
1

1

ON THE DESIGN OF THE NEW TESTING
LANGUAGE TTCN-3

Jens Grabowskia, Anthony Wilesb, Colin Willcockc, Dieter Hogrefea

aInstitute for Telematics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck,
Germany, email: {jens,hogrefe}@itm.mu-luebeck.de

bEuropean Telecommunication Standards Institute, 650, Route des Lucioles,
F-06921 Sophia Antipolis, France, e-mail: Anthony.Wiles@etsi.fr

cNokia Research Center, Bochum,Meesmannstr. 103, D-44807 Bochum, Germany,
e-mail: Colin.Willcock@nokia.com

Abstract This paper gives an overview of the main concepts and features of the new
testing language TTCN version 3 (TTCN-3). TTCN-3 is a complete new
testing language built from a textual core notation on which a number of
different presentation formats are possible. This makes TTCN-3 quite
universal and application independent. One of the standardised presentation
formats is based on the tree and tabular format from previous TTCN versions
and another standardised presentation format is based on MSCs. TTCN-3 is a
modular language and has a similar look and feel to a typical programming
language. However, in addition to the typical programming constructs it
contains all the important features necessary to specify test suites.

Keywords: Conformance Testing, ETSI, ITU-T, Programming Languages, TTCN, Test
Specification, Telecommunication Systems

1. INTRODUCTION

TTCN-3 is designed in such a way that a broader user community is
addressed. The syntax looks similar to typical implementation languages and

2

should therefore be easy to understand and apply for someone familiar with
software development.

The core language is freed from the peculiarities specific to OSI and
conformance testing. This makes TTCN-3 flexible, applicable to the
specification of all types of reactive system tests over a variety of
communication interfaces. Typical areas of application are protocol testing
(including mobile and Internet protocols), service testing (including
supplementary services), module testing and testing of CORBA based
platforms.

The TTCN-3 standard is separated into three parts. The first part [5]
defines the core language. The second part [6] defines the tabular
presentation format which is similar in appearance and functionality to
TTCN-2 [8]. The third part [7] describes an MSC [9] based presentation
format.

The core language serves three purposes. Firstly the core language can be
used as a generalised text based test language in its own right. Secondly it is
used as a standardised interchange format of TTCN test suites between
TTCN tools and thirdly the core language provides the semantic basis for the
all the various presentation formats.

The core language is defined by a complete syntax and operational
semantics. It contains minimal static semantics which do not restrict the use
of the language due to some underlying application domain or methodology.

The next section of this paper provides an overview of presentation
formats and then the rest of the paper concentrates on the design of the
TTCN-3 core language.

2. PRESENTATION FORMATS AND ATTRIBUTES

Presentation formats provide alternate ways to specify and visualise
TTCN-3 test suites, as shown in Figure 1. The tabular format and the MSC
format are the first in an anticipated set of different presentation formats.
Further presentation formats may be standardised formats or be proprietary
formats defined by TTCN-3 users themselves. Use and implementation of all
presentation formats is based on the core language.

A presentation format is defined by specifying the graphical
representation required for the test suite and the mapping necessary to
convert between this graphical form and the TTCN-3 core language.

To enable this mapping, language elements within the core langauge may
have attributes associated with them. There are three kinds of attributes:
1. encode: allows references to specific encoding rules;

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 3

2. display : allows the specification of display attributes related to
specific presentation formats;

3. extension: allows the specification of user-defined attributes.
Attributes are associated with TTCN-3 language elements by means of

with statements. In the core language the syntax for the argument of the
with statement (i.e. the actual attributes) is simply defined as a free text
string. Special attribute strings related to the display attributes for the tabular
(conformance) presentation format can be found in [6]. Special attribute
strings related to the display attributes for the MSC presentation format can
be found in [7].

Figure 1. User's view of the core language and the various presentation formats

3. TYPES AND VALUES

TTCN-3 supports a number of predefined basic, structured and special
types. Basic types include ones normally associated with a programming
language, such as integer, boolean and string types, as well as TTCN-3
specific ones such as objectidentifier, verdicttype and duration. Structured
types such as record types, set types and enumerated types can be
constructed from these base types. Special types associated with
configurations such as port and component may be used to define the
architecture of the test system as described in Section 5.

TTCN-3 is strongly typed and there are a number of predefined functions
to handle type conversion.

A special kind of data value called a template provides parameterisation
and matching mechanisms for specifying test data to be sent or received over

Text format
TTCN-3
Core
Language

Presentation
formatn

TTCN-3
User

ASN.1
Types &
Values

Other
Types &
Values n

MSC
format

Other
Types &
Values 2

Tabular
format

4

the test ports. The operations on these ports provide both asynchronous and
synchronous communication capabilities (Section 7).

TTCN-3 is fully harmonised with ASN.1 [11,12,13,14] which may
optionally be used with TTCN-3 modules as an alternative data type and
value syntax. The approach used to combine ASN.1 and TTCN-3 could be
applied to support the use of other type and value systems with TTCN-3.

4. MODULES

The principle building-blocks of the TTCN-3 core language are modules.
A module is a self-contained and complete specification, i.e. it can be parsed
and compiled as a separate entity. A module consists of an (optional)
definitions part, and an (optional) module control part.

The module definitions part specifies the top-level definitions of the
module. These definitions may be used elsewhere in the module, including
the control part.

The module control part describes the execution order (possibly
repetitious) of the actual test cases. A test case shall be defined in the module
definitions part and then called in the control part. For example:

module MyTestSuite {
// Definitions part
testcase MyTestcase1()…
testcase MyTestcase2()…
 :
// Control part
control {

var boolean MyVariable; //Localcontrol variable
 :
MyTestCase1(); // sequential execution of test cases
MyTestCase2();
 :

}
}

TTCN-3 does not support the declaration of global variables, therefore
declarations of dynamic language elements such as var or timer is only
allowed locally within functions and test cases.

It is possible to re-use definitions specified in other modules using the
import statement. TTCN-3 has no explicit export construct thus, by default,
all module definitions in the module definitions part may be imported. An
import statement can only be used in the module definitions part.

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 5

5. TEST CONFIGURATIONS

TTCN-3 allows the specification of (dynamic) concurrent test
configurations. A test configuration consists of a set of interconnected test
components with well-defined communication ports and an explicit test
system interface which defines the borders of the test system.

Within every test configuration, there is one Main Test Component
(MTC). All other test components are called Parallel Test Components
(PTCs). The MTC is created automatically at the start of each test case
execution and the behavior defined in the body of the test case (Section 6) is
executed on this component. During execution of a test case PTCs can be
created and stopped dynamically by the explicit use of create and stop
operations. The conceptual view of a typical TTCN-3 testing configuration is
shown in Figure 2.

Figure 2. Conceptual view of a typical TTCN-3 testing configuration

5.1 Communication ports

Ports facilitate communication between test components and between test
components and the test system interface. There are no restrictions on the
number of connections a component may have, but a component shall not be
connected to itself. One-to-many connections are allowed, but TTCN-3 only
supports one-to-one communication, i.e. during test execution the

 IN OUT

 OUT IN

PTC

Abstract Test System Interface

SUT

Connected Ports

INOUT

Real Test System Interface

Mapped Ports

INOUT

Test system

MTC

6

communication partner has to be specified uniquely. Each port is modeled as
an infinite FIFO queue which stores the incoming messages or procedure
calls until they are processed by the component owning that port.

TTCN-3 ports are either message-based or procedure-based. Message-
based ports are used for asynchronous communication by means of message
exchange. Procedure-based ports are used for synchronous communication
by means of remote procedure calls. Ports are directional and each port may
have an in list (for the in direction), an out list (for the out direction) or an
inout list (for both directions) of allowed messages or procedures. For
example:

// Message-based port allowing MsgType1 and MsgType2 to be
// received, MsgType3 to be sent and integer values to be
// send and received.
type port MyMessagePortType message {

in MsgType1, MsgType2;
out MsgType3;
inout integer

}

5.2 Component types and the test system interface

A test case consists of one or more test components. The test case
behavior is executed on these components. The component type defines
which ports are associated with a component. For example:

// Component type with three ports
type component MyPTCType {

MyProcedurePortType PCO1;
MyMessagePortType PCO2;
MyAllMesssagesPortType PCO3

}

The port names in a component type definition are used in the component
behavior definition to address the different ports. Port names are local to a
component, i.e. another component may have a port with the same (local)
name.

A component type definition is also used to define the test system
interface, because conceptually component type definitions and test system
interface definitions have the same form, i.e. both are collections of ports
defining possible connection points.

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 7

5.3 Configuration operations

Configuration operations are concerned with setting up and controlling
test components. During the execution of a test case, the actual test
configuration of components, the connections among them and the
connections between the components and the test system interface are
created dynamically by performing configuration operations. Configuration
operations are create , connect, map, start, stop, mtc, system, self and
done .

The create operation

The MTC is the only test component which is created automatically when
a test case starts. All other test components are created explicitly during test
execution by create operations. Since all components and ports are
destroyed at the end of a test case, each test case must completely create its
required configuration of components and connections.

As shown in Figure 3, the create operation returns a unique reference to
the newly created instance. The reference can be used for connecting
instances and for communication purposes, i.e. for addressing individual
components.

// usage of create
var component MyNewComponent := MyComponentType.create;
:
// usage of connect and mtc
connect(MyNewComponent.Port1, mtc.Port3);
:
// usage of map, self and system
map(self.Port2, system.PCO1);
:
// usage of start operation
MyNewComponent.start(MyCompBehaviour(…));
:
// usage of done
if (MyNewComponent.done) {

 : // Do something
}
 :
// usage of stop
if (date = 1.1.2000) stop;

Figure 3. Usage of configuration operations

Components can be created at any time during a test run providing full
flexibility with regard to dynamic configurations, i.e. any component can

8

create any other component. Component references are local to the scope of
their creation. In order to reference a component outside its scope of
creation, the component reference can be passed as a parameter to a function
or can be sent in a message.

The mtc, system and self operations

The operations mtc and system return the references (or addresses) of the
MTC and the system interface. The self operation allows a test component to
retrieve its own reference, i.e. self returns the reference of the component in
which self is called. The operations mtc, system and self can be used for
addressing purposes in communication operations or, as shown in Figure 3 ,
in configuration operations.

The connect and map operations

The ports of a test component can be connected to ports of other
components or to the ports of the test system interface. The connection
between two test components is done by means of the connect operation.
When linking a test component to a test system interface, the map operation
shall be used. As illustrated in Figure 2, the connect operation directly
connects one port to another with the in side of the one port connected to the
out side of the other, and vice versa. The map operation on the other hand
can be seen as a pure name translation defining how communications
streams should be referenced. In Figure 3 examples for the usage of connect
and map operations are shown.

The start operation

Once a component has been created and connected the execution of its
behavior has to be started. This is done by using the start operation. The
reason for the distinction between create and start is to allow connection
operations to be done before actually running the test component. The start
operation binds the behavior to a component by referring to a function
(Section 6). An example for the usage of the start operation can be found in
Figure 3.

The stop and done operations

By using the stop operation, a test component is able to stop itself. A
stopped component disappears from the configuration. The done operation
allows a test component to ascertain whether another test component has
completed, i.e. is stopped. Examples for the usage of done and stop
operations can be found in Figure 3.

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 9

6. TEST CASES AND FUNCTIONS

Behavior in TTCN-3 is related to the definition of test cases, functions
and named alternatives. Named alternatives are a special form of macros and
will be explained in Section 8.

6.1 Test cases

The test cases define the behaviour which has to be executed in order to
judge whether an implementation under test passes the test or not. Test cases
are defined in the module definitions part and called in the module control
part. Each test case returns a test verdict of either none , pass, fail,
inconclusive or error. This means a single test case can be considered to be
a special kind of function returning a test verdict.

An example of a test case definition is shown in Figure 4. The test case is
called MyTestCase and has the inout parameter MyPar of type integer. The
runs on clause following the parameter defines the type of the MTC. The
system clause specifies the type of the test system interface. The definition
body defines the behavior of the MTC and will be started automatically
when the test case is called. The MTC type is required to make the port
names of the MTC visible inside the behavior definition. The type of the
system interface is mandatory, if during the test run several test components
are created and stopped dynamically. If the MTC performs the whole test on
its own, the type of the test system interface is identical to the MTC type and
can be omitted.

testcase MyTestCase(inout integer MyPar)
runs on MyMtcType1 // defines the type of the MTC
system MyTestSystemType // defines test system interface
{
 : // The behaviour defined here executes on the MTC
}

Figure 4. Example for a test case definition

6.2 Functions

In TTCN-3, functions are used to express test behaviour or to structure
computation in a module, for example, to calculate a single value or to
initialize a set of variables. A function may be parameterized and may return
a value. As shown in the function definition of MyFunction in Figure 5, the
return value is defined by the return keyword followed by a type identifier.

10

If no return is specified then the function result is void. An explicit keyword
for void does not exist in TTCN-3.

If a function defines test behavior, the type of the test component on
which the behavior is executed has to be specified by means of a runs on
clause. This type reference makes the port names of the component type
visible inside the behavior definition of the function. This is shown in the
definition of function MyBehaviour in Figure 5.

// Definition of MyFunction which has no parameters
function MyFunction () return integer {

return 7 // returns 7 when the function terminates
}

function MyBehaviour (inout integer MyPar)
runs on MyPTCType
{ : // MyFunction3 make use of

var integer MyVar := 5 * MyPar; // the port operation send
PCO1.send(MyVar); // and therefore requires a
 : // runs on clause to resolve
 : // the port identifiers

}

Figure 5. Examples for function definitions

7. COMMUNICATION OPERATIONS

TTCN-3 supports message-based (asynchronous) and procedure-based
(synchronous) communication. As illustrated in Figure 6 asynchronous
communication is non-blocking on the send operation, where processing in
the MTC continues immediately after the send operation. The SUT is
blocked on the receive operation until it receives the send message.

Synchronous communication in TTCN-3 is related to remote procedure
calls. As illustrated in Figure 7, the synchronous communication mechanism
is blocking on the call operation, where the call operation blocks processing
in the MTC until either a reply or an exception is received from the SUT.
Similar to the asynchronous receive operation, the getcall blocks the SUT
until the call is received.

7.1 Asynchronous communication

For asynchronous communication, TTCN-3 provides the send and
receive operations. The send operation is used to place a value on an

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 11

outgoing message-based port. The value may be specified by referencing a
template, a variable or a constant, or can be defined in-line in form of an
expression (which of course can be an explicit value). When defining the
value in-line, the optional type field can be used to avoid any ambiguity of
the type of the value being sent.

Figure 6. Illustration of the asynchronous send and receive operations

Figure 7. Illustration of a complete synchronous call

The receive operation is used to receive a value from an incoming
message port queue. If the top message in the port satisfies all matching
criteria associated with the receive operation, it is removed from the queue.
The matching criteria may be related to the value of the message or the
sender of the message. If the match is not successful, the top message is not
removed, i.e. an alternative receive operation is required to remove the
message from the port queue. For example:

MyCL.send(integer:5);
// Sends integer value 5 is sent via port MyCL

MyCL.receive(MyTemplate(5, MyVar));
// Reception of a value which fulfils the conditions defined
// by template MyTemplate with actual parameters 5 and MyVar

MyCL.receive(MyType:*) from MyPartner -> value MyVar;
// Receives an arbitrary value of MyType from a MyPartner.
// The received value is assigned to MyVar.

SUTMTC

send receive

SUTMTC

call getcall

reply or
raise exception

getreply
catch exception

12

7.2 Synchronous communication

As is shown in Figure 7, for synchronous communication, the calling side
and the called side have to be distinguished. In order to test both, TTCN-3
provides communication operations for both sides.

The communication operations for the calling side are the call operation
to call a remote procedure, the getreply operation to handle replies (or
answers) to calls and the catch operation to handle exceptions which in case
of exceptional situations may be received instead of a reply. In addition,
TTCN-3 provides special timeout exception to cope with situations where
the called party neither replies nor raises an exception. For example:

// Calls remote procedure MyProc via MyCl. A timeout
// exception will be raised after 30 ms
MyCL.call(MyProc(5,MyVar), 30ms) to MyPartner {

[] MyCl.getreply(MyProc:{MyVar1, MyVar2}) ->
value MyResult param(MyPar1, MyPar2);

// Handles a reply to the call. The return value is
// assigned to MyResult. The out/inout parameters
// are assigned to MyPar1 and MyPar2.

[] MyCL.catch(MyProc, MyExceptionOne) { // Exception
stop // Stop of component

}
[] MyCL.catch(MyProc, MyExceptionTwo); // Second exception

[] MyCL.catch(timeout) { // Timeout exception
verdict.set(fail);
stop;

}
}

For the called side, TTCN-3 provides the getcall operation to accept
calls, the reply operation to reply to calls and the raise operation to raise
exceptions. For example:

MyCL.getcall(MyProc:{5, MyVar}) -> sender MySenderVar;
// Accepts a call of MyProc. The calling party is retrieved
// and stored in MySenderVar.

MyCL.reply(MyProcTemp(20,MyVar2) value 20) to MySender;
// Replies to the accepted call above.

MyCL.raise(MyProc, MyVar + YourVar - 2) to MySenderVar;
// Raises an exception for an accepted call with a value
// which is the result of the arithmetic expression.

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 13

7.3 The check operation

The check operation is a generic operation that permits to read the top
element of message-based or procedure-based incoming port. The check
operation has to handle values at message based ports and to distinguish
between calls to be accepted, exceptions to be caught and responses from
previous calls at procedure-based ports. This is done by using the operations
receive , getcall, getreply and catch together with their matching and
assignment parts to define the condition which has to be checked and to
extract the value or values of its parameters if required. Examples:

MyAsyncPort.check(receive(integer:5) from MyPartner);
// Check for an integer value of 5 from MyPartner in port
//MyAsyncPort.

MyAsyncPort.check(receive(integer:*) -> value MyVar);
// Checks for any integer value at port MyAsyncPort.

7.4 Controlling communication ports

TTCN-3 provides the clear, start and stop operations to control
communication ports. The clear operation removes the contents of an
incoming port queue. The start operation starts listening at and gives access
to a port. The stop operation stops listening and disallows send, call, reply
and raise operations at the port.

8. SPECIAL BEHAVIOR STATEMENTS IN TTCN-3

The configuration operations, the communication operations, and the
verdict operations have already been explained in the previous sections. The
basic program statements such as if-else, while -loop, for-loop or goto, and
the timer operations set cancel and readtimer are well known from other
programming and specification languages and need no special explanation.
Only the handling of alternatives and the handling of defaults are special to
TTCN-3 and need some explanation.

8.1 Alternative behaviour

The alternative behavior statement (or alt statement for short) describes
branching of control flow due to the reception of communication and timer

14

events, i.e. the alt statement is related to the use of the TTCN-3 operations
receive , getcall, getreply, catch, check and timeout.

An example of an alt statement is shown in Figure 8. The different
branches of the alt statement start with square brackets which may include
nothing, a boolean expression or the keywords expand or else. The brackets
can be seen as a sort of boolean guard for the following receiving event.
Empty brackets denote the value true . An alt statement is evaluated from top
to bottom. A branch is selected when the boolean guard evaluates to true
and the following receive , trigger, getcall, getreply, catch, check or
timeout operation can be executed. A selected branch is executed in the
expected manner.

The keyword expand denotes a macro expansion and is described in the
next section. The keyword else is an unconditional exit of an alt statement.
The else branch does not have to start with a receiving operation and is
always taken if none of the previous branches can be selected.

alt {
[] L1.receive(MyMessage1) {

 : // Do something
}

[x>1] L2.receive(MyMessage2); // boolean guard

[x<=1] L2.receive(MyMessage3); // boolean guard

[expand] MyNamedAlt; // macro expansion

[else] stop // else branch
}

Figure 8. Example of an alt statement

8.2 Named alternatives

An alt statement which is used in several places can be defined in a
named alternative denoted by the keyword pair named alt. A named alt is a
macro definition and causes a textual replacement when it is referenced. It
can be referenced at any place in a behavior definition where it is valid to
include a normal alt construct. Furthermore, it can be used to add alternative
branches in an alt statement as shown in Figure 8. For example:

named alt MyNamedAlt {
[] PCO2.receive(DL_EST_IN);
[] PCO2.receive(DL_EST_CO);

}

ON THE DESIGN OF THE NEW TESTING LANGUAGE TTCN-3 15

8.3 Default handling

In TTCN-3 defaults are used to handle communication events which may
occur, but which do not contribute to the test objective. For example, when
testing the call forwarding feature of an ISDN system, charging information
may be received at any time. This information is not relevant for the testing
objective and thus, can be ignored in the test evaluation. During the test,
execution messages or calls containing such information may be received
and have to be handled. This can be done by means of defaults.

The default concept of TTCN-3 is related to the macro expansion concept
of named alternatives, i.e. an activated default expands automatically all
named alternatives referenced in an activate statement. It is also possible to
deactivate defaults by using the deactivate statement.

9. CONCLUSIONS AND OUTLOOK

We have presented here a simple and general core testing language called
TTCN-3. The language is currently in the standardisation process at ETSI
and ITU-T with the plan to be published in the year 2000 as an EN by ETSI
(under the work program of Technical Committee MTS) and in the year
2001 as ITU-T standard Z.140. The next steps will then be the publication of
the presentation formats. There are concrete plans for the tree and tabular
presentation format and the MSC presentation format.

A number of tool makers have already shown interest in implementing
the language. Some of the tools are embedded in an environment together
with SDL [10]. Therefore it is necessary to consider the interworking
between an SDL specification and a TTCN-3 test suite. This will also enable
mechanisms for automated test case generation.

There is already research on the way for including real-time [2,3] and
performance [4] aspects into TTCN. With this new version it seems feasible
to base the performance and real-time extensions on the core language. New
research projects are just in the process of being started in this direction

Acknowledgements
There are many individuals who contributed to TTCN-3 in several ways. Listing names at

this point brings the risk, that someone will be forgotten. We therefore constrain ourselves,
with one exception, to listing the main contributing organizations: Danet, Ericsson, Expert
Telecoms, France Telecom, Fraunhofer Gesellschaft (FhG), GMD Fokus, Motorola, NMG
Telecoms, Nokia, Nortel, Tektronix, Telelogic, University of Lübeck (Institute for
Telematics). However, out of all the all the individuals who contributed, we would like to
highlight the engagement of Os Monkewich from Nortel.

16

TTCN-3 is currently being developed under the work program of ETSI TC MTS
(Methods for Testing and Specification). This proposed standard has not yet been published.
For the official version of the TTCN-3 standard please contact the ETSI publications office at
publications@etsi.fr.

10. REFERENCES

[1] Jens Grabowski, Dieter Hogrefe: An Introduction to TTCN-3. Invited Presentation of
the '12th International Workshop on Testing Communicating Systems' (IWTCS'99),
Budapest, September 1999.

[2] Thomas Walter, Jens Grabowski.: A Framework for the Specification of Test Cases for
Real Time Distributed Systems. In: Information and Software Technology, vol. 41,
Elsevier, July 1999.

[3] Thomas Walter, Jens Grabowski: Real-time TTCN for testing real-time and multimedia
systems. In: Testing of Communicating Systems (Editors: M. Kim, S. Kang, K. Hong),
volume 10, Chapman & Hall, 1997.

[4] Ina Schieferdecker, et al: PerfTTCN, a TTCN Language Extension for Performance
Testing. . In: Testing of Communicating Systems (Editors: M. Kim, S. Kang, K. Hong),
volume 10, Chapman & Hall, 1997.

[5] EN00063-1 (provisional),TTCN-3 Core Language

[6] EN00063-2 (provisional), TTCN-3 Tabular Presentation Format

[7] EN00063-3 (provisional), TTCN-3 MSC Presentation Format

[8] ISO/IEC 9646-3 (1998): Information technology - Open systems interconnection –
Conformance testing methodology and framework - Part 3: The Tree and Tabular
combined Notation (TTCN).

[9] ITU-T Recommendation Z.120 (2000): Message sequence Chart (MSC).

[10] ITU-T Recommendation Z.100 (2000): Specification and Description Language (SDL).

[11] ITU-T Recommendation X.680 (1997): | ISO/IEC 8824-1:1998,Abstract Syntax
Notation One (ASN.1): Specification of basic notation.

[12] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, Information technology
– Abstract Syntax Notation One (ASN.1): Information object specification.

[13] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, Information technology
– Abstract Syntax Notation One (ASN.1): Constraint specification.

[14] ITU-T Recommendation X.683 (1997) | ISO/IEC 8824-4:1998, Information technology
– Abstract Syntax Notation One (ASN.1): Parameterisation of ASN.1 specifications.

NOTE: The EN-00063 numbers are only provisional ETSI Work Item numbers (the
actual EN numbers will not be the same)

