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Abstract. Test case generation is a means to validate the implementation of a system a
posteriori with respect to some given requirements imposed on the system. Current methods
for the generation of test cases often rely on the system specification being given as a finite
automaton, which does not fully cover the situation in systems with asynchronous commu-
nication, In this paper we present an algorithm for the computation of test cases for infinite
system specifications.

1 Motivation

Real communication systems are often defined by means of infinite specifications. Reasons for the
infiniteness are special assumptions and the characteristics of the used specification languages.
For example, the Specification and Description Language (SDL) of the ITU-T [1] assumes infinite
message buffers for communication purposes and provides abstract data types (ADTs) for the
specification of data. The ADT feature allows to specify infinite data ranges.

In most cases conformance between a system specification and a corresponding implementation
is checked by means of testing. In the area of communication protocols this type of testing is
called Protocol Conformance Testing [5]. Conformance testing is based on a set of requirements,
the so-called test purposes, each of which has to be checked during the procedure of testing. Test
purposes are identified, specified and later on implemented (in form of test cases) by hand.

The aim of this paper is to provide a theoretical foundation for proving requirements in a
system specification and algorithms for checking these requirements in a corresponding system
specification. The latter one can be considered to be work on automatic test generation. For
building up a theoretical foundation and algorithms we need suitable formal models for expressing
requirements and system specifications.

We restrict ourselves to the treatment of requirements which can be transformed into finite
automata [4], i.e., for each requirement we assume there exists an automaton which accepts or
generates all traces which exhibit the required property. As formal model for a system specification
we use nfinite automata which is the most general model. Infinite automata and Turing machines
accept the same class of languages. By means of a simulator for a given specification it is possible
to partially generate the corresponding infinite automaton and to examine its behaviour.

The remainder of this paper is organised in the following manner: Section 2 first gives an
account on the theoretical models and equivalences used in our work, while Section 3 describes the
generation of test cases for infinite specifications in a step by step manner. We close this paper
with some conclusions and directions for further work in Section 4.

2 Some Preliminaries

In this section we give definitions for the formal model underlying our constructions, namely infinite
state automata, introduce some operations on infinite state automata and discuss equivalence and
preorder relations. Also we refer to a standard testing framework used inside the formal methods
community. We close this section by taking a look at how to formalise systems and test purposes.

2.1 Infinite Automata and Operations on them

Usually for test case generation finite automata [4] are used. Yet, these are not the right model
for our studies, since we are considering infinite systems. On the other hand the model of labelled
transition systems [7] known from the field of process algebra has its nice points: A number of



equivalences are defined on this model formalising different aspects, under which the observable
behaviour of two systems can be considered to be equal. Yet, labelled transition systems are not
supported with a “built—in” notion of termination. This has to be formalised by special actions.

We will use the model of infinite automata, which seems to embody the “best of both worlds” —
the possibly infinite state space of labelled transition systems and the equivalences and preorders
defined on them, together with the information on termination from finite automata. An infinite
automaton 1s defined in the following way:

Definition 1 (Infinite State Automaton). An infinite state automaton is a tuple
A=(X A8 1,/),

where X' is a (possibly infinite) set of states, A is an (possibly infinite) alphabet, § C (¥ x A) x ¥
is the direct transition relation of A, + € X is the initial state of A, and / C X' is the set of final
states of A.

In the following, we will write ¢ = ¢/ instead of ((¢,a),¢’) € § and ¢/ instead of ¢ € /. O

In this formulation the alphabet A of an infinite automaton A is meant to be the generator of
a monoid whose operation is concatenation of strings — hence, A also has to contain an neutral
element 1 with respect to this operation that corresponds to the special action 7 denoting silent
transitions known from labelled transition systems.

This definition gives some nice properties to infinite automata: If one takes a look at suitably
defined categories of finite automata, infinite automata and labelled transition systems (as it has
been shown for labelled transition systems in [7]), one easily finds injection functors from the
categories of finite automata and labelled transition systems into the category of infinite automata.
This allows us to “lift” definitions given on labelled transition systems to the realm of infinite
automata.

Using this strong correspondence between labelled transition systems and infinite automata,
we define operations on infinite automata. As a basic set of operations we take those given in [7],
restricting our attention to the product, relabelling and restriction operators defined there.

Definition 2 (Operations on Infinite Automata). Let A; = (X1, A1,81,41,+/;) and Ay =
(X, Aa, 02, 19,+/,) be two infinite state automata. We define the following operations:

— Ay x Ay = (X x Xg, A6, (11, 02), v/ X /) s the product automaton of Ay and A with the
alphabet A and the direct transition relation § being defined as

A= (/11 X {*}) U ({*} X /12) U (/11 X /12)
d={(((q1,92), (@, %)), (41, 02)) | ((q1,0),q1) € 1 N gz € T}
U{(((q1,42), (*,a)), (91,45)) | ((g2,a),45) € d2 A1 € T}
U {((((h’ Q2)’ (al’ a2))’ (qll’ q/Z)) | (((h’ al)’ qll) €01 A (((h’ a2)’ q/Z) € 62}’
where * denotes a special idling transition.

— Let A C Ay, Then A [ A = (X, AN A6 01,+/,) is the restriction of Ay to A with the

transition relation é being defined as

d={((¢,a),¢') €61 [a €A}

— Let 5 : Ay — A be a function being strict on 1, i. e. with =(1) = 1, for some alphabet A. Then
A{E} = (X1, 4,9, 01, +/,) is the relabelling of Ay according to = with the transition relation
4 being defined as

§ ={(((g, =(a),¢") € (T1 x A) x X1 [ ((¢,0),¢') € 41}
O

These three operations serve to define a vast number of parallel composition operators on
infinite automata. While the product operator x formulates a very liberal parallel composition,
where each automaton is allowed to make a move at any time, even simultaneously, the restriction



operator can be used to cut down such a liberal composition to a set of events that are allowed
to happen simultaneously. After restricting the set of possible transitions this way, a following
relabelling may rename pairs of names of events to the usual event names.

So for instance the LOTOS-style synchronisation operator ||4 for synchronisation on events in
the set A can be given as

Aifla Az = (A1 x As) [ A){E,

where A and = are defined as
A= ((A\A) x {xH U ({*} x (A2\ A)) U{(a,a) | a € A}

and

(a, ) = a,a € A1 \ A,
(%,a) = a, a € A2\ A,
(a,a) — a,a € A.

[

When the synchronisation set A comprises the union of the alphabets of A; and A-, we will use
the shorthand notation A; || As, calling this full synchronisation. This synchronisation operator
will play an important role in Section 3.2.

2.2 Equivalences and Preorders

After transferring some of the definitions for operations on labelled transition systems from [7]
to infinite automata, we will now adapt the definitions for some of the equivalence relations and
preorders defined on labelled transition systems. One of these equivalences is strong bistmilarity.

Why do we need such equivalences? We are already able to express the equivalence of automata
in terms of equality of their languages. For distributed and reactive systems, which have to run
for an “infinite” period, this often is impracticable. Furthermore, often one also wants information
about branches that do not lead to a final state in the automata, which can be gained from inter-
leaving trace equivalence, or about the internal mechanisms of choice between different alternatives
in situations of nondeterminism, which can be retrieved from strong bisimilarity.

We will only give a formal definition of the notion of strong bisimilarity (as it was defined in [6]
for labelled transition systems) on infinite automata. The formal definitions of interleaving trace
equivalence =, interleaving trace preorder <;; and simulation preorder <g; can be obtained in a
similar manner from the definitions of their counterparts defined on labelled transitions.

Definition 3 (Strong Bisimilarity). Let A; = (X3, A;,8;,0,+/;), i € {1,2} be infinite au-
tomata. A strong bisimulation between A; and As is a relation R C X x X5 such that the
following holds:

1. (Ll, Lz) S R

2. If (q1,¢2) € R and q; % ¢/ for some a € A; and ¢} € ¥y, then there exists some ¢, € ¥ with
g2 = ¢5 and (7, ) € R

3. If (¢1,92) € R and ¢q2 = ¢4, for some a € Ay and ¢j € o, then there exists some ¢} € &) with
g1 = ¢7 and (47, 45) € R

4. If (g1, ¢2) € R, then ¢1+/, if and only if ¢4/,

A and As are strongly bisimilar, denoted A; =5 Ao, if there exists a strong bisimulation between

A; and A,. O

2.3 A Standard Testing Framework

We will now introduce a framework for testing which is mostly inspired by De Nicola and Hennessy
[2]. Tt is mostly standard for labelled transition systems, though we adapt it to infinite automata
in the same way we did in the last section for equivalences and preorders. As the infinite automata
contain explicit termination information, it is possible to simplify the approach presented in [2].
What we are going to formalise is a testing preorder, one of the better known implementation
relations used in formal systems design. The general idea is that users of a given system should
be flexible enough to deal with all the specified possible responses of the system. The interaction



mechanism in this framework is based synchronisation, hence the setting can be formalised in the
synchronisation product

ulls,

where U 1s the model for the user and § the model for the system. If the user fails to interact
with the system successfully, this can be associated with a possible deadlock in the behaviour of
the full system U || S. Now, systems should be implemented in a fashion such that users never are
disappointed — that is, if a user was able to successfully interact with the system specification,
he should always be able to interact successfully with an implementation of the system. To ensure
this property, the behaviour of the user is reflected in a number of tests.

For describing tests, finite automata can be used, with the test automaton reaching a final
state 1f the test was performed successfully. To apply a test automaton 7, it is placed in full
synchronisation with the system S, 1. e.

TIS.

Now, we are able to formulate boolean evaluators defined over infinite automata, of which the
most important is must—testing:

7T must succeed
= Yw e g€ Ir.ir 2 g = (07 VIaE AT ¢ € Zr4 5 ()

Smust do 7 <= (S || 7) must succeed .

The evaluator must succeed states that a test application is successful if it cannot get into
a visible deadlock (i. e., is not able to perform further transitions) without signalling successful
performance of the test. must do is a two—place version of must succeed.

This interpretation differs from the interpretation of “must—testing” in [2], especially with
respect to infinite behaviour. Infinite paths are considered successful in [2] if and only if some
finite prefix of the behaviour is successful. In our setup, we consider finite traces in the first place.
Infinite traces of visible events not leading to a final state are not taken into account, whereas
infinite paths of invisible events correspond to divergence and are ignored as long as from every
state along the path there is an outgoing visible transition. Thus, as a consequence the effect of
infinite visible paths is different from that of divergence. Due to the ability to construct arbitrary
tests, all visible finite behaviour can be investigated, which as usual is taken to characterise infinite
behaviour as well.

In addition to must succeed, we define the following evaluator, which is also inspired by [2]:

T may succeed <= Jw € A% ¢ € D7 = ¢ N7

Smay do T <= (S || 7) may succeed .

This evaluator tests whether there is a successful trace in 7 at all. In practice, may succeed can
be used to test for traces, may do again being a two—place variant of may succeed.

2.4 Formalising Systems and Test Purposes

In practical testing, the goal is to check certain properties of systems and not to prove behavioural
equivalences between the specification and some given implementation. Thus, the results obtained
from testing are weaker than that obtainable from verification of behavioural equivalences. Yet, ver-
ification quickly gets hard and cumbersome as soon as the size of specification and implementation
increase. Hence, behavioural equivalences have a better place in systematic formal development of
systems, where the design of implementations is being done with respect to equivalence. A poste-
riort testing of an implementation with respect to a specification using behavioural equivalences
quickly gets out of hand for realistic systems.
Which assumptions do we make with respect to the system? We have two main points:

— The system has to be representable in terms of infinite automata.
— The system has a known alphabet of input and output symbols.



Both points are reasonable: The semantics for formal description techniques usually can be given
in terms of labelled transition systems, which can be transformed into infinite automata, as was
mentioned in Section 2.1, and specifications provide for a known alphabet. Furthermore, we require
the infinite automaton which models the system to be only finitely branching.

The requirements to be tested have to be formalised, too. Here, we assume that only behaviours
are of interest that can be expressed in terms of regular languages. Thus, for each requirement we
get a so called test purpose, a finite automaton A accepting the language describing the requirement
to be tested. This automaton then will be extended to another finite automaton .A’ by adding “loop
transitions” to the transitions of A, as is being done inside the SaMsTaG method and tool [3],
restricting the interactions of a process to just those described by the test purpose as long as the
process actively participates in the behaviour of the test purpose.

3 Generating Test Cases

After providing the preliminaries, we are now able to formalise the generation of test cases for infi-
nite systems. Given the model of a system as a labelled transition system embedded into an infinite
automaton as described in Section 2.4 and a test purpose formalised as an infinite automaton, we
will first give an account on test cases in the context of the testing framework presented in Section
2.3. Then we will show how to construct test cases in a step by step manner.

3.1 What are we looking for?

Having defined a system and a test purpose, what are we looking for? We want to know whether
the system shows the property described by the test purpose or not. This can be expressed formally
in the proposition

Smay do P,

where § is the model of the system (in terms of infinite automata), P is the embedding of the test
purpose in an infinite automaton, and the evaluator may do is defined as in Section 2.3. Informally
this sentence states that we are interested to prove that & and P have at least one trace, 1. e., one
sequence of transitions, in common. This is all we are able to show doing tests in a finite amount
of time, as must—testing would require us to prove that all of the possibly infinitely many traces
of P also can be performed by §.

Yet, though the formal sentence above exactly captures the question we would like to ask, it pro-
vides no means to give an answer to this question when asked with respect to the implementation,
as we cannot require to have a formal model for the implementation. What is the problem?

The problem lies in the full synchronisation between & and P used in the definition of may do.
Depicted in the form of a box diagram, we have the situation shown in Fig. 1. The two subsystems

Fig. 1. Full synchronisation between system specification and test purpose

S and P communicate and synchronise on the full alphabet A of & and P. Yet, in practical
contexts we only are able to observe a subset I C A of the alphabet of & and P, that captures
the wvisible actions of § shown at the interface to the environment. But we cannot simply restrict
the synchronisation shown in Fig. 1. Hence, we have to find a new subsystem 7T, as it is shown
in Fig. 2. Which properties does the testing subsystem 7 have to have? Intuitively, it should act
as a kind of “man in the middle” between § and P, as depicted in Fig. 3. While § and P still
communicate and synchronise over the full alphabet A, the test process 7 communicates with S
and P, yet it only synchronises with them over the interface alphabet 7.



Fig. 2. Partial synchronisation between system specification and test automaton

S A P
(1) (1)
| T |

Fig. 3. Inclusion of the test automaton T

Now we can formalise the requirements on 7. Firstly, we have
Smay do P, (1)
as already mentioned above. Secondly, as we want to get to reproducible results, we also require
P ||r 7 must succeed, (2)

such that every trace of T leading to a pass result has to be a trace of P leading to the same result.
Thirdly, we require
S ||r T must succeed, (3)

hence we want to identify the trace in § corresponding to a trace leading to a pass result in P in a
reproducible manner. These last two properties and the intuition from Fig. 3 can be summarised
in the proposition

T |Ir (S|4 P) must succeed . (4)

In this proposition, the term S|4 P comes from expanding the definition of may do in proposition
(1).

Having found such a tester process 7, we may drop the test purpose P (and thus tran-
sit from the configuration of Fig. 3 to the one shown in Fig. 2) from our investigations — as
P |1 T must succeed, T will force the right paths to be taken in P, and as § ||; 7 must succeed,
this path will be taken in &, too.

So far, we have formulated the solution to our problem inside the standard testing framework.
We also place a further requirement on 7: It has to be determinstic, that is

Voe Yr,ae Ar3¢,¢" € X7,

This requirement comes from practical considerations: when performing a test on an implementa-
tion, we cannot rely on angelic choices; 1. e. that decisions in case of nondeterminism being made
only “the right way”. This way, a test can be performed without having to backtrack to earlier
points, where a wrong decision has been made.

3.2 Building Test Cases

Now that we know what we are looking for, how are we going to achieve i1t7 Our test purpose
P is finite and exhibits only a finite behaviour, yet our system specification may have an infinite
number of states.

Hence we will have to resort to some tricks to make the system specification manageable. We
know quite well that the unfolding of a labelled transition system is observably equal to the original
transition system in a very strong sense. As we have the very strong connection between infinite
automata and labelled transition systems mentioned in Section 2.1, we are able to lift this result
for use with infinite automata. We first define the notion of an unfolding of an infinite automaton.



Definition 4. Let A = (¥, A,6,¢,4/) be an infinite automaton. Define a sequence of infinite
automata (A;);ew such that for A; = (X, 4,6, (¢, %), +/;) with ¢ € IN the state space is being
inductively defined as

= {(L’ *)}
Sin1 = {(¢, ') (g, )0 € (5 x A | (g,0)0 € Zi Ag S ¢,

the transition relation §; C (XZ; x A) x Xj is being given by

i

(g, a)0 =i (¢, d')(g,a)0 <= ¢ = ¢,
and the termination predicate is being given as

Vi={lgd)o e Zi | ¢/}
The unfolding of A then is defined as

unfolding A = <D iy A, D bi, (2, %), [j \/Z> ‘
i=1 i=1 i=1
O

Defining the unfolding of an infinite automaton this way, we find the following strong equivalence
between an infinite automaton and its unfolding.

Theorem 5. Let A = (X, A,6,1,+/) be an infinite automaton. Then the following proposition
holds:
A =pis unfold A

Proof. Follows directly from the construction of the unfolding. a

Abusing mathematical notation a bit, we see that lim,_ o A; =pis A holds, where A; are the
elements of the sequence defined in Definition 4. Moreover, if A is only finitely branching, we
observe that each of the approximating automata A; is finite. Moreover, we get the following
result:

Theorem 6. Let A be an infinite automaton, and let (A;);en be a sequence of infinite automata
constructed as shown in Theorem 5. Then

Vi € IN.A; <sim A
holds.
Proof. Straightforward. a

This enables us to build test cases in an approximation process. We will start by unfolding the
model of the specification, and iteratively apply the steps described in the following paragraphs.
In a first step we compute the approximation of the specification §; for some depth ¢ by defining

S, = <E¢,A,(5ﬂ (EZ' X /1) X X, (L, *),\/Z N EZ»> ’
where the state space X; is given as
Yi =10 € Yuntola s | #1(0) < i},

with the function #; being inductively defined as

0
{1—1—#1(0)616[

#i(e)
#1((g, a)o) #1(o) otherwise



counting occurrences of actions observable at the interface.
Then, we fully synchronise this approximation with the test purpose P. This yields an automa-
ton

SillaP.
We now clearly have S; |[4 P <sim S ||4 P, and hence

Si ||4 P must succeed =8 ||4 P may succeed .

By virtue of mathematical logic this proposition holds even when §; ||4 P may succeed does not
hold. But, for the following considerations we assume that S; ||4 P may succeed holds.

For sake of notational simplicity, we will define A; = S;||4 P. Hence we now have a tree—shaped
finite automaton 4;, that can even be used as testing automaton, yielding

Smay do A; <= S|4 (S|4 P) may succeed .

Yet, A; still contains too much information, as it has to be synchronised with the specification
over the full alphabet A. Hence in the next step we will abstract from all actions in A; that are
not observable from the interface between the test automaton and the model of the specification.
Thus we define the automaton

Ai = Ai{dr},

where the abstraction function d; is defined as

51(a):{a’lfaEI

1, otherwise

with [ being the alphabet of the interface between the specification and its environment and 1
being the monoid unit. Again, we have

S ||r A} may succeed .

In the next step, we now will drop all the silent actions 1 from the automaton. For this, we
first need an auxiliary definition.

Definition 7. Let A = (X A,d,¢,+/) be an infinite automaton. Define the 1-closure of A to be
the automaton closure A = (X, A, A4, ¢,+/) with the transition relation A4 being given as

* *
Ap={((s,a),s) € (¥ x A)x ¥ | Tsy,s0 € L.s N X s'},
*
where & is the transitive and reflexive closure of . a
So now we are able to define a third automaton A! as
Al = closure Aj.
For this automaton, we immediately observe that
Al =i A
holds, as the monoid unit 1 does not contribute to traces in the automaton. We still have
S ||r AY may succeed,
although the moment of choice between alternative paths in A has been changed with respect to
A;.
So now we have a automaton .4} that only contains actions visible at the interface between the
specification automaton § and its environment, and that is not capable of spontaneous transitions.

This nearly is what we need — the only point missing is that .47 is not deterministic. This will be
fixed in our next step, but first we have again to give an auxiliary definition.



Definition 8. Let A = (X, A,§,4,4/) be an infinite automaton. A sequence (B;);en of infinite
automata is defined as follows:

= Bi = {{}}, A, 0,{c},V)), where /; = {{c}} if ¢ € /, and /| = 0 otherwise.

- Biy1 = <ZZ'+1,/1, div1, 1t} \/Z»+1>, where the transition relation J;41 is given as
Siv1 ={((S,a),5") | SEZ Nac ANS ={s€ ¥ |3 €Ss S5},
the state space X411 1s given as
i1 ={S1(S,a,5) € =ip1 }UL{S | ((S,a),5") € dig1},
and the termination predicate \/i+1 is given as

\/i+1 = {S € Ei+1 | E'S € SS\/}
We define the determinisation of A (denoted det . A) to be

det.A - DBZ

i=1

The process of determinisation terminates for finite automata, hence we are able to define
A = det AV

without loosing termination of our test generation process. So now we have a deterministic au-
tomaton without spontaneous transitions, which is labelled just with the actions visible at the
interface between the specification and its environment. For this automaton again

11 1
Az’ =it Az’

holds, and again we have
S||r A7 may succeed .

Yet, we are not quite at the point we wanted to get to, as still only §||;.4}" may succeed holds
instead of §||1 A must succeed, as would have to be the case if A would be a test automaton.
Due to the construction used in the process of determinisation, the final states of A/’ contain also
states that lead back to states of the specification S' which themselves are no final states of S.
We have to fix this by determining a sub-automaton of A}’ in the following way:

./4;'/// — <EA’1” , AAI,”’ 6“411”’ LAy, \/> ,
where the termination predicate 1/ is given as

\/: {S € EA’l” | Vs € S'S\/SxP}’

such that the resulting automaton has as its final states only those sets of states from A} containing
erclusively final states of the automaton AY. This way it is clear that the test purpose P was
successfully performed when a trace is found which leads from the initial state of A7 to one of its
final states.

With the construction shown above, we have A} <;; A, as we have only less final states in
AP and

S ||lr AY” may succeed

as expected.

We proposed these steps to form an approximation process. Dropping our assumption stated
above that S; ||4 P may succeed, we are now able to formulate an algorithm. The approximation
stops as soon as the termination predicate of AY" is not empty, i. e. a unique final state has been
found. This leaves us with the following approximation algorithm:

! Note that by construction of the parallel composition the states of S |lr AY" are pairs of states.



1 :=0.

Compute ;.

A= (Si |[a P){or}

Compute A as described above.

A = det AY.

Compute A" as described above.

Does / 4 # 0 hold? If yes, proceed with Step 9, otherwise go on.
Increment ¢ by 1, proceed with Step 2.

[ "

In each Step of this algorithm, we have A} <;; AV =;; A = AL, furthermore we have §; <gim S
as stated above. The result of this algorithm is a suitable automaton 7", which only fulfils

WO o =] O O = Q0 N —

S||r 7' may succeed,

as 7' may still contain “dead” branches leading to leaves that are no final states. So we still have
to prune these dead branches. Hence we define the testing automaton to be

T =27, Ar, 07,07,/ 1)
with the state space Y7 being cut down to
Yr={seXp |3 e /7 sCs},
where the relation C C X/ x X7 is defined as the reflexive and transitive closure of the relation
{(s,8') € ¥ x Xpr | Ja € As =571 5},
The transition relation §7+ likewise is cut down to
5 ={((s,a),s") €ér | s€ Xy ns' € D7}

With 7, we finally have the testing automaton we were looking for, as this automaton fulfils the
proposition
S|l 7 must succeed .

4 Conclusions

The work presented in this paper facilitates the automatic computation of test cases for systems
that are described by means of infinite automata as well as by means of finite automata. The
algorithm described can be varied in some places, so e. g. the approximation of a system can be
done with a different sequence of finite automata, for example by doing a k—bounded depth—first
search. This way, the work presented here also can be seen as a theoretical basis for the SaMsTaG
method and tool [3].

With this said, the work described here is not finished — we plan to extend the approach
presented here to consider partially ordered traces, which would reduce the size of test cases
drastically. We also plan to formalise tests on models containing a notion of time in a further step.
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