

HyperMSCs with Connectors for Advanced
Visual System Modelling and Testing

Jens Grabowski1, Peter Graubmann2, and Ekkart Rudolph3

1 Universität zu Lübeck, Institut für Telematik
Ratzeburger Allee, D-23538 Lübeck, Germany

grabowsk@itm.mu-luebeck.de
2 Siemens AG, Corporate Technology, Software and Engineering

Otto-Hahn-Ring 6, D-81739 München, Germany
peter.graubmann@mchp.siemens.de

3 Technische Universität München, Institut für Informatik
Arcisstraße 21, D-80290 München, Germany
rudolphe@informatik.tu-muenchen.de

Abstract. Experiences with the use of the MSC language for complex
system specifications have shown that certain extensions are necessary in
order to arrive at sufficiently transparent and manageable descriptions.
Extended HMSCs, where MSC reference symbols may either be pre-
sented by hypertext-like descriptions or, in an expanded form, as detailed
MSCs, appear to be especially suitable for a compact and transparent
MSC representation. For an effective usage of such advanced MSC con-
structs, a corresponding tool support seems to be mandatory where inter-
actively the event structures of special paths can explicitly be expanded
while others remain hidden as MSC references that contain solely tex-
tual descriptions. The name ‘HyperMSCs’ is proposed for such extended
HMSCs. Beyond that, the communication between MSC references, oper-
ator expressions or HMSCs demands a generalisation of the gate concept.
For that purpose, the introduction of MSC connectors denoting logical
connections is suggested. MSC connectors may be expanded similar to
MSC references. HyperMSCs enhanced by MSC connectors also provide
a means for a selected visualisation of large MSCs in an interactive man-
ner where, depending on the current selection, some parts are exhibited
in full detail whereas other parts are presented in an abbreviated form.
The same concepts may be applied for system modelling based on step-
wise refinement starting with HyperMSCs, decomposed instances and
MSC connector communication and for system testing.

1 Introduction

While Message Sequence Charts (MSCs) without any doubt are amongst the
most popular and successful description techniques now, their real potential has
not yet been exploited. Although the MSC language [8, 15, 22] contains very
powerful composition mechanisms and other structural concepts, the language
is still used essentially to define a set of sample behaviours. However, with the

130 J. Grabowski, P. Graubmann, E. Rudolph

increasing popularity of the MSC language, a more comprehensive application
is demanded by some user communities. Recently, MSCs have been applied for
a graphical presentation format for TTCN-3 test cases [16, 17, 19] and appears
more intuitive than the tabular presentation format of TTCN-3. Experience
with a comprehensive MSC based specification has shown that the MSC lan-
guage needs certain extensions to facilitate reading and understanding of MSC
diagrams, and to support and ease the handling of MSC documents. These exten-
sions are strongly related to a corresponding advanced tool support. Hypertext-
like mechanisms have been suggested for an appropriate handling of large MSC
documents [6, 16, 17]. Because of this hypertext analogy, the term ‘HyperMSC’
has been introduced.

More generally, HyperMSCs can be viewed as a means for a selective detailed
visualisation of certain parts of MSC, and consequently a hiding of other parts.
With suitable tool support, such a selective visualisation may be quite flexible:

– MSC references may be folded and unfolded presenting their contents in a
highly interactive manner; or

– decomposed instances can be used as a special kind of MSC reference to
hide the message interaction description between selected instances if these
messages actually are not in the focus of interest.

In addition to MSC references interpreted in a hypertext-like manner, the
introduction of the MSC connector concept into the MSC language may be
valuable for the same purpose. For complex MSC operator expressions MSC
connectors have been proposed as a generalisation of the gate concept in [12, 13].
They may be used quite generally for the hiding of the detailed description of the
message flow between MSC references or decomposed instances. Furthermore,
MSC connectors may be used to predefine communication patterns that could
be re-used in different places thus providing for the compositionality of MSC
specifications.

In the next section, a brief description is given of the MSC presentation
format developed for TTCN-3 test cases at ETSI. This provides a motivation
for the concepts of HyperMSCs and MSC connectors. Within Sect. 3, the concept
of HyperMSCs is elaborated and demonstrated using an example of the CCBS
service specification. Sect. 4 is dedicated to the introduction and elaboration of
the MSC connector concept and in particular to the inclusion of MSC connectors
into the HyperMSC concept. In Sect. 5, a summary and outlook is provided.

2 Motivation: A HyperMSC-Based Presentation Format
for TTCN-3 Test Suites

An MSC-based presentation format for TTCN-3 [19] has been developed as
part of the ETSI Specialist Task Force on “Specification of a Message Se-
quence Chart/UML format, including validation for TTCN-3” – [16, 17, and
ETSI STF 156]. Experiments with different variants of MSC representations

HyperMSCs with Connectors 131

have shown that extensions of the MSC language are required in order to obtain
a sufficiently transparent and readable MSC test description.

The most obvious and straightforward way to represent TTCN test cases
by MSC diagrams would be to use inline operator expressions for alternatives,
iterations, etc. Practice has shown that apart from simple cases, such a naive
translation does not lead to diagrams that are easy to read and understand. In
particular, inline operator expressions obscure the message flow for important
cases: paths leading to a PASS verdict (PASS cases) are mixed with INCONC
cases (paths leading to an INCONCLUSVE verdict) and FAIL cases (paths lead-
ing to a FAIL verdict).

The obvious drawback of this representation is the fact that PASS, INCONC,
and FAIL cases are all presented in the same way. Certainly, it would be advan-
tageous to have a means to emphasise the PASS cases in the test representation.
The MSC language already contains several structuring mechanisms, and for
this special purpose, the MSC reference mechanism seems to be suited. To high-
light the PASS cases, all other cases may be represented as MSC references. Yet
this notation has an immediate drawback: without explicitly looking into the
definitions of the referenced MSCs, there is no immediate information about the
hidden cases. This means that, the representation of the complete test case is
not very intuitive except for the presented message exchange.

A much more satisfactory representation is obtained if a comment together
with the test verdict is included in the MSC reference symbols instead of refer-
ence names. However, in the case of many alternatives the resulting represen-
tation is still not sufficiently transparent. As a general rule, inline expressions
should be used only in a very limited manner and remain restricted to one or
two alternatives or loops. In more complex situations, HMSCs are much more
transparent since they abstract from details and focus on the compositional
structure. However, if the inline representation is translated into an HMSC, we
are faced with the problem to represent the expanded parts because (according
to the standard) an HMSC contains only non-expanded MSC reference sym-
bols. In order to overcome this deficiency, HyperMSCs are introduced which
admit expanded MSC references within the HMSC formalism [10]. By shifting
the branching points to the borderline, the PASS case is shown in expanded
form in a coherent manner whereas the INCONC and FAIL cases are indicated
as non-expanded MSC references. With advanced tool support the roles of the
PASS and the INCONC cases may be changed interactively, and the HyperMSC
document becomes a powerful tool for reading, presenting and analysing test
cases.

A significant difference between TTCN and MSC shows itself in the be-
haviour description of several test components. TTCN-3 defines the behaviour
of components of the same test case in separate functions. In corresponding
MSCs this partitioning results in test component specifications that are merged
by join operations. For an appropriate specification of such a join operation, an
MSC connector has been proposed which allows description of the exchange of
co-ordination messages among test components on a suitable level of abstraction.

132 J. Grabowski, P. Graubmann, E. Rudolph

HyperMSCs and MSC connectors are general concepts that allow an intuitive
presentation of comprehensive communication patterns and behaviour. Their us-
age will not be restricted to the testing community only and thus, both concepts,
we propose, should find their way into the MSC language.

3 From HMSCs to HyperMSCs

In the case of a great number of alternatives, the inline branching constructs for
MSCs are not very transparent. In particular, they obscure the presentation of
the complete message flow. In UML Sequence Diagrams, there is a tendency to
indicate branching and iterations at the borderline of the diagram either using
special graphical constructs, such as for loops, or even using a program-like
form. In this way, the diagrams may be focussing on the representation of the
pure message flow. In practice, however, such a notation again soon becomes
quite intricate and clumsy, particularly for nested alternatives or loops. In the
following, we re-formulate High Level MSCs (HMSCs) in such a way that they
serve for a similar purpose. The obtained notation turns out to be very intuitive
and simple, even in more complicated situations.

HMSCs describe the composition of MSCs as a graph with MSC references
and conditions as nodes [10, 15]. This way, they abstract from instances and
messages which are not shown in the diagram. Each MSC reference has a name.
Its meaning is given by a corresponding MSC with the same name defined in
another place in the same MSC document. HMSC diagrams with many references
that refer to many fairly small MSC definitions, soon become again quite complex
and difficult to maintain and handle.

In order to arrive at user-friendlier handling, HMSCs may be re-interpreted
in a way that has an analogy in hypertext-like specifications. MSC references
may be shown optionally also in an expanded manner within the HMSC and
non-expanded MSC references may contain hypertext-like descriptions instead of
pure reference names [6, 16]. This implies a real extension of the MSC standard,
but essentially concerns the handling and the graphical layout only: it has no
effect on the semantics. Thereby, we assume a corresponding tool support where
the MSC references can be interactively expanded within the HMSC in which
they are contained or are possibly in a separate window (for example double
clicking into an MSC reference symbol to fold or unfold it, etc.). Obviously, in
this context tools should have appropriate mechanisms and adequate means to
define MSC references inline.

Drawing expanded MSC references in HMSC presentations has been already
suggested in [10], but without the additional dynamic mechanisms of the Hy-
perMSCs, this only inflates the diagrams and makes them even harder to un-
derstand. In addition, gates were introduced in [10] which proves to be not
completely appropriate. Our proposed solution for this problem is the connector
concept which will be presented in Sect. 4.

In Fig. 1, the concept of HyperMSCs is indicated schematically. Fig. 1(a)
shows an HMSC with connection points between the MSC references R1 and

HyperMSCs with Connectors 133

R2/R4 and between the MSC references R2 and R3/R5. In Fig. 1(b) the MSC
references R1, R2, and R3 appear in expanded form within the HMSC diagram.

(a)

msc presentation_example

R1

R2

R3

R5

R4

A B

R1

A B

R2

A B

R3
R5

R4

msc presentation_example

(b)

(c)

msc presentation_example

A B

R1, R2, R3

R5

R4

Fig. 1. Various representations of one HyperMSC
(a) as HMSC,
(b) with expanded MSC references,
(c) with expanded MSC references as coherent “path of interest”.

The HyperMSC that results if we only admit expanded MSC references still
has the drawback that the main event flow usually is split into many separate
parts. In the case of many alternatives describing exceptional or erroneous be-
haviour, this splitting is very disturbing since it is not possible to show the main
flow in a coherent manner in expanded form. One would like to have a coherent
expanded representation of a whole path not only in a separate window, but
also in inline-form within the HyperMSC itself. Therefore, a further extension of
HMSCs has been suggested which somehow may be viewed also as a unification
of High Level MSCs and plain MSCs. Several expanded MSC references, which
are interrupted by branching points, may be combined to one coherent MSC
reference. As a consequence, the branching (or connection) points have to be
shifted to the borderline of the resulting MSC reference. In Fig. 1(c), the MSC
references R1, R2 and R3 are combined to one coherent message flow while the
connector points are shifted to the borderline.

134 J. Grabowski, P. Graubmann, E. Rudolph

Such a coherent representation is possible also in the case of cyclic or com-
pound HMSCs, and thus may cope with much more complex situations than just
few alternatives. For nested alternatives the hierarchical structuring of HMSCs
is a major advantage. HMSCs are hierarchical in the sense that a reference in
an HMSC may again refer to an HMSC.

Particular attention has to be paid to keep the different appearances of the
MSC references identified. Within HyperMSCs, MSC references can be displayed
in several ways:

1. as MSC reference symbol with the proper name of the reference inscribed
(see Fig. 1(a));

2. as MSC reference symbol with an explanatory text, the inscription (see
Fig. 3(b));

3. as expansion of the MSC reference (see Fig. 1(b) and (c)).

One may imagine other representations as well: program code fragments rep-
resenting the behaviour of the MSC, TTCN-3 test definitions, etc. However, it
is important, that in all but the case (1), the MSC reference name is attached
additionally to the presentation, to unambiguously identify expanded elements.
There are several possibilities to attach the MSC reference name (see Fig. 1(b)
and (c) where the names of the expanded elements are placed on top of the
expansion, or Fig. 6 where the reference to the expanded MSC references is to
be found after the dashed line which separates the expansion from the previous
one).

It has to be pointed out, that the expansion of MSC references within the
HyperMSC concept is not purely a tool issue, but means a real graphical exten-
sion of the MSC language because MSC reference symbols containing detailed
MSCs are not allowed in the MSC standard language. This extension is in our
view most important since the dynamics behind the HyperMSCs (the expanding
and folding of MSC references, etc.) is an essential means to increase the under-
standability of MSC diagrams, in particular if self-contained parts of a system
have to be described completely.

The concept of HyperMSCs can also be carried over to MSC operator ex-
pressions. For that, we want to recall the relation between MSC operator and
inline expressions. As can be seen in Fig. 2, inline expressions just describe un-
folded MSC reference operator expressions. For MSC operator expressions the
unfolding is well established (except for the operator seq).

3.1 Integration of HyperMSC into the MSC Language

HyperMSCs provide the concepts for an MSC presentation that allow an inter-
active folding or unfolding of parts of the MSC diagrams. Of course, the full
benefits of these concepts can be only realised with adequate tool support. In
general, it has to be decided manually what is to be folded and what is to be dis-
played in full detail. However, sophisticated tools may analyse HMSCs and MSC
diagrams and display them in an optimal form (according to built-in strategies

HyperMSCs with Connectors 135

(a)

(c)

msc ref

A B

b

a

msc operator_example

loop ref

msc operator_example

loop

b

a

A B

(b)

Fig. 2. Expansion of an MSC operator expression
(a) with its MSC reference (b) by means of an inline expression which results in (c).

or user predefinitions). For tool interaction and the exchange of diagrams, the
MSC/PR language plays an important role, thus, the HyperMSC concepts have
to be reflected in the textual presentation form, too. We propose the integration
of the HyperMSC concepts into the MSC/PR language by augmenting of the
MSC/PR with XML tags.

(a)

msc pr-form_example

Initialisation

MsgExchange Alternative Exception

Termination

msc pr-form_example

(b)

BA

msg_1

init_msg

response_1

term_msg

alternat.
message
exchange

B answers
with
exception

Alternative

Initialisation
MsgExchange
Termination

Exception

Fig. 3. HyperMSC presentation of an MSC
(a) completely folded; (b) partially expanded

A small example may provide a first idea of what an HyperMSC consistent
extension of the MSC/PR may look like. Fig. 3 shows two variants of the graphi-
cal representation of a HyperMSC. Fig. 3(a) is the classical HMSC presentation,
Fig. 3(b) is one of its graphical presentation variants with three expanded MSC
references and two folded ones, showing the explanatory ‘inscription’ in lieu of
the reference name.

The corresponding PR form is presented in Fig. 4. In addition to the basically
unchanged structural description of the HyperMSC, it contains the XML tag
hyperref which controls the GR form presentation of the MSC references. The
attributes of the hyperref tag are representation (indicating whether the MSC
reference is to be presented folded or unfolded, showing its proper name or with
an explanatory description attached, etc.), inscription (containing the text of

136 J. Grabowski, P. Graubmann, E. Rudolph

(a)

(b)

msc pr-form_example;
expr L1;
L1: <hyperref

representation=expanded&init
inscription=no-inscription
expansion='C:\>Initialisation.msc'>

(Initialisation) <\hyperref> seq (L2);
L2: connect seq (L3 alt L4 alt L5);
L3: <hyperref

representation=expanded&continued
inscription=’expected message exchange’
expansion='C:\>MsgExchange.msc'>

(MsgExchange) <\hyperref> seq (L6);
L4: <hyperref

representation=folded&inscription
inscription='alternat. message exchange'
expansion='C:\>Alternative.msc'>

(Alternative) <\hyperref> seq (L6);
L5: <hyperref

representation=folded&inscription
inscription=’B answers with exception’
expansion='C:\>Exception.msc'>

(Exception) <\hyperref> seq (L6);
L6: connect seq (L7);
L7: <hyperref

representation=expanded&continued
inscription=no-inscription
expansion='C:\>Termination.msc'>

(Termination) <\hyperref> seq (L8);
L8: end;
endmsc;

msc pr-form_example;
expr L1;
L1: <hyperref
 representation=folded&name
 inscription=no-inscription
 expansion='C:\>Initialisation.msc'>
 (Initialisation) <\hyperref> seq (L2);
L2: connect seq (L3 alt L4 alt L5);
L3: <hyperref
 representation=folded&name
 inscription=’expected message exchange’
 expansion='C:\>MsgExchange.msc'>
 (MsgExchange) <\hyperref> seq (L6);
L4: <hyperref
 representation=folded&name
 inscription='alternat. message exchange'
 expansion='C:\>Alternative.msc'>
 (Alternative) <\hyperref> seq (L6);
L5: <hyperref
 representation=folded&name
 inscription=’B answers with exception’
 expansion='C:\>Exception.msc'>
 (Exception) <\hyperref> seq (L6);
L6: connect seq (L7);
L7: <hyperref
 representation=folded&name
 inscription=no-inscription
 expansion='C:\>Termination.msc'>
 (Termination) <\hyperref> seq (L8);
L8: end;
endmsc;

Fig. 4. Textual representation (PR form) of the HyperMSC ‘pr-form example’ in Fig. 3

(a) textual representation of the completely folded HTML representation;
(b) textual representation of the partial unfolded variant of Fig. 3(b).

the explanatory description), expansion (referencing the location of the MSC
reference expansion), etc.

The instrumentation may not be restricted to special MSC language con-
structs. It should be possible to identify arbitrary parts of MSC and HMSC
diagrams that can be folded to HyperMSC references and when required can
be re-expanded. The HyperMSC mechanism adds the possibility to structure
information on the presentation level to the MSC language.

3.2 Usage of HyperMSC

HyperMSC is a means to emphasise selected behaviour and to abstract behaviour
alternatives that are currently less relevant. Hypertext-like inscriptions within
MSC reference symbols provide a natural interface to different MSC user com-
munities such as system designers, system developers and test engineers. For
system designers the HyperMSC concept provides a tool that allows specifying
system behaviour in the form of purely textual descriptions that later on are
refined into the form of concrete MSCs. For other user communities, Hyper-
MSCs may be used to guide the understanding and manipulation of MSCs by
emphasising behaviour relevant for the momentary analysis and investigation
and providing additional support in the form of explanatory descriptions placed
into MSC reference symbols instead of the MSC reference name.

As has been outlined in Sect. 3, the HyperMSC concept was stimulated by the
development of a graphical test format. However, HyperMSCs may in fact have a

HyperMSCs with Connectors 137

msc CCBS_MONITORING

REPLY_B_ Busy

USER_B_Busy

recall

SUSPENSION

REPLY _A_ Busy

USER _A_ Busy

CHECK_Status_B

REPLY _B_ Free

REPLY _B_Still_Free

REPLY _A_ Free

CCBS_Free

CCBS _Await_Status

CCBS _Activated

Status_Check_A

Fig. 5. CCBS example: Monitoring

much larger area of application. In Fig. 5 and Fig. 6, the usage of the HyperMSC
concept is demonstrated by means of an extract of the CCBS (Completion of
Calls to Busy Subscriber) service specification (ISDN) [15]. The HMSC in Fig. 5
which describes only a fairly small and simplified part of the CCBS service con-
tains already quite a considerable number of MSC references. Since in standard
MSC these MSC references are defined by separated MSC diagrams within the
MSC document, so that the representation consists of many small pieces rather
than providing a coherent view. As a consequence, such a specification would
fail the main purpose of the MSC language. Obviously, a much more satisfactory
and convincing representation is provided by means of the corresponding Hyper-
MSC in Fig. 6, in which the main path is shown in an expanded and coherent
manner. The side cases contained in the non-expanded MSC references may be
expanded individually in a hypertext-like manner. The chosen CCBS example
demonstrates that within HyperMSC alternatives as well as cyclic behaviour
may be represented in a convincing and transparent form, even in more complex
cases.

4 MSC Connectors

For a long time the MSC language only offered the communication pattern of
basic message exchange: a non-blocking asynchronous dispatch of information
from a sender to a receiver. The means to express a blocking synchronous com-
munication has only recently been introduced (see also [6, 14]). However, there

138 J. Grabowski, P. Graubmann, E. Rudolph

msc CCBS_MONITORING

SUSPENSION

REPLY_A_Busy

REPLY_B_Busy

USER_A_Busy

USER_B_Busy user_A network

T_CCBS4

T_CCBS1

from
basic call

Start_
CCBS_processing

FACILITY
(StatusRequest_Inv)

FACILITY
(StatusRequest free)

T_CCBS1

FACILITY
(RemoteUserFree)

Remote_User_Free) T_CCBS3

CCBS_ Await_Status

Status_Check_A

CCBS_ Free

reserve
B-channel

STATUS_B
(request)

to status
request
process

STATUS_B
(confirm_free)

from status
request
process

STATUS_B
(request)

to status
request
process

STATUS_B
(confirm_free)

from status
request
process

CCBS_Activated

CHECK_Status_B

REPLY_B_Free

REPLY_B_Still_Free

REPLY_A_Free

Fig. 6. CCBS example: Monitoring partially expanded

are not yet language constructs that provide for further abstractions of the infor-
mation interchange – in contrast to the well known MSC references and operator
expressions which serve as behaviour abstractions. The need for communication
abstractions, however, is obvious. There are three main reasons for their intro-
duction:

1. MSC language completeness: Behaviour abstractions indeed need the accom-
panying abstractions of the information exchange, which in this case is just
the well-defined folding of the messages coming in and going out of MSC
operator expressions (find more details below).

2. Practicability of MSCs for describing complex systems: To exploit MSCs as a
description technique for practical system design (beyond the mere specifica-
tion of a few exemplary behaviour traces), abstraction is still the key issue in
handling the system complexity. Compositionality and re-use are in the cen-
tre of modern description techniques, because today’s system development
is component oriented and deals with system families and product lines.
In this context, the communication between the parts of a system (compo-
nents, objects, etc.) will follow interaction patterns which are expressed in
the component oriented world as software connectors [11]. They are defined
once then implemented and then re-used over and over again (see system
families where interaction patterns are essential). MSC connectors mirror
these facts and allow separate definition of recurring interaction patterns

HyperMSCs with Connectors 139

and joint application with the other MSC abstractions. The same issue is
stressed in Sect. 2 where the adequate abstractions for the test descriptions
are presented.

3. Satisfactory HyperMSC presentation techniques: MSC connectors appear as
a by-product of the HyperMSC concept. Folding and unfolding of parts of an
MSC diagram is essential to present an MSC in a form where its interesting
parts are shown in full detail but all others are folded away. To provide
a correct and comprehensive MSC representation in spite of the folding, a
well-defined abstraction mechanism has to be in place (see Fig. 13). The
consequent elaboration of the HyperMSC concept leads to mechanisms that
allow either folding or unfolding (parts of) instances to MSC references and
to subsume groups of messages into MSC connectors.

In this paper, we focus our discussion on the issue (1) and the issue (3) above,
where MSC connectors can be employed in a natural, somewhat simplified and
default-based manner. Issue (2), which shows the great potential of the MSC
connector concept, is bound to utilise more general mechanisms to reach its full
effectiveness. This issue will be detailed in a further publication (see also [7]).

The introduction of MSC connectors appears to be inevitable in order to
clearly define the message communication between general MSC operator ex-
pressions [10, 12, 13]. The current MSC standard is arguably not precise enough
in this point by using (or perhaps abusing) normal messages as sort of MSC con-
nectors. Actually the standard MSC language uses message gates to define the
connection points for messages with respect to the interior and exterior of MSC
references and inline expressions. The new MSC connector concept is supposed
to elegantly subsume and generalise the gate construct.

Within Fig. 7(a), an example is provided showing two inline loop expressions
connected by one message which in fact has the meaning of three connecting
messages (as indicated in Fig. 7(b)). Yet, the message m in Fig. 7(a) between
the two loop expressions in fact denotes an MSC connector and thus should be
graphically distinguished (see Fig. 7(c)).

(a) (b)

msc unclear_communication

m

A

mm

loop <3> loop <3>

B

msc explicit_communication

m

A

mm

loop <3> loop <3>

B

m

m

(c)

msc connector_communication

m

A

mcon

loop <3>

B

[m]

loop <3>

Fig. 7. Message communication between loop expressions
(a) rather unclear description according to the current MSC standard;
(b) explicit description; (c) description using an MSC connector.

From this example, we see that a message specification in an MSC defines
an actual occurrence of a message (the sending and receiving event) whereas
an MSC connector alone only denotes the possibility of message occurrences.

140 J. Grabowski, P. Graubmann, E. Rudolph

Actually, the MSC connector needs a definition that determines what kind of
communication pattern it represents. In the above example, the connector con
may be defined as accepting an arbitrary number of messages m (in Sect. 4.1,
the explicit definition of MSC connectors will be briefly discussed).

MSC connectors between MSC operators and references bundle the mes-
sages that are crossing the environment of the references (see Fig. 8). Within an
MSC reference, the connector pointer indicates to which connector a message
is sent (<message name> → <connector name>) or from which connector it is
received (<connector name> → <message name>). The connector itself is pre-
sented graphically as a double lined arrow (possibly with two arrow heads, if the
connector represents a bi-directional communication). As well as its name the
connector is associated with the message list which indicates the names of the
messages that are admissible to the connector (see Fig. 8(a) with the message
list [a, b] attached to the connector con).

inst1

msc A

a�con

b�con

inst1

msc B

con�a

con�b

msc reference_communication

A B
con

[a,b] s

Fig. 8. Communication between MSC references via an MSC connector

Experiments with MSC connectors in large applications will determine how
defaults for connector pointers, message lists, etc., will be optimally chosen.
There could be rules such as “For an MSC reference, all messages from and to
the environment that are listed in the message list of an attached connector are
passed through this connector”.

4.1 MSC Connector Specifications

MSC connectors do not only bundle a bunch of messages between MSC refer-
ences, they denote a particular behaviour. Depending on the application, various
communication mechanisms may be assigned to MSC connectors. Therefore it
becomes necessary to explicitly specify the behaviour of each MSC connector
prior to its usage or to use pre-defined default connector types (as we did in the
examples given here, assuming the consistency as given1). In the following, we
discuss a few MSC connector types that may be useful in general and we briefly
indicate which mechanisms can be used to define the connector behaviour:

The unrestricted connector: In its most general form an MSC connector trans-
mits messages in arbitrary order if they are named in its message list. Whether
these messages cross each other is not determined. Therefore the order relation

1 We also suppressed the necessary typing of the MSC connectors in the examples to
clearly present the concepts without going into mere technicalities.

HyperMSCs with Connectors 141

between sending and consumption of messages is exclusively specified by the
respective event definitions given by the connected components.

The FIFO connector: The FIFO connector is probably the connector type
which describes the most common situation. It is capable of accepting messages
in an arbitrary order, as long as they are named in its message list. However, in
contrast to the unrestricted connector, messages from the connected components
come out of the connector in the same order in which they are put onto it:
messages must not overtake (FIFO property). A FIFO connector can transport a
message only if it has been put onto the MSC connector first. As a consequence,
alternative or loop operands which are initiated by an input message coming
out of an MSC connector are enabled only if this message has been put onto the
connector first – and (of course) if any guards that are present evaluate to true.

Similarly, a LIFO connector may be defined which conveys messages to a
connected component in inverse input order.

The unrestricted message list: Message lists determine the names of the mes-
sages that are admitted into an MSC connector (an example of the usage of
message lists is to be found in Fig. 8). It proves convenient to define an unre-
stricted message list, which allows all messages to be sent and retrieved from a
connector. This unrestricted message list is denoted as [∗], but may be omitted.

Regular expressions for the description of more complex communication pat-
terns: Because MSC connectors are assumed to support the specification of sys-
tems or components, a certain behaviour is associated with them. Both connec-
tors described above represent connectors with a very unrestricted behaviour.
They can be conveniently applied in many cases. In other cases, however, where
systems are composed out of existing or separately defined components, it is
appropriate to associate connection semantics with connectors and to use them
with a more restricted behaviour. To allow for such a behaviour definition, reg-
ular expressions over message names may be assigned to an MSC connector (see
the example in Fig. 9) or separately to the connector endpoints (this allows
an explicit specification of crossing messages, though some consistency require-
ments apply). The regular expression is attached to the connector and enclosed
in guillemet brackets (for example �{ab}∗�). An omitted regular expression
means the behaviour of the connector unrestricted.

Any behaviour of the connected components that does not match with the
connector definition is excluded (see Fig. 9 for an informal explanation).

MSC representation of connector behaviour: It is easy to imagine, that the
most convenient way to define the behaviour of an MSC connector is by providing
it as another MSC. This also will provide an appropriate framework to present
the formal semantics of the connector concept based upon the synchronisation
of event traces. However, a few technicalities are involved in presenting this
coherently, therefore a detailed presentation is postponed to a forthcoming paper
(meanwhile, see [7] for details).

It may also be of interest to point out the differences of MSC connectors
and SDL channels. In SDL, channels are part of a static architectural specifica-
tion: they connect outputs and input queues of processes. With respect to the

142 J. Grabowski, P. Graubmann, E. Rudolph

msc regular_expression

A B
con

[a,b] «{ab}*»

msc A

a�con

b�con

loop <3>

opt

inst1
msc B

inst2

a�con

b�con

loop

Fig. 9. Communication of MSC references via an MSC connector with explicit be-
haviour specification

The MSC reference A is able to produce the message sequences �{{a|ab}3}�, B is
able to produce the message sequences �{ab}∗�. Due to the connector definition, the
composed MSC produces the message sequence �{ab}3�.

dynamic specification, an output corresponds to the send event and the input
queue to the reception event of messages. In MSC, however, the message events
normally are interpreted as sending and processing events. To specify the recep-
tion event, the inclusion of additional instances representing the behaviour of the
input queue would be necessary (which could be done transparently with an ap-
propriately defined MSC connector). Beyond that, the MSC connector construct
is introduced on a highly abstract level denoting a purely logical communication
construct whereas in SDL, a channel is predominantly static and usually closer
to the description of a realisation mechanism.

4.2 Combining MSC Connectors with the HyperMSC Concept

The inclusion of MSC connectors into the MSC language also leads to a gen-
eralisation of the HyperMSC concept described in Sect. 3. Where simple MSCs
without branching or loops define MSC references that are joined by a con-
nector, this generalisation appears to be quite straightforward: the MSC refer-
ences may be expanded as usual. In addition, the MSC connector may be ex-
panded thus exhibiting the detailed message communication between the MSC
references. An example is provided in Fig. 10. Figure 10(a) shows the HMSC
reference communication of Fig. 8 with expanded MSC references. In Fig. 10(b)
also the connector con is expanded, thus connecting the messages a and b of
MSC reference A and MSC reference B to one coherent message flow.

The situation is more complicated if the connected MSC references are de-
fined by means of MSCs containing alternatives as in Fig. 11. The MSC references
A and B in MSC alternative communication are defined in form of HMSC A
and HMSC B which contain as alternative branches the MSC references A1/A2
and the MSC references B1/B2, respectively. Obviously, MSC A1 only can be
matched with MSC B1 and MSC A2 only with MSC B2. As a rule, it should
therefore be only allowed to expand corresponding alternatives which fit together
with respect to the connector communication. For example, in Fig. 12(a) the cor-
responding alternatives MSC reference A1 and MSC reference B1 are presented
in expanded form. Fig. 12(b) provides a representation showing MSC reference
A1 and B1 together with the connector con in completely expanded form.

HyperMSCs with Connectors 143

(a) (b)

inst1

a

b

inst2

msc reference_communication

A, B, con

s
a�con

inst1

A

b�con

inst2

B

con�a

con�b

msc reference_communication

con

[a,b]

s

Fig. 10. Unfolding of MSC references and MSC connectors (see Fig. 8)

The HyperMSC presentation with folded MSC references A and B): (a) Unfolding of
the MSC references and (b) jointly unfolding of the MSC references and the MSC
connector.

msc alternative_communication

A B
con

[a,b,c,d]

msc A

A1 A2

msc B

B1 B2

inst1

msc A1

a�con

b�con

inst2

msc B1

con�a

con�b

inst1

msc A2

d�con

c�con

b�con

inst2

msc B2

con�d

con�c

con�b

Fig. 11. Definition of the MSC alternative communication

msc alternative_communication

con
[a,b,c,d]

A

A1

A2

a�con

b�con

inst1

B

B1

B2

a�con

b�con

inst2

msc alternative_communication

A, B

A2 B2
con

[a,b,c,d]

A1, B1, con

b

a

inst1 inst2

(b)(a)

Fig. 12. Two variant HyperMSC presentations of the MSC defined in Fig. 11

144 J. Grabowski, P. Graubmann, E. Rudolph

The previous examples demonstrate how HyperMSC diagrams present them-
selves if MSC references and MSC connectors are folded and unfolded. There is
a large number of possibilities to select, group, and present the information con-
tained in the MSC diagrams in a way that is optimal and shows exactly what
is considered relevant for a particular analysis step, a structured walk-through,
etc. The folding and unfolding mechanisms of HyperMSCs therefore provides a
means to cope with the complexity of a system design and its large amount of
information. However, the examples given so far started with already defined
MSC references and MSC connectors. This is a natural way, since system design
and modelling just produces all these abstractions that are consequently repre-
sented by MSC references and connectors. Yet, there is a further potential in the
flexibility of the presentation means proffered by HyperMSCs: the ad-hoc fold-
ing/unfolding of diagrams and their parts. Such presentation does not impact on
the structure of the model, but focuses on the display of those parts of the MSC
diagram that are relevant at the very moment of viewing it. Therefore ad-hoc
folding may be used to highlight a statement or an idea during a discussion, to
concentrate on a particular trait during analysis, etc. Altogether, folding sup-
ports the designers’ actual work with the diagrams. However, it is essential that
the context of a selected diagram part does not completely vanish, but remains
visible even if only in a condensed form.

msc ABCD

C DBA

AB BC CD

msc ABCD

C DBA

(unfolded MSC)

msc ABCD

DA B C

CD

(b) (c)

DB&CA

msc ABCD

(a)
folding messages to

MSC connectors

fo
ld

in
g

in
st

an
ce

s
to

 a
 d

ec
om

po
se

d
in

st
an

ce

folding messages to
MSC connectors

fo
ld

in
g

in
st

an
ce

s
to

M
S

C
 r

ef
er

en
ce

s

B&C*

Fig. 13. Ad-hoc folding of a HyperMSC

(a) Folding of instances; (b) folding of a set of messages; (c) folding of a selected part
of an MSC.

HyperMSCs with Connectors 145

Figure 13 tries to give an impression about what ad-hoc folding (and unfold-
ing) may look like. Folding away instances (Fig. 13(a)) produces decomposed
instances (the instance B&C) which are, tentatively, drawn with a double line,
just in analogy to the double lined arrow of the connector symbol. Folding away
groups of messages (Fig. 13(b)) produces ad-hoc defined connectors which take
over the characteristics of the messages that are subsumed within it (cf. the one-
directional connector AB, containing two messages directed from instance A to
instance B). The most interesting folding operation is to fold away a part of the
diagram that covers both, instances and messages (see Fig. 13(c)). Interactions
between the part of the instances that are going to be hidden result in MSC ref-
erences (see the reference B&C∗), messages can be grouped into connectors (as
is done with the generation of the MSC connector CD), or may be displayed in
the classical way as messages just entering the MSC reference. The wide variety
of possibilities and the high flexibility to switch between different presentations
allows to quickly come up with a presentation that is optimally adjusted to the
actual demands.

5 Summary and Outlook

Within this paper, the HyperMSC concept which has been introduced recently
[6, 16, 17] has been further elaborated and enhanced by MSC connectors repre-
senting communication patterns on a highly abstract level. HyperMSCs including
MSC connectors are ideally suited to present MSCs on different levels of detail
and, what is most important, to easily switch between different views. Assuming
an advanced tool support, such enhanced HyperMSCs may be also used for a
visual preparation of large MSCs which is highly interactive. By defining MSC
references, decomposed instances and MSC connectors in an interactive manner,
certain details of a large MSC may be hidden in order to exhibit the momentarily
relevant parts. HyperMSCs have already been successfully applied to the spec-
ification of test cases based on TTCN-3 and Use Case modelling within UML.
At present, the ETSI test format based on HyperMSCs with MSC connectors
is under preparation within OMG for inclusion as a profile to UML. The MSC
connector concept may be further generalised, eventually representing a complex
message interface between system components.

References

1. F. Belina, D. Hogrefe, A. Sarma: SDL with Applications from Protocol Specification.
Prentice Hall, 1991.

2. G. Booch, J. Rumbaugh, I. Jacobson: The Unified Modelling Language User Guide.
Addison-Wesley, 1999, 3rd edition.

3. D.F. D’Souza, A. C. Wills: Objects, Components and Frameworks with UML. The
Catalysis Approach. Addison-Wesley, 1999.

4. A. Egyed, N. Metha, N. Medvidovi: Software Connectors and Refinement in Fam-
ily Architectures. In: Proceedings of the 3rd International Workshop on Software

146 J. Grabowski, P. Graubmann, E. Rudolph

Architectures for Product Families, Las Palmas de Gran Canaria, Spain, March
15-17, 2000.

5. J. Grabowski, A. Wiles, C. Willcock, D. Hogrefe. On the Design of the new Testing
Language TTCN-3. In: Testing of Communicating Systems - Tools and Techniques
(H. Ural, R.L. Probert, G. von Bochmann, editors), Kluwer Academic Publishers,
August 2000.

6. P. Graubmann, E. Rudolph: HyperMSCs and Sequence Diagrams for Use Case
Modelling and Testing. In: UML2000, 3rd International Conference on The Unified
Modeling Language (A. Evans, S. Kent, B. Selic, editors), 02-06 October, 2000,
York, UK, Springer 2000.

7. P. Graubmann, R. Wasgint: Methods for Interface Annotations and Component
Selection. SAG-WP2-0106-16, ESAPS internal report, 2001.

8. I. Krüger: Distributed System Design with Message Sequence Charts, PhD Thesis,
Technische Universität München, 2000.

9. S. Loidl, E. Rudolph, U. Hinkel: MSC’96 and Beyond-a Critical Look. In SDL’97
Time for Testing-SDL, MSC and Trends, Proceedings of the 8th SDL Forum in
Evry, France (A. Cavalli and A. Sarma editors), North Holland, September 1997.

10. S. Mauw, M. A. Reniers: High Level Message Sequence Charts. In: SDL’97 - Time
for Testing-SDL, MSC and Trends, Proceedings of the 8th SDL Forum in Evry,
France (A. Cavalli ,A. Sarma, editors), North Holland, September 1997.

11. N. Mehta, N. Medvidovic, S. Phadke: Towards a Taxonomy of Software Connec-
tors. University of Southern California, Center of Software Engineering, Technical
Report 99-529, 1999.

12. E. Rudolph: Putting Extended MSC-2000 to Practice, Contribution to the ITU-SG
10 Meeting, Geneva, November 1999.

13. E. Rudolph: Advanced MSC- A Unifying Modeling Language for the Next Millen-
nium, Contribution to the ITU-SG 10 Meeting, Geneva, November 1999.

14. E. Rudolph, J. Grabowski, P. Graubmann: Towards a Harmonization of UML-
Sequence Diagrams and MSC. In: SDL’99 - The Next Millennium, Proceedings of
the 9th SDL Forum in Montréal, Québec, Canada (R. Dssouli, G.V. Bochmann,
Y. Lahav, editors), Elsevier Science B.V., Amsterdam, 1999.

15. E. Rudolph, J. Grabowski, P. Graubmann: Tutorial on Message Sequence Charts
(MSC-96). Forte/PSTV’96. Kaiserslautern, Germany, October 1996.

16. E. Rudolph, I. Schieferdecker, J. Grabowski: Development of an Message Sequence
Chart/ UML Test Format. In: Proceedings of FBT’2000 - Formale Beschreibung-
stechniken für verteilte Systeme, Lübeck, Germany (J. Grabowski, S. Heymer,
editors). Shaker-Verlag, Aachen, 2000.

17. E. Rudolph, I. Schieferdecker, J. Grabowski: HyperMSC - A Graphical Represen-
tation of TTCN. Proceedings of the 2nd Workshop of the SDL Forum Society on
SDL and MSC (SAM’2000), Grenoble, France, June, 26 - 28, 2000.

18. ETSI TC MTS: TTCN-3 — Core Language. European Norm EN00063-1 (provi-
sional)2, 2000.

19. ETSI TC MTS: TTCN-3 — Graphical Presentation Format. European Norm
EN00063-3 (provisional), 2000.

20. ETSI TC MTS: TTCN-3 — Tabular Presentation Format. European Norm
EN00063-2 (provisional), 2000.

21. ITU-T Rec. Z.120 (MSC-96): Message Sequence Chart (MSC)., Geneva, 1996.
22. ITU-T Rec. Z.120 (MSC-2000): Message Sequence Chart (MSC)., Geneva, 1999.

2 The EN-00063 numbers are only provisional ETSI Work Item numbers. The actual
EN numbers will not be the same.

