
Generating Test Cases for In�nite System Speci�cationsStefan Heymer and Jens GrabowskiUniversity of L�ubeck, Institute for Telematics, Ratzeburger Allee 160, D-23538 L�ubeck, Germany, e{mail:fheymer, grabowskg@itm.mu-luebeck.de, http://www.itm.mu-luebeck.deAbstract. Test case generation is a means to validate the implementation of a system aposteriori with respect to some given requirements imposed on the system. Current methodsfor the generation of test cases often rely on the system speci�cation being given as a �niteautomaton, which does not fully cover the situation in systems with asynchronous commu-nication, In this paper we present an algorithm for the computation of test cases for in�nitesystem speci�cations.1 MotivationReal communication systems are often de�ned by means of in�nite speci�cations. Reasons for thein�niteness are special assumptions and the characteristics of the used speci�cation languages.For example, the Speci�cation and Description Language (SDL) of the ITU-T [1] assumes in�nitemessage bu�ers for communication purposes and provides abstract data types (ADTs) for thespeci�cation of data. The ADT feature allows to specify in�nite data ranges.In most cases conformance between a system speci�cation and a corresponding implementationis checked by means of testing. In the area of communication protocols this type of testing iscalled Protocol Conformance Testing [5]. Conformance testing is based on a set of requirements,the so-called test purposes, each of which has to be checked during the procedure of testing. Testpurposes are identi�ed, speci�ed and later on implemented (in form of test cases) by hand.The aim of this paper is to provide a theoretical foundation for proving requirements in asystem speci�cation and algorithms for checking these requirements in a corresponding systemspeci�cation. The latter one can be considered to be work on automatic test generation. Forbuilding up a theoretical foundation and algorithms we need suitable formal models for expressingrequirements and system speci�cations.We restrict ourselves to the treatment of requirements which can be transformed into �niteautomata [4], i.e., for each requirement we assume there exists an automaton which accepts orgenerates all traces which exhibit the required property. As formal model for a system speci�cationwe use in�nite automata which is the most general model. In�nite automata and Turing machinesaccept the same class of languages. By means of a simulator for a given speci�cation it is possibleto partially generate the corresponding in�nite automaton and to examine its behaviour.The remainder of this paper is organised in the following manner: Section 2 �rst gives anaccount on the theoretical models and equivalences used in our work, while Section 3 describes thegeneration of test cases for in�nite speci�cations in a step by step manner. We close this paperwith some conclusions and directions for further work in Section 4.2 Some PreliminariesIn this section we give de�nitions for the formalmodel underlying our constructions, namely in�nitestate automata, introduce some operations on in�nite state automata and discuss equivalence andpreorder relations. Also we refer to a standard testing framework used inside the formal methodscommunity. We close this section by taking a look at how to formalise systems and test purposes.2.1 In�nite Automata and Operations on themUsually for test case generation �nite automata [4] are used. Yet, these are not the right modelfor our studies, since we are considering in�nite systems. On the other hand the model of labelledtransition systems [7] known from the �eld of process algebra has its nice points: A number of



equivalences are de�ned on this model formalising di�erent aspects, under which the observablebehaviour of two systems can be considered to be equal. Yet, labelled transition systems are notsupported with a \built{in" notion of termination. This has to be formalised by special actions.We will use the model of in�nite automata, which seems to embody the \best of both worlds" |the possibly in�nite state space of labelled transition systems and the equivalences and preordersde�ned on them, together with the information on termination from �nite automata. An in�niteautomaton is de�ned in the following way:De�nition 1 (In�nite State Automaton). An in�nite state automaton is a tupleA = h�;�; �; �;pi ;where � is a (possibly in�nite) set of states, � is an (possibly in�nite) alphabet, � � (� � �)��is the direct transition relation of A, � 2 � is the initial state of A, and p � � is the set of �nalstates of A.In the following, we will write q a! q0 instead of ((q; a); q0) 2 � and qp instead of q 2 p. 2In this formulation the alphabet � of an in�nite automaton A is meant to be the generator ofa monoid whose operation is concatenation of strings | hence, � also has to contain an neutralelement 1 with respect to this operation that corresponds to the special action � denoting silenttransitions known from labelled transition systems.This de�nition gives some nice properties to in�nite automata: If one takes a look at suitablyde�ned categories of �nite automata, in�nite automata and labelled transition systems (as it hasbeen shown for labelled transition systems in [7]), one easily �nds injection functors from thecategories of �nite automata and labelled transition systems into the category of in�nite automata.This allows us to \lift" de�nitions given on labelled transition systems to the realm of in�niteautomata.Using this strong correspondence between labelled transition systems and in�nite automata,we de�ne operations on in�nite automata. As a basic set of operations we take those given in [7],restricting our attention to the product, relabelling and restriction operators de�ned there.De�nition 2 (Operations on In�nite Automata). Let A1 = h�1; �1; �1; �1;p1i and A2 =h�2; �2; �2; �2;p2i be two in�nite state automata. We de�ne the following operations:{ A1 � A2 = h�1 � �2; �; �; (�1; �2);p1 �p2i is the product automaton of A1 and A2 with thealphabet � and the direct transition relation � being de�ned as� = (�1 � f�g) [ (f�g � �2) [ (�1 � �2)� = f(((q1; q2); (a; �)); (q01; q2)) j ((q1; a); q01) 2 �1 ^ q2 2 �2g[ f(((q1; q2); (�; a)); (q1; q02)) j ((q2; a); q02) 2 �2 ^ q1 2 �1g[ f(((q1; q2); (a1; a2)); (q01; q02)) j ((q1; a1); q01) 2 �1 ^ ((q2; a2); q02) 2 �2g;where � denotes a special idling transition.{ Let � � �1. Then A1 � � = h�1; �1 \ �; �; �1;p1i is the restriction of A1 to � with thetransition relation � being de�ned as� = f((q; a); q0) 2 �1 j a 2 �g:{ Let � : �1 ! � be a function being strict on 1, i. e. with �(1) = 1, for some alphabet �. ThenA1f�g = h�1; �; �; �1;p1i is the relabelling of A1 according to � with the transition relation� being de�ned as � = f(((q; �(a)); q0) 2 (�1 � �)��1 j ((q; a); q0) 2 �1g: 2These three operations serve to de�ne a vast number of parallel composition operators onin�nite automata. While the product operator � formulates a very liberal parallel composition,where each automaton is allowed to make a move at any time, even simultaneously, the restriction



operator can be used to cut down such a liberal composition to a set of events that are allowedto happen simultaneously. After restricting the set of possible transitions this way, a followingrelabelling may rename pairs of names of events to the usual event names.So for instance the LOTOS{style synchronisation operator kA for synchronisation on events inthe set A can be given as A1 kA A2 = ((A1 � A2) � �)f�g;where � and � are de�ned as� = ((�1 nA)� f�g)[ (f�g � (�2 nA)) [ f(a; a) j a 2 Agand � :8<: (a; �) 7! a; a 2 �1 nA;(�; a) 7! a; a 2 �2 nA;(a; a) 7! a; a 2 A:When the synchronisation set A comprises the union of the alphabets of A1 and A2, we will usethe shorthand notation A1 k A2, calling this full synchronisation. This synchronisation operatorwill play an important role in Section 3.2.2.2 Equivalences and PreordersAfter transferring some of the de�nitions for operations on labelled transition systems from [7]to in�nite automata, we will now adapt the de�nitions for some of the equivalence relations andpreorders de�ned on labelled transition systems. One of these equivalences is strong bisimilarity.Why do we need such equivalences? We are already able to express the equivalence of automatain terms of equality of their languages. For distributed and reactive systems, which have to runfor an \in�nite" period, this often is impracticable. Furthermore, often one also wants informationabout branches that do not lead to a �nal state in the automata, which can be gained from inter-leaving trace equivalence, or about the internal mechanisms of choice between di�erent alternativesin situations of nondeterminism, which can be retrieved from strong bisimilarity.We will only give a formal de�nition of the notion of strong bisimilarity (as it was de�ned in [6]for labelled transition systems) on in�nite automata. The formal de�nitions of interleaving traceequivalence =it, interleaving trace preorder �it and simulation preorder �sim can be obtained in asimilar manner from the de�nitions of their counterparts de�ned on labelled transitions.De�nition 3 (Strong Bisimilarity). Let Ai = h�i; �i; �i; �i;pii, i 2 f1; 2g be in�nite au-tomata. A strong bisimulation between A1 and A2 is a relation R � �1 � �2 such that thefollowing holds:1. (�1; �2) 2 R2. If (q1; q2) 2 R and q1 a! q01 for some a 2 A1 and q01 2 �1, then there exists some q02 2 �2 withq2 a! q02 and (q01; q02) 2 R3. If (q1; q2) 2 R and q2 a! q02 for some a 2 A2 and q02 2 �2, then there exists some q01 2 �1 withq1 a! q01 and (q01; q02) 2 R4. If (q1; q2) 2 R, then q1p1 if and only if q2p2A1 and A2 are strongly bisimilar, denoted A1=bisA2, if there exists a strong bisimulation betweenA1 and A2. 22.3 A Standard Testing FrameworkWe will now introduce a framework for testing which is mostly inspired by De Nicola and Hennessy[2]. It is mostly standard for labelled transition systems, though we adapt it to in�nite automatain the same way we did in the last section for equivalences and preorders. As the in�nite automatacontain explicit termination information, it is possible to simplify the approach presented in [2].What we are going to formalise is a testing preorder, one of the better known implementationrelations used in formal systems design. The general idea is that users of a given system shouldbe exible enough to deal with all the speci�ed possible responses of the system. The interaction



mechanism in this framework is based synchronisation, hence the setting can be formalised in thesynchronisation product U k S;where U is the model for the user and S the model for the system. If the user fails to interactwith the system successfully, this can be associated with a possible deadlock in the behaviour ofthe full system U k S. Now, systems should be implemented in a fashion such that users never aredisappointed | that is, if a user was able to successfully interact with the system speci�cation,he should always be able to interact successfully with an implementation of the system. To ensurethis property, the behaviour of the user is reected in a number of tests.For describing tests, �nite automata can be used, with the test automaton reaching a �nalstate if the test was performed successfully. To apply a test automaton T , it is placed in fullsynchronisation with the system S, i. e. T k S:Now, we are able to formulate boolean evaluators de�ned over in�nite automata, of which themost important is must{testing :T must succeed() 8w 2 ��T ; q 2 �T :(�T w) q =) (qpT _ 9a 2 �T ; q0 2 �T :q a! q0))S must do T () (S k T )must succeed :The evaluator must succeed states that a test application is successful if it cannot get intoa visible deadlock (i. e., is not able to perform further transitions) without signalling successfulperformance of the test. must do is a two{place version of must succeed.This interpretation di�ers from the interpretation of \must{testing" in [2], especially withrespect to in�nite behaviour. In�nite paths are considered successful in [2] if and only if some�nite pre�x of the behaviour is successful. In our setup, we consider �nite traces in the �rst place.In�nite traces of visible events not leading to a �nal state are not taken into account, whereasin�nite paths of invisible events correspond to divergence and are ignored as long as from everystate along the path there is an outgoing visible transition. Thus, as a consequence the e�ect ofin�nite visible paths is di�erent from that of divergence. Due to the ability to construct arbitrarytests, all visible �nite behaviour can be investigated, which as usual is taken to characterise in�nitebehaviour as well.In addition to must succeed, we de�ne the following evaluator, which is also inspired by [2]:T may succeed() 9w 2 ��T ; q 2 �T :�T w=) q ^ qpTS may do T () (S k T )may succeed :This evaluator tests whether there is a successful trace in T at all. In practice, may succeed canbe used to test for traces, may do again being a two{place variant of may succeed.2.4 Formalising Systems and Test PurposesIn practical testing, the goal is to check certain properties of systems and not to prove behaviouralequivalences between the speci�cation and some given implementation. Thus, the results obtainedfrom testing are weaker than that obtainable from veri�cation of behavioural equivalences. Yet, ver-i�cation quickly gets hard and cumbersome as soon as the size of speci�cation and implementationincrease. Hence, behavioural equivalences have a better place in systematic formal development ofsystems, where the design of implementations is being done with respect to equivalence. A poste-riori testing of an implementation with respect to a speci�cation using behavioural equivalencesquickly gets out of hand for realistic systems.Which assumptions do we make with respect to the system? We have two main points:{ The system has to be representable in terms of in�nite automata.{ The system has a known alphabet of input and output symbols.



Both points are reasonable: The semantics for formal description techniques usually can be givenin terms of labelled transition systems, which can be transformed into in�nite automata, as wasmentioned in Section 2.1, and speci�cations provide for a known alphabet. Furthermore, we requirethe in�nite automaton which models the system to be only �nitely branching.The requirements to be tested have to be formalised, too. Here, we assume that only behavioursare of interest that can be expressed in terms of regular languages. Thus, for each requirement weget a so called test purpose, a �nite automatonA accepting the language describing the requirementto be tested. This automaton then will be extended to another �nite automatonA0 by adding \looptransitions" to the transitions of A, as is being done inside the SaMsTaG method and tool [3],restricting the interactions of a process to just those described by the test purpose as long as theprocess actively participates in the behaviour of the test purpose.3 Generating Test CasesAfter providing the preliminaries, we are now able to formalise the generation of test cases for in�-nite systems. Given the model of a system as a labelled transition system embedded into an in�niteautomaton as described in Section 2.4 and a test purpose formalised as an in�nite automaton, wewill �rst give an account on test cases in the context of the testing framework presented in Section2.3. Then we will show how to construct test cases in a step by step manner.3.1 What are we looking for?Having de�ned a system and a test purpose, what are we looking for? We want to know whetherthe system shows the property described by the test purpose or not. This can be expressed formallyin the proposition S may do P;where S is the model of the system (in terms of in�nite automata), P is the embedding of the testpurpose in an in�nite automaton, and the evaluatormay do is de�ned as in Section 2.3. Informallythis sentence states that we are interested to prove that S and P have at least one trace, i. e., onesequence of transitions, in common. This is all we are able to show doing tests in a �nite amountof time, as must{testing would require us to prove that all of the possibly in�nitely many tracesof P also can be performed by S.Yet, though the formal sentence above exactly captures the question we would like to ask, it pro-vides no means to give an answer to this question when asked with respect to the implementation,as we cannot require to have a formal model for the implementation. What is the problem?The problem lies in the full synchronisation between S and P used in the de�nition ofmay do.Depicted in the form of a box diagram, we have the situation shown in Fig. 1. The two subsystemsS �
 �	� PFig. 1. Full synchronisation between system speci�cation and test purposeS and P communicate and synchronise on the full alphabet � of S and P. Yet, in practicalcontexts we only are able to observe a subset I � � of the alphabet of S and P, that capturesthe visible actions of S shown at the interface to the environment. But we cannot simply restrictthe synchronisation shown in Fig. 1. Hence, we have to �nd a new subsystem T , as it is shownin Fig. 2. Which properties does the testing subsystem T have to have? Intuitively, it should actas a kind of \man in the middle" between S and P, as depicted in Fig. 3. While S and P stillcommunicate and synchronise over the full alphabet �, the test process T communicates with Sand P, yet it only synchronises with them over the interface alphabet I.



S �
 �	I TFig. 2. Partial synchronisation between system speci�cation and test automatonS �
 �	� P�
�	I �
�	ITFig. 3. Inclusion of the test automaton TNow we can formalise the requirements on T . Firstly, we haveS may do P; (1)as already mentioned above. Secondly, as we want to get to reproducible results, we also requireP kI T must succeed; (2)such that every trace of T leading to a pass result has to be a trace of P leading to the same result.Thirdly, we require S kI T must succeed; (3)hence we want to identify the trace in S corresponding to a trace leading to a pass result in P in areproducible manner. These last two properties and the intuition from Fig. 3 can be summarisedin the proposition T kI (S k� P)must succeed : (4)In this proposition, the term S k�P comes from expanding the de�nition ofmay do in proposition(1).Having found such a tester process T , we may drop the test purpose P (and thus tran-sit from the con�guration of Fig. 3 to the one shown in Fig. 2) from our investigations | asP kI T must succeed, T will force the right paths to be taken in P, and as S kI T must succeed,this path will be taken in S, too.So far, we have formulated the solution to our problem inside the standard testing framework.We also place a further requirement on T : It has to be deterministic, that is8q 2 �T ; a 2 �T :9q0; q00 2 �T :This requirement comes from practical considerations: when performing a test on an implementa-tion, we cannot rely on angelic choices, i. e. that decisions in case of nondeterminism being madeonly \the right way". This way, a test can be performed without having to backtrack to earlierpoints, where a wrong decision has been made.3.2 Building Test CasesNow that we know what we are looking for, how are we going to achieve it? Our test purposeP is �nite and exhibits only a �nite behaviour, yet our system speci�cation may have an in�nitenumber of states.Hence we will have to resort to some tricks to make the system speci�cation manageable. Weknow quite well that the unfolding of a labelled transition system is observably equal to the originaltransition system in a very strong sense. As we have the very strong connection between in�niteautomata and labelled transition systems mentioned in Section 2.1, we are able to lift this resultfor use with in�nite automata. We �rst de�ne the notion of an unfolding of an in�nite automaton.



De�nition 4. Let A = h�;�; �; �;pi be an in�nite automaton. De�ne a sequence of in�niteautomata (Ai)i2IN such that for Ai = h�i; �; �i; (�; �);pii with i 2 IN the state space is beinginductively de�ned as�1 = f(�; �)g�i+1 = f(q0; a0)(q; a)� 2 (� � �)� j (q; a)� 2 �i ^ q a0! q0g;the transition relation �i � (�i � �)� �i is being given by(q; a)� a0!i (q0; a0)(q; a)� () q a0! q0;and the termination predicate is being given aspi = f(q; a)� 2 �i j qpg:The unfolding of A then is de�ned asunfolding A = * 1[i=1�i; �; 1[i=1�i; (�; �); 1[i=1pi+ : 2De�ning the unfolding of an in�nite automaton this way, we �nd the following strong equivalencebetween an in�nite automaton and its unfolding.Theorem 5. Let A = h�;�; �; �;pi be an in�nite automaton. Then the following propositionholds: A =bis unfold AProof. Follows directly from the construction of the unfolding. utAbusing mathematical notation a bit, we see that limn!1Ai =bis A holds, where Ai are theelements of the sequence de�ned in De�nition 4. Moreover, if A is only �nitely branching, weobserve that each of the approximating automata Ai is �nite. Moreover, we get the followingresult:Theorem 6. Let A be an in�nite automaton, and let (Ai)i2IN be a sequence of in�nite automataconstructed as shown in Theorem 5. Then8i 2 IN:Ai �sim Aholds.Proof. Straightforward. utThis enables us to build test cases in an approximation process. We will start by unfolding themodel of the speci�cation, and iteratively apply the steps described in the following paragraphs.In a �rst step we compute the approximation of the speci�cation Si for some depth i by de�ningSi = h�i; �; � \ (�i � �) ��i; (�; �);pi \�ii ;where the state space �i is given as�i = f� 2 �unfold S j #I(�) � ig;with the function #I being inductively de�ned as#I(�) = 0#I((q; a)�) = �1 +#I(�) a 2 I#I(�) otherwise



counting occurrences of actions observable at the interface.Then, we fully synchronise this approximation with the test purpose P. This yields an automa-ton Si k� P:We now clearly have Si k� P �sim S k� P, and henceSi k� P must succeed =)S k� P may succeed :By virtue of mathematical logic this proposition holds even when Si k� P may succeed does nothold. But, for the following considerations we assume that Si k� P may succeed holds.For sake of notational simplicity, we will de�ne Ai = Si k�P. Hence we now have a tree{shaped�nite automaton Ai, that can even be used as testing automaton, yieldingS may doAi () S k� (Si k� P)may succeed :Yet, Ai still contains too much information, as it has to be synchronised with the speci�cationover the full alphabet �. Hence in the next step we will abstract from all actions in Ai that arenot observable from the interface between the test automaton and the model of the speci�cation.Thus we de�ne the automaton A0i = Aif�Ig;where the abstraction function �I is de�ned as�I (a) = �a; if a 2 I1; otherwisewith I being the alphabet of the interface between the speci�cation and its environment and 1being the monoid unit. Again, we haveS kI A0i may succeed :In the next step, we now will drop all the silent actions 1 from the automaton. For this, we�rst need an auxiliary de�nition.De�nition 7. Let A = h�;�; �; �;pi be an in�nite automaton. De�ne the 1{closure of A to bethe automaton closure A = h�;�;�A; �;pi with the transition relation �A being given as�A = f((s; a); s0) 2 (� � �)� � j 9s1; s2 2 �:s 1!� s1 a! s2 1!� s0g;where 1!� is the transitive and reexive closure of 1!. 2So now we are able to de�ne a third automaton A00i asA00i = closure A0i:For this automaton, we immediately observe thatA00i =it A0iholds, as the monoid unit 1 does not contribute to traces in the automaton. We still haveS kI A00i may succeed;although the moment of choice between alternative paths in A00i has been changed with respect toAi.So now we have a automaton A00i that only contains actions visible at the interface between thespeci�cation automaton S and its environment, and that is not capable of spontaneous transitions.This nearly is what we need | the only point missing is that A00i is not deterministic. This will be�xed in our next step, but �rst we have again to give an auxiliary de�nition.



De�nition 8. Let A = h�;�; �; �;pi be an in�nite automaton. A sequence (Bi)i2IN of in�niteautomata is de�ned as follows:{ B1 = hff�gg; �; ;; f�g;p1i, where p1 = ff�gg if � 2 p, and p1 = ; otherwise.{ Bi+1 = 
�i+1; �; �i+1; f�g;pi+1�, where the transition relation �i+1 is given as�i+1 = f((S; a); S0) j S 2 �i ^ a 2 � ^ S0 = fs 2 � j 9s0 2 S:s a! s0gg;the state space �i+1 is given as�i+1 = fS j (S; a; S0) 2 !i+1g [ fS0 j ((S; a); S0) 2 �i+1g;and the termination predicate pi+1 is given aspi+1 = fS 2 �i+1 j 9s 2 S:spg:We de�ne the determinisation of A (denoted detA) to bedetA = 1[i=1Bi: 2The process of determinisation terminates for �nite automata, hence we are able to de�neA000i = detA00iwithout loosing termination of our test generation process. So now we have a deterministic au-tomaton without spontaneous transitions, which is labelled just with the actions visible at theinterface between the speci�cation and its environment. For this automaton againA000i =it A00iholds, and again we have S kI A000i may succeed :Yet, we are not quite at the point we wanted to get to, as still only S kIA000i may succeed holdsinstead of S kI A000i must succeed, as would have to be the case if A000i would be a test automaton.Due to the construction used in the process of determinisation, the �nal states of A000i contain alsostates that lead back to states of the speci�cation S1 which themselves are no �nal states of S.We have to �x this by determining a sub-automaton of A000i in the following way:A0000i = 
�A000i ; �A000i ; �A000i ; �A000i ;p� ;where the termination predicate p is given asp = fS 2 �A000i j 8s 2 S:spS�Pg;such that the resulting automaton has as its �nal states only those sets of states fromA000i containingexclusively �nal states of the automaton A00i . This way it is clear that the test purpose P wassuccessfully performed when a trace is found which leads from the initial state of A0000i to one of its�nal states.With the construction shown above, we have A0000i �it A000i , as we have only less �nal states inA0000i , and S kI A0000i may succeedas expected.We proposed these steps to form an approximation process. Dropping our assumption statedabove that Si k� P may succeed, we are now able to formulate an algorithm. The approximationstops as soon as the termination predicate of A0000i is not empty, i. e. a unique �nal state has beenfound. This leaves us with the following approximation algorithm:1 Note that by construction of the parallel composition the states of S kI A000i are pairs of states.



1. i := 0.2. Compute Si.3. A0i := (Si k� P)f�Ig.4. Compute A00i as described above.5. A000i = detA00i .6. Compute A0000i as described above.7. Does pA0000i 6= ; hold? If yes, proceed with Step 9, otherwise go on.8. Increment i by 1, proceed with Step 2.9. T 0 := A0000i .In each Step of this algorithm, we have A0000i �it A000i =it A000i =it A0i, furthermore we have Si �sim Sas stated above. The result of this algorithm is a suitable automaton T 0, which only ful�lsS kI T 0 may succeed;as T 0 may still contain \dead" branches leading to leaves that are no �nal states. So we still haveto prune these dead branches. Hence we de�ne the testing automaton to beT = h�T ; �T 0 ; �T ; �T 0 ;pT 0 iwith the state space �T being cut down to�T = fs 2 �T 0 j 9s0 2 pT 0 :s v s0g;where the relation v � �T 0 ��T 0 is de�ned as the reexive and transitive closure of the relationf(s; s0) 2 �T 0 ��T 0 j 9a 2 �:s a!T 0 s0g:The transition relation �T 0 likewise is cut down to�T = f((s; a); s0) 2 �T 0 j s 2 �T ^ s0 2 �T g:With T , we �nally have the testing automaton we were looking for, as this automaton ful�ls theproposition S kI T must succeed :4 ConclusionsThe work presented in this paper facilitates the automatic computation of test cases for systemsthat are described by means of in�nite automata as well as by means of �nite automata. Thealgorithm described can be varied in some places, so e. g. the approximation of a system can bedone with a di�erent sequence of �nite automata, for example by doing a k{bounded depth{�rstsearch. This way, the work presented here also can be seen as a theoretical basis for the SaMsTaGmethod and tool [3].With this said, the work described here is not �nished | we plan to extend the approachpresented here to consider partially ordered traces, which would reduce the size of test casesdrastically. We also plan to formalise tests on models containing a notion of time in a further step.References1. ITU Telecommunication Standards Sector SG 10. ITU{T Recommendation Z.100: Speci�cation andDescription Language (SDL) (formerly CCITT Recommendation Z.100). ITU, Geneva, June 1992.2. R. De Nicola and M.C.B. Hennessy. Testing Equivalences for Processes. Theoretical Computer Science,34:83{133, 1984.3. J. Grabowski, D. Hogrefe, and R. Nahm. Test Case Generation with Test Purpose Speci�cation byMSCs. In O. F�rgemand and A. Sarma, editors, SDL'93 Using Objects. North-Holland, 1993.4. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.Addison-Wesley, 1979.5. ISO. Information Technology, Open Systems Interconnection, Conformance Testing Methodology andFramework. International Standard IS-9646. ISO, Geneve, 1991. Also: CCITT X.290{X.294.6. D. Park. Concurrency and Automata on In�nite Sequences. In P. Deussen, editor, Proceedings 5th GIConference, pages 167{183. Lecture Notes in Computer Science 104, Springer-Verlag, 1981.7. G. Winskel and M. Nielsen. The Handbook of Logic in Computer Science, chapter Models for Concur-rency. Springer{Verlag, 1992.


