
Managing Services in Distributed Systems
by Integrating Trading and Load Balancing

Abstract

With a changing structure of networks and application
systems due to the requirements of decentralised enter-
prises and open service markets, distributed systems with
rapidly increasing complexity are evolving. New concepts
for an efficient management of such systems have to be
developed. Focussing on the service level, examples for
existing concepts are trading to find services in a distribu-
ted environment, and load balancing to avoid performance
bottlenecks in service provision. This paper discusses the
integration of a load balancer into a trader to adapt the
allocation of client requests to suitable servers due to the
current system usage, and thus to improve the quality of
the services in terms of performance. The approach used
is independent of the servers’ characteristics, because for
the servers involved, no provision of additional service
properties to cover load aspects is necessary. Further-
more, it is flexible to enhance, because the concept of load
used can be varied without modification of trader or load
balancer.

1. Introduction

The integration of small isolated networks into bigger
ones, distributed over the whole world, caused a change in
the design of application systems. Single applications are
replaced by distributed ones, which can utilise resources
more efficient. By using the concept of a middleware, e.g.
the Common Object Request Broker Architecture
(CORBA), it is possible to create an open service market,
in which services provided by different application objects
can be used to compose the functionality of a new
application. One example for the use of this concept is
given by the Cooperative Research Centre 476 IMPROVE
[8], a project at Aachen University of Technology we are
participating in, which aims to support chemical engineers
in designing chemical processes by support of computer
science. The chemical engineers are located in different

parts of a company, or even in different companies. To
provide support of single engineers as well as the whole
design process, a distributed design environment of the
tools and services involved has to be realised. A trader is
used to find applications providing the demanded services
in this environment. To enable an efficient work on a
design task, it is possible to distribute requests among
several applications providing the same service. Neverthe-
less, a system can by partly overloaded, if one server is
used intensively.

This paper addresses the enhancement of a trader by a
load balancing component. Thus, the trader is enabled to
consider performance aspects when selecting a server for a
client’s request. The trader has to search for a service
which is optimal in two senses. First, the service quality
determined by service properties has to have an influence.
Second, the load of the corresponding server has to be
considered. From these factors, a compromise has to be
effected. This concept was implemented and evaluated on
a CORBA basis. The paper is structured as follows. In
chapter two, the concepts of trading, load balancing, and a
combination of both are explained. Chapter three introdu-
ces our approach for such a combination. In chapter four,
some examinations for showing the usability of our
approach are given. Finally, chapter five concludes the
paper and addresses some perspectives for further work.

2. Trading and load balancing

If the same service is offered by several servers, a client
can be supported in choosing one of them. Two powerful
mechanisms for doing so are trading and load balancing.
Whereas in trading the choice is driven by a client’s
demands, the load balancing approach applies on the
server’s side.

Trading: The trading service can be seen as an enhance-
ment of the naming service, which gives a client more
flexibility in specifying the service it needs [10]. Whereas
at the naming service a server resp. the service this server

Dirk Thißen
Aachen University of Technology,

Department of Computer Science, Informatik IV
Ahornstraße 55, D-52074 Aachen, Germany

Phone: +49-241-8021410, Fax: +49-241-8888220
thissen@i4.informatik.rwth-aachen.de

Helmut Neukirchen
Medical University of Lübeck,

Institute for Telematics
Ratzeburger Allee 160, D-23538 Lübeck, Germany
Phone: +49-451-5004867, Fax: +49-451-5003722

neukirchen@itm.mu-luebeck.de

offers must be assigned with a unique name, in the trading
concept a service is described by a service type and
service properties. The service type describes the functio-
nality of a service and determines its signature or interface
definition. Thus, an open service market is enabled. But
the service type is not enough to describe a particular
service. Additionally, service properties can be used to
describe non-computational aspects of a service. General-
ly, service properties are divided into two groups: static
and dynamic properties. The group of static properties
contains all service properties, which do not change over
time. The dynamic service properties have varying values
and can be used as performance measurements. Using
service properties, a server describes its capabilities in
service delivery. A client searching for a service, can
formulate as well restrictions on the service properties to
express its needs, as criteria to determine an order on the
services found, for example a minimisation of a property
value. The trader matches the client’s description against
all recorded services and passes back a list of references
for the corresponding servers. Traders were implemented
in various environments [4], but they got not very popular.
Only with the adoption of trading as a CORBAservice, it
became of general interest. Today, a lot of implementa-
tions of traders for CORBA platforms exist.

Load balancing: Load balancing has the goal to
uniformly utilise all available resources in a system by
distributing tasks according to a given strategy. Simple
strategies are static, i.e. new tasks are distributed to the
servers by a fixed schema. Examples are the cyclic assign-
ment of tasks to the given servers or random server choice.
These strategies are easy to implement, but cannot adapt to
special situations. The more promising strategies are
adaptive to a system’s state, so they can react on sudden
changes in the system. Tasks are distributed according to
the load of the available servers. Such dynamic load
balancing strategies have to consider the fact, that measu-
red load values only reflect the past. By updating the load
values more often, this problem can be minimised, but the
network load for transmitting load information increases to
much. A compromise between communication overhead
and relevance of the data has to be made.

A lot of work on load balancing exist for mostly
homogeneous systems. As an example, [3] came to the
result, that simple strategies with small communication
effort are most suitable. The best results were achieved
with strategies basing on a threshold. Servers are randomly
chosen to get the next task while their load does not
exceed the threshold value. More current strategies use
more complex techniques, for example fuzzy decision
theory [2]. Such work contradicts the advantage of simple
strategies. On the other hand, [1] affirms the former results
on simple strategies.

Combining trader and load balancer: Trading is a good
concept to support the binding between clients and servers.
But if one service type is searched for very often and each
client wants to get the ”best” service instance, single
servers can be overloaded. On the other hand, a load
balancer tries to realise a perfect distribution of the clients’
requests to the available servers. But it only could select
one server in a particular group; in large open systems,
where lot of services with different types exist, the load
balancer would have to know the type of the service, for
that he can choose a server. Additionally, the load balancer
only could choose a server by its load, not by other service
attributes. Thus, a combination of trader and load balancer
seems to be a suitable solution for a load-oriented assign-
ment of clients to servers in a distributed system. The
direct approach would be the usage of load values as
dynamic service properties. The trader could make a load
distribution by means of these attributes. But for a service
provider, it could be hard or even impossible to provide an
interface where the trader can request the information for
dynamic attributes, especially in cases, where legacy
applications are used. Furthermore, this concept is inflex-
ible, because an enhancement of the meaning of the load
value by other load information aspects would be hard.

Although both, trading and load balancing, are current
research topics in distributed systems, only few work exist
in combining them. One example is [12], which made
simulations for the usage of a ”social” service selection
strategy. Such a strategy does not guarantee an optimal
selection for each client, but tries to optimise the global
behaviour of a system. This work affirm the results of the
former work on load balancing regarding the usage of
simple strategies. Additionally, the risk of an oscillating
overload of single servers is mentioned. As a solution, a
dynamic strategy with a random component is proposed. A
main topic in [12] is the usage of the trader’s knowledge
about former service mediation. It was shown, that a cyclic
assignment of clients to the servers and using load balanc-
ing, achieve a similar load distribution. But this approach
bases on knowledge about the service time for each task.
An approximation for this time by considering the server
performance and the service type is not feasible because of
the heterogeneity and the openness of real systems.
Furthermore, it has to be considered, that not each service
utilisation is arranged by the trader; on each host, there
will be a load independent from the trader’s activities.

In [5], the co-operation of a trader and a management
system is discussed. A trader is implemented on top of the
management system and uses its functions to request the
values of dynamic attributes or a server’s load. Dynamic
attributes are obtained by mapping management attributes
onto service properties. By specifying complex selection
and optimisation criteria for a service selection, a load
distribution can be made. Disadvantages of this approach
are the dependency of the management system and the

lack of a special load balancing component. Furthermore,
a load distribution is not made transparent for a user, but
must be made by him with special optimisation criteria. In
[11], for the distribution of load in a heterogeneous distri-
buted system, an integration of load balancing for middle-
ware platforms with an interface definition language is
proposed. The stub generated from the interface definition
is enhanced by a sensor component. This sensor transmits
load information to a local load balancer, which propaga-
tes all information to the other local balancing components
to achieve a global sight onto the load. A name service
uses a local load balancer if a client requests a service.
This concept has some disadvantages, too. Not a trader,
but only a name service is used here, which is a less
powerful approach. The stub manipulation is insufficient,
because the source code must be known and no transparent
integration into servers is given.

3. Architecture of the enhanced trading
system

For our enhancement of a trader with a load balancing
mechanism, we specified some design issues [9]. It must
be possible to use the trader without load distribution, as
well as to combine the ordering of the services made by
the client’s constraints with the ordering of servers
regarding to their load. The load distribution process has
to be transparent for the user, but the user should have the
possibility to affect the process by special service proper-
ties. Such properties could regard the information, which
influence the load parameter should have compared to the
service quality. The load balancer should be integrated
into the trader to achieve a synergy effect by exchanging
knowledge between trader and load balancer. Furthermore,
the load balancer should be flexible in a way, that several
load balancing strategies and load meanings can be used.

Client host

Client

Trader host

Load Balancer

Trader

Balance load

Server host

Monitor

Server

Send load information

Exchange of
management data

Service exportService import

Service usage

Figure 1. The trader - load balancer system

The architecture of the enhanced trading system is
shown in figure 1. On each host a monitor is installed to
maintain the hosted servers. The monitor is connected to
the load balancer, which is placed on the same host as the
trader. The implementation of this architecture bases on a
trader implemented in our department using IONA’s
middleware platform Orbix. In the following, the
components of the architecture are described.

Sensor: The load of a service usage can be determined by
a lot of metrics, e.g. the CPU load, the network load, or the
load caused by i/o operations. For the beginning, we only
considered the CPU load. For determining the load, the
servers’ queue length, the service time, and the request
arrival rate can be used. Each participating server is
enhanced by a sensor which gathers these load information
and sends them to the monitor. Because most applications
used in our scenario are legacy applications, management
proxies are constructed to enhance an application with the
needed sensor functionality [7]. As load information we
use the service time in real time, the service time in
process time, the usable CPU performance, and the queue
length. The load information is passed to the monitor as a
struct as shown in figure 2. This format is used to transfer
load information in the whole system.

 interface loadbalancing_types {
 enum LoadmetricType {

SERVICETIME_REALTIME,
SERVICETIME_PROCESSTIME,
PROCESSTIME_REALTIME_RATIO,
QUEUELENGTH, ESTIMATED_TIME_TO_WORK,
ON_IDLE, REQUEST_RATE, USAGE_COUNT,
HOST_LOAD, UNVALID };

 struct LoadType {LoadmetricType loadmetric;
 float loadvalue };

 };

Figure 2. Structure for covering load information

Monitor: A monitor manages a local management infor-
mation base and enables the load balancer to access it. It
manages a list of all hosted servers together with their
load. Because the usage of different load metrics should be
possible, all load information, which is transmitted by a
sensor, is stored. Additionally, the monitor calculates more
“intelligent” values. This comprise a floating average for
the load values mentioned above, as well as an estimation
of the time to work on all requests in a server’s queue by
using the mean service time of the past service usages and
the past time of the current request to estimate the time the
server has to work on all of its current requests. The
monitor can use a caching or a polling strategy to update
the load balancer’s information. Based on the access and
change rates for load values, a dynamic switch between
caching and polling is possible. This mechanism is shared
by load balancer and monitor. In case of using the polling
strategy, the monitor has both information, thus it can
switch to the caching mechanism. On the other hand, if
caching is used, the load balancer knows about access and
change rates, thus it can switch to the polling mechanism.

Trader: Basing on a client’s specification, the trader
searches its service directory. Services fulfilling the
specification are stored in a result list. At this point, a
modification of the trader was made. In the normal case,
the trader sorts the result list regarding to the client’s
constraints. This process can be interpreted as a sorting of
the services regarding to their fulfilment of the client’s

quality demands. This is no more sufficient, because the
servers’ load must have an influence on this order, too.
Thus, each service is assigned with a score characterising
the degree of the client’s quality fulfilment. To obtain such
a score, a method as proposed in [6] can be used. When a
new entry into the result list is made, the trader informs
the load balancer about the corresponding server and its
quality score. The trader gets back the resorted list from
the load balancer and passes it to the client. In addition to
the load balancer’s mechanisms, the trader implements a
random strategy to determine an order on the services
found. This can be seen as a static load balancing strategy.

Load balancer: The load balancer manages two tables:
one table contains the load information for the servers, the
other one records each service offer found by the trader
together with the trader’s quality score. The load balancing
approach chosen here consists of two steps. First, by using
a load balancing strategy, a valuation of the services found
regarding to their load as recorded in the first table is
made. Based on the load values the monitors capture, three
strategies which try to minimise the system load regarding
to a particular load metric were implemented:
• Usage_Count (UC) only counts the number of

requests mediated by the trader to a server in the past.
• Queuelength (QL) considers the current number of

requests in a server’s queue.
• Estimated_Time_to_Work (ETTW) calculates the

estimated time a server has to work on the requests
currently in its queue.

The load value given by theses strategies is seen as a
score for a server, meaning that the server with the lowest
score has the lowest load. This value is recorded in the
second list. The second step is combining the score given
by the load balancer with the quality score calculated by
the trader. For doing so, the manhattan metric resp. the
euclidean metric are used to calculate an overall valuation
for each service offer. The client can influence this combi-
nation by specifying weights for quality and load score.

4. Evaluating the enhanced trading approach

To evaluate our approach, measurements were made to
see the effects on server utilisation, response times and
service selection time.

Environment: To evaluate the enhanced trading system, a
scenario is needed, which resembles a real system’s usage.
Thus, a request sequence was generated to approximate a
real scenario. One restriction was the avoidance of a
system overload, but temporary overload situations are
desirable. Thus, our request sequence contains request
bursts and intervals of silence. The service time for the
requests was varied from 1.1 to 16 seconds. A multi-

threaded client was used to send all requests to the trader
and to use the selected server directly. For load balancing,
the strategies Random, UC, QL and ETTW as described
above were used. To evaluate the new component, the
mean response time of the servers as well as the service
selection time the trader needs were measured at the client.
The measurements were made in a local network (10/100
Mb/s-Ethernet). For examinations in a homogeneous
system, four Sun UltraSPARCs with 167 MHz and 128
MB ram were used. To make examinations in a hetero-
geneous environment, four different Suns with between
110 and 167 MHz and between 32 and 128 MB ram were
used. In all measurements, a restriction to a caching
strategy to avoid communication overhead was made.

In the first three measurements, the benefit of the
implemented load balancing strategies was evaluated. In
these examinations, only the system configuration and the
requested service type were varied. The order, the trader
determined by the fulfilment of service properties was
neglected. In the forth measurement, additionally the
trader’s ordering was considered.

Homogeneous server performance: At first, a homoge-
neous system with four equally equipped servers was used.
All requests had the same service time of 1.1 second. In
figure 3, the mean response times of the servers are
shown. The strategies UC, QL and ETTW caused very
similar response times, and for load situations of less than
50% they nearly achieved the optimum of 1.1 second. For
higher load situations, the results hardly deteriorate. On
the other hand, the random distribution of requests to
servers dramatically impairs. For the given scenario, UC
has the best performance, because all servers need the
same time to process one request. For a system with
homogeneous computer performance and no server usage
without contacting the trader, a good load balancing is
possible only with the trader’s knowledge. Furthermore, it
can be seen, that for load amounts exceeding 40%, caused
by the constant service time and the homogeneous server
performance, the more complex ETTW strategy is slightly
better than the simple QL strategy.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Load

M
ea

n
re

sp
on

se
 ti

m
e

[s
]

Random

UC

QL

ETTW

Figure 3: Homogeneous system

Heterogeneous server performance: Another behavior
of the load balancing strategies is given, if a heterogene-
ous environment is used. As a result of the different com-
puter performances, the service times were varied between
1.1 and 2.2 seconds. The results are shown in figure 4.

0

1

2

3

4

5

6

7

8

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Load

M
ea

n
re

sp
on

se
 ti

m
e

[s
]

Random
UC
QL
ETTW

Figure 4: Heterogeneous system

In this case, the random strategy affects the worst
behaviour, too. But in contrast to the homogeneous case,
the UC strategy effects a definite worse distribution than
the dynamic strategies. This behaviour is as expected,
because by using UC, servers with less performance get
the same number of requests than more powerful servers.
The dynamic strategies achieve equal request distributions,
with the result, that even in situations of high load the
mean response time for both strategies is only as high as
the service time on the slowest server. To improve the
quality of the static strategies, it would be possible to
weight the distribution with regard to the servers’
performance. But for doing so, the trader has to know the
performance characteristics of all servers in the system,
and this might be impossible in a real open environment.

Different request classes: A more interesting case for a
real environment is given by considering different service
request classes, i.e. classes with different service times, in
combination with a heterogeneous system. In our exami-
nation, we used four request classes with service times
between 0.4 and 8 seconds. The requests were randomly
chosen from these classes. This examination covered two
situations. First, the request classes can be seen as requests
for different service types with different service times.
Second, it can be seen as requests for the same service
type, but the service time is temporary delayed by a
background load on the server nodes. The mean response
time for all request classes can be seen in figure 5.

In this examination, the static and the dynamic strate-
gies are distinct separated. While the random strategy as
expected achieved the worst request distribution, the
results of the other strategies are reverse as in the first
examination. UC is nearly as useless as the random
strategy, because to much factors influence the response

time of a server, but none of them is considered. Because
the service times vary heavily, it can come to an error in
the estimation of ETTW, which causes a wrong decision
for the next request distributions. This is also the reason,
why ETTW is worse than QL. QL only counts the number
of outstanding requests; in this case, the renouncement on
more information about the requests is better than the
usage of potentially wrong information.

0

2

4

6

8

10

12

14

16

18

20

22

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Load

M
ea

n
re

sp
on

se
 ti

m
e

[s
]

Random
UC
QL
ETTW

Figure 5: Different request classes

Using a compromise: In the former examinations, the
trader’s order on the service offers based on a client’s con-
straints was ignored to examine only the benefit of the
load balancing strategies. Because in a real situation this
order denotes the user’s demands on a service, in this
examination both, the service quality described by the
trader’s ordering, and the server load were considered.
Exemplarily the case with homogeneous server perfor-
mance is presented. The trader’s valuation of the services
regarding to their quality varied between 0.25 and 1, a
lower value meaning a better quality. For combining the
load balancer’s and the trader’s ranking, the euclidean
metric was used.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Load

M
ea

n
re

sp
on

se
 ti

m
e

[s
]

UC

QL

ETTW

UC (without trader scoring)

Figure 6: Considering load and quality ordering

The behaviour of the strategies is similar to the case
without considering the trader’s ranking, only UC is
slightly worse. In the case of weighting the load with 75%
and the trader’s ranking with 25%, nearly no difference to

figure 3 can be seen; the assignment is made mostly by the
load situation. In case of exchanging the weights, the load
is nearly unconsidered, and for load situations of more
than 20% the mean response time increases heavily,
because nearly all requests are sent to the server which is
valued best by the trader. The best result was produced by
a weighting of 50% for both, load and service quality, see
figure 5. By considering the service quality, the ascend in
the mean response time is clearly stronger as in the case
considering only the load. Especially for situations of
more than 60% system load, the response times increase
very strong.

Further examinations: In further examinations, we
measured the influence on the trader’s mediation time
caused by the load balancer [9]. Generally, the time for
service mediation only increases slightly, because most of
the load balancer’s work can be done independently from
the trader.

5. Conclusions

In this paper, a combination of a trader and a load
balancer was presented. Instead of using the trader’s
dynamic service properties, a load balancer was added to
the trader as an additional component. Thus the approach
is independent of the servers’ characteristics and flexible
to enhance. Several load balancing strategies and a
concept for combining the trader’s and the load balancer’s
results were implemented on a CORBA basis. The
implementation was evaluated in several scenarios.

The optimisation of service selection regarding the
servers’ load seems to be a worthwhile enhancement of the
trader. The response times of servers offering a service
which is available in several places can be significantly
reduced. The cost for this advantage is a longer time for
service selection, but this overhead is very small. The
usage of trader-internal knowledge about a server is useful
only in homogeneous systems with low background load.
For large open systems, dynamic strategies are more
suitable. A simple strategy like the trader’s queuelength is
the best for most situations. The weighting of the load
influence in comparison to the service quality at last must
be a choice of the user, but the best solution seems to be
an equal consideration of both.

The next step is the realisation of load balancing in a
larger system, in which trader federations are used. The
ascertainment of load information and the co-ordinated
interworking of traders in the load balancing process give
new tasks. Another extension of our approach would be
the usage of methods in fuzzy logic or artificial intelligen-
ce to combine the results of trader and load balancer. The
benefit of such more complex methods would be to exa-
mine. Furthermore, a usage of the load balancer compo-

nent for other existing traders is interesting. In such a case,
the load balancer would need to encapsulate the trader.

6. Acknowledgement

We acknowledge support from the German Research
Community under SFB 476.

7. References

[1] Delicia, T.: Modelling of Some Plain Load Distribution
Strategies for Jobs in a Multicomputer System. Informatics and
Computer Science, Vol. 97, No. 1/2, Elsevier/North-Holland,
1997.

[2] Dierkes, S.: Load Balancing with a Fuzzy-Decision
Algorithm. Informatics and Computer Science, Vol. 97, No. 1/2,
Elsevier/North-Holland, 1997.

[3] Eager, D. L.; Lazowska, E. D.; Zahorjan, J.: Adaptive Load
Sharing in Homogeneous Distributed Systems. IEEE
Transactions on Software Engineering, Vol. 12, No. 5, 1986.

[4] Keller, L.: From Name-Server to the Trader: an Overview
about Trading in Distributed Systems (in German). Praxis der
Informationsverarbeitung und Kommunikation, Vol. 16, Saur-
Verlag, München, 1993.

[5] Kovacs, E.; Wirag, S.: Trading and Distributed Application
Management: An Integrated Approach. Proc. 5th International
Workshop on Distributed Systems: Operation and Management,
Toulouse, 1994.

[6] Linnhoff-Popien, C.; Thißen, D.: Integrating QoS Restric-
tions into the Process of Service Selection. Proc. 5th International
Workshop on Quality of Service, New York, 1997.

[7] Lipperts, S.; Thißen, D.: CORBA Wrappers for A-posteriori
Management. Proc. 2nd International Working Conference on
Distributed Applications and Interoperable Systems, Helsinki,
1999.

[8] Nagl, M.; Westfechtel, B.: Integration of development
systems in engineer applications (in German). Springer, 1999.

[9] Neukirchen, H.: Optimising the Set of Selected Services in a
CORBA Trader by Integrating Dynamic Load Balancing (in
German). Diploma thesis at the Department of Computer
Science, Informatik IV, Aachen University of Technology, 1999.

[10] Popien, C.; Schürmann, G.; Weiß, K.-H.: Distributed
Processing in Open Systems (in German). Teubner, 1996.

[11] Schiemann, B.: A New Approach for Load Balancing in
Heterogeneous Distributed Systems. Proc. Workshop on Trends
in Distributed Systems, Aachen, 1996.

[12] Wolisz, A.; Tschammer, V.: Performance aspects of trading
in open distributed systems. Computer Communications, Vol. 16,
Butterworth-Heinemann, 1993.

