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1. Introduction

Software development is a complex process which cannot be easily quantified. Thus, the anal-
ysis of a development process or even a single project is very difficult. Usually experts take a
look at what happened retrospectively, maybe perform a review and try to improve the process
by implementing countermeasures to the mistakes that were made. Managers usually consider
simple economical metrics such as the amount of time and money spent on the project or the
number of developers involved. Of course they also consider whether the project was success-
ful or not. However, these attributes only consider management aspects of the project, but not
the software itself. Attributes like the number of bugs or the size of the project are also impor-
tant. The problem is that software is abstract. How is the complexity of software defined? How
is its size defined? What is good software anyway?

One approach to answer this question are software metrics. They try to quantify attributes of
the software itself, like the complexity, the reusability or the size. But as software is something
abstract, it is not easy to define a software metric that is accepted. Every software metric
has advantages and disadvantages, no metric is foolproof. However, during the last years
software metrics were more and more accepted and included in popular development tools to
assist software development. Microsoft included support for software metrics in Microsoft Visual
Studio 2008. To measure Java code directly using Eclipse, for example the Eclipse Metrics Plug-
in [3] exists. The next logical step is to use the software metrics to make management decisions.
This has always been done implicitly: whether a project is ready for release or not depends on
the number of bugs and the number of completed features. Both are software metrics.

Independent of this, the field of machine learning has infiltrated all kinds of sciences and
industrial work: genealogists use it to analyse traits of the human genome, financial institutes
use it to predict if a client is credit worthy, computer scientist use machine learning to improve
spam filters. So why not use machine learning techniques to analyse the quality of software
or even the process of software development? This is no new idea. PROMISE [5] for example
gathers metric data about software so that it can be used for analysis. In a yearly workshop
different approaches to analyse this data are presented. Most of these approaches try to detect
modules that need extensive testing or they try to determine the probability that a module has
a bug.

The goal of this work is to show that software metrics and machine learning techniques can
also be used to analyse the process of software development itself. To perform such an analysis,
sets of metric data from different points of time during the project are needed. One major part
of this thesis addresses a way to mine software repositories to gather metric data of already
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1. Introduction

finished projects. While this is an easy task for small projects, the amount of work increases
greatly for big projects. Furthermore, software tools are needed for various task: measuring the
software metrics; the processing of the gathered metric data into a format that can be used for
analysis; the analysis itself.

As an example for a way to mine metric data as well as to show that software metrics and ma-
chine learning techniques can indeed be used to analyse the process of software development,
data from the development process of the Eclipse Platform Project 3.2 and the Eclipse Java De-
velopment Tools 3.2 are mined. This data is then used to detect a feature freeze that occurred
during both projects. To perform the analysis, the k-means clustering algorithm is used. This
is a rather simple approach. However, the collection and preparation of the metric data itself is
not simple. Preparation is needed because several problems would occur if the unprocessed
metric data were be used as input for the k-means algorithm. One of these problems is that it
does not make sense to use an arbitrary set of metrics, the metrics have to be chosen carefully
instead.

After the introduction, the second chapter gives the foundations on which this work is built. It
introduces basic concepts of software engineering and the machine learning techniques used
in this thesis. Chapter 3 shows how metric data can be mined from code versioning systems
such as SVN and CVS and bugtracking systems like Bugzilla. Because the result of the mining
can not be used for analysis without great effort, in chapter 4 a tool to preprocess the mined
data is introduced. In chapter 5 a practical experiment to mine metric data in the way it has been
shown in chapter 3 is performed and a way to analyse the data using the k-means clustering
algorithm is shown. Chapter 6 concludes the work and gives an outlook on possibilities for
future research.
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2. Basic definitions and concepts

Because this thesis combines software engineering with the machine learning field from the
theoretical computer science, a common basis has to be established first. This way people
from both of these fields have a better understanding of the later parts of the thesis.

As a short introduction to software engineering, definitions for the terms and concepts that
are used later on in this thesis are provided. A more detailed introduction can be found in the
literature [15]. Afterwards some basic concepts of machine learning are established and the
algorithms that are used as part of this work are introduced.

2.1. Software Engineering and Software Metrics

The first question one has to answer is: what is software engineering? According to the IEEE
it is “the application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to software” [6].
As this general defintion shows, software engineering is a wide field. The focus of this work is
on quality assessment of specific features of a software development process. To analyse the
process, data about projects are used retrospectively. This is feasible, because a process is a
general description how a project should be planed and executed. What kind of data are used
will be discussed later on.

First of all, a common definition of project is needed. In [11] the following definition is used:

Definition 2.1. Software Project
A project is a complex scheme which is

• chronologically bounded through a defined start and end date

• defined through the uniqueness of its terms and conditions like the project goals, the
project outline, the people and resources et cetera.

For the analysis done as part of this thesis, the defined start and end are important. If one
wants to analyse the progress of a project, knowledge about the start and end is required.
Consider a project where the beginning is not known. In case the project was a totally new
development it does not matter when the progress of the source code shall be analysed, be-
cause at the project start there was no source code. However, many projects reuse old code
and build new versions of an already existing piece of software. In this case, one has to have
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2. Basic definitions and concepts

knowledge about the code basis. Otherwise the old code that was developed as part of another
project would also be considered as part of this project. This would falsify the results. If the time
that the development took is part of the analysis it is also mandatory to know when the project
started. Similar arguments can be said about the end of the project. If the final status is not
known, it is difficult to say something about the progress. This is well known, hence some peo-
ple say that the last 10 % of a project require 90 % of the resources. This may be exaggerated,
but it has a true core.

As a project progresses there are often versions of a special importance. These versions are
commonly called milestones. The following definition of milestones is translated from [11].

Definition 2.2. Milestone
A milestone is the achievement of a measurable, meaningful event during a project at a fixed
and planned point of time.

The problem with the term milestone is that it is used for two purposes. The first is as it is in
the definition – a general name for important events during a project. On the other hand, these
points themselves are sometimes called milestones. So when using this term is used, one has
to think about the context it is used in. In most cases when a milestone takes place, a version
of the software is build and named after the milestone. This is another problem. The commonly
known Alpha and Beta Versions usually mark a milestone of the project and the version is the re-
sult of that milestone. Other common milestones are so called Release Candidates. A Release
Candidate is usually build near the end of a project, when the development is already frozen
and only testing and bugfixing is done. Such a Release Candidate is usually also available to a
bigger audience than just the development team, to find more failures in the software.

A specific feature of a project that is usually a milestone is a feature freeze. A feature freeze
marks the end of the development of new features. Afterwards the focus of the project changes
to stabilizing the project, such as testing and documentation. Obviously every project has to
have a feature freeze, even if the feature freeze is the same as the end of the project. Usually
this is not the case, but it depends on the kind of the development process that is used. If
one considers extreme programming [7] or other agile process models in which there are short
development cycles, those modells do not need such a thing as a feature freeze. However, most
non-agile process models implement something like a feature freeze.

Up till now, only software engineering and projects in general were discussed and it was hinted
at the usage of “data” about these projects. However, nothing was said about the kind of data.
One way to obtain data about software in general is to use metrics. A metric uses some kind of
measure to describe distance. In mathematics, the following definition is used for a measure.

Definition 2.3. A measure M is a well-defined map

M :AM → V

M(x) 7→ v
(2.1)
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2. Basic definitions and concepts

where AM is the attribute space and V is the space of measurement values. The value v is the
measure of the entity x.

The general meaning of this formal definition is quite simple: Each attribute is mapped to a
value. While the definition uses abstract spaces for many metrics the space of measurement
values are the positive reals or integers. But other spaces are also possible, as we will discuss
later. The definition that Fenton and Pfleeger use in [8] is not so formal.

Definition 2.4. Measure (Fenton/Pfleeger)
Measurement is the process by which numbers or symbols are assigned to attributes of entities
in the real world in such a way as to describe them accordingly to clearly defined rules.

A measure is not yet a metric. A measure is only a way to assign a value to an attribute. How-
ever, metrics use measures. Again, first the mathematical definition of a metric is considered.

Definition 2.5. Metric (Mathematical)
A metric is a map

m :E × E → R
(x, y) 7→ m(x, y),

(2.2)

such that

(i) m(x, x) = 0 ∀ x ∈ E

(ii) m(x, y) ≥ 0 ∀ x, y ∈ E

(iii) m(x, y) = m(y, x) ∀ x, y ∈ E

(iv) m(x, z) ≤ m(x, y) +m(y, z) ∀ x, y, z ∈ E,

that defines the distance between elements of a space E.

For software metrics this formal definition is too tight. For example, if a measure did just define
a map to values such as “Good” and “Bad” it would not be possible to define a distance, as the
mathematical definition requires. Thus, for software metrics a different definition is required.
The IEEE defines the term in the standard 610.12 [12].

Definition 2.6. Software metric (IEEE 610.12)
A metric is a quantitative measure of the degree to which a system, component, or product
possesses a given attribute. A quality metric is

1. a quantitative measure of the degree to which an item possesses a given quality attribute.

2. a function whose input and whose output is a single numerical value that can be inter-
preted as the degree to which the software possesses a given quality attribute.
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2. Basic definitions and concepts

This definition is more vague and the similarity to definition 2.4 of a measure is greater. With
the following definition of relation systems and representatives another way to interpret metric
results is introduced.

Definition 2.7. Relation Systems
A empirical relation system is a system in which attributes are not measured, but only compared.

A numerical relation system is a numerical space (i.e. R+ or the Z+ to which attributes can
be mapped using a measure M ).

A numerical relation system is called representative for a empirical relation R, if the according
relation R′ is fulfilled in the numerical system.

To understand what this definition means, consider the human attribute of height. In the
empirical system, one human may be larger than another. A numerical system for height is a
representative for this empirical system if the larger human has a higher numerical value, for
example the larger human has a height of 180 cm and the smaller of 175 cm. The term of
representative systems is general for metrics. If you consider it for software metrics, it means
that if you know for some reason that one project is larger than another, a metric that measures
the size has to have the same result. Consequently, if a quality metric yields a better result for
one project than another that project should really have a higher quality. This is a difficult subject
because terms like quality often depend on the point of view of the observer. For a manager a
project has high quality if it has no failures, while a developer also considers the structure of the
source code. Software metrics discard the point of view and are neutral.

There are two general types of software metrics, the direct and the indirect metrics.

Definition 2.8. Direct and indirect metric
A direct software metric is a metric defined over a measure that can be directly calculated.
An indirect metric is a metric defined over a measure that is indirectly calculated using other
metrics.

But why is it important to have both direct and indirect metrics? The need for direct metrics
is obvious. Without direct metrics, there would be no metrics at all. But why indirect metrics?
One may argue that these metrics are not plausible, when they are not directly measurable.
However, considering that an indirect metric is calculated using other (direct or indirect) metrics,
it is possible to calculate all metrics directly. This direct computation might be very complex, but
in the end all metrics are based on direct metrics. But if they can be measured directly, why use
indirect metrics at all? The two most important reasons are simplicity and interrelationship.

For example, consider an indirect Metric C that is calculated using the well understood metrics
A and B. By simply using the metrics A and B, the knowledge about these two metrics can
be used to determine the feature that C measures. Furthermore, the calculation of C is easier
to understand if two well known metrics are used, instead of some complex rule. Additionally,
it shows that there is a relationship between C and the metrics A and B. If C is calculated
directly, it is not clear that there is a between these metrics.
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2. Basic definitions and concepts

Name Description Allowed operations
nominal scale unordered set of classification

for attributes
=, 6=

ordinal scale ordered set of classification for
attributes, without a known dis-
tance between the classifications

=, 6=, <, >

interval scale totally ordered set of numerical
classifications with an arbitrary
offset

=, 6=, <, >, distance between
measured values

ratio scale totally ordered set of numerical
classifications

=, 6=, <, >, distance between
measured values, addition,
multiplication, division

absolute scale same as the ration scale, but it
does not make sense to convert
the scale proportionally using
division and multiplication

=, 6=, <, >, distance between
measured values, addition,
multiplication

Table 2.1.: A classification of measurement scales

Now that software metrics have been introduced in general some details have to be consid-
ered. Up to now, nothing about the output (or the result) of a software metric has been said. The
reason is that this is not as simple as it seems. There are different kinds of scales that a metric
can map its results to. A possible classification of the different metric scales can be found in
table 2.1. For each kind of scale different operations are allowed, depending on the scale itself.
The reason that not every mathematical operation is allowed lies in the scales themselves. If
one considers an ordinal scale, it is obviously not possible to divide the measured values by
some number, because the metric values themselves are not numerical.

The metrics that are used in this thesis are using a ratio scale. This is important because
only ratio scales allow to change the scales using division. Furthermore, the metrics can be
separated into categories by the general attributes they measure. Two of these categories are
the process and the product metrics. The process metrics measure the process of software
development directly. Attributes measured by a process metric are for example the number of
failures, the amount of working hours spent on the project or the amount of money that the
project costs. A product metric measures the product that is developed directly.

Now that the basics about software metrics are established two software metrics will be intro-
duced in detail. More metrics will be introduced together with the tools that are used to collect
them in chapter 3.
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2. Basic definitions and concepts

2.1.1. The software metric Lines of Code (LOC)

This metric does exactly what the name says: it counts the lines of code of a software project.
Because it is evaluated using the source code, it is a product metric. This simple metric is
probably the most popular software metric. However, there is a problem. The name does not
say how empty lines or comments are handled. Thus, when it comes to lines of code, one has
to define exactly which lines are counted. Here are some definitions for Lines of Code that are
often used:

• Total Lines of Code (TLOC): Counts every line, including lines that only contain comments
or are empty.

• Non-empty Lines of Code (NELOC): Counts only non-empty lines, including lines that
contain only comments.

• Non-commented Lines of Code (NCLOC): Counts only none empty lines and lines that
do not contain only comments.

• Delivered Lines of Code (DLOC): Delivered lines of Code, this excludes test code or
assertions.

• Commented Lines of Code (CLOC): Counts only lines that contain a comment.

These are only some examples of possible definitions for the Lines of Code. In this thesis, the
definition of TLOC is used. So every time that LOC is used, TLOC is meant.

2.1.2. The software metric Number of Bugs (BUG)

When it comes to analyzing the quality of a software project, there are usually two things that
managers and users consider. The first is, if the requirements have been met and the second is
how many failures there are. Failures are produced by bugs. Thus, the metric BUG measures
an important attribute concerning the quality of a project. It belongs to the process metrics,
because it analyzes not the product itself, but the result of the process. There are several
problems with this metric. The first is how it can be measured. There is no way to directly know
all the bugs that are in a piece of software. However, the known bugs can be used to estimate
the total number of bugs. Usually the known bugs are documented in some form, so this metric
can be measured using the documentation. The general problem of this metric is that humans
directly influence it. Only the known bugs are counted, and which bugs are known depends on
the persons that try to find bugs. Thus, the value might not be the same if there were other
users. More details about this metric will be introduced in section 3.3, when a way to measure
this metric is shown.

These basic concepts about software engineering are sufficient to understand the reasoning
behind the performed experiments and the terms that are used.
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2. Basic definitions and concepts

2.2. Machine Learning

This section is similar to the Software Engineering section. First the question has to be an-
swered what the abstract term of machine learning means. Again, it is difficult to answer be-
cause machine learning is such a wide field. After a first general definition of machine learning
according to [14], some examples are presented to gain a better understanding.

Definition 2.9. Machine Learning
A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.

Because this definition is very abstract, consider the learning of a rectangle in the 2-dimensional
real-space as an example. The learning problem is the following: Given is a training set of points
D ⊂ R2, such that for each point it is known whether it is inside the rectangle R or not. This is
a binary classification. It can be seen as tuples < x, f(x) > such that f(x) is 1, if x ∈ R and 0
otherwise. The rectangle R itself is unknown. The aim of the learning problem is it to estimate
the rectangle R. One algorithm to solve this problem is to compute the smallest rectangle R′,
such that for all x ∈ D the classification from above holds: if f(x) = 1, x ∈ R′ and if f(x) = 0,
x 6∈ R′. An example for this learning task and the solution of the algorithm is shown in figure
2.1.

This algorithm is a learning algorithm according to definition 2.9. The experience E are the
tuples < x, f(x) >, the task T is to estimate the rectangle. The performance measure P is the
error of the estimated rectangle R′. How the error could be defined will be discussed later on.
To learn the classification of something is a common learning task that can be applied in many
fields. The question usually is something like “is my product good or bad”. Thus, the samples x
with f(x) = 1 are called positive examples, the others are called negative examples. This kind
of binary classification is also known as discrimination.

The type of learning algorithm described above knows the classification of the data. This
type of data is called supervised data. The other general kind of data is the unsupervised
data. For unsupervised data, the classification is not known. Accordingly, algorithms are called
supervised or unsupervised depending on the kind of data they need as input. Examples for
unsupervised learning algorithms are clustering algorithms, which are described in more detail
in section 2.2.1.

Now that a general outline of learning problems is clear, the structure of learning problems
will be defined in greater detail. Let F a class of concepts over an input space X and let Y a
target space. A class of concepts is a class of functions f : X → Y . The functions f ∈ F are
called concepts. The hypothesis space H is defined in an analogous manner. In the rectangle
example, the concept space and the hypothesis space were both the rectangles over the 2-
dimensional real-space. However, generally the concept space and the hypothesis space are
not the same. In most practical learning problems, the concept space is unknown. Consider
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2. Basic definitions and concepts

Figure 2.1.: The red dots are the negative examples; The green crosses the positive examples; The blue rectangle
is the original rectangle, used to classify the data; The dotted line is the smallest rectangle, such that
all positive examples are inside; The slash-dotted line is the largest rectangle, such that all negative
examples are outside.

for example the field of gen analysis using machine learning methods. It is not known how the
structure of genes is generated, but it is possible to predict certain features using models. In this
thesis the input space can be considered as the n-dimensional real-space with metric values
as input. The dimension n is equal to the number of metrics used for the learning task.

In practical applications, a general problem with the observed input data is noise. This means,
that the observed data deviates from real data. There are different kinds of noise and some are
better to handle than others. There are many possible reasons for this inaccuracy, for example
human error or physical restrictions. Sometimes the complexity of the feature that shall be
observed is the problem. Whatever the reason for the noise is, the problem is the same: if
the input data is inaccurate, it is only logical that the output will be inaccurate to some degree.
Furthermore, many learning algorithms do not work in the presence of noise. The introductory
example of the rectangle learning is one of those algorithms. Only one wrong classified point
can be sufficient, such that no rectangle separating the positive and the negative classified
points exists any more.

The output space depends on the kind of learning that takes place. In this thesis two different
kinds of learning algorithm are used: in the main part of this thesis a clustering algorithm, as
it is described in section 2.2.1, is used. This kind of algorithm learns a classification of the

12



2. Basic definitions and concepts

data. The common cases of classification are the binary classification where the output space
is {0, 1} and the classification in k classes, where the output space is {0, . . . , k − 1}. Another
approach is not to learn the classification of data, but a function that describes the data and
extrapolates regions where no data is available. To demonstrate how function learning could be
applied to the measured data the k-nearest neighbour algorithm will be introduced in section
2.2.2.

If the different kinds of learning methods described above are considered, it becomes clear
that different measures for the error are needed for the different learning tasks. In the following,
the different types of errors that are needed to evaluate the algorithms used in this work are
introduced, formally defined and, if possible, compared.

Definition 2.10. True Error
Let f : X → {0, 1} a concept from a concept space F and h : X → {0, 1} a hypothesis from a
hypothesis space H. Let D a distribution over X . The true error of h in respect to f is defined
as

errorD(h) = Prx∈D[f(x) 6= h(x)]. (2.3)

In the above definition x ∈ D means that x ∈ X is drawn according to the distribution D.
The problem with this definition is that one has to know two things that are usually unknown in
practical experiments to calculate the true error: The true concept f and the true distribution
D. Even if the distribution is sometimes known, the true concept f is still unknown. Otherwise
there would be no need to learn a hypothesis, unless the concept is too complex to calculate it.
However, the difference between an uncalculable concept and an unknown concept is not im-
portant – in both cases they cannot be used for the computation of the true error. The following
definition is similar to the definition of the true error, but it only needs a sample to calculate the
error.

Definition 2.11. Sample Error
Let f : X → {0, 1} a concept from a concept space F and h : X → {0, 1} a hypothesis from a
hypothesis space H. Let D a distribution over X . Let X ⊆ X a finite subset of X .

The sample error of h in respect to f and the sample X is defined as

errorS(h) =
1
|X|

∑
x∈X

δ(f(x), h(x)) (2.4)

with δ(f(x), h(x)) =
{

1 if f(x) 6= h(x)
0 otherwise

.

Using the definition of the sample error, it is possible to determine the error of a hypothesis
in reference to a subset of the input space where the values of the concept are known. This
is the case for the training data in every supervised learning algorithm. Usually the training
data is split to evaluate the error correctly. A part of the data is used as a training sample for
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2. Basic definitions and concepts

the learning algorithm to calculate the hypothesis. Another part is used to evaluate the error
of the calculated hypothesis. The reason for this is simple: Most learning algorithms minimize
the error of the calculated hypothesis on the training sample. However, it is not known if the
hypothesis is good on another sample. By splitting the data, the error of the hypothesis can be
calculated on a sample that is independent of the training data.

A drawback of the definition of the sample error is the usage of the δ function. An interesting
feature of a learning algorithm is also what kind of error it produces. As an example, consider
a learning algorithm that shall determine whether someone is credit worthy or not. A false
positive result of learning algorithm can result in a big loss for the bank. On the other hand,
a false negative is no big loss. The other way around is often the case too. When testing for
illnesses, a false negative is often not an option. For example, if an AIDS test were negative,
but the person would actually have AIDS it would be a serious problem. The following definition
of the error introduces a measure for false positives and false negatives.

Definition 2.12. Error of the first and second kind
Let f : X → {0, 1} a concept from a concept space F and h : X → {0, 1} a hypothesis from a
hypothesis space H. Let D a distribution over X .

• The error of the first kind is defined as

error1D(h) = Prx∈D[f(x) = 0 ∧ h(x) = 1]. (2.5)

• The error of the second kind is defined as

error2D(h) = Prx∈D[f(x) = 1 ∧ h(x) = 0]. (2.6)

Thus, the error of the first kind measures the probability of a false positive, while the error of
the second kind measures the probability of a false negative. By decreasing the error of the first
kind, usually the error of the second kind is increased and vice versa.

As an example, consider two strategies for solving the rectangle learning problem. The first
strategy is to calculate the smallest rectangle, such that all positive examples are inside the
rectangle. The second strategy is to calculate the largest rectangle, such that all negative
examples are outside the rectangle. As it can be seen in figure 2.1, the first strategy calculates
a smaller rectangle than the second stragegy. The space between both rectangles will be
classified differently by both strategies. While the result of the first strategy will classify the area
between itself and the real rectangle as false negative, the second strategy will classify the area
between itself and the real rectangle as false positive. As can be seen, while the error of both
hypothesis is nearly the same, the error of the first and second kind is different.

All of the above definitions of error can only be applied to classification learning algorithms.
If you consider the functions f1(x) = x and f2(x) = x + ε for an ε > 0, the above definitions
of the true error or sample error of f2 in reference to f1 would be 1. However, for a small ε,
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f2 would really be a very good approximation of f1. Of course this is an artificial example, but
it should clarify the need for a totally different definition of the error for function learning. One
possible definition is the residual error.

Definition 2.13. Residual error
Let f : X → Y a function, f̂ : X → Y an approximation of f and || · || a norm over Y .
The residual error of f̂ with respect to f at a point x ∈ X is defined as

error(f̂ , x) = ||f(x)− f̂(x)||. (2.7)

The residual error does not measure the error of the complete hypothesis, but the error at a
single point. This way it is possible to determine if a hypothesis is locally a good approximation
of a function, but the global error can not be measured. However, it is possible to estimate the
global error using the residual error in a way similar to the sample error. Given a training sample
X, the error can be estimated as the maximum residual error error(f̂) = max{||f(x)− f̂(x)|| :
x ∈ X}. The above definitions of error are sufficient for the further algorithms and the analysis
of the results in the later parts of the thesis.

The Bayes theorem is an important theorem in the theory of machine learning. It serves as
basis for many learning algorithms, for example some clustering algorithms. The statement
of the theorem is basically that the probability of a hypothesis given a training sample can be
calculated using only the probability of the training sample given the hypothesis, the probability
of the training sample given the distribution of the data and the probability of the hypothesis
itself.

Theorem 2.14. Let h ∈ H be an hypothesis from some hypothesis space H and D the ob-
served training data. Then the probability of the h given D can be written as

P (h|D) =
P (D|h)P (h)

P (D)
. (2.8)

This does not seem like it simplyfies anything. In most practical problems the distribution is
unknown. Thus, one has to assume that the distribution of the training sample is the same as the
real distribution. So the probability of the training sample given the distribution is not a problem.
As for the probability of the hypotheses, it is usually a mistake to make assumptions about
the probability of a hypothesis. In this case, all hypothesis should have the same probability.
Otherwise there is a risk that wrong a-priori knowledge is used, which will usually lead to bad
results. This only leaves the probability of the observed training data given the hypothesis.
However, for a given hypothesis this can be calculated. Altogether, given only the hypothesis
and a training sample it is possible to determine how probable the hypothesis is for the observed
data. However, there are some drawbacks as well. If the distribution of the training data is
different to the real distribution, this will falsify the classification. So as one expects, everything
depends on the quality of the training data.
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It would be too much to discuss the Bayes theorem in greater detail. On the other hand, the
Bayes theorem serves as the basis for the learning algorithms used, so it would not have been
right to leave it out all together. Interested readers should take a look at the literature mentioned
at the begin of this section. The basics given here can be seen as the tip of the iceberg when it
comes to machine learning.

2.2.1. The k-means clustering algorithm

In many applications training data is available, but the sources that created the data are un-
known. These data sources can be estimated by clustering algorithms. After estimating the
sources, each point of the training sample is associated with the source that probably gener-
ated it. The kind of the source depends on the clustering algorithm. Examples for possible
sources are probability distributions or classification problems. In our case, the sources are
different classes which the values originate from. Thus, the assignment of a source to a training
sample can be considered as a kind of classification, where the data sources are the classes.
Since the classes are unknown, the cluster algorithms use a heuristic to assign the data points
to the sources. Usually these heuristics use some kind of distance between the data points to
assign them to their sources. Because of this, the sources are called clusters in this context.
A cluster consists usually of points with a close proximity, so the points inside a cluster are
literally clustered. As clustering algorithms only use the characteristics of the data itself, but no
classification or function values, they belong to the unsupervised learning algorithms.

The output of every cluster algorithm is the same: A map that assigns each data point to
its cluster. But there are several questions that have to be answered beforehand. The most
important one is, how many sources and thus clusters are there. Basically, there are two kinds of
clustering algorithms: those that calculate a fixed number of clusters, where the user defines the
number; those that determine the number of clusters themselves. Here the k-means algorithm
is used. It belongs to the first type and k is the number of clusters. It is a very simple and very
popular clustering algorithm.

The k-means algorithm calculates k clusters from a finite training sample D ⊆ Rn. Each
cluster is defined by a center ci ∈ Rn for i = 1, . . . , k. A data point x ∈ Rn is part of cluster i, if
i is a solution of the optimization problem

min{||ci − x||2 : i = 1, . . . , k}. (2.9)

If there is more than one solution, the smallest i is chosen as cluster. Since the training data
D ⊆ Rn this can be used to determine to which cluster each vector of the training data belongs.

The algorithm computes the centers in iterative way. Initially the centers ci are arbitrary values.
They could either be defined by the user using some a-priori knowledge or simply be random
values. In each step of the algorithm the current clusters Ci ⊆ D are computed using the rule
defined by equation 2.9. Afterwards the cluster centers are updated. They are set to the mean
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Figure 2.2.: On the left: simulated data of two different normal distributed sources represented by blue and red
crosses in the plane. On the right: clusters found by the k-means cluster algorithm.

value of all points that belong to the cluster:

ci =

∑
x∈Ci

x

|Ci|
for all i =, 1 . . . , k. (2.10)

These steps are repeated until convergence is reached. By choosing the cluster centers as the
mean values of the elements of the cluster, the intra-cluster variance is minimized.

The result of the algorithm – that means the calculated centers – depend on the initial centers.
Different initial centers can lead to different results. However, if the data sources generate
clearly separated data, the result should be stable, that means they should for most, if not all,
start clusters lead to the same result. Another problem that can occur is that of empty clusters.
It is possible that as part of the iteration, one ore more clusters become empty. If this is the
case, there has to be a strategy to handle this situation. There are two common possibilities to
solve this problem. Either the empty cluster is removed and the result has less than k clusters
or the algorithm terminates prematurely with an error. If different start clusters are chosen, it is
possible that the algorithm terminates correctly.

As for the error of the k-means algorithm, the error definitions for classification learning algo-
rithms can be used. That means the true error and sample error can be measured if the true
sources of the data are available. If there are k = 2 clusters and one can be seen as positive
and one as negative, it is also possible to analyze the error of the first and second kind.
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Algorithm 1: The k-means algorithm
Input : Number of clusters k, training sample D ⊂ Rn, initial centers c0i for i = 1, . . . , k
Output: Calculated centers cji for i = 1, . . . , k
Init: j ← 0;
Start: Determine the clusters Cj

i by solving the optimization problem min{||cji − x||2 : i =
1, . . . , k} for each x ∈ D.
For all i = 1, . . . , k update the cluster centers:

cj+1
i ←

∑
x∈Cj

i
x

|Cj
i |

(2.11)

j ← j + 1
if cji = cj−1

i for all i = 1, . . . , k then
return Cluster centers cji for i = 1, . . . , k

else
Go to Start and repeat the above steps.

end

2.2.2. The Nearest Neighbour Algorithm

The other algorithm used in this work is the nearest neighbour algorithm. It is a supervised
instance-based function learning algorithm. Instance based means that it will not compute a
hypothesis, which can be used to evaluate data from the input space. Instead it uses a point
of data – an instance – as input and evaluates the result itself. When it comes to the run-time,
this can be a problem, because there is no “simple” hypothesis h as the result of running the
algorithm once, which can then be used to evaluate a sample y from the input space to the
value h(y). The whole algorithm has to be run for every value that should be evaluated. This is
usually a more complex operation compared to evaluating a hypothesis.

As input, the nearest neighbour algorithm uses supervised and finite set training data D from
the n-dimensional real-space and for each element of the training set its value under some
real-valued function f : Rn → R. As the name suggests, the nearest neighbour algorithm uses
the training data that is closest to a vector x ∈ Rn to estimate its value f̂(x). To determine the
distance between two points, usually the euclidian distance

dist(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.12)

is used. However, it is possible to use other metrics to measure the distance, but this is not
needed for this work. The reasoning behind using the nearest neighbours to estimate the value
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of a vector under a function is that if the function is smooth, the value should be similar to that
of its neighbours.

For a vector y ∈ Rn, the simple nearest neighbour algorithm outputs the value under of f the
vector in x ∈ D closest to y, thus

f̂(y) = f(argminx∈Ddist(x, y)) (2.13)

A generalization is not only to consider the nearest neighbour but the k-nearest neighbours
x1, . . . , xk of y, for k ∈ N, k ≤ |D|.

Using k neighbours has the advantage that the reliance and the smoothness of the function is
reduced. Consider the case that the nearest neighbour x

′
is an outlier. If only that value would

be used, y would be assigned the value of the outlier too, which would lead to a large residual
error. If not only the nearest neighbour, but other neighbours are taken into consideration, this
effect can be reduced. The same argument holds for noisy data. By using more than one
value from the training data for the calculation, the negative effects of the noise can be reduced.
However, if k is too large, there is a chance that vectors from “far away” are part of the k-nearest
neighbours. This would destroy the concept to use points that are close.

If the approximation f̂(y) is calculated using k values fromD, the used values can be weighted
with different weights wi. Usually two possibilities for weights are considered:

1. All neighbours are weighted equally, thus wi = 1 for all i = 1, . . . , k.

2. The neighbours are weighted by their squared distance from y and wi = 1
dist(xi,y)2

for all
i = 1, . . . , k.

Both cases have their advantages. If the neighbours are equally weighted, an outlier close
to y will be better compensated. On the other hand, if the values close to y are no outliers, it
is advantageous to weight the closer neighbours heavier. Through using the squared distance,
vectors with a larger distance are heavily penalized. This is a trade-off between both advantages
– reducing the effects of outliers and still give greater weight to the closer points – hoping to gain
both of them. In the second approach it is also possible that the denomiator is zero, if y ∈ D.
The simple solution to this problem is to return the already known value, thus f̂(y) = f(y). In
practical applications this is often not that simple. If the data is noisy it is possible that several
values for some vector x ∈ Rn are available. In this case, there are two options. Either the
several values are reduced to only one value using precomputation or the nearest neighbour
algorithm (Algorithm 2) has to be adapted. In the else-branch the set W0 ⊆ {i : wi = 0 and i =
1, . . . , k} has to be determined an equation 2.16 has to be replaced with

f̂(y) =

∑
i∈W0

f(xi)
|W0|

(2.14)
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Algorithm 2: Weighted k-nearest neighbour algorithm
Input : Training Set D with values f(x) for all x ∈ D, y ∈ Rn

Output: Estimated value f̂(y)
Determine {x1, . . . , xk} ⊂ D, such that the xi are the k closest elements to y in D.
if wi 6= 0 for all i = 1, . . . , k then

f̂(y)←
∑k

i=1wi · f(xi)∑k
i=1wi

(2.15)

else
Determine i such that wi = 0.

f̂(y)← f(xi) (2.16)

end
return f̂(y)

2.2.3. Relationship between the k-means and the nearest neighbour algorithm

If one compares the strategy of the cluster assignment of the k-means algorithm with the way
the simple nearest neighbour algorithm approximates the value f̂(x) the similarity is obvious.
The similarity between the two algorithms is one of the reasons the nearest neighbour algorithm
is introduced. It can be used to visualize the results of the k-means algorithm. Let the set of
centers C = {c1, . . . , ck} computed by the k-means algorithm and f(ci) = i for i = 1, . . . , k. If
this is used as input for the simple nearest neighbour algorithm, it yields the index of the cluster it
would be assigned to, for each x ∈ Rn. If a color is assigned to each of these numerical values,
this can be used to visualize the areas of the clusters computed by the k-means algorithm. Such
a coloring of the space is called Voronoi diagram. An example for a Voronoi diagram is shown
in figure 2.3. This technique to color regions using only a central point and then determine the
colors using the nearest neighbour algorithm is often used in graphical programming.
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Figure 2.3.: This figure shows a Voronoi diagram that visualizes three clusters. Each color defines the area of one
cluster, the black dots mark the centers of the clusters. It has been created using the nearest neighbour
algorithm, with three vectors from the R2 as centers with the assigned values 0, 1 and 2.
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In this chapter, the mining of the metric data is described in detail. There are several ways
to mine data from a software project. The aim is to collect software metrics measured for
significant versions of a project. As it was said in section 2.1, a software metric describes a
feature of a complex software project as a number. The significant metrics for this work that are
collected are the metrics BUG and LOC which were introduced in chapter 2. To collect LOC,
the Java source code of the projects is measured using the Eclipse Metrics Plug-in; BUG is
extracted from the Bugzilla bugtracking system of the Eclipse Foundation. To collect metrics for
significant versions of a project knowledge about the project plan is required. Otherwise it is not
possible to determine which versions were important. Important versions are usually defined
in the project plan as Milestones, Alpha- and Beta-Versions or Release Candidates. These
important versions are milestones after definition 2.2.

This chapter is divided into 3 parts: The first part describes how to extract the source code of
specific version of a project from a repository of a source code versioning system. In the second
part collecting of source code metrics, such as LOC, is discussed. The third part discusses how
to extract data from a bugtracking system.

3.1. How to extract source code of specific versions from a reposi-
tory

A compulsory requirement to obtain source code from different versions of a project is that the
source code is still available. This is the case if the project uses a code versioning system such
as CVS or SVN. However, not all revisions of such a repository are important for a project. Many
revisions will not even contain consistent project snapshots. Thus it has to be determined which
revisions of the repository contain important versions of a project.

Fortunately, code versioning systems have a so called tagging mechanism. This makes it
possible to tag a revision of particular importance so that it can be easily checked out afterwards.
If tags for the versions that shall be mined are available, the tags can be directly used to obtain
the source code. There are two cases: the tag has the name of the version; the name of the
tag associated with a version is stated explicitly in the project plan. Otherwise the revision of
a version has to be determined using the project plan. Either the revision of the repository of
a specific version is explicitly stated in the project plan or at least the date of the version is
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Figure 3.1.: The hierarchy inside a Java project: methods belong to classes, which belong to packages, which are
part of a project.

available. Using the date, it is possible to determine the revision manually. If there is no revision
at the stated date, latest revision before the date can be used instead.

After the tags, respectively the revisions to all the versions are determined, the source code
can be obtained by checking out the associated content. Afterwards it can be used for further
analysis.

3.2. Measuring Java source code

If the source code of a Java project is available, there are plenty of ways to measure it. For this
thesis, the tool Eclipse Metrics Plug-in [3] was used to collect metrics. A metric that is collected
from a Java project can be gathered at different levels. The level can either be a method, a
class, a package or the whole project. The levels define a tree-like structure: a method is part
of a class, a class is part of a package and a package is part of project (see figure 3.2). All
of these metrics have different methods of measurement. As part of the mining for this thesis,
all metrics that the Eclipse Metrics Plug-in can measure were measured and the results were
exported.

To start a measurement with the Eclipse Metrics Plug-in all that is needed is a compilable
Eclipse Java project. The metrics that the plug-in can measure are listed and described in table
3.1. The plug-in will collect all selected metrics automatically after the project is built. After
the measurement is complete, the results can be exported to a XML file. Even though for the
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experiments that were performed as part of this thesis, only the source code metric TLOC was
needed, all available metrics were measured. The reason for this is quite simple: Maybe the
other data will be needed for further experiments and it would be a lot more work to reiterate all
the measurement steps again in comparison to just collecting all metrics at once.

Table 3.1.: A listing of the Java source code metrics measured using the Eclipse Metrics Plug-in. The first column
describes the acronym which is used to identify the metric; The second column is the name of the metric;
The third column holds the information at which level of the Java type hierarchy the metric is measured;
The fourth column describes how the metric is measured.

Acronym Name Level Description
CA Afferent

Coupling
Package Number of classes used outside the package

that use the package
CE Efferent

Coupling
Package Number of classes inside the package that de-

pend on other packages
DIT Depth of

Inheritance
Tree

Type Distance of the type from the Object class

LCOM Lack of
Cohesion in
Methods

Type A measure for the cohesion of a class, see [10]

MLOC Method Lines of
Code

Method Lines of code of a method without comments

NBD Nested Block
Depth

Method Nested block depth of a method

NOF Number of
Attributes
(Fields)

Type Number of attributes of a class

NOI Number of
Interfaces

Type Number of interfaces a type implements

NOM Number of
Methods

Type Number of methods of a type

NOP Number of
Packages

Project Number of packages in a component/project

NORM Number of
Overridden
Methods

Type Number of derived methods that are overridden

NSC Number of
Children

Type Number of types derived from this type

Continued on next page
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Acronym Name Level Description
NSF Number of

Static Attributes
Type Number of static attributes of a type

NSM Number of
Static Methods

Type Number of static methods of a type

PAR Number of
Parameters

Method Number of parameters of a method

RMA Abstractness Package Number of abstract classes and interfaces dev-
ided by the total number of type

RMD Normalized
Distance

Package Indicator for the balance of abstract and con-
crete classes (|RMA+RMI − 1|)

RMS Instability Package Compares the usage of the package from out-
side the package to the usage of other pack-
ages ( CA

CE+CA )
SIX Specialization

Index
Type Index for the specialization of a type compared

to its parents (NORM∗DIT
NOM )

TLOC Total Lines of
Code

Project Total lines of code inclusive comments

VG McCabes
Cyclomatic
Complexity

Method Cyclomatic number of the control flow graph of
a method

WMC Weighted
Methods per
Class

Type Sum of all McCabe complexety numbers for all
methods of the class

3.3. How to extract bug data from a bugtracking system

To collect data about the number of bugs bugtracking systems, such as Bugzilla, can be ana-
lyzed. For this thesis a Bugzilla [1] database was analyzed, thus the following part is in reference
to Bugzilla. However, other bugtracking systems have similar traits, but sometimes the names
are different. Bugzilla is used to gather and maintain all information about bugs. Additionally
it can handle requests for enhancements. It is able to maintain several projects including their
components at once.

A Bugzilla entry contains all information necessary about a bug. A description of the bug, the
severity of the failure it causes, the current status, the version of the software it occurred in and
if it has been fixed, also the version where it has been resolved. Table 3.3 lists these attributes in
greater detail and also gives exemplary values. Usually there is more information than just the
listed attributes available, but since they are not important for this work, they are not discussed
here.

25



3. Mining Data

Name Description Typical values
Severity Severity of the bug. Can also be

enhancement if it is a request for
an enhancement.

trivial, minor, normal, major, criti-
cal, blocker and enhancement

Status Current status of the bug. UNCONFIMERMED, NEW,
ASSIGNED, RESOLVED, VERI-
FIED, CLOSED

Resolution Resolution of the bug or no entry
at all if there is no resolution yet.

FIXED, INVALID, WONTFIX,
DUPLICATE

Reporter The person that reported the
bug.

Joe Everyone
(joe.everyone@mail.com)

Assigned To The person or group that is
responsible for fixing the bug.

John Smith
(john.smith@company.com)

Summary A short summary of the problem
that the bug causes.

The feature X does not work.

Description A detailed description of the bug. It does not work when you do
something.

Table 3.2.: Description of typical bugtracking system entry information

To measure information about the number of bugs of a software project, the most interesting
attributes are the version it has been reported/fixed in and the severity.

Using these two metrics, the following metrics can be calculated:

• The total number of open bugs. This is the same as the metric BUG that was introduced
in section 2.1.2.

• The number of fixed bugs between two versions.

• The same as the two above, but separately for each severity.

• A weighted number of bugs, with their severity as weights.

To collect metrics from a Bugzilla database, there are two options. In case the underlying
database is publicly accessible, either in form of a downloadable dump or directly via SQL
queries, the metrics can be measured automatically. Otherwise the web interface has to be
used. How the automated collection can be done will be discussed in chapter 4, where a tool
to build a large database from all the mined data is introduced. If it is not possible to directly
access the database, the information has to be extracted manually using the web interface of
the Bugzilla database.
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There are several tasks that have to be performed on the available metric data that can not be
done manually. Thus, a tool is needed to perform these tasks. They are mainly the collection
of the measured metrics from the different sources and the preparation of the input for learning
algorithms. Another task that has to be done is the extraction of the bug-metrics from the
bugzilla database. As it was said, this can be done using the SQL database that is the backend
of a bugtracking system. If a new tool has to be created to gather metric data from different
sources into a single database, it can also be used to extract these metrics from the SQL
database. The database is just another source of metric values.

Before the tool itself is introduced, one should take a look at the way the data is collected.
Using the approach to mine data from software repositories that was introduced in chapter 3,
the result will be many files that contain pieces of the mined data. Collecting software metrics
using the Eclipse Metrics Plug-in will result in one XML file per Eclipse project that has been
measured. Thus, there is at least one file for each measured version of a project. If a project
consists of several sub-projects, there is more than one file per measured version.

It is clear that with a growing number of versions and sub-projects it is no longer possible
to extract data manually. Another problem is that the sources of data do not even have the
same structure. While the source code metrics are exported as XML files, the backend of a
bugtracking system is usually a SQL database. If metric data is extracted manually, it can
be stored in an arbitrary format. Furthermore, the structure of the input data that a learning
algorithm requires is not clear. To analyse the mined data, it has to be possible to purposefully
extract data from the complete set of mined data.

Altogether, the amount of data and the different input/output types of the data make it clear
that a tool to handle theses tasks is needed. Additionally, the tool should be able to merge all
of the input data into a single large database, thus reducing the fragmentation of the measured
data.

In the following sections the requirements on the tool, some important design decisions and
import details of the implementation are discussed.

4.1. Requirements

The most important requirement on the tool is that it has to be able to handle different kinds of
input and output formats for the metric data. To simplify the conversion between different input
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and output formats, internally only one format should be used to store all the data. This way, the
import functions and export functions do not need to know anything about each other but only
have to read/write the data from/to the common internal format. However, this format needs to
be very flexible. It has to be flexible enough to satisfy all requirements that different external
formats pose.

As it was already mentioned in section 3.2, metrics can be measured on different levels and
these levels define a tree-like structure. The internal type needs to be able to store the data
in such a tree-like structure. However, what levels are needed is not know beforehand. They
can vary with different projects, for example because of the progamming language that is used.
Thus, the levels can not be predefined except the highest level, the project itself. If the data
were only stored in a flat format, a format where the levels are lost and only the values are
retained, most of the measured information would be lost. For example, metrics collected from
methods can be used to calculate an indirect metric for the class the methods belong to. If the
data were stored in a flat format, this would not be possible anymore.

For each level it is neither known how many metric values need to be stored nor if there is a
level below. For the level below it is also not known how many entities there are. This means
that every node has to be able to store an arbitrary number of values and nothing about the
number of children is known. However, for each measured value must still be a unique way to
identify it available.

So altogether, the internal representation needs to fulfill the following requirements:

• A tree structure that represents the internal hierarchy of the project data.

• All nodes of the tree structure need to be able to store an arbitrary number of metric
values.

• For all measured values it must still be possible to identify them.

As it was already said at the beginning of this chapter, the tool also needs to be able to
access a SQL database used by a bugtracking system to extract metric data about the number
of bugs from it automatically. To extend the support for more metrics and also for easier data
preparation, indirect metrics are useful. However, as it was said in definition 2.8, every metric
that can be calculated from other metrics is considered to be an indirect metric. It can not be
expected that it is possible to calculate arbitrary indirect metrics. However, some important and
rather simple ways to calculate indirect metrics should be supported:

• Normalization of a metric over all milestones. Further information about this is given in
section 5.2.

• Creating a new metric as the sum of other metrics of the same level. For example, this can
be used be used to calculate the total number of bugs from the number of bugs separated
by their severity.
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• Creating a new metric as the sum of all metric values of a metric in a sub-level. For
example, this can be used to calculate a metric that measures the complexity of a class
from the complexity of its methods.

Another requirement is that the tool should be able to perform a batch of operations according
to a script. The reason for this is that the steps that have to be performed to read and write data
are often similar. However, there are many small things that can vary. Here are some examples:

• The number, type and location of input. There can be data about one or several projects,
the data could be in the form of XML files generated by the Eclipse Metrics Plug-in or an
SQL dump of a bugtracking system.

• The type of the export. Depending on what is intended to do with the data after the export,
different formats might be feasible.

• The metrics that shall be exported. For different learning tasks, different metrics may be
required.

• The indirect metrics that need to be calculated. Depending on the task, different indirect
metrics may be required.

If the tool was only able to perform complex operations that read from a specific kind of source,
perform some operations on the data and than export it to some format it would be very inflex-
ible. On the other hand, these complex operations can be split into smaller operations: read
from a specific kind of source; perform an operation on the data; purposefully export data to a
specific format. If these simple operations can be arranged in scripts, these scripts can easily
replace the need for mighty operations.

Now there are four main requirements on the tool:

1. Read data from different kinds of data sources.

2. Common internal representation of the data.

3. Calculate indirect metrics.

4. Support scripting of operations.

4.2. Design decisions

The first design decision that was made was to implement the tool in Java. The advantage
of Java is that with JDom [4] a mighty XML API exists and with JDBC SQL databases can be
easily accessed. Using JDom allows easy access to the XML files that the Eclipse Metrics
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Plug-in exports. By accessing an SQL database that is underlying a bugtracking system using
JDBC, the metric BUG can be easily extracted in an automated way.

Because of the specific needs of the internal representation of the data, a new tree structure
was programmed. The root contains all information about the project itself, such as the version
of the name of the project. The subnodes and measured values are maintained using lists. The
details about this structure are described in section 4.3.1.

For the user interface, a simple text console was chosen. However, the interface is designed
using the observer pattern. This way it can easily be replaced by a graphical user interface.
The commands that are performed on the data are handled by a command parser, which is
also independent of the input. All it needs is a string that defines the command. The form of the
strings is defined by the following EBNF like grammer:

<command> := <commandname>{<whitespace><parameter>}
<commandname> := Valid Java class name
<parameter> := <string>|<stringarray>
<string> := <stringwithoutwhitespaces>|<stringwithwhitespaces>
<stringwithoutwhitespaces> := a string without whitespaces
<stringwithwhitespaces> := a string in quotation marks
<string> := a string that can have whitespaces, but must be in double quotes
<stringarray> := "[" <string>{<whitespace><string>} "]"

The command parser then calls the commands using a combination of the command pattern
and reflection. The commands themselves implement an interface that describes the methods
a command has to provide. All commands are all classes inside the same package. The name
of the class defines the command name, furthermore, they have CMD as name prefix. For
example, to create a command “load" the class has to be called “CMDload". The parameters
are parsed by the command parser and passed as a map to the called command. Because of
this usage of reflection, a new command can be added by simply adding a new class. To allow
scripting, a command was implemented that reads a text file and each line of the file is treated
as a command and executed.

4.3. Implementation Details

4.3.1. The core package

The core functionality of the tool, that means the storage of metric data and the calculation of
indirect metrics is implemented in the de.ugoe.cs.swe.databasebuilder.core package.

The most important classes of the core are those that store the data internally. To represent
the entity over which the data was measured, a class MetricDataSet was created. As it was
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Figure 4.1.: This UML chart shows the classes used to store the metric data internally and their relationship.

said in the previous section, the data should be stored in a tree. The MetricDataSet class also
represents the tree nodes. Thus, a MetricDataSet has to handle three things:

1. All the important information about itself, like the type and the name.

2. The metric data associated with itself.

3. Its children, that means entities that are one level deeper in the hierarchy.

A metric value can be identified by the triple of the entity it was measured over, the name of
the metric and the version it belongs to. If every entity contains a list of its own metric values
stored together with the names of the according metrics, all measured values can be identified.
To store the metric values, the data class MetricData is used. It stores the name of the metric
together with the metric values for each version. The values are stored in an array, thus it is not
possible to change the number of versions afterwards it has to be known when an instance of
MetricData is created. To which version a metric value belongs is implicitly given through the
index in the array. Even though most metric values are numbers, the storage as a string is no
problem because it can simply be solved by conversion. The MetricDataSet class contains
a java.util.List of the metric data classes to store all the values. Because an entity can
have more than one child - for example a package contains usually more than one class - the
children of an entity are stored in a java.util.List, too.
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The project is an entity of special importance. First of all, every entity that belongs to a project
is a descendant of the project. Thus, the project is automatically the root of the entity-tree
of itself. Additionally, a project has in comparison to the other entities a version, for example
1.0. Furthermore, the milestones that are measured are stored in the project entity. To realize
the project as a special entity, a subclass ProjectData of MetricDataSet was created. To
implement the differences between a project and the other entities, the class ProjectData has
additional members. A string to store the version of the project and a string array to store the
names of the measured versions. The list of metric values that are stored in all instances of
MetricData have to be aligned according to names of of the measured versions. To give all
entities of a project access to this information, each MetricDataSet stores a reference to the
project that it belongs to and thus the root of the tree it belongs to. Figure 4.2 visualizes the
relationship between these three classes.

The last part of the core is the class MetricCalculator. This class provides several member
functions that allow the calculation of indirect metrics. All commands (see 4.4) are done using
this metric calculator and the calculations are discussed together with the commands.

4.3.2. The data import package

Now that the internal storage and basic data handling is discussed, the question of how the
data is loaded to this internal data format has to be answered. The classes that address the
extraction of data from different sources and store the data inside the tool are organized in
the de.ugoe.cs.swe.databasebuilder.core.importdata package. In the current version
of the tool there are 3 ways to import data: to read data that was measured using the Eclipse
Metrics Plug-in; to extract data from the underlying database of a Bugzilla bugtracking system;
to read a database, that was created by the tool itself.

Importing data measured with the Eclipse Metrics Plug-in

An important task of the tool is to import data that was measured using the Eclipse Metrics
Plug-in. As it was said in 3.1, the plug-in stores the measured values in XML file. A short
example of such an XML file is shown in listing 4.1. This XML file is ordered by the metrics, the
type of the entity over which the metric is measured is given as the per attribute of the values
node. Table 4.3.2 shows to which Java types the values of per refer.

<?xml version=" 1.0 " encoding="UTF−8" ?>
<Met r i cs scope=" org . ec l i pse . j d t . launching " type=" P ro jec t " date="

2008−05−14" xmlns=" h t t p : / / met r i cs . sourceforge . net /2003/ Metr ics−
F i r s t−F l a t ">
<Met r i c i d = "NORM" d e s c r i p t i o n ="Number o f Overr idden Methods ">

<Values per = " type " t o t a l = " 61 " avg = " 0 ,884 " stddev = " 1 ,44 "
max = " 8 ">
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<Value name=" Standard11xVMType " source =" Standard11xVMType .
java " package =" org . ec l i pse . j d t . i n t e r n a l . launching " value
=" 8 " / >

< / Values>
< / Met r i c>

< / Met r i cs>

Listing 4.1: A simplified example of an XML export of metric data measured using the Eclipse Metrics Plug-in. A real
export contains more metric and value nodes and for each metric more values.

As it was said in section 3.2, for each Eclipse project that is measured one XML file is gen-
erated. A large software project may consist of several components and each component may
be split into subcomponents. In this case, there is an Eclipse project for each subcomponent.
Thus, to measure the software project many Eclipse projects have to be measured separatly
and many XML files will be generated. Furthermore, these files exist for each measured ver-
sion. The question that has to be answered is how the XML files are organized in a – preferably
simple – way, such that the structure of how the components and subcomponents are organized
is still maintained and the versions over which the measurement took place are separated.

The approach used for this work is quite simple. It simply uses folders. A folder structure of
the following kind is used to organize the XML files:

“ProjectName/ProjectVersion/ComponentName/SubcomponentName”

The project folder can contain an arbitrary number of components, the component folder an
arbitrary number of subcomponents. The XML files are named “version.XML” and placed in
the folders of the subcomponents. The “ProjectVersion” has nothing to do with the measured
versions of the development process. Instead it is the name of the final version, thus the version
that has been developed, such as 1.0 or 2.0. This way all information about the project hierarchy
and the measured versions is maintained and the storage is simple because it only uses the
basic mechanism of file systems. In the case that a project does not have components or
subcomponents, one simply has to create a folder with a name like “main” as component folder,
the name of the subcomponent folder could for example be the name of the Eclipse project.

Eclipse Metrics Plug-in type Associated Java type
packageFragment A Java package. It is called package fragment because other

projects could implement other parts of the package.
type A Java type, such as a class, an interface or an enumeration.
method A method of a Java type.

Table 4.1.: The left column shows the types as they are used by the Eclipse Metrics Plug-in, the right column the
Java types they refer to.
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To read the data, the folder structure has to be evaluated and the MetricDataSet and the
ProjectData instances have to be generated. The subcomponents are ommitted in this struc-
ture, such that all the data of the subcomponents is merged into the component data. The XML
files are read and parsed using JDom. Again, the instances of MetricDataSet for each mea-
sured Java entity have to be generated and organized properly. As a result, to read the data
about a whole complex project that consists of many components and subcomponents only the
folder structure as introduced above has to be created and the XML files have to be named like
the versions.

However, there are some things that have to be considered. It is possible that a new compo-
nent or subcomponent is introduced during the development process. For this component/sub-
component only data about the versions after it has been created are available. The reading
function has to be able to deal with these possible empty versions correctly. This also poses an-
other problem. As it was said, the number and the names of the measured versions of a project
have to be known when the instance of the ProjectData is created. To obtain this information,
the lexicographical first subcomponent of the lexicographical first component is considered. The
XML files with the version names that are available there have to be representative for the whole
project, thus every version has to be available. The case that by chance this subcomponent is
one that has been added to the project during the development has not yet been resolved and
will lead to an error.

Extracting data from Bugzilla

To extract information about the number of bugs from a Bugzilla bugtracking system, the under-
lying database is needed. Currently, Bugzilla can use MySQL and PostgreSQL as backends. In
the current version of the tool it is only possible to extract data from a MySQL database. In a
future version PostgreSQL will also be supported. To know how to extract the data, one has to
take a look at the table structure in which the bugs are organized by Bugzilla.

To store the bugs, the table bugs exists. To determine whether a bug existed in a version, the
columns resolution and target_milestone of the table can be used. The bug existed in a
version, if one of the following two statements is false:

1. target_milestone is greater than the version and version is smaller than the version.
If target_milestone is not greater than the version, it is already fixed. If version is not
smaller than the version, the bug does not exist yet.

2. resolution is not marked as WORKSFORME or DUPLICATE. In this case, the entry is not
relevant, because either the bug does not exist or it is already reported in another entry.

To obtain only the bugs that belong to a certain component, the column component_id can be
used. Every component as an unique Id that is stored in the table components. To obtain this
Id, the unique Id of the project that the component belongs to and the name of the component
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is needed. The Id of the project is stored in the products table and can be obtained if the name
of the project is known. Thus, if the name of the project and the name of the component are
known, the Id of the component can be obtained. This way it is possible to obtain all bugs of
a specific version of a component in an automated way, if only the version, the name of the
component and the name of the project are known, using SQL queries.

Furthermore, the bugs table has a severity column. The values of this column can be used
to divide the bugs into categories, according to their severity. Because it is possible for the
admin of a Bugzilla to edit the possible severities, it is not possible to just divide the bugs into
some fixed severity categories. However, the severities that a Bugzilla system contains are
stored in the table bug_severity of the database. By reading the possible values from that
table, the problem can be resolved.

The Databasebuilder uses JDBC to access the MySQL database of a Bugzilla system and to
execute the queries. To do this, either a local copy of a dump from the Bugzilla system or direct
(read-only) access to its database has to be available. The class BugzillaReader provides the
functionality to connect to the database and to read the bug data from it. The reading function
takes a list of ProjectData as input and extracts the bug data for all the projects and their
components in an automated way as it has been described above. The results are stored as
metrics with the name “BUGseverity” where severity is replaced by the actual severity as part of
the component metric data. The sum of all the BUGseverity metrics is the total number of bugs,
thus the metric BUG, introduced in section 2.1.2.

Reading own XML Database

Naturally, if all data from the various sources about projects has been imported and merged
to one larger database that is handled by the program internally using the classes that were
described in section 4.3.1, one wants to store this large database. The tree structure in which
the data is organized internally suggests the usage of XML for this task. This stored XML
database would be nearly worthless, if it was not possible to load it afterwards. The structure of
the database is described in section 4.3.3.

Currently, it is read using the JDom API. However, because the databases can be huge –
larger than 200 MB for one project – the usage of JDom is a problem. It is not a problem
that is JDom specific, but a problem of the DOM in general when it comes to handling large
databases. The reason for this i, that DOM handles all the data in RAM and furthermore has a
large overhead. When using large files, this can become a serious problem. Because of this,
the parser has to be changed to a SAX based parser in a future version.
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4.3.3. The data export package

Storage as XML database

As it was mentioned above a method to store the measured data is needed. This is done
using XML. It is a more or less direct mapping from the internal tree structure in which the data
is organized to XML. The root of the XML document is a simple node called database. The
children of the root node are the projects that are represented by their instance of ProjectData.
The name of these nodes is project. If the project itself was the root node, it would only be
possible to store one project in such a database. The project nodes have the name and the
version of the project as attributes. The children of the project nodes are the measured versions
and the nodes are named milestone. For each measured version such a node is created.
The name of the version is stored as an attribute of the milestone node. The children of the
milestone nodes are the nodes of which represent the MetricDataSet instances that are the
children of the ProjectData instance. For each such MetricDataSet a node with the name of
its type is created. The name of the MetricDataSet is stored as an attribute of that node. Its
children in the tree structure are stored in the same manner as it is done with the children of the
ProjectData. In the following part, the project, respectively the node that is generated by a
MetricDataSet is called entity-node. This has nothing to do with XML entities.

The measured values are stored in value nodes. These nodes are the children of the entity-
node to which the metric values belong. If they belong to the project, they are children of the
milestone node of their milestone. A value node stores the name of the metric it represents as
an attribute, the measured value is stored as the text value of the node. An simplified example
with fictional metric values is given in listing 4.2. If one considers the structure of the data, it is
organized by the following attributes, ordered by their priority:

1. The highest ranking attribute that organizes the data in the XML file is the project. This is
represented by the project nodes being the children of the root node. The reason for this
is that the measured data shall be used to analyse software projects. Thus it makes no
sense to store the data in a way that is similar to what the Eclipse Metrics Plug-in does
(see section 4.3.2 and listing 4.1).

2. After the projects, the data is organized by the measured version using the milestone
nodes. It would be possible to push this down to the storage of the metric values. How-
ever, if one wants to analyse the data of a specific milestone it is easier this way.

3. The third attribute to order the data is the hierarchial tree structure. The reasons for this
are the same that were given in section 4.2 for choosing an tree-like structure for the
internal representation.

To write the database, JDom is used. When it comes to writing huge database, JDom has
the same disadvantages as when it comes to reading. These disadvantages where already
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discussed in section 4.3.2. Thus, like the reading of this database, the writing has to be changed
to a SAX writer in a future version.

<?xml version=" 1.0 " encoding="UTF−8" ?>
<database>

< p r o j e c t name="JDT" version=" 3.2 ">
<mi lestone name="M0">
<value name="TLOC">8783< / value>

<component name="Debug">
<value name="TLOC">8783< / value>
<package name=" org . ec l i pse . j d t . i n t e r n a l . launching ">

<value name="NOC">41< / value>
<c lass name=" Standard11xVMType ">

<method name=" ge tDe fau l t L i b ra r yLoca t i ons ">
<value name="MLOC">6< / value>

< / method>
< / c lass>

< / package>
< / component>

< / mi lestone>
< / p r o j e c t >

< / database>

Listing 4.2: A short sample of a XML database as it is stored by the Databasebuilder. The database consists of
project nodes. For each measured version a milestone node exists. For each MetricDataSet a node with
the name of the type of entity of the data set is created. The name of the entity is stored as the name
attribute of the node. The measured values are stored in the value nodes and belong to their parent.
The name the metric are stored as attribute of the value node, the value of the metric as its text node.

Export of specified metrics to the ARFF format

With the Attribute-Relation File Format (ARFF) a format is defined that can be used as input
for the machine learning tool WEKA [17]. Another advantage of this format is that it is similar
to Comma Separated Values (CSV). The only important differences between ARFF and CSV
are that in ARFF comments are possible and more importantly, that in ARFF a name and type
for the columns can be defined. This is done using a header. Furthermore, ARFF has a fixed
number of entries per line, which needs not be the case in CSV files.

ARFF is a flat format and does not support tree structures. The intended usage of this format
is to extract parts of data from the whole database, to analyse them. Because it usually does
not make sense to analyse data about methods and about packages at the same time, the first
thing that has to be specified for the export is the type of the entity from which the metric data
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should be exported. Additionally, one usually does not need all the metrics that were measured
over an entity for the intended analysis. Thus, it is possible to specify the set of metrics that
shall be exported.

The input of the ARFF export functionality, as it is implemented in the class WekaWriter, is
the name of the entity type and the set of metrics that should be exported. The class is called
WekaWriter because ARFF was designed for usage with the Weka machine learning tool.
The result is a valid ARFF file where the first columns are the metric values and are named
accordingly to the metric names. The last two columns contain the version and the name and
type of the entity. The type of the entity is implicitly given through the type of the last column. A
short example for an ARFF file can be found in listing 4.3.

@relat ion re la t ionname
@at t r ibu te TLOC numeric
@at t r ibu te mi lestone s t r i n g
@at t r ibu te p r o j e c t s t r i n g
@data
582972.0 ,M0, JDT
583836.0 ,M1, JDT

Listing 4.3: A short sample of an ARFF file. It contains only the metric TLOC of the project JDT with the two versions
M0 and M1.

4.3.4. The console and the commands

To introduce a layer that separates the program logic from the user interface a console and
commands were introduced. The Java classes and interfaces that implement this concept are
organized in the packages de.ugoe.cs.swe.databasebuilder.console and its subpackage
de.ugoe.cs.swe.databasebuilder.console.commands.

The console is used as an observable as part of the observer pattern [9]. It is implemented in
the Console class. When an output should take place, a message is send to the console. This
message is passed on to all observers that are registered. The observers must implement the
interface ConsoleObserver. It defines the messages that the observers must be able to handle.
The observers themself are the UI classes and handle the output. To both make the console
publicly available and to ensure that there is only one instance of Console it is implemented as
a singleton. Additionally, the class is not intended to be subclassed. First of all, subclassing
is a general problem with singletons and secondly, a subclass of Console would be confusing
because it would destroy the concept of the single point of output mechanism for the logical
part of the software. Currently, only one observer is implemented in the class TextConsole. It
simply displays the send message using the System.out.print functionality. The versatility of
this concept allows simple adding of another graphical user interface by adding a new observer.
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Figure 4.2.: This UML chart shows the relationship between the classes that are responsible for calling com-
mands. The CommandExecuter uses the CommandParser to parse the command and the executes
the command.

While the observer concept is used to make the output independent of the user interface and
thus decouple the user interface and the program logic, the concept of commands has two
purposes. The first is to do the same for the input. The second is to make it easy to add new
logical functions without making big changes at the user interface. To implement both purposes,
the command pattern (see [9]) and reflection are used. The pattern decouples the caller and
the command, while the reflection mechanism of java is used to load the command.

For the handling of commands the class CommandExecuter was implemented. If the logical
part of the program shall execute any kind of action - like import/export of data for example - the
CommandExecuter has to be used. All information regarding the command, like the name of the
command and possible parameters are passed as a string to the CommandExecuter. The form
of the string has already been introduced in section 4.2. The command executer than parses
the string using a CommandParser. Than it tries to execute the command. How this is done
should be clearer, when an example is considered. The CommandExecuter is implemented as
a singleton. Furthermore, it uses a monitor to guarantee that only one command is executed at
a time. This way, only one command may edit the currently known set of problems at a time,
which prevents race conditions.

The following example demonstrates how a string is parsed and used to execute a com-
mand. Let save database.xml the string that is passed to the CommandExecuter. The
parser will recognize save as the name of the command and database.xml as a parameter.
To execute the command, the command parser tries to load the class CMDsave of the pack-
age de.ugoe.cs.swe.databasebuilder.console.commands. If this class does not exist, the
command executer will send a message to the console that the command is not known. Oth-
erwise it tries to create an instance of the class and cast it to Command. If the CMDsave class

39



4. A tool to pre-process the mined data

implements the Command interface, this is not a problem, otherwise an exception will cause
the command to fail. If this is successful, the run method of CMDsave can be called and the
command will be executed.

As the example shows, the usage of the command pattern decouples the user interface that
triggers the execution of a command and the program logic that perform actions on the data.
By the further usage of reflection, the creation of new commands that can be handled is sim-
plified to a minimum. The only task is to create a new class that implements the Command
interface and starts with CMD and the new command can be used. There is no need to edit the
CommandExecuter in any way to make the command known. A list of the currently implemented
commands is given in the following section.

4.4. The available commands

The implemented commands can be divided into four general categories: the commands that
load data and add information to the current database of programs; the commands that export
information from the database and store it as a file; the commands that make changes on the
current database; the commands that display information about the current database.

add_bugdata_from_bugzilla
Syntax: add_bugdata_from_bugzilla url database username password
Categorie: Data import

This command adds metrics about the number of bugs to the current set of projects.
It automatically checks for all projects if bug data is available in the database. If so, it
will add it separated by severity to the current data.
url

The URL of the SQL database.
database

The name of the database.
username

The name of the user used to access the database.
password

The password of the user.
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calc_avg
Syntax: calc_avg type subtype metricName avgMetricName
Categorie: Data manipulation

Calculates the average over all metric values of specific metric and stores it in one of
its parents.
type

The type (level) over which the average will be calculated.
subtype

The subtype where the average value will be stored.
metricName

The name of the metric over which the average will be calculated.
avgMetricName

The name of the metric that stores the average value in the subtype.

calc_sum
Syntax: calc_sum type subtype metricName sumMetricName
Categorie: Data manipulation

Calculates the sum over all metric values of specific metric and stores it in one of its
parents.
type

The type (level) over which the sum will be calculated.
subtype

The subtype where the sum will be stored.
metricName

The name of the metric over which the sum will be calculated.
avgMetricName

The name of the metric that stores the sum in the subtype.
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calc_weighted_sum
Syntax: calc_weighted_metric type subtype [metricNames] [weights] sumMetricName
Categorie: Data manipulation

Calculates the weighted sum over all metric values of the specified metric and stores
the result in one of its parents.
type

The type (level) where the weighted sum will be stored.
subtype

The subtype (level) of type, over which the weighted sum will be calculated
metricName

The name of the metric over which the sum will be calculated.
avgMetricName

The name of the metric that stores the sum in the subtype.

exec
Syntax: exec filename
Categorie: Uncategorized

Executes a script of commands as it is described in section 4.3.4.
filename

The filename and path of the script.

exit
Syntax: exit
Categorie: Uncategorized

Exits the program.

list_metrics
Syntax: list_metrics type
Categorie: Uncategorized

List the names of all metrics that are available in the current data set for a type.
type

The type (level) of which the available metrics will be displayed.
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load
Syntax: load filename
Categorie: Data import

Loads a XML database that was created by this tool.
filename

The filename and path of the database.

load_from_eclipse_java_metrics
Syntax: load_from_eclipse_java_metrics path
Categorie: Data import

This command loads metric data that was exported using the Eclipse Metrics Plug-
in. The files containing the metric data have to be stored in a folder structure as it is
described in section 4.3.2.
path

The path of the metric data.

new
Syntax: new
Categorie: Uncategorized

Deletes the current set of data and initializes a new, empty one.

normalize
Syntax: normalize type metricName newMetricName
Categorie: Data manipulation

Calculates a new metric as the normalized values of another. More about normaliza-
tion can be found in section 5.2.
type

The type (level) of the metric, that will be normalized.
metricName

The name of the metric which will be normalized.
newMetricName

The name of the normalized metric.
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save
Syntax: save filename
Categorie: Data export

Saves the current set of projects and their metric data as an XML file.
filename

The filename and path, where the data shall be stored.

save_as_arff
Syntax: save_as_arff filename [metricNames] type
Categorie: Data export

Saves the values of the defined metrics as an ARFF file as described in section 4.3.3.
[metricNames]

The names of the metrics that shall be exported.
type

The level of the metrics, i.e. method, class or project.

zeroize
Syntax: zeroize type metricName newMetricName
Categorie: Data manipulation

Calculates a new metric as the zeroized values of another. Zeroizing calculates
vnew
i = vi − min{vimetric values} for all values vi of the metric, thus setting the

smallest value of the metric to 0, while the absolute distances between the values are
kept.
type

The type (level) of the metric that will be zeroized.
metricName

The name of the metric which will be zeroized.
newMetricName

The name of the zeroized metric.
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5. Detecting feature freezes using the k-means
algorithm

Up till now, only concepts were introduced. In this chapter everything that was introduced up to
now will be used in an approach to detect a feature freeze in a project. To do this, metric data
measured over the progress of a project will be used as input for the k-means algorithm.

5.1. Collecting Metric Data

The collected metric data was measured from the Eclipse Platform Project 3.2 and the Eclipse
Java Development Tools 3.2. The projects are both part of the Eclipse Project hosted by the
Eclipse Foundation [2]. Of both projects 14 versions were measured. What versions were
measured was determined using the project plans of both projects. The project plans were
almost identical, except for a few days that some versions may deviate from another. In both
project plans there were 6 milestones M1 to M6 and 6 release candidates RC1 to RC6. Because
both projects are not newly developed from scratch but based on their previous version 3.1, this
version was measured as a basis, too. The last measured version is the release of the project.

The source code of the projects is maintained in the repository of the Eclipse Foundation. It
was retrieved and measured using the concepts introduced in chapter 3. Both projects consist
of several components. In these components several Eclipse plug-ins are implemented as
subcomponents. Together these Eclipse plug-ins implement the larger components of Eclipse.

This causes two problems. The first problem is that there are many subcomponents and all
have to be measured for each version. This results in a large amount of work. This is not a
serious problem, it only increases the workload. The second problem causes more trouble. Be-
tween these subcomponents there are many dependencies. Thus, to compile a subcomponent
of a version correctly, one usually needs to provide the same version of other components. This
can result in a snowball effect. As a result, to measure one subcomponent, not only the source
code of that subcomponent has to be retrieved, but also of others. It is not always obvious
which other components are needed. The person that performs the measurement has to solve
this problem for each subcomponent independently. The measurement resulted in about 1 GB
of XML exported using the Eclipse Metrics Plug-in that contained metric data about the two
projects.

To gather bug data, a dump of the Bugzilla bugtracking system that is used by the Eclipse
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Foundation was used. The nearly 3 GB large dump is publicly available on the foundation’s
website. To extract the data from the database, the tool that was introduced in the previous
chapter was used.

5.2. Normalization of the Data

Before the metric data can be used, it has to be prepared. To be exact, it has to be normalized.
If projects shall be compared, their absolute values are usually not comparable because of their
different sizes. The data will be used to analyse the progress of the projects. For the progress,
the size does not matter. By normalizing all metric values, the projects become comparable.
Normalization means that all metric scales are changed to the interval [0, 1], while keeping the
relative distances.

Another reason why the data has to be normalized is the way in which the k-means algorithm
works. The cluster assignment is done using the euclidean distance from the centers that
represent a cluster. Consider two metrics m1 and m2 , where m1 outputs values in the interval
[0, 1] and m2 in the interval [0, 100]. For two entities x and y these two metrics describe a
feature vector m(x) = (m1(x),m2(x))t respectively m(y) = (m1(y),m2(y))t. The euclidean
distance between these two vectors is

dist(m(x),m(y)) =
√

(m1(x)−m1(y))2 + (m2(x)−m2(y))2. (5.1)

Because the values of m2 can have a greater distance between themselves, usually this dis-
tance will be dominated by the second term. Thus, the values of m1 would be less important
for the result of the k-means algorithm than those of m2. So the importance of a metric would
be defined by how large its scale is. With normalized data all metrics have the same scale and
thus the same importance.

5.3. Detailed description of a feature freeze

As it was already said in chapter 2, software projects have different phases. The points of
transition between these phases are often of special importance and thus have a name of their
own. A feature freeze is such a point during software project. In every successful software
project a feature freeze occurs. Either it is planned or it happens implicitly. The latest point of
a feature freeze is the end of the project. How and when a feature freeze happens depends
strongly on the organization of the project. Especially with agile software development the
complete feature freeze will be in a very late phase of the project.

As the name suggests, the current set of features that the software provides is frozen, thus
not changed anymore. This changes the focus of a project. The project enters a phase were
it is stabilized. Before the stabilization, many resources are used to add new features to the
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software under development, thus changing it constantly. With the feature freeze, this stops.
Instead the already existing features are enhanced. This enhancement can be testing, bug
fixes, refactorings or documentation. Generally, after a feature freeze occurred, there should
not be many changes to the software and its source code anymore. Instead the number of bugs
should decrease and the quality of the source code should increase.

5.4. Selecting the Software Metrics

In chapters 2 and 3 many software metrics were introduced. However, each metric has different
characteristics and can be used to describe different features. In this case, the task is to detect
a feature freeze. As it was said in the previous section, after a feature freeze, the source code
should not change that much anymore. A way to measure this is to consider the lines of code.
If new features are added, the lines of code increase greatly. When only bugs are fixed and the
project is stabilized, the lines of code should be relatively stable.

The other important change is that the focus changes to bug fixes. So after a feature freeze,
the number of bugs should decrease. This can be measured using the metric BUG that was
introduced in section 3.3. The combination of these metrics can be used to measure two of the
above mentioned properties of a feature freeze. This is, of course, only one possible combi-
nation of metrics. For example, if after a feature freeze during the phase of stabilization of the
project it should be refactored to improve the quality of the source code, other combinations of
metrics could be more effective. However, by using LOC and BUG, two features are measured
that should take place after every feature freeze. Thus, for a general approach it makes sense
to use only these two metrics.

5.5. Application of the k-means algorithm

The approach used in this thesis to detect whether a feature freeze actually took place or not
is to apply the k-means algorithm to the mined metric data. As the k-means algorithm is an
unsupervised learning algorithm, one might wonder why it is used to analyze supervised metric
data. The knowledge when a feature freeze took place which is included in the project plan
is intentionally “forgotten”. If the unsupervised k-means algorithm still detects it only using the
metric data, this can be used as an indicator that the feature freeze actually took place. Only
because the project manager said that a feature freeze should take place at some point of time,
it is not said that the developers actually abided by it. In other words: even if the project plans
said that a feature freeze took place at a specific version of a project it is not necessarily true.
Thus, the observation of the supervised data would be wrong.

To apply the k-means algorithm, the number k of clusters that the algorithm should compute
has to be determined by the user. In this work two clusters are needed, thus k = 2. One cluster
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for the versions before the feature freeze and one cluster for the versions after the feature
freeze. If a feature freeze took place, the clusters should divide the versions of the project in
two sequences of versions. For example, consider a project with 20 versions. Consider three
possible results:

1. One cluster contains the versions 1 to 14 and the other the versions 15 to 20.

2. One cluster contains the versions 1 to 10 and the other the versions 11 to 20.

3. One cluster contains the even numbered versions, the other the odd numbered versions.

The first two results are reasonable, but would lead to different interpretations when the feature
freeze took place. The third result seems arbitrary. A result where adjacent versions alternate
between the clusters is not reasonable. Adjacent versions should be similar to some degree and
thus belong to the same cluster. If this is not the case, this indicates management problems. In
a healthy project, progress is made steadily. If the progress is made steadily, the metric values
should also be steady, not necessarily monotonic, but there should not be large jumps back and
forth. If there are k = 2 clusters, the characteristic of the k-means algorithm is to decide to
which cluster a vector belongs by its euclidean distance from the cluster centers. This makes
sure that, when the development is steady, the clusters contain adjacent versions.

5.6. Results

When applying the k-means algorithm to the normalized metric data that was mined from the
two Eclipse projects, the software versions are clustered correctly. The adjacent versions from
the initial version to Milestone 4 are assigned to one cluster, the remaining adjacent versions
from Milestone 5 to the final release to the other cluster. Thus, the result clearly separates the
first versions from the later versions and detects the feature freeze that took place at milestone
5. The error of the result is 0.
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JDT Project Platform Project
Milestone Lines of Code Number of Bug Reports Lines of Code Number of Bug Reports
Start 582972 383 647322 767
Milestone 1 583836 383 626734 764
Milestone 2 593967 374 633419 762
Milestone 3 605037 362 646458 762
Milestone 4 620556 359 656836 757
Milestone 5 645890 355 690544 740
Milestone 6 658664 344 706153 730
Release Candidate 1 661111 340 711387 722
Release Candidate 2 667185 339 714266 716
Release Candidate 3 667592 338 714040 716
Release Candidate 4 667801 337 715910 716
Release Candidate 5 667781 337 716032 716
Release Candidate 6 667794 337 716034 715
Release 670645 337 716150 715
Table 5.1.: Metric values collected from the Eclipse JDT and Platform project. The horizontal line between Mile-

stones 4 and 5 indicates the detected feature freeze.
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Figure 5.1.: Normalized lines of code (upper chart) and normalized number of open bug reports (lower chart) of the
Eclipse JDT (marked as “x”) and the Eclipse Platform (marked as “+”) project and their development
during the project. The color indicates the cluster of which a milestone is part, the two horizontal in each
chart lines indicate the center of the two clusters.
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Figure 5.2.: This scatterplot shows the distribution of the metric values of the Eclipse JDT (marked as “x”) and the
Eclipse Platform (marked as “+”) at the milestones. The color indicates the cluster of which a milestone
is part, the dots mark the center of the two clusters.
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Figure 5.3.: This figure shows a Voronoi diagram of the resulting clusters. The white area marks all pairs of metric
values that would be considered as before the feature freeze; The gray area marks all pairs of metric
values that would be considered as after the feature freeze. The black dots mark the centers of the
clusters.
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As the successful detection of the feature freeze shows, it is possible to detect crucial events
during the progress of a project by applying the k-means clustering algorithm to metrics. This
allows to determine in retrospective whether a feature freeze failed or was successful. The
experience gained from this insight can be used to improve the development process for fu-
ture software projects. If a feature freeze failed, the mistakes that lead to this failure in the
project management can be detected and eliminated, improving the chance of success of other
projects.

To apply this approach, metric data measured during the development of a project is needed.
To gather this metric data in retrospective is a lot more work than to gather it as part of the
quality management of the project. If the metric data is available, it is simple to apply the k-
means algorithm to it. Maybe some work needs to be done to normalize the data, but that is
a simple task compared to the measurement itself. To gather metric data during a project to
observe it and use the data to improve the development process is nothing new. For a company
to obtain CMMI [16] level 4, the usage of a consistent set of metrics to observe the projects is a
requirement. To obtain level 5, this data has to be constantly used to improve the quality of the
development process. Thus, a quantitively managed development process already gathers the
required metric data. The k-means algorithm can be used as a simple, but effective approach
to assess one attribute of the development process.

There are some problems with this approach. The currently largest problem is the lack of
data. The experiments were performed only for two projects from a similar environment. This
lack of data presents a problem for the plausibility of the results. This can easily be resolved
by collecting more data. The only problem is that it is very time-consuming to do. However, as
more data is collected over time, this problem will resolve itself. The other big problem is that
the k-means algorithm always divides the data into k clusters. Thus, in the approach discussed
in the previous chapter, the measured versions will always be divided into two clusters. This
does not depend on whether there actually was a feature freeze or not. This leads to a very
problematic question: Is there a meaning in the separation of the data at a certain point or is it
random?

This question cannot be answered in a simple way. The separation of the data as it is done
by the k-means algorithm is always an indicator that at the point of separation something took
place. If this coincides with a crucial point during the project, it is an indicator that this crucial
event actually had an effect and was not only supposed to take place according to the project
plan. Thus, the significance of the result also depends on the person who interprets it. To

53



6. Conclusion and Outlook

improve the quality of this indicator, the k-means algorithm can be applied repeatedly with
random start centers. If it outputs the same result regardless of the start centers and the
separation is stable, it improves the indicator’s quality. If the result is not stable, there is no clear
separation in the data, but it depends on the random factor of the start centers. Thus, there was
no clear change in the metric values, which is an indicator that no feature freeze took place.

The next problem that has to be addressed is that it is not clear what the algorithm detects. It
depends on the data and the user interpretation. The metrics have to be chosen in a way that
they can reflect the feature the user is looking for. For the case study performed in this work
the metrics LOC and BUG were selected because they reflect two features that are significant
of a feature freeze. Even so, the results can be misleading. For example, if a huge component
is integrated in the software, the lines of code will be significantly higher after the point of
integration. The same would be the case with the number of bugs, if the components were
buggy. As the k-means algorithm uses distances, it is probable it will separate the versions at
the point of integration. The same could be the case if a component was replaced or completely
removed. In this scenario the algorithm would detect a crucial point in the project. However,
there is no need at all to confirm that it took place. The integration of a component is hardly
something that can be missed, so it does not need to be confirmed. The person who interprets
the result of the k-means algorithm has to be aware of such developments during the project
and needs to consider them when interpreting the result.

Because of these circumstances it is not possible to simply write a guide how the result can be
interpreted and what it means. The reason is the uniqueness of every software project. Thus,
the interpretation is also unique to the project. The general result is what is important. Using
only metric data measured at different points of time during a project, it is possible to detect
features of the project with learning algorithms. It is even possible in an unsupervised setting.
So even if this approach has certain problems, the result is an indicator that more research
in this area will lead to good results. In the following, an outlook on some possible learning
scenarios is given.

The obvious thing to do is to use other clustering algorithms. There are several scenarios in
which other clustering algorithms can be used. The first is to test whether the result is stable or
not. Applying different clustering algorithms that detect two clusters can replace the repeated
execution of the k-means algorithm to test whether the result is stable or not. If all algorithms
compute the same result, it is stable not only for the k-means algorithm but for a whole class of
algorithms. This would improve the quality of the result greatly.

It would be interesting to vary the number of clusters, too. For example a third cluster could be
used for a transition phase. In this case, the first cluster would contain the phase where many
new features are developed, the second cluster for the phase when the features are stable and
the project is stabilized and one cluster for the transition between these two phases, where
most features are already stable and only some still under development. This third cluster is an
acknowledgement that most projects have problems with keeping their deadlines and thus the
feature freeze is often not realized for all features at the same point in time.
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Figure 6.1.: These figures show how the nearest neighbour algorithm can be used to predict the project progress
using metric values. As input the normalized values of the metrics LOC and BUG are used. The color
indicates the progress of the project: blue is the start of the project, red is the end of the project. The
black dots indicate the position of the known values, that means the values measured from the Eclipse
JDT and the Eclipse Platform Project. On the left: the simple nearest neighbour algorithm; On the
right: the distance weighted k-nearest neighbour algorithm with k = 3.

The two other applications of cluster algorithms above still suffer from the issue that they use
a fixed number of clusters. Thus, the problem that the algorithms will always detect something
remains. A solution to this problem is the third variation of applying cluster algorithms: using an
algorithm that detects the number of clusters itself, like the EM algorithm. Such an algorithm
does not have the problem that it has to find clusters.

The above approach can only be used in retrospective. To check a project that is still under
development, it cannot be applied. A different direction of research would be to use supervised
learning algorithms to calculate such a predictive model. This way it may be possible to calcu-
late a hypothesis that can be used to discriminate versions using the metric data directly into
versions that occurred before a feature freeze and versions that occurred after a feature freeze.
Possible approaches would be the calculation of a hyperplane. The two half spaces defined by
the hyperplane would be the time before, respectively after the feature freeze. Another possi-
bility would be to use a Support Vector Machine (SVM). If the time before and after a feature
freeze is interpreted as a state that the project is in, Conditional Random Fields (CRF) [13] can
be used to predict the state of a project.

Another supervised approach would be to use a function learning algorithm. This way a model
on how a project should progress in the process model could be extracted from measured values
of old projects. This model can then be used to predict the progress of a project. Figure 6 shows
how the nearest neighbour algorithm can be used to calculate a model how projects that are
developed using the same process as the two measured Eclipse projects should progress.
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Actually, in practical approaches to determine the status of a project, managers use the nearest
neighbour algorithm intuitively. To assess the status of a project they use their experience from
other projects that were in a similar stage. This is exactly what the nearest neighbour algorithm
does.

These are only a few possible approaches that could be applied to this kind of data. With more
data, more approaches become possible, for example if data about test coverage or test results
is also available. This shows how much potential is in this kind of research. The most important
message of this work is, that even the simple approach of using only two software metrics and
the relatively simple k-means algorithm are able to detect a feature of something as complex
as a project is. The future will show what other approaches are capable of.
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ARFF Attribute-Relation File Format

BUG Number of Bugs

CRF Conditional Random Fields

CSV Comma Separated Values

DOM Document Object Model

EBNF Extended Backur-Naur Form

LOC Lines of Code

RAM Random Access Memory

SAX Simple API for XML

SVM Support Vector Machine

XML Extensible Markup Language
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