
CM CM

CM CM

CM

CP CP
CM

Figure 1: Multi party Testing Context [9].conclude that MSCs are useful for an abstract test speci�cation in an intuitive and, due to its semantics,unambiguous manner, but MSCs cannot be used for the speci�cation of non-functional requirements asfound (and discussed above) in QoS testing.In this paper we propose a combination of TTCN and MSC for specifying the functional aspects ofQoS testing. Sections 2 and 3 give a brief introduction to concurrent TTCN and MSC, respectively.Their combined usage for test speci�cation is discussed in Section 4. QoS testing issues and real-timerequirements are covered in Section 5. We elaborate on a real-time extension of concurrent TTCN and,�nally, conclude with a summary.2 Concurrent TTCNFor the purpose of this paper we restrict our attention to concurrent TTCN (for short TTCN) [10]concepts related to the description of the dynamic test case behavior. Further details on TTCN can befound in [8, 10, 11, 13, 14].2.1 Concurrent TTCN Testing ArchitectureTTCN supports the de�nition of complex test con�gurations, called multi party testing contexts, likethe one shown in Figure 1. A multi party testing context consists of several concurrently running testcomponents (TC). We distinguish between TCs providing the functionality of a lower tester (LT), anupper tester (UT), and the lower tester control function (LTCF). The LTCF is responsible for the creationof all lower and upper tester components. The SUT which is driven by the TCs consists of the IUT andan underlying service provider.TCs are connected by coordination points (CP) through which they exchange coordination messages(CM). The rules that govern the exchange of CMs and, furthermore, the coordination between LTs and



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 4Test Case Dynamic BehaviorNr Label Behavior Description Constraints Ref Verdict Comments1 CP ? CM connected RECEIVE2 Start timer Timer operation3 L1 ? TIMEOUT TIMEOUT4 +QoSViolation ATTACH5 L ! Datareq data SEND6 -> L1 GOTOFigure 2: TTCN test case description for Lower Tester B ChannelTest Case Dynamic BehaviorNr Label Behavior Description Constraints Ref Verdict Comments1 [disconnected] Boolean2 +ISDN ConnectionSetUp ATTACH3 [connected]4 CP ! CM connected SEND5 +ISDN DisconnectionFigure 3: TTCN test case description for Lower Tester D ChannelUTs are de�ned in test coordination procedures (TCP).Communication between TCs and SUT is performed via points of control and observation (PCO)through which they exchange ASPs.3 PCOs and CPs are meant to be unbounded and bi-directionalFIFO channels which allow an asynchronous message exchange in both directions.2.2 Test Case Dynamic Behavior DescriptionsA TTCN test case describes the dynamic behavior of TCs during test execution. A dynamic behaviordescription consists of statements and verdicts. A verdict is a statement concerning the conformance ofan IUT with respect to the sequence of test case events that was performed. Every execution of a testcase results in a verdict assignment.Statements can be grouped into statement sequences and sets of alternatives. In the graphical formof TTCN, sequences of statements are identi�ed by di�erent levels of indentation. Statements on thesame level of indentation are alternatives. Examples for TTCN behavior descriptions can be found inFigure 2 and 3. The �gures will be referred to by the test case example provided in Section 4. TTCNdistinguishes between test events, constructs and pseudo events.Test events are RECEIVE and SEND events. RECEIVE events denote the reception of ASPs, PDUs,and CMs from PCOs and CPs. SEND events describe the sending of ASPs, PDUs and CMs to PCOsor CPs. Test events may be quali�ed by Boolean expressions and may be followed by a combination ofassignments and timer operations.Constructs are used to create TCs, to guide the ow of control in test cases and to give test casesa modular structure. For the latter TTCN provides the ATTACH mechanism that allows to attach(sub)behavior descriptions, called test steps, to a test case. The ow of control in a test case canbe modi�ed by using either the GOTO or REPEAT construct. CREATE is a construct used for thecreation of TCs. The CREATE operation associates a TC with a behavior tree. If the behavior tree isparameterized the CREATE operation passes also actual parameters for formal parameters. The createdTC runs in parallel with all other TCs.Pseudo-events are quali�ers (i.e. Boolean expressions), assignments and timer operations.3TTCN also allows to specify test cases on a more abstract level by specifying the exchange of PDUs. For implementingsuch a test speci�cation all PDUs have to be encoded in ASPs.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 52.3 Test Case ExecutionA behavior tree [8, 10] de�nes the relative ordering of statements that a TC executes. A statementis executed if a statement is successful. A statement is successful under the following conditions: AREPEAT and a GOTO is always successful. A SEND event, an assignment and a timer operation arealways successful provided that the optional Boolean quali�er holds. A RECEIVE event is successfulif an ASP, a PDU or a CM can be received from the speci�ed PCO or CP and the ASP, PDU or CMreceived matches the constraint and provided that the optional quali�er holds. A CREATE operation issuccessful if the TC created is not executing already. A quali�er is successful if it evaluates to true. ATIMEOUT event is successful if the speci�ed timer has expired.Alternatives of a set of alternatives are evaluated one after another starting with the �rst alternativeuntil one alternative is successful. If an alternative is successful it is executed and test execution proceedsto the next set of alternatives. If no alternative is successful, the evaluation is repeated starting againwith the �rst alternative. Before a set of alternatives is evaluated, the current state of a test system isfrozen or, as stated in [8], a snapshot is taken: all PCO and CP queues and expired timer lists are updatedand during evaluation of a set of alternatives no updates are performed. In a speci�c sense evaluation ofa set of alternatives is an atomic action. Test case execution terminates when a �nal verdict is assignedor a leaf in the behavior tree is reached.2.4 Concurrent TTCN and Real-Time ConstraintsIn concurrent TTCN a discrete time model is assumed where time is counted in time units of arbitrarygranularity (from picoseconds to minutes). Whenever a timer is de�ned or is started a timeout valueis associated with that timer. The status of a timer can be checked in a set of alternatives using theTIMEOUT event. However the time model is not assumed to be used for de�ning real-time requirementsin test cases. To give an example we consider the semantics of a TIMEOUT.Whenever a timer expires this has no immediate inuence on the execution of a test component. Evenif the timer expires while evaluation of a set of alternatives is in progress, expiration of the timer is notvisible as the expired timers list is only updated when the next snapshot is taken.Furthermore, the time model of concurrent TTCN cannot be used for the de�nition of real-timerequirements of the test system itself since we cannot predict the execution of TTCN statements, latencyof communication between test components, the transmission time of coordination messages etc. This ismainly because we cannot establish a relation between the underlying time model and concurrent TTCNon a syntactical and semantical level.3 Message Sequence ChartsMessage Sequence Chart (MSC4) is a means for the graphical visualization of selected system runs ofcommunication systems. Since 1990 MSC evolved from an informal notation to a formal descriptionlanguage with complete syntax and semantics de�nitions [18, 19]. The language de�nition includes twosyntactical forms: a pure textual and a graphical representation. In this paper we focus on the graphicalform. The new 1996 version of the MSC language supports the combination of MSCs by means ofoperators. This allows to describe more complex system behavior and makes MSC usable for test casespeci�cation. This section includes a brief overall view of the MSC language and describes strengths andproblems of specifying test cases by means of MSC.3.1 Basic MSCFigure 4 (a) presents an example of a basic MSC. It describes the message ow between the systemenvironment and the instances A and B. The diagram frame denotes the system environment. Instancesare represented by vertical axes and messages are described by horizontal arrows. An arrow origin and4The term MSC is used for a diagram written in the MSC language and the language itself. Where necessary, wedistinguish between both by using the terms MSC language and MSC diagram.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 6
msc BasicConcepts

A B

S4

State1

T1

Update

S1
S2

S3(a)
A

alt

T1

T1

S7

S8

S1

msc StructuralConcepts

B

S3

S4
BasicConcepts

S5

S6

S5(b)
msc SetupLoop

connected

Connection

Failure

disconnected

(c)Figure 4: MSC examplesthe corresponding arrow head denote sending and consumption of a message. In addition to the messagename, parameters may be assigned to a message. All events along an instance axis are totally ordered.The order of events on di�erent instance axes is mediated by the messages, i.e., a message must be sentbefore it can be received. The inscribed rectangle in Figure 4 (a) describes an instance action, i.e., alocal activity, of instance A. The inscribed hexagon which covers the instances A and B is a condition. Itdenotes the state State1 which the covered instances have in common. The hour glass denotes the settingof a timer with the name T1. Examples for the corresponding reset and timeout constructs can be foundin Figure 4 (b). A cross denotes the reset of a timer and a hour glass with corresponding arrow describesa timeout. Further basic constructs of the MSC language are instance creation, instance termination,and the order of events along an instance axis (coregion).3.2 Structural Concepts and HMSCIn this section we describe MSC language elements for structuring and combining MSC descriptions.These are MSC references, inline expressions, and High-level MSC (HMSC).AnMSC reference refers to another MSC which de�nes the meaning of the reference, i.e., the referenceconstruct can be seen as a placeholder for an MSC diagram. For example, the MSC in Figure 4 (b)includes a reference to the MSC BasicConcepts in Figure 4 (a). In our example the connection betweenthe messages of MSC BasicConcepts and MSC StructuralConcepts is done implicitly, i.e., via messagenames. In case of ambiguities the connection can be de�ned explicitly via gates.MSC inline expressions can be used to relate MSC sections by means of operators in order to specifymore complex system behavior. Figure 4 (b) includes an example. The inline expression is describedby means of a rectangle. The operator name, in our example alt, can be found in the upper left corner.Di�erent MSC sections are separated by dashed lines. In the example there are two MSC sections whichare related by means of the alternative operator. This means they describe alternative system runs,i.e., when the MSC is executed only one of the alternative sections will be executed. In addition tothe alternative operator the MSC language de�nition supports the operators loop, option, exception, andparallel.High-level MSC (HMSC) denotes a special class of MSC diagrams. An HMSC de�nes graphicallyhow a set of MSC is combined. An HMSC is a graph where each node is either a start symbol (5,there is only one start symbol in each HMSC), an end symbol (4), an MSC reference (Section 3.1), acondition (Section 3.1), or a parallel frame (i.e., a frame including MSCs which are performed in parallel,e.g., Figure 6 (a)). HMSC symbols are connected by means of ow lines. They indicate the possiblesequencing among the nodes in the HMSC. An HMSC example can be found in Figure 4 (c). The �rstsymbol reachable from the start node is the condition disconnected. This implies that if the following



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 7MSC, i.e, denoted by the reference to Failure, starts with initial condition that it has to be a disconnected.After the execution of Failure this MSC may be executed again (indicated by the ow line back to thedisconnected condition), or the MSC Connection will be performed. If Connection is executed the HMSCwill end up in a connected state. For consistency, it is required that if Connection runs into a �nalcondition, it has to be a condition connected.3.3 MSC and test case speci�cationThere exist several attempts to use MSC for test case speci�cation [2] and test case implementation [4].These attempts make use of the clear and intuitive understanding of MSC diagrams, but, have to dealwith the problem that MSC is not meant to be a test speci�cation and implementation language, i.e.,concepts necessary for testing purposes are not implemented in MSC. For example, there exists (a) nonotion of test verdicts, (b) no possibility to specify types and constraints, i.e., instances of PDUs andASPs, (c) no possibility to describe variables and constants for test cases or test suites, and, (d) no notionof test architectures, PICS, and PIXT.In [2] and [4] additional assumptions and language extensions have been made in order to adapt MSCto the needs of testing. These approaches were successful, but, they are not general, i.e., they supportthe needs of special test speci�cation and test implementation procedures.On the one hand a main strength of an MSC is to provide a graphical representation of the overallcon�guration of a distributed system together with an example for the message exchange between thedi�erent system components. On the other hand MSC often allow no complete description of the systembehavior. Due to the numerous system runs possible, in most cases it is impossible to describe a dis-tributed system by means of all possible system runs. Instead, it is more suitable to specify the behaviorof each component separately.In the case of QoS testing, we propose to use MSC for providing an abstract and high level viewon test con�guration and the required message exchange. The behavior of individual test componentsshould be speci�ed by means of concurrent TTCN.4 Combing concurrent TTCN and MSCThe dynamic behavior of a test case in concurrent TTCN is given in a textual form distributed overseveral tables where every table contains the dynamic behavior description of a single test component.The combined behavior of test components is not described explicitly since concurrent TTCN does notprovide a means for representing the overall con�guration of test components and the temporal ordering oftest events graphically. As described in the previous section MSCs are quite useful for giving an abstract,high-level view of the system structure and the exchange of messages between instances. Combiningconcurrent TTCN with MSCs seems to be a feasible approach to enhance the readability of test casespeci�cations. In order to substantiate this claim we discuss an example.In ISDN (Integrated Digital Services Network) [5, 15] the basic subscriber interface provides two64 kbps (kilo bits per second) channels called B channels and one 16 kbps signaling channel called Dchannel. The B channels are used by applications for data exchange whereas the D channel is used forthe management of connections between users or application processes. Assuming that communication ofapplication processes is bound by a maximal end-to-end delay, this QoS requirement has to be enforcedwithin the communication system (Figure 5). Whenever the end-to-end delay becomes greater thanthe negotiated end-to-end delay, the communication system should indicate the violation of the QoSrequirement to the applications and abort the connection (using the signaling protocol on the D channel).A test case for testing compliance of the communication system on the B-subscriber5 site with theabove stated QoS requirement would involve three lower testers which control B and D channels on theA-subscriber site and one upper tester which replaces the application process on the B-subscriber site.Lower and upper tester are running in parallel, i.e., in concurrent TTCN they are described as testcomponents. The test components have to perform the following functions: connection establishment on5In ISDN the A-subscriber is meant to be the calling party. Thus, the B-subscriber is the called party.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 8
ISDN Network

Maximal End-to-end Delay
Application

D Channel

B Channels B Channels

D Channel

Application

System B (B-Subscriber)

Communication System

System A (A-Subscriber)

Figure 5: ISDN user interface
msc TestCaseOverview

ISDN-ConnectionSetUp

connected

QoS-negotiation

NormalDataTransfer

QoS-Violation

ErrorIndicationQoS-Violation

disconnected

ISDN-Disconnection

disconnected

(a)
SUT UT

Setup

Connect

ConnectAck

disconnected

disconnected

msc ISDN-ConnectionSetUp

LT-B1 LT-D

ConnectAck

SetupAck

SetupAck

Setup

LT-B2

(b)Figure 6: MSC description of the test case examplethe D channel, QoS negotiation on the D channel, data transmission on the B channels, and connectionabort on the D channel.The HMSC in Figure 6 (a) provides an overall view of the test case behavior. The functionalityis indicated by means of MSC references. Stable testing states6 are described by means of conditionsymbols.The test case starts in the stable testing state disconnected. An ISDN connection set up is performed.This is done by using the ISDN signaling protocol on the D channel. The MSC in Figure 6 (b) shows are�nement of this procedure. After connection establishment, i.e., the system is in a connected state, theQoS parameters have to be negotiated.In order to put the SUT into normal operation during a certain period of time, a normal data transferhas to be performed, i.e., all QoS parameters have to be kept. The behavior of lower tester controllingand observing the B channels comprises the sending and reception of data packets where sending a data6A stable testing state denotes a global system states where the system is stable until a tester process provides the nextinput.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 9packet means that a time stamp is generated and transmitted with the data packet to the SUT so thatthe SUT is able to calculate the end-to-end delay from the time stamp received and the local time of thereceiver's clock7.In the course of exchange of data packets the test components controlling the B channels on theA-subscriber site attempts to increase the end-to-end delay. This can be done by using an additionalbu�er for all messages to be sent or by producing 'incorrect' time stamps.Eventually, the SUT determines that the maximal end-to-end delay is not further guaranteed so thatthe connection have to be aborted. Thus, the SUT indicates the disconnection to the upper tester andsends an abort indication message to the lower tester which controls the D channel. The test case endsin a disconnected state.This example shows that the MSC language is suitable to increase the readability of test case de-scriptions. HMSCs provide a graphical means for an abstract overall view of the test case behavior andMSCs can be used to describe more detailed communication aspects, i.e., the concrete message exchangebetween SUT and TCs.The dynamic behavior of two test components for the provided test case example is partly provided bythe Figures 2 and 3. The overall view and the communication between all system components is hiddenin several tables. Each table describes just part of the behavior of one test component. Furthermore,besides lower and upper tester a fourth test component, the LTCF, has to be de�ned. It performs thetasks of the lower tester control function.5 QoS Testing and Real-TimeThe description of the test case example in the previous section is not complete. In order to test thebehavior of a communication system supporting maintenance of performance related QoS parameters,a test case description must also give information on the real-time ordering of test events. As we havealready argued in Section 2.4, concurrent TTCN cannot express real-time requirements. We propose anextension to concurrent TTCN so that real-time is incorporated in concurrent TTCN.On a syntactical basis we extend concurrent TTCN so that with every TTCN statement we associatea start time and an end time. Start time and end time are relative to the enabling of a TTCN statement.A TTCN statement becomes enabled whenever execution of a test case comes to the set of alternativeswhich includes that TTCN statement. Intuitively, execution of a TTCN statement should not start beforestart time and and should not end after end time. Evaluation of a set of alternatives is done as follows:Firstly, a snapshot is taken which also includes that the current (global) time is taken. Secondly, thealternatives are evaluated in sequential order. An alternative is successful under the conditions describedin Section 2.3 and if the current (global) time is greater than or equal the start time of the alternative.The alternative is executed and test case execution proceeds to the next set of alternatives on the nextlevel of indentation. If no alternative is successful a new snapshot is taken and evaluation of alternativesstarts again. A test case error occurs if no alternative is successful until the current (global) time haspassed the least end time of all alternatives.We assume that taking a snapshot, evaluation of alternatives and execution of a TTCN statementcoincide and are instantaneous, i.e., they do not consume time. With these assumptions the semanticsof real-time concurrent TTCN can be de�ned in terms of timed transition systems (TTS) [6].Applying real-time concurrent TTCN to the previously introduced example allows us to add thetiming information with each TTCN statement that is part of the description of lower tester of the Bchannel in Figure 3. Execution of the test case would result in a timed execution sequence where thetime between consecutive send test events is less than the negotiated maximal end-to-end delay exceptfor the last (couple of) test events which are delayed. Eventually, the connection between system A andB is aborted by system B which detects the violation of the negotiated maximal delay.7For simplicity we assume that all clocks are synchronized.



6.th GI/ITG technical meeting on 'Formal Description Techniques for Distributed Systems', June 1996 106 ConclusionIn the paper we discussed requirements for a QoS test speci�cation language. In turned out that noneof the currently de�ned language comply with all requirements identi�ed. Nonetheless, we have found acombination of concurrent TTCN and MSCs useful for test speci�cation. Furthermore, we have outlinedan extension of concurrent TTCN for specifying real time requirements. The extensions are de�ned on asyntactical and semantical basis. We will further elaborate on these extensions.We have started elaborating on multimedia conformance testing in 1995 in a project which we pre-sented in [16]. This paper puts further our initial ideas on a test speci�cation language for multimediaconformance testing.References[1] B. Baumgarten, Open Issues in Conformance Testing Test Speci�cation. In T. Mizuno, T. Higashino, andN. Shiratori, editors, Proceedings of the 7th IFIP WG6.1 International Workshop on Protocol Test Systems(IWPTS VII) in Tokyo (Japan), November 1994.[2] J. Grabowski, D. Hogrefe, R. Nahm, Test Case Generation with Test Purpose Speci�cation by MSCs. In:SDL'93 - Using Objects. North-Holland, October 1993.[3] J. Grabowski, T. Walter,Testing Quality-of-Service Aspects in Multimedia Applications, Proceedings of SecondWorkshop on Protocols for Multi-media Systems (PROMS), Salzburg, Austria, October 1995.[4] J. Grabowski, D. Hogrefe, I. Nussbaumer, A. Spichiger. Test Case Speci�cation Based on MSCs and ASN.1.In: SDL'95 - Proceedings of the 7th SDL Forum, Sept. 25 - 29, 1995, Oslo, Norway, North-Holland, Sept.1995.[5] F. Halsall, Data Communications, Computer Networks and Open Systems, Addison-Wesley, 1994.[6] T. Henzinger, Z. Manna, A. Pnueli, Timed Transition Systems, in Real-Time: Theory in Practice, LectureNotes in Computer Science 600, 1991.[7] ISO/IEC, Information technology - Open Systems Interconnection - Conformance testing methodology andframework - Part 1: General concepts, ISO/IEC 9646-1, 1994.[8] ISO/IEC, Information Technology - Open Systems Interconnection - Conformance Testing Methodology andFramework - Part 3: The Tree and Tabular Combined Notation (TTCN), ISO/IEC 9646-3, 1992.[9] ISO/IEC, Information Technology - Open Systems Interconnection - Conformance Testing Methodology andFramework - Part 2: Abstract Test Suite Speci�cation, ISO/IEC 9646-2, 1994.[10] ISO/IEC, Information technology - Open Systems Interconnection - Conformance testing methodology andframework - Part 3: The Tree and Tabular Combined Notation (TTCN): Amendment 1: TTCN Extensions,ISO/IEC 9646-3 DAM 1, 1993.[11] R. Linn, Conformance Evaluation Methodology and Protocol Testing, IEEE Journal on Selected Areas inCommunications, Vol. 7, No. 7, 1989.[12] S. Mauw, M. A. Reniers, An Algebraic Semantics of Basic Message Sequence Charts. In: The ComputerJournal (Special Issue on Process Algebra), 36(5), 1993.[13] R. Probert, O. Monkewich, TTCN: the international notation for specifying tests of communications systems,Computer Networks and ISDN Systems, Vol. 23, 1992.[14] Sarikaya, B., Conformance Testing: Architectures and Test Sequences, Computer Networks and ISDN Systems,Vol. 17, 1989.[15] A. Tanenbaum, Computer Networks, Prentice-Hall, 1989.[16] T. Walter, J. Grabowski, Towards the new Test Speci�cation and Implementation Language 'TelCom TSL', 5.GI/ITG Fachgespr�ach Formale Beschreibungstechniken f�ur verteilte System, Kaiserslautern, June, 1995.[17] IUT-T, Speci�cation and Description Language { SDL, ITU-T Recommendation Z.100, 1992.[18] ITU-T, Message Sequence Chart (MSC), ITU-T Draft Recommendation Z.120, 1996.[19] ITU-T, Message Sequence Chart - Algebraic Semantics, ITU-T Rec. Z.120 Annex B, Publ. sched.: May 1995.


