
Mining Developer Dynamics for Agent-Based
Simulation of Software Evolution

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”
der Georg-August-Universität Göttingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Verena Herbold
aus Hildesheim

Göttingen, 2019

Betreuungsausschuss

Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Stephan Waack,
Institut für Informatik, Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr. Stephan Waack,
Institut für Informatik, Georg-August-Universität Göttingen

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Dieter Hogrefe,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Caroline Sporleder,
Institut für Digital Humanities, Georg-August-Universität Göttingen

Prof. Dr.-Ing. Marcus Baum,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Carsten Damm,
Institut für Informatik, Georg-August-Universität Göttingen

Tag der mündlichen Prüfung
27.06.2019

Abstract

The steady growth of software in our daily life results in the need for quicker adaption of the
software changing usage and requirements. This process is defined as software evolution.
Primarily, it is concerned with changes that are responsible for the evolution. The most
important contribution to this process results from developers, e.g., by adding code to the
repository. This process is highly dynamic as the team constellation as well as the activity
of individual developers is always changing. This is especially the case for open-source
software (OSS) projects which are analyzed in this thesis because of the free availability.

We create and evaluate several models describing software evolution. The main focus of
the approach described in this thesis is in the source of the changes, i.e., the developers.
Using Agent-based simulation, project managers have the ability to try different scenarios
and estimate possible software evolution trends. For example, it is possible to choose a
team constellation and evaluate if the chosen team will be able to fix enough bugs using
the simulation output. If not, more developers can be added to the simulation. In this case,
the developers are agents who create, update, and delete software artifacts and possibly
add or fix bugs at the same time. Huge parts of this thesis are dedicated to find suitable
simulation parameters and estimate them by mining software repositories to gain a realistic
simulation. Questions like the size of the software project, the activity of developers, the
number of bugs, and the structure of the software under simulation can be answered. We
apply methods from data mining, machine learning and statistics for our work.

For the simulation, the behavior of developers is estimated using heuristics gained from
analyzing the history of different software projects. The resulting simulation model re-
flects different developer roles with varying workload. Although, the representation of OSS
dynamics was limited. For a fine-grained developer contribution behavior, a state-based
probabilistic model (Hidden Markov Model) was trained based on different levels of code-
based and communication-based activities. This allows the developers to switch between
different of activity. The same procedure is used to summarize the whole project activity
with the aim to evaluate whether a project is still active. Therefore, we are interested in
finding out how much activity is still performed in inactive projects, since a strict separation
is difficult to find, but important for potential users of the project.

The results of three case studies show that Agent-based simulation is a promising ap-
proach for the prediction of software evolution and that many relations can be described
this way. In particular, it turned out that a dynamic developer and project behavior is in-
dispensable for the description of OSS evolution, because otherwise the representation of
software processes is too static.

Zusammenfassung

Durch die wachsende Zunahme von Software in unserem alltäglichen Leben, nimmt auch
die Anpassung der Software an die Nutzung und somit verbundenen ständig wechselnden
Anforderungen zu. Dieser Prozess wird als Softwareevolution bezeichnet. In erster Linie
geht es um Änderungen an der Software, die für die Evolution verantwortlich sind. Eine
wichtige Rolle dabei spielen die Entwickler, da diese die Änderungen vornehmen, indem
sie z.B. Code zum Repository hinzufügen. Dem Prozess liegen viele Dynamiken zugrunde,
da sich sowohl das Entwicklerteam als auch die Aktivität der einzelnen Entwickler stets
ändert. Dies ist vor allem in Open-Source Softwareprojekten der Fall, die hier aufgrund der
Verfügbarkeit der Daten analysiert werden.

Mehrere Modelle zur Beschreibung von Softwareevolution werden erarbeitet und aus-
gewertet. Der in der Doktorarbeit verfolgte Ansatz beginnt dort, wo die Änderungen ent-
stehen: bei den Entwicklern. Ein Agenten-basiertes Simulationsmodell ermöglicht es dem
Softwareprojektmanager verschiedene Szenarien auszuprobieren und so mögliche Verläufe
abzuschätzen. Zum Beispiel kann eine Teamzusammenstellung gewählt werden, um simu-
lativ zu ermitteln, ob diese in der Lage sein wird, genügend Fehler zu beheben. Falls nicht,
könnten weitere Entwickler zur Planung hinzugefügt werden. Agenten sind in diesem Fall
die Entwickler, die die Softwareartefakte erstellen, ändern, löschen und dabei ggf. Fehler
hinzufügen oder korrigieren. Ein großer Teil der Arbeit beschäftigt sich damit, geeignete Si-
mulationsparameter zu finden und durch Mining von Softwarerepositorien zu schätzen, um
eine möglichst realitätsnahe Simulation zu ermöglichen. Fragestellungen nach der Größe
des Projekts, der Aktivität von Entwicklern, der Fehleranzahl und der Struktur der Soft-
ware können dabei beantwortet werden. Hierzu werden Methoden aus den Bereichen Data
Mining, Machine Learning und Statistik verwendet.

Für das Simulationsmodell wurde das Verhalten der Entwickler durch Heuristiken aus
den Historien verschiedener Softwareprojekte gemittelt. Dieses Modell stellt bereits ver-
schiedene Entwicklertypen mit unterschiedlicher Arbeitsintensität zur Verfügung. Aller-
dings konnte nur limitiert eine Dynamik widergespiegelt werden. Für ein verfeinertes Ent-
wicklerverhalten wurde ein statistisches Modell (Hidden Markov Modell) basierend auf
mehreren Ebenen Code-basierter und kommunikativer Aktivität trainiert, welches den Ent-
wicklern erlaubt zwischen verschiedenen Aktivitätsleveln zu wechseln. Das gleiche Vorge-
hen wird genutzt, um Projektaktivität zusammenzufassen und zu bewerten, ob das Projekt
noch aktiv ist. Das Hauptinteresse hierbei ist es herauszufinden wieviel Aktivität ein inakti-
ves Projekt noch haben kann, denn eine klare Trennung ist schwierig, aber unabdingbar für
potentielle Nutzer des Projekts.

vi

Die Resultate von drei Fallstudien haben gezeigt, dass Agenten-basierte Simulation ein
vielversprechender Ansatz zur Vorhersage von Softwareevolution ist und dass viele Zu-
sammenhänge damit dargestellt werden können. Insbesondere hat sich gezeigt, dass ein
dynamisches Entwickler- und Projektverhalten unabdingbar für die Beschreibung von Soft-
wareevolution sind, da sonst Projektverläufe zu statisch abgebildet werden.

Acknowledgements

During the work on this thesis, several people supported me in many ways. First, I would
like to thank my supervisor Prof. Dr. Jens Grabowski who was always available for fruitful
discussions and provided helpful suggestions. He and his research group created a pleasant
and constructive working environment which helped me to find my own way in research.

I would also like to thank my second supervisor Prof. Dr. Stephan Waack for his contin-
uous support during my studies. Discussions with him often made me look at things from a
different angle.

Additionally, I would like to thank all my current and former colleagues who were always
willing to discuss with me and give me valuable and honest feedback. Especially, I thank Dr.
Patrick Harms, Dr. Fabian Trautsch, and Alexander Trautsch for proof reading this thesis.
In addition I thank Gunnar Krull for his technical support. Also, I would like to thank my
collaborators from the SWZ project. By working on the project, I had the opportunity to set
my work into context and to learn much about project work, e.g., managing responsibilities.

I am in the fortunate position to have two special colleagues I would like to thank. The
first is my brother Daniel, with whom I share two important interests in my life, computer
science and rock music. Without him, I would certainly be a different person today.

The second special colleague is my best friend and husband Steffen. He helped me to
grow on a professional as well as on a personal level. In addition, he was always there to
help me organize my thoughts. He motivated me all along and accepted all my moods for
which I am very thankful.

Finally, I want to thank my son Jona. He taught me that not anything has to happen
exactly the way that I expected and, even more surprisingly for me, that this is not fatal. He
and my husband give me a lot of strength and I do not want to miss them in my life.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Scope . 3
1.3. Goals and Contributions . 4
1.4. Impact . 4
1.5. Structure of the Thesis . 7

2. Foundations 9
2.1. Software Evolution . 9
2.2. Mining Software Repositories . 10

2.2.1. Software Metrics . 12
2.2.2. Data Sources . 13
2.2.3. Data Preparation . 16
2.2.4. Data Mining . 17
2.2.5. Software Analytics and Statistical Learning 20

2.3. Agent-Based Simulation . 21
2.3.1. What is an Agent? . 22
2.3.2. Applications and Tools . 23
2.3.3. Simulation of Software Processes 24

2.4. Developer Contribution Behavior . 25
2.5. Hidden Markov Models . 26

2.5.1. Notations . 26
2.5.2. Baum-Welch algorithm . 27
2.5.3. Viterbi algorithm . 27

2.6. AB/BA crossover . 27

3. Related Work 31
3.1. Mining of Software Evolution Trends . 31
3.2. Developer Contribution Behavior . 33
3.3. Software Process Simulation . 35
3.4. OSS Project Activity . 37

4. Simulation Models 39
4.1. General Modeling Process . 39

Contents x

4.2. STEPS Simulation Model . 40
4.2.1. Topology Design: Networks . 44
4.2.2. Behavior Design: Strategies . 45

4.3. DEVCON Simulation Model . 47
4.4. Software Quality Assessment . 48
4.5. Challenges and Limitations . 49

5. Instantiation of Simulation Models 51
5.1. Parameter Estimation . 51
5.2. Data Collection and Preparation . 52
5.3. Instantiation of the STEPS Simulation Model 53

5.3.1. Developer Types . 53
5.3.2. Software Networks . 55

5.4. Instantiation of the DEVCON Simulation Model 56
5.4.1. Mining of Developer Contribution Behavior 56
5.4.2. Classification . 58
5.4.3. HMMs for Developer Contribution Behavior 60
5.4.4. Simulation of Software Processes with a Contribution Phases Model 62

6. Case Studies 63
6.1. Overall Design and Objectives . 63
6.2. Case Study 1: Feasibility of Simulation of Software Evolution 64

6.2.1. Setup . 64
6.2.2. Evaluation Criteria . 65
6.2.3. Results . 66
6.2.4. Discussion . 72

6.3. Case Study 2: Dynamic Developer Contribution Model 73
6.3.1. Setup . 73
6.3.2. Evaluation Criteria . 74
6.3.3. Results . 75
6.3.4. Discussion . 86

6.4. Case Study 3: Dynamic Project Activity Model 87
6.4.1. Setup . 87
6.4.2. Evaluation Criteria . 92
6.4.3. Results . 92
6.4.4. Discussion . 102

7. Discussion 105
7.1. Answers to Research Questions . 105

7.1.1. RQ 1: Can we model software evolution using Agent-Based
simulation? . 105

xi

7.1.2. RQ 2: How can we model developer contribution behavior? 106
7.2. Strengths and Limitations . 109
7.3. Threats to Validity . 110

7.3.1. Internal Validity . 110
7.3.2. External Validity . 110

8. Conclusion 113
8.1. Summary . 113
8.2. Outlook . 115

Bibliography 115

A. Correlations of Transition Matrices of Individual Developer Behavior 133

B. Hidden Markov Models for Universal Developer Contribution Behavior 139

C. Correlations of Transition Matrices of Project Activity 149

D. Hidden Markov Models for Project Activity 151

E. Questionnaire for AB/BA Crossover Study 155

F. R Output for the Calculation of Effect Sizes 165

List of Acronyms

ABMS Agent-based Modeling and Simulation

ABS Agent-based Simulation

AP Activity Plot

AST Abstract Syntax Tree

BDI Belief Desire Intent

CMMI Capability Maturity Model Integration

CRF Conditional Random Field

DES Discrete Event Simulation

DEVCON Developer Contribution

GIS Geographic Information System

GQM Goal Question Metric

HMM Hidden Markov Model

ITS Issue Tracking System

KNN K-Nearest Neighbor

LOC Lines of Code

ML Mailing List

MSR Mining Software Repositories

OSS Open Source Software

PAC Probably Approximately Correct

PDE Partial Differential Equations

PSP Personal Software Process

Acronyms xiv

RCS Revision Control System

SCSS Source Code Control System

SD System Dynamics

SG Sequence Group

SNA Social Network Analysis

SP States Plot

STEPS Software Trend Evolution Prediction in Simulation

UML Unified Modeling Language

UMM Unified Markov Models

VCS Version Control System

1. Introduction

Nowadays, software is everywhere, and it continuously adapts to meet corresponding usage
scenarios. During the software development process, project managers and developers have
to cope with changing requirements and environments. Software evolution deals with the
adaption of the software system to exactly these changes. As such, it has become a strong
research field belonging to the area of software engineering over the last decades. It is
concerned with understanding the past of software projects, e.g., by analyzing logs, and
tries to monitor the present in order to avoid future issues. In addition, gained knowledge
can also be applied to predict the future.

A central point in the investigation of software evolution are software changes. They give
information about who did what to a system and make the software evolve. The amount,
impact, and intent of changes can vary a lot during the software lifecycle. Especially, with
the rise of open source software projects this process can not be put into a straight scheme. A
lot of dynamics, not only caused by a shifting developer base, have to be taken into account.
The software development process strongly depends on the participating developers as well
as on their behavior, i.e., personal work style, motivation, experience, and background. The
involvement of different kinds of developers in a software project has a significant impact on
the outcome, e.g., in the amount of lines of code written or in terms of quality, e.g., technical
debt introduced [1]. In this thesis, an approach is presented that takes human factors, i.e.,
the behavior of developers, into account and utilizes this for building predictive models for
software evolution. The work establishes different software evolution models that can be
used for Agent-based simulation to forecast the future of software projects. Thereby, we
intent to support project managers in making decisions and monitoring software quality.

1.1. Motivation

Software project managers have to deal with limited resources for software quality assur-
ance. Therefore, methods and tools that aid them in their planning and decision making are
beneficial. Keeping track on the diverse factors that affect software quality can be a stren-
uous task. Such factors include structural changes in the software, pressure of time, design
decisions, the constellation of the software team, the introduction of bugs, the distribution
of tasks, or an increase of the complexity of the software. To support software project man-
agers in their decisions, a bunch of methods and tools exist, e.g., to estimate the risk of the
project [2] or to predict maintenance and failure-prone releases [3]. Often, these tools are

Introduction 2

Figure 1.1.: Feedback loop for project managers [4].

tailored towards a specific problem. A broad picture of the whole software development
process is hard to capture, because there are many factors involved that may promote or
even contradict each other.

The overarching goal of our work is to establish the feedback loop for project managers
illustrated in Figure 1.1. With the help of a simulation tool (large box), the project manager
can forecast different evolutionary scenarios. These scenarios depend on a set of parame-
ters (gray box) that reflect the current state of the project, e.g., the number of developers
involved, the expected timespan, or the effort spent on fixing bugs. Based on that, running
the simulation produces an interpretable simulation output that can help the project man-
ager in making decisions. For example, if the predicted bug distribution is to high the bug
fixing effort should be increased. Our tool is targeted on offering scenario-based predictions
where the user can select the metrics she is interested in, such that both small scenarios as
well as general trends of the whole project can be forecasted.

To establish such a simulation tool, it is fundamental to understand the underlying soft-
ware evolution processes as well as their interplay. Generally, software evolution patterns
can be derived by mining data about existing software development processes [5, 6, 7]. Us-
ing data mining as well as machine learning and statistical learning, the observations can be
described suitable for a simulation model that is tailored towards a specific research ques-
tion. The considered question determines model entities and attributes, e.g., for a model
that is aimed to describe collaboration software developers and some information on past
co-working developers has to part of it.

Research has shown that developers play a centric role in software evolution [8, 9]. The
whole development process strongly depends on the individuals, their background, person-
ality, training, and accomplishment of tasks, and, as such, on human behavior. Hence, an
elaborate description of the behavior of developers is fundamental. For this purpose, we

3 1.2. Scope

model developers from an Agent-based perspective, where individual agents are the drivers
of the simulation.

The novelty in this approach lies in the combination from different disciplines that closely
work together. Our work enfolds methods from data mining, machine learning, statistical
learning, and Agent-based modeling and simulation.

1.2. Scope

In this thesis, we propose to use Agent-based Modeling and Simulation (ABMS) for de-
scribing software evolution scenarios which can be used as a decision help for project man-
agers. We lay a special focus on the behavior of developers since this is a central part and
driver in software evolution. The main underlying assumptions behind this are that we can
model and simulate software evolution using agents and that project managers can benefit
from that. We assume, that it is possible to find common patterns in software evolution
which are valid for groups of projects or project entities. To evaluate this, we investigate the
following superordinate research question regarding the application of Agent-based simu-
lation for modeling software evolution:

• RQ 1: Can we model software evolution using Agent-Based simulation?

To answer this RQ in a whole, we split the problem into several subquestions, which we
answer in this thesis:

• RQ 1.1: What are important parameters for simulating software evolution?
• RQ 1.2: How can these parameters be estimated?
• RQ 1.3: Which software evolution phenomena and trend can be simulated?

Since we decide to model software evolution from a developers’ perspective, we espe-
cially focus on the way developers behave and contribute in a software project. For this, the
overall research question is the following:

• RQ 2: How can we model developer contribution behavior?

The investigation of this topics is split into several subquestions:

• RQ 2.1: Is a state based probabilistic model appropriate for modeling developers’
contribution behavior?
• RQ 2.2: Are the retrieved models similar for the same kinds of developers?
• RQ 2.3: Can we apply general contribution models in software engineering practice?
• RQ 2.4: How does the level of detail of a developers’ contribution behavior model

influence simulation results?
• RQ 2.5: Can a state based probabilistic models also be used for modeling project

activity?

Introduction 4

1.3. Goals and Contributions

The work conducted to answer the RQs stated above yields the following contributions:

• The identification and estimation of simulation parameters suitable for simulating
software development processes by mining software repositories.
• The identification and description of different software evolution patterns.
• An Agent-based simulation model which is designed to answer different questions

concerning software evolution. The model provides a feedback loop for project man-
agers as a help for decisions.
• A Hidden Markov Model for the description of developers’ contribution behavior

combining code-based activity with communication. The model can be used both for
building individual developer contribution models and for applying a general model
for prediction.
• A Hidden Markov Model for the summarization of software project activity. The

approach can be used to judge the level of activity as well to detect critical trends.
• Three case studies for the evaluation of the described approaches including a software

evolution simulation model, (the simulation of) developer contribution behavior, and
a characterization of project activity.

1.4. Impact

During the work and the above topics, the following papers have been published in peer
reviewed conference proceedings:

• Verena Honsel 1, Steffen Herbold, Jens Grabowski, “Learning from Software Project
Histories: Predictive Studies Based on Mining Software Repositories“, in Machine
Learning and Knowledge Discovery in Databases: European Conference (ECML
PKDD 2016), Proceedings, Part III, 2016
Own contributions
I came up with the idea to present and summarize all predictive studies employing
Machine Learning techniques for software engineering worked out in the research
group. For this, I summarized own work in the dedicated chapters.
• Verena Honsel1, Steffen Herbold, Jens Grabowski, “Hidden Markov Models for the

Prediction of Developer Involvement Dynamics and Workload“, in Proceedings of
the The 12th International Conference on Predictive Models and Data Analytics in
Software Engineering (PROMISE 2016), 2016
Own contributions
I am the lead author of this publication. I performed most of the work including the

1maiden name

5 1.4. Impact

design of the approach as well as the implementation, analysis, and evaluation of the
conducted case studies. The classification with Machine Learning Models was joined
work with Dr. S. Herbold.
• Verena Honsel1, Daniel Honsel, Steffen Herbold, Jens Grabowski, Stephan Waack,

“Mining Software Dependency Networks for Agent-Based Simulation of Software
Evolution“, in Proceedings of the 30th IEEE/ACM International Conference on Au-
tomated Software Engineering Workshop (ASEW), The 4th International Workshop
on Software Mining, 2015
Own contributions
I am the lead author of the paper. I contributed significantly to the design of the
approach, the mining process and the evaluation of the approach. The required simu-
lation framework was provided by D. Honsel.
• Verena Honsel1, Daniel Honsel, Jens Grabowski, Stephan Waack, “Developer Ori-

ented and Quality Assurance Based Simulation of Software Processes“, in Proceed-
ings of the Seminar Series on Advanced Techniques & Tools for Software Evolution
(SATToSE 2015), 2015
Own contributions
This paper presents a summary of the papers [10], [4], and [11]. As such, it is joined
work of all involved authors. Own contributions include the conceptual work as well
as the summary of the proposed papers.
• Verena Honsel1, “Statistical Learning and Software Mining for Agent Based Simu-

lation of Software Evolution“, in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, Doctoral Symposium at the 37th International
Conference on Software Engineering (ICSE 2015), Florence, Italy, 2015
Own contributions
This publication is a doctoral symposium paper where the idea and first results of the
doctoral project were presented. I am the single author of this paper and established
all of the work on my own.
• Verena Honsel1, Daniel Honsel, Jens Grabowski, “Software Process Simulation based

on Mining Software Repositories“, in Proceedings of the IEEE International Confer-
ence on Data Mining Workshop (ICDM 2014), short paper, 2014
Own contributions
As the lead author of this paper, I contributed to the design and evaluation of the
approach. I was responsible for the mining process and analysis of mined data. The
implementation of the simulation model was done by D. Honsel. Furthermore, the
comparison of simulation and empirical data was joined work with D. Honsel.

Furthermore, some papers were published to which the author of this thesis contributed:

• Marlon Welter, Daniel Honsel, Verena Herbold, Andre Staedler, Jens Grabowski,
Stephan Waack, “Assessing Simulated Software Graphs using Conditional Random

Introduction 6

Fields“, in Post-Proceedings of the Clausthal-Göttingen International Workshop on
Simulation Science 2017, Springer, 2018
Own contributions
Own contributions for this paper include the conceptual work for the preparation of
required software graphs. These graphs were embedded into the simulation tool by D.
Honsel and than assessed by a tool developed by M. Welter. M. Welter also analyzed
the impact of the tool.
• Daniel Honsel, Niklas Fiekas, Verena Herbold, Marlon Welter, Tobias Ahlbrecht,

Stephan Waack, Jürgen Dix, Jens Grabowski, “Simulating Software Refactorings
based on Graph Transformations“, in Post-Proceedings of the Clausthal-Göttingen
International Workshop on Simulation Science 2017, Springer, 2018
Own contributions
This paper presents a way to reflect refactoring in a simulation of software evolutions
based on graph transformations. The design of the approach as well as the implemen-
tation of the simulation is done by D. Honsel. I contributed to the initial simulation
model, which is adapted by the lead author for software refactorings.
• Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas, Jens Grabowski, Verena Herbold,

Daniel Honsel, Stephan Waack, Marlon Welter, “Agent-based simulation for soft-
ware development processes“, on Proceedings of the 14th European Conference on
Multi-Agent Systems (EUMAS 2016), Springer, 2016
Own contributions
I was involved in the design of the proposed approach as well as in the parameter
ming for the simulation model. The distributed simulation framework is provided by
T. Ahlbrecht and N. Fiekas. The modeling and implementation of the non distributed
version was achieved by D. Honsel.
• Daniel Honsel, Verena Honsel1, Marlon Welter, Jens Grabowski, Stephan Waack,

“Monitoring Software Quality by Means of Simulation Methods“, in Proceedings
of the 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2016), short paper, 2016
Own contributions
For this paper, I contributed to the conceptual work of the presented approach as
well as to the case study design and evaluation. Needed simulation parameters were
mined from real software projects by me. The behavior and strategies of agents were
designed and implemented by D. Honsel. The automated assessment of software
graphs was done by M. Welter.

In addition, the following book chapters have been published containing parts of the work
established in this thesis:

• Philip Makedonski, Verena Herbold, Steffen Herbold, Daniel Honsel, Jens
Grabowski, Stephan Waack, “Mining Big Data for Analyzing and Simulating Col-

7 1.5. Structure of the Thesis

laboration Factors Influencing Software Development Decisions“, in Social Network
Analysis: Interdisciplinary Approaches and Case Studies, CRC Press, 2016
Own contributions
Own contributions of this book chapter contain the mining of software projects to
build developer social networks as well as the analysis of these. This work estab-
lish an example application for the fine-grained developer behavior and collaboration
model presented in this book chapter by Dr. P. Makedonski. A simulation of achieved
networks was provided by D. Honsel. Besides, the incorporation of collaborative fac-
tors into a software defect prediction model was conducted by Dr. S. Herbold.
• Steffen Herbold, Fabian Trautsch, Patrick Harms, Verena Herbold, Jens Grabowski,

“Experiences With Replicable Experiments and Replication Kits for Software Engi-
neering Research“, 2019
Own contributions
I made a replication kit available for her work [12] which is taken as an example in the
mentioned book chapter. The experience report is completely designed and written
by the other authors.

1.5. Structure of the Thesis

This thesis is structured as follows. First, we pin the foundations of our work in Chapter 2.
This chapter provides the background needed for understanding the work as a whole and
is divided into several sections: Section 2.1 explains what software evolution is and how
our approach fits to it. Then, we introduce mining software repositories (Section 2.2) which
enables the investigation of evolutionary patterns as well as the estimation of simulation
parameters. The basics about Agent-based simulation are presented in Section 2.3. Since
one main question of this thesis is how to model developer behavior, we describe the cor-
responding existing definitions and approaches in Section 2.4. Then, we give an overview
on Hidden Markov Models which represent an important instrument for our approach (Sec-
tion 2.5). To complete the foundations, we present AB/BA crossover studies which are used
for evaluation in this thesis (Section 2.6).

In Chapter 3, we list related work and show similarities as well as divergences in the
course of the research. In doing so, we subdivide the related work according to different
topics: In Section 3.1, similar work in the context of mining for software evolution is pre-
sented followed by research established in the area of describing the (contribution) behavior
of developers in Section 3.2. Then, we report related studies performed for software pro-
cess simulations in Section 3.3. We conclude this chapter by presenting related work in the
context of open source project activity in Section3.4.

Our approach is two-folded and, thus, presented in tow different chapters. The first part of
the approach deals with the definition of suitable simulation models for software evolution
and is described in Chapter 4. In there, first the general process of the creation of simulation

Introduction 8

models tailored towards specific questions is illustrated (Section 4.1). We continue with
the STEPS simulation model (Section 4.2) where all developers spend the same effort aside
from their type and explain all entities needed for it as well as questions that can be answered
using the model. Then, we define the DEVCON simulation model in Section 4.3 having
the ability of developers to model dynamic developer behavior, e.g., to have phases of low,
medium, or high activity. Afterwards, it is explained how software quality is assessed within
the proposed model (Section 4.4) followed by strengths and limitations of the simulation
models (Section 4.5).

The second pillar of the approach implies the instantiation of the defined models. This
requires to determine all information needed for feeding the model. The process of instantia-
tion is described in Chapter 5. Section 5.1 explains how needed parameters can be estimated
and sets requirements for the subsequent sections. Then, the data collection and preparation
process is illustrated (Section 5.2). The actual instantiation method for the STEPS model is
given in Section 5.3 whereas needed methods for the instantiation of the DEVCON model
are presented in Section 5.4.

Chapter 6 presents the conducted case studies. First, the overall design and objectives are
introduced (Section 6.1). Then, we present three different case studies: A study on general
simulation of software evolution (Section 6.2), a case study about dynamic developer con-
tribution behavior (Section 6.3), and a case study dedicated to open source project activity
(Section 6.4).

In Chapter 7, we answer our research questions from the introduction of this thesis (Sec-
tion 7.1). Moreover, we amplify strengths and limitations of the work (Section 7.2) and
state important threats to validity (Section 7.3).

Finally, we conclude our work in Chapter 8. In doing so, we summarize the main findings
of the thesis (Section 8.1) and give an outlook an potential future work (Section 8.2).

2. Foundations

This chapter presents the foundations of this thesis which range over the areas of software
evolution, mining software repositories, and agent-based simulation. We describe the basic
concepts and how these work together. Since this thesis has a special focus on describing
developer behavior, we finally give an overview on that topic.

2.1. Software Evolution

The term software evolution dates back to the 1970s where the first large software systems
were build. At that time, Manny Lehman formulated the first version of his prominent laws
of software evolution, where the aim was to understand the changes to the system. His
findings, based on an IBM operating system, were confirmed later with other projects (e.g.,
[13],[14]). For this, he introduced the term E-type systems for systems that solve real-world
problems with vague requirements and a continuing need of change.

The original waterfall life-cycle model of software processes proposed by Winston
Royce [15] included the stages requirements, design, implementation, verification, and
maintenance. In this model, maintenance presented the last stage after the delivery of
the system, where only bug fixes and smaller changes took place. This view of software
processes is outdated nowadays. Software engineers realized that this view in enclosed
steps is too simple. The whole requirements are very rarely all clear in the beginning of the
project. And also experiences, e.g., gained by the implementation, may give new insights
on the design. Thus, communication between the different stages had to be enabled.

In general, evolution describes “continuous change from a lower, simpler, or worse to a
higher, more complex, or better state“ [16]. This can be transfered to software thinking of
a program which fulfills the initial requirements in the first version, but then the need for
an additional feature emerges by the users. Thus, according to changing requirements, the
program has to be adapted, and hence evolves to a more complex state.

Several definitions of the term software evolution exist. Lehman et al. (e.g, [17]) de-
scribes it as the “the consequence of an intrinsic need for continuing maintenance and
further development of software embedded in real world domains“ . One big concern in
studying software evolution is the understanding of the what and why of occurring software
evolution phenomena, i.e., finding out causes and impact factors. Related to that, in other
work [18], Lehman et al. determine the investigation of software evolution as to include
“the complementary concerns relating to the achievement of evolution, i.e., the how, and

Foundations 10

the nature of the evolution phenomenon, i.e., what it is and why it occurs“ . Understanding
evolutionary software processes is an indispensable task for establishing good predictions
and analyses in software evolution research.

Driven by the significant work of Lehman, software evolution became a popular research
topic accepted as part of software engineering in the 1990s. Software evolution research is
aimed to observe the past, control the present, and predict the future. Several studies, e.g.,
examine the history of open source software (OSS) projects with the aim to observe patterns
or draw heuristics that can help understanding software changes. Most work is concerned
with understanding involved people (e.g., developers, testers, users), artifacts (e.g., classes,
files) and bugs in the software development process.

Software Maintenance

Often the terms software evolution and software maintenance get mixed up. According
to Royce, software maintenance begins after the delivery of the first version of the sys-
tem. That does not mean that the development process is independent from maintenance.
Software maintenance planning should take place early in the development process. De-
cisions concerning maintenance often benefit from an understanding of software evolution
processes. Thus, software maintenance can be viewed as a part of software evolution as the
whole process from initial phase to maintenance. There exist four types of software main-
tenance: perfective (enhancements, improvements), adaptive (environment and hardware
adaption), corrective (debugging), and preventive (prevention of future bugs and maintain-
ability risks).

2.2. Mining Software Repositories

Mining Software Repositories (MSR) became a broad and popular research topic over the
last years. It mainly deals with the analysis of different available data sources with informa-
tion on the software systems under investigation. Often, it deals with analyzing the past to
foreshadow the future. Because of nowadays large OSS communities, a wealth of data about
software development is freely available and ready to analyze. Not only in the analysis part
itself, but also in the facilitation of mining effort, e.g., linking data between multiple reposi-
tories, a lot of work was done, e.g., in [19] [20]. Repositories of interest include all systems
where information about the developers and their project work is stored. These are the
Version Control Systems (VCS), Issue Tracking Systems (ITS), Mailing Lists (ML), user
forums, IRC communication, and Twitter. Nowadays, the data is mature enough to weight
the main work of studies on the analysis and interpretation part for a lot of tasks [21]. In the
context of software evolution the analysis aims to gain a better understanding of software
changes, their causes, and their impact [5]. Popular topics in this context include among

11 2.2. Mining Software Repositories

VCS

ML

ITS Model of software system Tools

Data Retrieval and Modeling Data Analysis

Figure 2.1.: Mining Software Repositories (adopted from D’Ambros et al. [5]).

others the effort spent by developers, change impact and origin analysis, and the prediction
of bugs.

The general, underlying process is illustrated in Figure 2.1. The overall procedure is di-
vided into two main steps: data retrieval and modeling, and data analysis. First, we start
with a model of the software evolution task we want to investigate. For this, important as-
pects need to be identified and their interrelations have to be specified. A common problem
is the linkage between the different model entities, e.g., between classes and bugs. Also,
one has to be careful when determining the data needed for the analysis because otherwise
this could impede the analysis effort. The second step is to build a concrete instance of the
model based on the definition of the first step. Considering for example a model of project
growth, than a concrete instance can be a real software project. Thus, all aspects and data
defined in step one needs to be extracted and preprocessed. Data retrieval is concerned with
collecting the desired history from the different data sources like VCS, ITS, and ML. More-
over, parsing and data mining techniques take place in this step. As Figure 2.1 shows, the
second step is the data analysis. There, tools and methods to gain insights on the mining
task and answer the posed questions are applied. The choice of the tools depends on the
task, e.g., machine learning for prediction, visualization for exploring, and simulation for
forecasting.

Different mining approaches exist, tailored towards the purpose and context of the min-
ing task. These combinable approaches include MSR via VCS annotations, data mining,
heuristics, and differencing [22]. With the annotation available in the version tracking of
the system, basic questions like which files changed together can be answered. Besides,
the comments in the VCS or ITS can be of interest, e.g., for identifying relations to points

Foundations 12

of interests in the file history or hot spots. Data Mining techniques aim to reveal patterns
and make predictions about the data. Heuristics extend the mining via annotations. Here,
basic derivable knowledge is already within the analysis, e.g., semantic or syntactic map-
pings. Finally, differencing is a technique used to analyze code-based differences between
different versions of the software. For this purpose, often abstract syntax trees (ASTs) are
used which gives information about added software entities like classes and methods and
relations among them.

Since we want to simulate different possible outcomes of a software project, it is reason-
able to rely the simulation model on real data. Therefore, the utilization of MSR to retrieve
patterns and trends that describe software evolution phenomena and trends is beneficial.
These can then be transferred into the simulation model.

Following, we describe data mining techniques, the data preparation process, involved
data sources, and metrics often used in MSR research, that are also relevant for this thesis.

2.2.1. Software Metrics

Software metrics play an important role in software evolution research. According to the
IEEE, a software (quality) metric is defined as “a function whose inputs are software data
and whose output is a single numerical value that can be interpreted as the degree to which
software possesses a given attribute that affects its quality“. Hence, with metrics the current
state of software projects can be measured. There are three categories of metrics: (1) process
metrics measuring aimed at the effectiveness of the development process itself, e.g., defects
found, (2) project metrics that evaluate attributes concerning characteristics of the software
project, e.g., costs, and (3) product metrics describing the delivered software product, e.g.,
in terms of portability.

Depending on the repository, different metrics can be calculated for the specified purpose
and research question, respectively. Some metrics are easy to extract like the number of
files or classes. For others, the measurement is more complex, e.g., for relations among the
data such as files that are changed together or measures of the importance of developers or
artifacts, e.g., by network measures.

The choice of relevant metrics is not always an easy task. Various approaches for the
selection exist where the most famous one is the Goal Question Metric (GQM) approach
introduced by Basili et al [23]. There, based on defined goals, metrics concerning software
quality, the software process, or the software product are used to answer specific questions
which arise directly from the goals. The process of metrics selection should be thought over
carefully to get meaningful results. In software evolution research, metrics play an impor-
tant role, since they are able to describe and measure both, the current state of the system
and the development over the time. Used metrics in software evolution include information
about software entities such as size measures (e.g., lines of code), complexity, and object-
oriented measures, but also the number of developers who touched the entity as well as
the number of bugs attached to it. Bug-related metrics cover information about the status

13 2.2. Mining Software Repositories

of the bug (open, re-opened, closed), or the number of related comments. For measuring
characteristics of developers, common metrics are the number of commits, bug comments,
or mailing list posts as well as network measures such as the centrality in contribution net-
works.

2.2.2. Data Sources

The data under investigation in MSR research is stored in repositories, which are databases
storing all past edits and the whole history of changes to the software system. A commit
usually includes the author, the committer, the commit date, the files changed and a commit
message describing the kind of changes. The author is not automatically the committer of
a set of changes, e.g., if a patch written by the author is applied by a contributor (commit-
ter). The VCSs coordinate the work of different developers contributing to the same project.
They store the code and keep track of all changes to software pieces including documenta-
tion. Hence, they enable developers to browse all versions of the source code. VCSs allow
parallel development in form of branching, i.e., different parallel streams of code. The ad-
vantage of using branches is the possibility to change and test some parts of the software
and still having a stable version in the trunk. When merging brnaches back to the trunk, the
VCS supports developers to solve conflicts, i.e., if two developers performed changes on
the same line of a file.

The wealth of information available in nowadays VCSs was not there from the beginning
of version control. It started with Source Code Control System (SCCS) which only kept track
of single files [24] and which was introduced in 1972. Although not practicable for large
software projects, they already had the idea of using deltas for measuring changes, which
include all changes to the file, for the differences between two versions. The comparison
of these, functioning on comparing the distinct lines of the file, i.e., whether something
was added, removed, or modified, is integrated in nowadays VCSs. SCCS was followed
by RCS (Revision Control System) which facilitated file storage, retrieval, and merging.
Still, the system lacks in sharing the code base with developers working on geographically
distributed locations. Then, CVS (Concurrent Versioning System) came up which was the
first to make use of the client/server model. As such, it manages the software system on a
central server whereas involved developers have their working copy on their own client.

The client/server model is still common in currently used versioning systems. Generally,
VCSs can be categorized into centralized version control and distributed version control. In
the centralized case, all files are stored on a central server and each client can checkout the
files from there. Popular systems functioning this way are, e.g., Subversion (SVN), CVS,
and the Microsoft Team Foundation Server. There, every developer can commit the work
done to the central repository as well as checkout changes made by others. If a conflict
occurs, it has to be decided which version should be kept and which should be discarded.
Non-conflicting pieces of work can be merged straightforward. It is also possible to revert
your working copy to a previous version.

Foundations 14

In contrast, distributed version control systems possess more than one repository. This
circumvents the risk of data loss, e.g., when the central server is down. In this scenario,
every contributor is provided with a working copy as well as an own repository. You commit
and update to the local repository and for sharing, you pull the work of others to your
repository and push the status of your repository to the central repository. For conflict
management, merge tools exist, but you can also solve conflicts using the command line.

From a researchers point of view, the rise of decentralized systems has several advan-
tages as well as disadvantages that we exemplify in the following. The data offered by
the different forms of repositories varies a lot among them [25]. In decentralized reposito-
ries, more data is available since more information about the past is stored, e.g., branches.
Because of the presence of more than one repository in the decentralized case, many (unin-
tended) branches exist whereas in SVN and other centralized repositories branching is rare
and thought-out, e.g, for releases. Thus, it may lack information about the "real" behavior
of developers. On the other hand, with more information at hand, one has to be more care-
ful in analyzing and interpreting. Mining decentralized repositories has the advantage that
all metadata is local [25], i.e., the whole file history is available for investigation without
further effort. In any case, it is important to understand the structure of the repository, in
order to derive meaningful findings.

Another important data source for researchers active in software evolution is the issue
tracking system. There, information about all issues related to a software project are stored
and managed in a database. Issues are not necessarily bugs, they can also be a request for
improvement or addition of functionality. Users of the system can report issues including
the following information: issue id, assigned developer/maintainer, severity, priority, status,
date of creation, description, reporter, and the affected software component. When a new
issue is created in the ITS, usually its status is unconfirmed until it gets confirmed, and, thus
receives the status new. If a developer takes over the responsibility for the issue, it is as-
signed to the developer. When the maintenance work on the issue is done, it switches to the
status resolved which can be confirmed by quality assurance such that the issue is closed,
otherwise it may be reopened for further improvement. Possible severities express the sig-
nificance of the issue, e.g., minor, major, critical, or enhancement. In addition, the ITS
tracks all comments and discussions on issues. Examples for popular ITSs are Bugzilla 2,
JIRA 3, and Redmine 4.

A typical example of an issue is depicted in Figure 2.2. Here, in the heading the issue id
is stated ([LOG4J2-2064]) as well as a short description of the issue. Moreover, information
on, e.g., the status, component, assignment, and the importance is given followed by related
comments.

2http://www.bugzilla.org/
3https://www.atlassian.com/software/jira
4https://www.redmine.org/

15 2.2. Mining Software Repositories

[LOG4J2-2064] Publish new log4j-server on maven central repository Created: 04/Oct/17 Updated: 12/Apr/18

Status: Open

Project: Log4j 2

Component/s: Core

Affects Version/s: 2.9.1

Fix Version/s: None

Type: Bug Priority: Blocker

Reporter: Hüseyin Kartal Assignee: Ralph Goers

Resolution: Unresolved Votes: 2

Labels: None

Remaining Estimate: Not Specified

Time Spent: Not Specified

Original Estimate: Not Specified

Issue Links: Duplicate

is duplicated by LOG4J2-2189 Move of TcpSocketServer to log4j-tools Resolved

Flags: Important

Description

Server components moved from the log4j-core module to new module log4j-tools, but is not available in the central repository.

Comments

Comment by Hüseyin Kartal [12/Apr/18]

stop moving fix version. just make an initial release.

Comment by Ralph Goers [12/Apr/18]

Lol. The fix version gets moved automatically by Jira whenever a new Log4j release is performed. In reality the release number will not be related to

Log4j so I'm removing a fix number here.

Generated at Wed Aug 01 08:25:43 UTC 2018 using JIRA 7.6.3#76005-sha1:8a4e38d34af948780dbf52044e7aafb13a7cae58.

[#LOG4J2-2064] Publish new log4j-server on maven central repository https://issues.apache.org/jira/si/jira.issueviews:issue-html/LOG4J2-20...

1 von 1 01.08.2018, 10:25

Figure 2.2.: JIRA example from the project log4j.

Finally, the third big data source for the extraction of software mining data are mailing
lists. They involve the communication between developers, and sometimes also users. To-
gether with the VCS and ITS, MLs constitute an extensive set of information on the history
of a software project.

The linkage between the VCS and the ITS is often established using traceability
links [26]. This means that the commit messages in the VCS are searched to locate issue
ids of the ITS. This allows to determine commits representing specific developer activities,
e.g., bug fixes. Also, keywords are used to detect bug fixing commits. For this, the famous
approach of Sliwerski et al. [27] is commonly used among researchers. For linking source
code with the ITS as well as the ML, the identities of involved developers are matched for
which several algorithms exist [28].

One more thing to consider is that the mining of software artifacts also differs depending
on the type. Naturally, repositories include a mixture of both structured and unstructured
data. Structured data include call graphs, meta data, and logs whereas unstructured data
capture all artifacts utilizing natural language such as bug reports, source code, comments,
mailing list entries, and requirements documents.

Foundations 16

Apart from extracting data directly from the repository, some freely available research
datasets exist. They contain datasets that are mostly tailored towards a specific research
direction, e.g., defect prediction, effort estimation, and code analysis 5.

In the last years, software engineering research underwent a big gain in empirical studies
to support software development. Such approaches rely on the quality and the processing of
an often huge amount of repository data. To facilitate the mining, some frameworks arose
using cloud-based infrastructure which allows for better scaling and powerful computations.
An example is [29].

Still, the different platforms support different types of analytics. A framework which
is developed within the Institute of Computer Science at the University of Göttingen and
makes in-depth analysis of software projects possible, is SmartSHARK [30]. It is a frame-
work which is designed to facilitate the software mining process and it was developed in
parallel to the main work on this thesis.

The design of SmartSHARK tackles different problems concerning repository mining
with the overall aim to ensure replicable and validated studies. To achieve this, the data is
stored in a cloud available for all users. The analysis part is a two step process: Researchers
have to select the targeted project data, which is automatically loaded into a MongoDB.
Then, researchers write an analysis program in Java or Python that is being submitted via
an Apache Spark job. Apache Spark is a distributed computing framework.

SmartSHARK allows to combine different repositories from which data can be extracted:
VCS, ITS, and ML data are available for analysis. Though, the merging of different identi-
ties occurring for the same person across the repositories has to be done independently if it
is desired. The platform already collects a bunch of software metrics like size, complexity,
and coupling metrics on different layers, e.g., class-level or function-based, for a subset of
the projects available.

Within this work, SmartSHARK is used for one of our case studies.

2.2.3. Data Preparation

As stated above, mining different repositories requires a linkage between them as a first
step. But depending on the data and the purpose, more work beforehand may be necessary
in order to prepare the data for the actual mining process.

Hemmati et al. [21] pointed out that MSR data can be very noisy due to different reasons.
For example, co-changed files may not be semantically related or it may be hard to identify
the actual set of changes belonging to a commit. Thus, all underlying assumptions have to
be proved and validated. Moreover, empty entries can occur, e.g, empty commit messages.
Depending on the research context, one has to decide how to handle this problem. Further-
more, the identification of merge commits as well as a closer look at very large commits
may be useful to reflect relevant aspects [31]. Other problems of noisy data may be dupli-

5http://openscience.us/repo/

17 2.2. Mining Software Repositories

cated entries or missing values. In some cases, it may also be helpful to look for outliers in
the data which may later influence the mining process.

2.2.4. Data Mining

Many techniques used for MSR origin from the field of data mining. Data mining can be de-
scribed as the “extraction of implicit, previously unknown, and potential useful information
from data“ [32]. Here, raw data constitute recorded facts, whereas information means all
underlying observations that can describe the data, e.g., by patterns. In contrast to the data,
the information is not visible at first sight. A lot of approaches exist to uncover valuable
information from data stored in databases. Data mining techniques can be of descriptive or
predictive nature. Descriptive techniques reveal facts that are already there, but the infor-
mation has to be filtered or put into a comprehensible format. In predictive data mining,
the goal is to use some information that is already there to forecast characteristics of other
information, e.g., prediction of future trends. Besides software engineering, data mining
has a wealth of applications, e.g., in marketing, health, and bio informatics.

The main goal of data mining is to find patterns that fit the data and as such make the data
understandable and interpretable. For finding nontrivial patterns in data, a lot of automated
processes exist. Generally, desired patterns have to reveal meaningful characteristics of the
data for a better understanding (descriptive) or are able to make powerful predictions about
a specific outcome (predictive) [33]. Patterns always capture the underlying structure of the
data. Such a pattern of software evolution can for example be a rule like: If file A and B are
changed, often file C is changed as well. In data mining research, a lot of techniques that
origin from the field of machine learning are used.

Generally, a selected element from the input data is referred to as an instance. Often,
an instance is represented by a set of attributes, which are defined as features (e.g., [34]).
Features usually are multi-dimensional and, thus, represented as vectors.

The output of machine learning algorithms can be of qualitative nature or of quantitative
nature. Quantitative output measures give information about the relationships of the data. In
the case of qualitatively measured output, we get a finite set of categorical or discrete values
that put the data into categories [35]. Here, the input data is used to predict the output. This
type of learning task is called supervised learning. This means, that the learning process
takes place with knowing the outcome for a set of instances. The input data, called training
set, is used to create a predictor. The predictor is then able to classify so far unseen data.
For assessing the goodness of a predictor, it usually gets applied to a set of new, unseen
data, the testing set. For the testing set, the expected output of the predictor is known and
compared with the predictors actual output.

In Figure 2.3, supervised learning is illustrated on the right side. There we have a set
of labeled (green,red) instances on the top serving as training data. Once the predictor is
learned, all new instances can be labeled as green or red as well. This way, the data is
separated according to the labeling. In contrast, unsupervised techniques deal with input

Foundations 18

Unsupervised Supervised

Figure 2.3.: Unsupervised vs. Supervised Learning.

data where no information about the outcome is available. Following the example in Fig-
ure 2.3, the unlabeled data points on the top left are the input. There, no predictor can be
learned, but structural properties of the data. Thus, the output could look like the grouped
instances on the bottom of the picture. The labels in software evolution often indicate if
a bug is within a revision which can simply be described with 1 for true and 0 for false.
Besides numerical values, categorical values, e.g., for the severity of bugs, are possible. In
these cases, supervised learning is possible. Unfortunately, often the data for other mining
tasks has no such labels available, e.g., for the roles of software developers. In this scenario,
either unsupervised methods are available or the usage of heuristics, the distribution of the
data, or expert knowledge to classify a part of the data can be taken into account to get such
a label and make the data suitable for other learning tasks.

Learning Techniques

The following techniques fall into the category of supervised learning. Here, two main
tasks of prediction exist: regression – where the output is measured quantitatively and clas-
sification – where the output is of qualitative nature. Both can be seen as an approach to
approximate some kind of function [35]. We describe the ideas behind the relevant tech-
niques for this thesis in the following.

19 2.2. Mining Software Repositories

1. Linear and Polynomial Regression: The application of regression methods is the
modeling of relationships between input and output variables. For a numeric out-
put and numeric variables polynomial regression can be used to model the com-
bination of the variables. Generally, this relationship can be expressed by f (x) =
a0 +a1x+a2x2 + ...+anxn with a0, ...,an being the variables to model. In the linear
case the degree n equals 1. Higher order regression is called polynomial regression
according to the type of the resulting curve. Different algorithms exist to find the best
fit, e.g., least squares. In software evolution, often curves of trends such as the growth
of the system are calculated to describe the course.

2. k-Nearest Neighbor: In practice, nearest neighbor methods are used to classify unseen
data by available labeled data that is similar. There each unseen instance is compared
to other already known instances using a distance measure. In doing so, the class of
the closest instance is assigned to the new one. For k-Nearest Neighbor the k closest
entities are considered and a majority vote on the classes determines the class of the
unseen instance. Unusually, the Euclidean distance is used for the computation of the
distance.

3. Decision Trees and Random Forests: Another way to learn a predictor for classifi-
cation as well as for regression is to use decision trees. They are used to classify
instances by conditions based on the feature set. Here, a tree structure is learned
where the interior nodes represent the decisions with two or more branches and the
leaf nodes imply the outcome, i.e., the predicted class or probability. On the whole,
for each combination of input variables, a path to a decision exist. Although a bunch
of algorithms exist for learning, most of them adhere to the following main idea
(ID3/C4.5) [34]: The algorithm builds the tree from the root to the leaves starting
with the determination of the most powerful node, if taken alone, as the root node.
Then, for all reasonable values a successive node is created and, again, it is tested
which attribute is the best to test in this place. Altogether, the algorithm implements
a greedy search without backtracking [34]. One big advantage of decision trees is
that they are easy to interpret if they are not too large.
Closely related, for random forests a set of decision trees is build based on a random-
ized algorithm. The randomness is generated by searching for the most prominent
feature in a randomly generated feature subset. Then, the nodes are divided according
to the evaluation on this random subset. As a result, a combination of the most consis-
tent predictions is used. In comparison with basic decision trees, random forests are
often more accurate, but decision trees may be more valuable in terms of knowledge
representation and interpretation.

4. Threshold Learning: In mining software repositories, often the attributes under inves-
tigation are measured by software metrics, e.g., the lines of code to some point in time
or the number of developers involved. Usually, more than one metric is of interest

Foundations 20

and, thus, the common trend of the project is harder to interpret. To deal with such
metric sets, it can be of support to classify the metric values into problematic or not
based on proper boundaries, i.e., thresholds. To calculate such thresholds, it is com-
mon to use a PAC (Probably Approximately Correct) learner [36]. In the algorithm,
a d-dimensional axis-aligned rectangle is learned which splits the data according to
their label (inside and outside of the rectangle) with d the number of attributes.

For advanced applications, especially when using machine learning, the data has to be
prepared carefully. If the approaches work in the given context, strongly depends on the
data. We now review different possibilities to transform data into a suitable format. In
many machine learning algorithms, the selection of important features is integrated. Nev-
ertheless, often they reach a better performance when applying a selection beforehand [32].
Such techniques include ranking, filtering, and wrapping. Another widespread method is
sampling. There, subsets of the data are created based on the distribution of the data. This
is especially applicable in larger scale applications. A technique which is relevant for our
work, is the transformation of multi-class problems into a two-class problem. For this, it
is common to split the data into two-class problems (called one-vs.-rest), but also pairwise
classification can aid to solve this problem [32]. In this scenario, a classifier is learned for
every couple of classes and a majority vote decides about the final classification.

2.2.5. Software Analytics and Statistical Learning

Software analytics are first and foremost designed to answer questions about the software
project to aid management [37]. Besides the quality of the software system and the (produc-
tivity of the) development process under investigation, it also includes the users and their
satisfaction 6. Not only a specific answer, but also the processing of information to get most
valuable insights constitutes a main pillar in software analytics. Different approaches exist
to assist managers in doing so: visualization for a better understanding, analysis algorithms,
and large-scale computing [38] for big datasets.

Buse and Zimmermann [37] gave an overview as well as a guideline of performing soft-
ware analysis studies. They divide the types of software analytics according to the time - if
it affects the past, present, or future, as well as the kind of method - exploratory, analytic,
or experimental. The types of analyses enfold, e.g., the observation of trends, the usage of
detected trends to forecast the future development, modeling, benchmarking, and simula-
tion. In this thesis, software analytics pose the field of application whereas the mining of
software repositories functions as a vehicle to extract and process the needed information.

Another method that found usage in software engineering research and can help to de-
scribe software evolution is statistical learning. Essentially, there is a thin line between
Machine Learning and Statistical Learning because they have some methods in common,
e.g., regression analysis, classification, and clustering can be put in both categories. Still,

6https://www.microsoft.com/en-us/research/group/software-analytics/

21 2.3. Agent-Based Simulation

models derived by statistical learning are usually designed to prove or disprove a hypothe-
sis about the data whereas machine learning also functions without any expectations about
the data. Moreover, statistical models naturally include more mathematical approaches like
distribution fitting. In software evolution, possible applications of statistical learning are,
e.g., regression analysis to describe growth trends [39], the usage of topic models for un-
derstanding text-based software artifacts [40], and Unified Markov Models (UMMs) to test
web applications [41].

2.3. Agent-Based Simulation

Simulation is defined as an “imitation of a real-world-process over time“ [42]. As such,
it is considered to be a solution to many real-world problems. It is used to “describe and
analyze the behavior of a system, ask what-if questions about the real system, and aid in
the design of real systems“ [42]. The systems under simulation do not have to exist in real.
Indispensable for building a simulation is creating a model of the system to be simulated.
Models are abstract images of the real world. Modeling and simulation go hand in hand in
simulation research.

There are different simulation paradigms. One is Discrete Event Simulation (DES). DES
is very widespread especially in Operational Research [43]. It is designed to let entities
switch between different stages over the time (simulation). Thereby, entities often represent
people, documents, tasks, or messages. The entities travel through blocks in a flowchart
where they stay in queues, get processed, delayed, seize resources, and many more [44]. As
an example, one can think of a hospital simulation handling doctors, nurses, and patients
waiting for treatment.

Another paradigm is System Dynamics (SD). It is appropriate for business simulations,
but also for social science simulations. In SD, entities, e.g., people are represented as so-
called stocks. Actions are presented as flows including necessary information about the
actions described in a mathematical model in form of differential equations. SD uses an
abstract view on the whole system instead of single actions [44]. A simple example models
the population of people in the world, where the population stock simply depends on the
birth and death rates and factors affecting these.

The paradigm we focus on in this thesis is ABMS. Agent-Based Modeling and Simulation
is a relatively new approach in the area of simulations. It is well suitable for modeling and
simulating complex systems. The method arose with the wish to model real-scenarios from
an individual perspective. In ABMS, the heart of the simulation are the agents, which drive
the simulation based on their behavior. In the following, we describe our notion of agents
and the detailed concepts of ABMS.

Foundations 22

2.3.1. What is an Agent?

To define an Agent-Based model, three fundamental elements are required: a set of agents,
a set of relationships, and the definition of the agents’ environment [45]. The identification
of these three is a difficult modeling task. One key characteristic is the autonomy of agents.
This means, they it can act independently which is also reflected in their actions. This
concept is the only well agreed agent property in literature. The actions of agents and
their goals are described in their behavior. The rules can reach from simplistic to complex
artificial intelligence. In literature, more essential properties of agents can be found, that
help to understand the complex concept of agents [45]:

• self-containedness: Also acting as part of the simulation, the agents behave on their
own and are uniquely identifiable and recognizable by others. Agents have strict
boundaries distinguishing between own and shared characteristics.
• behavior control: Agents are autonomous. They are in control of their behavior and,

thus can act independently from the defined environment or the other agents as well
as the interactions with them.
• adaptiveness: Possessing a high degree of flexibility, agents can learn from their

behavior and experiences and consequently adapt their behavior according to what
they learn. The experiences are stored in some kind of memory. Concretely, the
behavior is implemented and triggered by defined rules, which are updated according
to the agents experience also controlled by defined rules.
• goal-orientation: Derived from their behavior, agents can have goals that they plan

to achieve. Therefore, they need the ability to compare and evaluate whether they
reached their goals or not.
• sociability: Agents are socialized and can interact with each other. This interaction

and all kinds of communication are internally organized by protocols.

Generally, an agent consists of attributes and methods with which it can be fully defined.
For attributes, we distinguish between non-changeable static attributes, e.g., names, and
changeable dynamic attributes, e.g., the neighbors of an agent or its memory. The methods
represent the previously mentioned behavior and rules.

Modeling the behavior of agents can be a complex task, especially if no empirical foun-
dations are known to be valid for the desired kind of behavior. It is a common approach to
start with a basic model and adapt it step by step. Supportingly, there also exist behavioral
modeling frameworks such as Belief-Desire-Intent (BDI) [46], based on which the agent
choose the best course of action. Its beliefs represents the actual state of the simulation
and all its entities, its desire are the goals the agent wants to fulfill, and its intents consist
of the possible plans to reach these goals. Thus, the agents are able to select their actions
according to their plans and given circumstances. If the behavior of agents in the desired
context is unknown, machine learning techniques can be used to learn the behavior from
empirical data and to find patterns.

23 2.3. Agent-Based Simulation

Another important part in agent-based modeling is the identification and description of
interrelations between different agents. When required connections between agents are
identified, these connections need to be described. Agents only possess local information
stored in their neighborhood, and thus, their interaction area is restricted to this but can be
updated running the simulation. ABMS is decentralized, i.e., no global knowledge about
the system exists. The neighborhood of agents can be defined using different topologies as
basis for social interaction [47]. A simple example presents an aspatial model, where the
agents have no location. Another option is to present agents’ relations as cellular automata,
i.e., the neighborhood is defined as the cells in a grid or lattice directly surrounding the
agent. Here, the agents shift from cell to cell and cells cannot be occupied with more than
one agent at the same time. Moreover, there are euclidean space models and Geographic
Information System (GIS) models. In GIS models, the agents can move over a realistic geo-
spatial landscape. Finally, networks can be used as topology. Macal and North distinguish
between static networks, where the links are fixed, and dynamic networks, where the links
may change.

2.3.2. Applications and Tools

In practice, ABMS is used in many research directions, e.g., biology, physics, social sci-
ences, geology, air traffic control, and economy. Naturally, Agent-based methods are suit-
able for all kinds of real world problems where the evolution is driven by specific behavior
of groups of individuals. A major advantage is that the complexity in modeling arising from
this individuality can be captured with ABMS. Even relatively complex real world scenarios
can be modeled easily. Of course, this aspect depends strongly on the application context.
Generally, agent-based models can be implemented using ordinary programming languages
and tool. There also exist special tools especially suited for the agent concept. The simplest
way can be to use spreadsheets. Still, this is not suitable for very complex models reflecting
sophisticated agent behavior. Also mathematical and standard programming languages can
be used for Agent-based modeling. However, for large-scale Agent-based models, dedi-
cated toolkits offer more possibilities.

ABMS tools can be divided into Desktop Computing and Large-Scale Environments [48].
Desktop ABMS include spreadsheets and Agent-based environments like NetLogo [49] or
Repast Symphony [50]. The method followed in this thesis mainly focuses on Repast Sym-
phony, a Java-based ABMS toolkit. It allows agent behavior and results specification. A
model designer allows to design the spatial and logical structure of the models in a visually
supported way. NetLogo is based on a Logo-related programming language and also pro-
vides ABMS specific features. In addition, mathematical oriented tools like MATLAB and
Mathematica are used for ABMS purposes. There, the agent side needs to be developed by
oneself, but it allows a wealth of numerical modeling opportunities, e.g., partial differential
equations (PDEs), which are often used to model phenomena in physics like fluid flows.

Foundations 24

As the requirements for computational power and distributed simulation steadily grew
over the last years, also the recent (Agent-based) simulation frameworks try to encounter
this problem offering large-scale ABMS software. Scalable platforms are for example
Repast HPC, which shares the core of Repast, but allows for parallel distribution. Another,
but commercial, tool is AnyLogic. A rather advanced tool also confronting the growing
complexity is GAMA [51]. GAMA uses its own modeling language and provides the us-
age of Geographic Information System integration (GIS) data, i.e., realistic landscapes and
spatial representation.

2.3.3. Simulation of Software Processes

The simulation of software processes is no new topic [52]. But its way of solving this task
has changed and evolved over the years. Whereas in the beginning, the focus laid more on
the business and strategic aspects, this changed with the growing amount of open source
projects and their impact into additionally understanding software evolution and occurring
patterns. Generally, in software engineering, simulation is used to aid project managers in
their decision making. It is used to forecast possible future scenarios depending on project
properties defined as parameters. However, often such simulations lack to present a whole
picture of the software development process including the interplay of different parts of the
process.

An overview by Zhang et al. [53] reported the usage of different simulation techniques
in software engineering research. They found out, that most simulation studies focus on the
time, effort or cost, (product) quality, (requirement) size, and resource, e.g., staffing level.
For the simulation paradigms, they recognized SD and DES as most popular. However, con-
sidering the point in time of that literature review, the results may have changed meanwhile.
Still, ABMS is rarely used in this context nowadays.

Thinking of a software project as a set of humans striving for the fulfillment of require-
ments and coordinating themselves as well as with each other, it seems fruitful to model
software evolution from the starting point of the developers and their behavior. Thus, ABMS
poses an appropriate choice for modeling software development processes. Although fol-
lowing the same goal of achieving high quality software, the developers or agents occupy
their own individuality, i.e., they act on their own. For simulating software evolution from a
developers perspective, the need for a deep understanding of the underlying processes and
relationships triggering software evolution is presumed. Therefore, knowledge from past
projects can be of help to model software evolution and to simulate it. This knowledge is
usually gained from software repository mining (see Section 2.2).

One aim of our work is to capture the dynamics occurring in OSS development. OSS
lives from contributions made by a diffuse set of programmers, often volunteers [54]. This
influences the projects development and outcome. In contrast, it leads to commercial de-
velopment to special dynamic patterns which depend on many individual factors, e.g., team

25 2.4. Developer Contribution Behavior

constellation, activity, motivation, experience, project context, and project size. Build OSS
models should reflect this unsteadiness.

2.4. Developer Contribution Behavior

For modeling software evolution, the developers are an important part of the system. They
actively control the evolution process [8] and have an direct impact on other entities in the
evolution life-cycle like the artifacts they change or the bugs they create. To describe de-
veloper behavior close to reality, a deeper understanding of developer contribution behavior
and related effects is required. Therefore, we study this in more detail.

Developers’ behavior can depend on many factors, such as motivation, experience, back-
ground, and organizational structure. Changes in the organizational structure can have an
impact on the overall quality [55]. Thus, it is practicable to begin our investigation from
the inside. A way to describe the structure of a software project is the use of developer
roles. Discriminators for this can be the importance analysis of nodes in developer social
networks [56], based on contribution profiles derived by mining [57], or machine learning
methods like clustering [58]. It is a well known phenomenon that such structures and roles
of developers may change over the time [59]. Hence, it is of importance to reflect potential
dynamics and their related impact in respective contribution models.

To describe the behavior of developers according to their role, it is possible to measure
their activity over the time and derive specified models from that. The contribution of a
developer can be measured using various approaches and metrics: Lines Of Code (LOC)
written [60], number of commits [61], or amount of files changed. Also social and commu-
nication factor can be taken into account, e.g., mailing list activity, bug comments, forum
entries, and IRC participation [62].

Within studying the behavior of developers, it is likely to test real world observations to-
wards specific expectations on how and why developers behave a certain way. It is desirable
to put behavioral aspects into categories and summarize similar characteristics. Using such
characteristics, one get a broad picture of developers’ behavior. Considering involvement
and activity factors of individuals, can help to evaluate the state of the software project

Moving this motivation from the individual-based to the project-based level, it is possible
to access the ongoings in the project itself. In contrast to developer activity, project activity
is also influenced by the user participation and feedback which can be given, e.g., through
mailing lists, forums, issue reports, or download rates. As such, user feedback an be seen
as a driving force in software quality improvement [63]. Often, user interest is seen as an
contributing factor for project success [64, 65].

From the viewpoint of a project manager or a developer considering the import of a
certain OSS project, it can be of help to identify the potential risks of usage beforehand. For
example, a low project activity may indicate an unmaintained or dying project [66]. Still, the
point in time since when a project can be seen as "inactive", is difficult to determine. Often,

Foundations 26

certain thresholds like a timespan of continuing inactivity are defined to find unmaintained
projects, e.g., in [67]. But, similar to developer activity, a software project may not be
inactive even if no (or few) commits are visible in the VCS, e.g., the project may be in a
discussion phase. Thinking the other way around, not only complete absence of activities,
but also a small amount or very irregular activities, may indicate risks of using the project.
Thus, the challenge is to identify risky trends as well as problematic states of project activity.

2.5. Hidden Markov Models

To model not only the aspects of software evolution that are visible from the outside and
can be easily extracted and measured, but also non apparent patterns, it can be convenient
to make use of Hidden Markov Models (HMMs) for modeling OSS dynamics. HMMs are
stochastic finite automatons able to handle discrete time sequences. Each state is indepen-
dent of every other (Markov property) [68]. Given such a sequence, the theory of HMMs
assumes that there exist a corresponding sequence of hidden states which describe under-
lying, hidden processes. In our case, the sequence presents, e.g., the contributions of a
developer in a certain amount of time.

In the following, we state the definitions we need to define HMMs and that are used in
this thesis. A HMM consists of initial probabilities for the states, transition probabilities
between these states, and emission probabilities for all observations that can occur.

2.5.1. Notations

Let S = {S1, ...,SN} be the set of states with N being the number of the states. Let V =
{v1, ...,vM} be the set of observations with M being the number of distinct observation
symbols. First, we have the initial state distribution indicating how likely it is to be in
the different states Si in the beginning. This can be expressed by π = πi with πi being
the probability for state Si at point t = 0. Next, we define the transitions between states.
Therefore, we consider the probabilities ai j for passing on to sate S j when residing in state
Si. These probabilities are managed in the so-called transition matrix A = {ai j}. The third
thing to define a HMM are the emission probabilities. These describe the probabilities of
the possible observations to occur in the different states and can be defined by B = {b j(k)}
with b j(k) being the probability for vk to occur in state S j. This means that b j(k) = p(vk|S j).
Altogether, a HMM can be wholly defined by λ = (A,B,π).

Following Rabiner [68], there are three basic problems for the application of HMMs. The
first real-world problem deals with calculating the probability of an observation sequence
to occur given a fixed model. The second problem also starts with an observation sequence
and a given model as input, but its aim is to detect an appropriate state sequence that ex-
plains the observations best. Most important for our work, is the third problem being the
adjustment of model parameters λ (A,B,π) to maximize the probability of observations.

27 2.6. AB/BA crossover

These observations can for example be a sequence of signals, words spoken, nucleotides, or
diverse kinds of observed behavior. This problem also states the most complex one. Given a
concrete sequence of observations described by O = {obs1, ...,obsn}, then the aim is to train
the model λ (A,B,π) that has the best fit for it, i.e., to maximize the likelihood L = p(O|λ).
For this, the application of different optimization steps and algorithms is needed. In the
following, we shortly describe the algorithms that can be used to solve this problem.

2.5.2. Baum-Welch algorithm

For the HMM training, we start with determined initial model parameters for the transition
matrix A and the initial state distribution possibilities πi for the i states. The initial emission
can also be determined, but it is more convenient to estimate them from the observations if
possible. This can be done by calculating means and variances of all observations. Based on
an auxiliary function, the initial model parameters λ (A,B,π) are re-estimated by the Baum-
Welch algorithm. Within this step, the algorithm calculates the amount of occurrences of
each transition as well as emission. The re-estimate can be intuitively interpreted [69]:
The adapted emissions present the relationship (ratio) between the expected number of an
observation to occur in a state and the expected number of times the state is emitted. For
the transitions, also expectation values of the occurrences of the transitions are calculated
and the parameters adapted based on these values. This step is repeated until convergence.

2.5.3. Viterbi algorithm

After training the model with the Baum-Welch algorithm, we can apply the Viterbi algo-
rithm [68] to calculate the corresponding state sequence to a given observation sequence
O = {obs1, ...,obsn} which produced the observations most likely. This can also be referred
to as the decoding step, since it reveals the corresponding states to the produced output, e.g.,
a word in speech recognition. The algorithm determines the most probable partial path of
length n and use this together with the emission probability from the predecessor node to
the current node to trace back the most likely path.

The overall process is depicted in Figure 2.4. There a given observation sequence O =
{obs1, ...,obsn} is taken as input and the state sequence that most likely produced these
observations is desired (as output). For the actual training of the HMM, i.e., to determine the
transition probabilities ai j and the emission probabilities b j(k), the Baum-Welch algorithm
is used. Then, using Viterbi, the most likely corresponding state sequence is calculated.

2.6. AB/BA crossover

All kinds of experiments require a careful design as well as evaluation to draw accurate
conclusions. So-called crossover studies origin from medicine and other healthcare-related
disciplines as well as psychology [70]. In crossover designs each treatment is applied to

Foundations 28

s1 s2 sn...

obs1 obs2 obsn ... input

output

a12

b2(obs2)

transition probabilities

emission probabilities

Figure 2.4.: HMM training and prediction of the most likely state sequence given a sequence
of observations. [12]

every participant, but the order of treatment is different. In medicine, it is used to investigate
potential side-effects of medicaments and therapies. AB/BA crossover experiments divide
the participants into two groups: One group use technique A before technique B and the
second group vice versa. The first mentioned group is called Sequence Group 1 (SG1)
and the second group is called Sequence Group 2 (SG2). Hence, we have two techniques
and two periods in time, the first period when the first group uses technique A and the
second group uses technique B, and the second period where the first group uses technique
B whereas the second group uses technique A. Note that, this kind of study design is not
able to measure effects that stem from the order of techniques used.

Applications of AB/BA crossover in software engineering research range from the assess-
ment of comprehensibility of (annotated) UML diagrams [71] to comparisons of different
test case design techniques [70]. Vegas et al. also reported some best practices to adhere
when performing crossover studies in (software engineering) research.

A critical view on AB/BA crossover studies in software engineering was recently pub-
lished by Madeyski and Kitchenham [72]. They pointed out the importance of the usage of
different descriptive statistics, i.e., non-standardized and standardized effect sizes. Effect
sizes generally measure the dimension of a phenomenon, e.g., the degree of the treatment
effect. They make different outcomes of a study comparable. Often, the effect size is cal-
culated subtracting the averages of the outcomes (standardized difference of means). An
example for such an effect size is Cohen’s d [73] which divides the mean difference by the
standard deviation. Still, it is important to assess whether the effect size presents a mean-
ingful result is important. For Cohen’s d, the effect size is small when d = 0.2, medium for
d = 0.5, and large for d = 0.8.

Following Madeyski and Kitchenham [72], effect sizes can be measured using the fol-
lowing formulas and rationals.

29 2.6. AB/BA crossover

Let τA be the effect of technique A and τB be the effect of technique B. Moreover, let
τAB be considered as the difference between both techniques, i.e., τAB = τA − τB. This
directly implies τBA =−τAB. Let π be the period effect size which measures the difference
between using a technique in the first and in the second time period. Madeyski et al. [72]
also defined λA and λB as the period by technique interaction for applying method B after
method A and method A after method B, respectively. Then, λAB is the difference between
these two interactions and, thus, the mean period by interaction effect size. Finally, let µi

be the mean outcome for participant i with i ∈ 1, ...,n the number of participants.
The following calculations are taken from Madeyski et al. [72]. Let MCO1 be the average

crossover difference of the n1 participants in SG1 and MCO2 be the average crossover dif-
ference of the n2 participants in SG2 with n1+n2 = n. Comparing the average difference in
the results achieved with method A followed by method B with the average difference in the
results achieved by using method B first determines the technique effect size. Following,
we denote the following for the technique effect size τAB:

τAB =
MCO1 +MCO2

2
, (2.6.1)

In contrast, the period effect size considers the differences between the outcomes in the
two periods instead of the techniques. For the period effect size π , we get the following
equation:

π =
−(MCO1−MCO2)

2
. (2.6.2)

Now, let MSG1 be the participant total of SG1 and MSG2 the participant total of SG2.
Considering the difference between the results of all participants within the two sequence
groups defines the technique interaction effect size. Thus, for the estimation of the technique
interaction effect size λAB we get:

λAB = MSG1−MSG2, (2.6.3)

For the variances, we stick to the following calculations. First, we calculate the within
period and within technique variance:

s2
IG =

∑t,p(nt −1)(yt,p, j− ŷt,p)
2

2n1 +2n2−4
, (2.6.4)

with yt,p, j being the outcome of participant j with technique t in time period p.
Next, the difference score variance is defined as follows:

s2
di f f =

(n1−1)∑ j(CODi f f j−MCO1)
2 +(n2−1)∑k(CODi f fk−MCO2)

2

n1 +n2−2
, (2.6.5)

with CODi f f j being the crossover differences of participants in SG1 and CODi f fk the

Foundations 30

differences in SG2.
The within participant variance s2

w can be derived by:

s2
w =

s2
di f f

2
. (2.6.6)

Anymore, the correlation between the outcomes in both time periods is defined as:

ρ̂ =
s2

IG− s2
w

s2
IG

. (2.6.7)

Then, the variance of the technique effect size can be determined with the following
formula:

var(τAB) =
var(MCO1)+ var(MCO2)

4
. (2.6.8)

In addition, for the standard error of this effect size we have:

seτAB = sw

√
(n1 +n2)

2n1n2
. (2.6.9)

Finally, for testing the significance of τ , we use the t− test [74]:

t =
τAB

seτAB

, (2.6.10)

with d f = n1 + n2− 2 being the degrees of freedom. From this, the p− value can be
calculated to test the significance of the result.

3. Related Work

Our work combines different prominent research topics. The specialty lies in the interplay
of different methods from these topics. The mining of software repositories is a powerful
vehicle to approach the problem of describing all aspects belonging to the software evo-
lution life-cycle. Thus, we start with an overview on related work directions in mining
software repositories to detect software evolution trends. Since the investigation of devel-
oper behavior constitutes a big part of this research, we continue to set our work in context
to research done in this area. Afterwards, we report the state of the art on software process
simulation, because the simulation of the retrieved knowledge represents a relevant applica-
tion to our work. We complete the chapter giving an overview on related work on software
project activity.

3.1. Mining of Software Evolution Trends

The investigation and analysis of software evolution trends is recently a well-researched
topic. This lies in the rich amount of freely hosted data as well as in the rising availability
and quality of analysis tools. Hence, it is very attractive to researches. The treated di-
mensions of problems range from software development phases, programming languages,
and environments to the software management process [75]. The diverse toolbox for re-
searchers include visualization techniques, empirical analysis, machine learning, statistical
learning, simulation techniques, and data mining. Since software evolution deals at the first
instance with the changes to the software system that make the system evolve, the analysis
of changes play a key role in mining software evolution trends. The mining process can be
a laborious task due to missing links between repositories, noisy data, or inhomogeneous
naming conventions. Thus, the repository data has to be preprocessed carefully. One of the
first aspects to analyze is system growth.

For this, often the number of modules [39], files, classes or methods (changed) is used.
Usually, this growth follows a sub-linear trend decreasing with growing maturity of the
project [76]. Paulson et al. [77] investigated the growth trends of OSS compared with
closed-source software projects. They also compare different growth measures such as the
number of functions, lines of code, and complexity. For all measurements, a linear function
could be fitted. Furthermore they observed a similar growth in number of functions and
lines of code for open-source software as well as closed-software projects. In addition,
also super-linear trends can be found in OSS [78]. Finally, Capiluppi et al [79] considered

Related Work 32

the growth in terms of number of files and number of folders. In doing so, segments of
growth could be identified with sub-linear parts. In our work, we consider the growth of the
software system in the number of files.

How developers collaborate and how this collaboration evolves over the time also consti-
tutes a major part of our work. From the view of a project manager, it is important to keep
track of the interaction between developers and how they collaborate. For this purpose,
often social network analysis (SNA) is used. Therefore, different networks are created for
different types of research, e.g, to identify core developers [80] or to predict failures [81]. It
is common to use information retrieved from the VCS (collaboration-based) [3] as well as
from the ITS and ML (communication-based) [82] to build theses networks. The structure
of these graphs can offer valuable clues to the distribution of work among developers as
well es the connectivity. As a project manager, a less fragmented social developer network
is more desirable, because the opposite can have a negative impact on software quality [55].
An approach similar to our work is presented by Pinzger et al. [83]. There, so-called con-
tribution networks are defined which equals developer-file networks. This means for every
commit by a developer an edge is created to every file included in the commit. This way, not
only the collaboration of developers can be traced, but also important files can be construed.
To this reason, we decided to model developer dependencies in the same way. In their work,
Pinzger et al. used different network centrality metrics (degree, closeness, betweenness)
and calculated the correlation with post-release failures. As a result, they observed a high
correlation for two of the three metrics.

To represent the relationship between software artifacts, different software graphs can
be taken into account. These are call graphs based on the caller-callee relationship be-
tween classes and functions, hierarchy graphs based on inheritance, or graphs based on
co-changes of entities (change coupling). Following Ball et al. [84], a change coupling
graph draws edges between files that are frequently changed together. Ball et al. showed
that these graphs are useful to discover clusters of files that are often changed together and
that files within the same cluster are semantically related. For software quality, D’Ambros
et al. [85] found out that a high change coupling can indicate hard to maintain areas and
structural issues such as architecture decay. They studied the relationship between change
coupling and software defects and also found out that change coupling is a better predictor
for software defects than complexity. Thus, defect prediction models could be advanced
using knowledge retrieved from change coupling networks. Another application of change
coupling graphs was presented by Knab et al. [86]. Within their work, they use several met-
rics from the change coupling network for the prediction of the number of defects. However,
in their study no positive effect on the prediction model could be detected. Finally, Zhou
et al. [87] trained a Bayesian network to predict change coupling behavior given informa-
tion on past networks such as co-change frequencies and co-changed entities. This way,
they provide support for developers working on a change request by recommending related
change candidates.

33 3.2. Developer Contribution Behavior

In this thesis, we also consider change coupling network as a representation of file depen-
dencies and analyze the evolution of clusters. Recently, some studies raised that investigate
the effects of the evolution of change coupling on, e.g., the number of defects [88] or bug
localization [89]. Thereby, the representation of software artifact dependencies as change
coupling graphs is an interesting topic.

Besides developers and artifacts, e.g., files, software evolution is concerned with bugs.
A lot of studies exist to assist in bug fixing [90], bug-artifact linking [19], the prediction
of buggy changes [91], or the prediction of the severity of bugs [92]. For the simulation
of quality trends, we restricted our work to the occurrences of bugs and the lifespan of
different types of bugs. Weiß et al. [93] used text similarity to predict the time until an issue
gets fixed with machine learning. The predictor is applicable to the time of the bug report,
which could help project managers in their planning. They also use a machine learning
technique (decision trees) to classify the bugs into fast and slowly fixed. The following
attributes were observed to be the most influential ones: the assignee, reporter, and month
in which the issue was opened.

3.2. Developer Contribution Behavior

Developer’s (contribution) behavior is a well researched topic [9, 59, 94, 7]. Generally,
developer contribution can be seen as all activities a developer performs during software
development [95]. Nevertheless, no unique definition in software engineering exist. Mani-
fold measurements exist to express contribution: the number of LOC written, the number of
commits, number of files changed, involvement in developer social networks, or a combina-
tion of some of these metrics. As Gousios et al. [95] pointed out, the aim of the investigation
of contribution behavior is to assess the course of the software project examined as well as
to assist in future project planning. In the following, we list some work dealing with the
assessment of developer behavior, and work that gathers dynamics in contribution behavior.

Girba et al. [8] presented an approach to understand the behavior of developers. They
defined the ownership of a file that determines the developer who edited the most part of it.
Based on that, they provide a characterization of developer behavior by analyzing patterns
that indicate different activities like it is shown in Figure 3.1. The colors represent different
authors performing different activities (e.g., edits, fixes) on a file over the time. As an
example, the action takeover describes the behavior where a developer performs a few large
commits in a short amount of time taking over the possession of the file. However, this work
is designed for visual exploration whereas the focus of our work lies on the analysis part.

An interesting study where the authors consider also feedback from project leaders on
commonly used measurements of developer activity is presented by Lima et al. [7]. In their
paper, they report the results of discussions on the usefulness of contribution metrics with
project and team leaders, since for them it is most important to interpret these measures. As
such measures, they consider LOC, the average complexity per method, introduced bugs,

Related Work 34

Takeover

by the Green author

Teamwork

between the Green and Red authors

Familiarization

of the Blue author

Edit

by the Green author

Bug-fix

by the Yellow author

Expansion

of the Blue author

Monologue

of the Green author

Figure 3.1.: An example of an ownership map [8].

and bug fixing contribution (relative to other developers). Lima et al. found out, that code
contribution metrics are useful for project leaders, but should be extended with other in-
formation, e.g., complexity of tasks. Similarly, bug introducing and fixing rates should
also be put into context of the amount and complexity of tasks. Summarily, metrics should
never be considered isolated. Likewise, we also use a combination of different metrics to
characterize developer contribution behavior.

A very broad picture of developer behavior is provided by Makedonski [96]. There, a
diverse investigation of developer-related aspects is provided including different levels of
granularity, a deep analysis of the impacts and causes of changes, and the application to
different software engineering tasks, such as the prediction of bugs. Moreover, the mining
process is realized as a model-based approach which can be adapted to different mining
tasks. A strength of this work is that it offers a lot of opportunities for analyzing software
repositories and that the mining, modeling, and analysis go hand in hand. This constitutes
a different approach to mining software repositories where the focus lies on the modeling
compared to our work where we focus on the analysis part. Both approaches are combin-
able.

For understanding project collaboration as well as to assist in developer team constel-
lation planning, it is essential to consider developer roles. As mentioned in Section 2.4,
there exist a couple of ways in doing so, e.g., count-based classification or network-based
classification.

Bhattacharya et al. [3] identified different roles to describe the expertise of developers.
The role definition enfolds testers, assists, triager, analysts (all bug related) as well as core
developers, bug fixers, and quality improver (source code related). Developers can serve
different roles at once based on the kind of contributions performed. Afterwards, collabo-
ration graphs are build from that and then hierarchically ordered. In our work, we consider
only four specialized roles (core, maintainer, major, minor).

Besides such specialized approaches, it is common to classify developers into core and
peripheral [58, 97, 98, 99]. Though, core developers are responsible for decisions and per-
form more work, whereas peripheral developers are less active. The underlying assumption

35 3.3. Software Process Simulation

is that the OSS structure can be described as the well-accepted onion model [100] where
a small cluster of developers do most of the work. Note that, peripheral developers can
also be users and bug reporters. For sustainability, it is important to keep the core alive.
The classification is often done by taking the top 20% committers over a certain period of
time [101]. We proceed similar, but we split the peripheral developers into major and minor
ones. Terceiro et al. [99] investigated the relationship between this role structure and the in-
troduction of structural complexity. By that, they concluded that core developers introduce
less complexity than peripheral developers. In our work, we only consider the amount of
work and the kind of changes done by developers exhibiting different roles, but not related
to complexity introduced by the changes.

A recent study on this topic was conducted by Joblin et al. [102]. They evaluated the
insights gotten from count-based developer contribution measures and compare them with
metrics retrieved from hierarchy networks. Although they found that the count-based met-
rics produce consistent results, they showed that insights gained from networks based on
mailing lists or collaboration extracted from the VCS can enrich the investigation. Thus,
we are confident to use count-based measures for e.g., commit activity and also use mailing
list activity, but do not consider collaboration networks for this task, since we are mainly
interested in a model that allows for different levels of activity and their impact on the
output.

As most related to our work we identified the approach of Singh et al. [103]. Within
their work, they studied the effects of peer learning compared with individually gained
knowledge concerning the experience of software developers. Like we do, they build a
HMM to investigate learning dynamics for OSS developers. In a large case study with
25 open source software projects with 251 developers involved they validate their work.
The retrieved findings are compared to a classical learning curve model. By training the
HMM, different states of project activity over the time for each developer can be learned.
As a result, they found out that, e.g., developers resigning in a low state benefit more from
peer learning activities while in higher states individual learning is more fruitful. Our work
differs from the work of Singh et al. in so far that we do not focus on the learning itself and,
instead, consider the learning as implicitly given part of our model. In addition, our model
needs less input metrics: Whereas Singh et al. also take, e.g., the rank of the project and
the project age into account, we solely focus on contribution as well as on communication
activities which makes our approach easy to use.

3.3. Software Process Simulation

Using simulation techniques to aid software project managers in decision making is known
for a while. The topic was dominated by discrete event simulation (DES) as well as system
dynamics (SD) in the past. Software process simulation modeling is recent since 1998 [52],
where the first requirements and guidelines for software process simulations were postu-

Related Work 36

lated. Since then, some work has been done in this area [53], but it often lacks in consider-
ing the software as a whole and, instead, focuses on particular factors. Only a few studies
take ABMS for software evolution into account.

An approach simulating the evolution of developer networks is presented by Gao and
Madey [104]. In their work, they use SWARM [105] to calibrate a simulation model iter-
atively to replicate observations retrieved from SourceForge. There, developers can select
whether to join, stay in, or leave projects. This approach is more global than ours and aims
to understand OSS evolution at first sight. Interestingly, this is one of the few studies taking
empirical data for the simulation parameter estimation as we do.

Another study proceeding this way, was introduced by Spasic et al. [106]. They provide
an Agent-based simulation model that helps project managers to estimate the completion
date as well the required number of developers for a set of software artifacts. Moreover,
they concentrate on the design and development phase given by Capability Maturity Model
Integration (CMMI, e.g.,[107]). CMMI is tool to optimize software processes. Thus, this
study is more specific than our work, but can be seen as an indicator that it is worth investi-
gating ABMS for software project management. Both Spasic et al.’s model and our model
compare empirical with simulated data for their validation.

An approach that compares ABS for software processes with SD taking individual factors
such as experience and competence of developers into account, is presented by Cherif and
Davidsson [108]. They state that SD is easier to configure, because it does not need as
much information on the behavior of individuals. On the other hand, ABS produces more
realistic results. In contrast, our approach also allows for individual developer behavior like
developer roles and alternating levels of project involvement and, thus, output.

Using ABS, Agarwal et al. [109] also present an approach that considers different indi-
vidual factors, e.g., LOC, time spent, and defects removed using Personal Software Process
(PSP). The decisions of developers are based on individual PSP data, which stores statis-
tics over past activities. Compared with our work, this approach is more tailored towards
specific types of projects, since it is controlled by a given process, Extreme Programming.
A similarity of their approach and ours is the allowance for individual developer behavior
expressed by agents.

An approach uses Agent-based simulation for software evolution as we do was presented
by Smith et al. [110]. In their work, they present an approach to simulate software evolution
in terms of size, complexity, and distribution of changes. The active agents are the devel-
opers and they are defined on a grid walking randomly around. In doing so, they can come
across a requirement or module to work on. If they do so, depends on the interestingness of
the module for the developer and the complexity of the module. Besides, they can leave the
project by moving outside the grid. The work of developers on the passive agents, i.e., the
modules, include the creation, extension, and refactoring of modules. These actions have
an immediate effect on the module metrics: fitness and complexity. To measure the systems
size, Smith et al. use the number of functions. The most significant difference of our work
compared to Smith et al. lies in the topology design: We use networks to represent rela-

37 3.4. OSS Project Activity

tionships between software entities instead of a grid. This provides several advantages. For
example, other types of relations apart from proximity can be taken into account [47]. As
such, developer collaboration, file dependencies, and bug links are provided in our work.
Besides, our model allows for tailored actions of developers (create, modify, delete files)
according to their role.

3.4. OSS Project Activity

As already highlighted, OSS lives from the developers contributing to the project [98]. As
such, developers form a huge pillar of the whole project activity. Other factors influencing
the project activity, are the users [111]. Besides from accounting users for judging the
success of OSS projects, they are also beneficial in the guidance of software development
(decisions). For evaluating the sustainability, some work exists taking project activity into
account like it is done in this thesis. In the following, we summarize the most related work
in this area.

A recent study by Coelho et al. [66] propose a machine learning based model to identify
software projects on GitHub that are not maintained anymore. The employed feature set in-
cludes several activity metrics, e.g., the number of forks, amount of new developers joined,
opened and closed pull requests, and commits, that are extracted for different periods of
development differencing in the length and interval. They evaluated their approach in a
large case study with over 6000 projects and identified as most relevant features the num-
ber of commits, the maximum days without commits, and the maximum contributions by a
developer in a certain period. Unlike other studies, they were able to identify unmaintained
projects although there are commits done in the last year.

Many studies have in common to use certain thresholds. For example, a project is con-
sidered inactive after one year of inactivity [67]. In other studies, sporadic contribution
activities are considered inactive [66] too, because few commits performed may be due to
very small changes. The usage of thresholds can be problematic as it is not clear when a
project is in a critical (dying) state and when is it really inactive (dead).

An interesting study presented by Khondhu et al. [67] investigates characteristics of
projects becoming inactive. They divide OSS projects into three categories: active with
visible activity, dormant where the activity stopped for a certain period of time, and inac-
tive as explicitly stated so by the developers. For the differentiation between active and
dormant they defined a threshold of one year of inactivity. Using this classification for
all SourceForge projects from a given data-dump, the authors compared different metrics
across the activity categories to find similar patterns. As a result, they showed that active
projects consistently grow larger than others. Another interesting result revealed that the
maintainability index of inactive projects for most projects remain stable.

We combine different aspects of the mentioned studies in our approach: We also apply
a learning technique to identify active projects. But instead of machine learning we use

Related Work 38

statistical learning. As metrics we also take developer activity into account in combination
with user participation.

4. Simulation Models

In this chapter, we first sketch the general modeling approach followed by an introduction
of our basic simulation model, which establishes the starting point of our work, and is used
for all further refinements. Afterwards, we present two refined models for the simulation of
software evolution. The first includes the representation of developer contribution behavior
allowing for dynamic software project participation. The second model deals with software
development phases of the regular life-cycle.

4.1. General Modeling Process

In this section, we describe the overall process we identified to create simulation models
which describe software evolution. This process is illustrated in Figure 4.1.

The rectangles represent the steps and the ellipses represent the input/output of the steps.
Starting with a concrete research question regarding software evolution in mind, the first
step is to identify important model parameters and their interrelations which are needed to
answer this question (Agent-Based Modeling in Figure 4.1). As an example consider the
following question: How will the growth in LOC of the Eclipse project evolve in the future
given the current developer team constellation? Then, model entities of interest are software
entities, e.g., files or classes with LOC as attribute and an environment where the system
LOC as sum over all entities is stored and a counter for the simulation round, e.g., repre-
senting one day in the software development life-cycle. In addition, the commit behavior
of developers and the size of the commits in LOC is needed. To instantiate such a soft-
ware evolution model, the parameters need to be estimated – or simply set if known. e.g.,
from literature. For this estimation step, we use freely available open source repositories
and retrieve knowledge from that by mining (Mining Software Repositories in Figure 4.1).
In the example scenario, the project under investigation is the Eclipse project and, thus,
only information from Eclipse repositories need to be extracted. Relevant information in
this context are the history of each software entity, i.e., when it was changed and the LOC
added or deleted in this change. It can be the case that metrics have to be calculated if not
directly available. As a next mining step, the extracted data needs to be analyzed with the
aim to find patterns or descriptions for the desired scenario. Following our example, this
could be the analysis of the evolution of the total LOC. A possible method for this is the
usage of regression analysis that tries to fit a curve that can describe the observed behavior.
For the commit behavior of developers, averages of the overall activity can be taken into

Simulation Models 40

Figure 4.1.: Process of building tailored simulation models. [112]

account. With the gained knowledge the model can be instantiated for this project. Using
simulations allows to forecast the future under given parameters which can be changed, i.e.,
the team constellation and its impact on the system growth. Since by the nature of simula-
tion there can be a discrepancy between empirical and simulated behavior, the project under
simulation can behave different than in reality. If this gap is too big, it may be necessary to
examine the simulation results carefully and potentially adapt the model (Running Simula-
tion in Figure 4.1). When this is done, the results can be interpreted and assessed (Validated
Assessment in Figure 4.1). However, the assessment is not part of this work and is covered,
e.g., in [113].

During our work, we established three different models reflecting different facets of soft-
ware evolution. We will introduce these models in the next sections starting with our essen-
tial model that serves as foundation for the afterwards following refinements.

4.2. STEPS Simulation Model

This section gives an overview on the general model we created for describing and simulat-
ing software evolution named STEPS (Software Trend Evolution Prediction in Simulation).
We tried to keep the model simple, though having the ability to answer a set of central ques-

41 4.2. STEPS Simulation Model

Environment

fileCount : Integer

Developer

numberOfCommits : Integer
numberOfFixes : Integer

Bug

dateOfCreation : Real

computeLifespan() : Real

Category

Maintainer CoreDeveloper MajorDeveloper MinorDeveloper

SoftwareEntity

owner : Developer

computeLabelValue() : Real

MajorBug NormalBug MinorBug

createFiles()
updateFiles()
deleteFiles()
bugFix()

dateOfClosing : Real

numberOfChanges : Integer
numberOfAuthors : Integer
couplingDegree : Integer

1* 1 *

*

*

1

*

1

*

works on

1

*

0..1

*

Figure 4.2.: Essential Agent-Based Simulation Model for Software Evolution (adapted
from [112]).

tions concerning software evolution. For every model entity we describe why it is selected
and how it is related to other entities. The proposed model is shown in Figure 4.2.

Since software evolution is concerned with people, artifacts, and bugs (see Section 2.1),
those constitute the main parts of the model. From an Agent-based perspective, developers
are individuals who live in their environment (software project) and struggle with the differ-
ent requirements and (conflicting) interests. Triggered by defined behavioral rules, e.g., the
transaction of commits as well as their consequences and relation to other agents, complex
scenarios can be mirrored in an Agent-based simulation, e.g., the overall (quality) trend of
the software project. Defined in their environment, agents can also interact with each other.
In the following, we explain the model entities step by step.

Developer

Developers represent the heart of the simulation. As the only active agents, they are re-
sponsible for all explicitly performed changes to the software system. The description of
the agents behavior is a key aspect in ABMS. Thus, it is important to model how develop-
ers work and react. Developer behavior can be modeled using differing metrics [95]. For
our first model we decided to describe this behavior by commits and bug fix commits the
developers perform to the system, since these metrics are easy to retrieve and understand
while they present a good indicator for the work performed in a software project [114]. The
amount of (bug fix) commits is stored for each agent. Within a commit, the developers per-
form a set of actions that consist of the following types of changes: create software entities,
update entities, and delete entities. In this thesis, we refer the software entities to be files,
but other types like classes or modules are manageable within the model. Consequently,

Simulation Models 42

this represents the direct link to the software entities. Of course, they are also responsible
for the creation of bugs introduced by certain commits.

Moreover, we define a specialization of the developer such that a developer agent can
be of different types: CoreDeveloper, MajorDeveloper, MinorDeveloper, and Maintainer.
This decision is based on our understanding of developers’ contribution behavior. As men-
tioned in Section 2.4, the use of developer roles can help to understand the organizational
structure and its impact on the software (quality). Some studies exist (e.g., [115, 99]) dealing
with the special role of core developers in open source projects. Thus, they play an impor-
tant role and are worth to be considered separately. Their specialty lies in their workload
and knowledge of the system. In some projects, there also is the special role of a maintainer
present (e.g., [116]), who is responsible for maintaining (special parts of) the system. Since
we aim to give an overall statement on the quality of the software, this is a suitable role for
our simulation. Besides, we distinguish between major and minor developers because the
impact of the changes performed by less experienced developers can vary in comparison to
more well versed ones [61].

SoftwareEntity

The active developer agents perform their changes on the passive software entities describ-
ing the daily work in a software project. The defined actions on the entities additions, modi-
fications, and deletions date back to the work of Lehman [13] and are still current. While for
some applications, e.g. description of refactorings, a more fined-grained description may be
beneficial, our description is sufficient to describe basic software changes. Some attributes
can directly be calculated by the changes to the software entities: the numberOfChanges as
count of all actions performed on a certain entity and the numberOfAuthors as the amount
of distinct developers that performed at least one action on the software entity. The owner
of an entity can also be retrieved directly. Bird et al. [61] describe the term ownership as
an description for the responsibility of a person for a software component. There exist sev-
eral approaches to define the ownership, such as the percentage of the development activity
coming from one developer [61]. It can be calculated by the ratio of changes by a cer-
tain developer relative to the total number of changes. Another way to describe ownership
would be for example the maximum number of lines of code written by a developer. We
stick to the definition of Bird et al., but instead of using ownership from the point of an
software entity, i.e., having a low or high ownership, we store the author with the highest
ownership, i.e., most changes to it, as its owner. Modeling ownership can also be beneficial
for assessing software quality [117].

Furthermore, we consider the couplingDegree of an software entity. For important rela-
tions between agents we decided to use networks as topology. All networks are described
later in Section 4.2.1. Conceptually, the couplingDegree can be seen as the number of
relations to other entities. To know which entities are related can help to gain a better
understanding of the overall structure of the system.

43 4.2. STEPS Simulation Model

The computeLabelValue function calculates a quality label based on the amount of bugs
that affect the software entity. This label is mainly needed for the further assessment and is
not covered in detail in this thesis. However, since the simulation is aimed to assess software
quality, this presents an important part of our work, although more simple assessments like
the raw number of bugs, are imaginable.

The relation of entities to bugs is reasonable as during development different bugs occur
which are visible in the corresponding entity it affects. Software entities are defined in the
environment and created by the developers through the according method. Entities also
belong to a category (see Section 4.2)

Bug

The third main component of the model are bugs. Software evolution research often deals
with questions concerning the introduction of bugs [91], assignment of bugs [90], or the
prediction of bugs [85]. Hence, it is an important topic in software evolution research, espe-
cially with regard to software quality. Bugs are introduced by the developers and assigned
to the entities. As well, understanding the life cycle of bugs [93] [118] can help to predict
the needed effort to fix it or to understand bug fixing patterns. We simplified the lifespan
of bugs by considering the dateOfCreation for the simulation round it was introduced and
the dateOfClosing when it was solved. From this, one can calculate the lifespan as the dif-
ference with the computeLifespan function. Of course, the actual lifespan of bugs is not
always simply like that, because bugs can be re-opened or forgotten to be marked. This is
taken into account in the parameter estimation.

Usually, a reported bug has a given severity indicating how fatal that issues is. Common
severities are blocker, critical, major, normal, minor, or trivial,(e.g. [92]). In contrast to the
priority of bugs, the severity gives no direct time constraint. We merge bug types that behave
similar into three groups: major, normal, and minor. Major categorize all reported bugs that
are major, critical, or blocker, minor bugs include minor and trivial bugs, and normal the
ones tagged as normal. For the simulation, the probabilities of the different types to occur
depend on the issue reports in the ITS. In reality, also other factors like the experience of
developers or the project type influence their occurrences.

Category

Every software entity can be assigned to a category at the moment of its creation. The
category constitutes a conjunction to which an entity semantically belongs. The category
selection is based on the structure of the relationships between software entities, i.e. enti-
ties with a strong coupling belong to the same category. The investigation of relationships
between software entities, e.g., as software graphs, can in general facilitate software devel-
opment and maintenance [3]. Structural changes can be an indicator of important incidents
in software development. This also includes the evolution of interdependencies, e.g., com-

Simulation Models 44

munity detection. Communities can be defined as “...groups of vertices which probably
share common properties and play similar roles within the graph [119]“. In a software
graph, this can be, e.g., all entities related to the Graphical User Interface (GUI) or test files.
The communities in our approach are retrieved from mining and than treated as category.
This means that all highly coupled software entities form a category. The coupling is the
amount of common changes.

Environment

The environment is in control of the whole agent space. It creates the agents and coordinates
their behavioral processes. In the simulation of software processes, this means that the
environment coordinates the developers in their work and counts global variables, here the
number of files (fileCount).

4.2.1. Topology Design: Networks

In this section, we introduce the different networks that are used as topology to model
relationships between the defined agents.

Before going into detail with the different networks used, we define general terms to
describe networks formally. Usually, graph structures are used to solve problems which can
naturally be represented as graphs, i.e., can be seen as a set of nodes and edges representing
interactions. Network theory provides methods and algorithms to analyze resulting graph
structures and solve such problems. For a basic definition of a graph [120], let G be a graph
and V (G) a finite set of elements containing the vertices or nodes of G. The second set
needed to fully define a graph G is E(G). It represents the set of edges where e = {x,y}
denotes an edge between vertex x and vertex y. A weight w(e) can be assigned to an edge e,
indicating, e.g., distances, costs, number of interactions. Moreover, graphs can be directed
or undirected indicating the orientation of the edge, e.g., an inheritance graph is directed
since the inheritance relation is directed. In this thesis, we primarily deal with weighted,
undirected graphs.

Developer-Entity-Network

The developer-entity-network presents all relations between the developers and software
entities both as nodes in the network. Every time, a developer performs one of the de-
fined changes on a software entity an edge is created between developer and entity if not
present before, otherwise the weight of the edge is increased with every further touch. This
networks provides the direct information on the owner of a software entity, the number of
authors, and the number of changes. In our example in Figure 4.3 (a), developer dev 1
changed file A and file B one time, whereas dev 2 worked three times on file B.

45 4.2. STEPS Simulation Model

dev 1

dev 2

file B

file A

(a) developer-entity (c) change-coupling(b) bug-entity

1

3

1

file B

issue #2

issue #3

issue #1

file A

file C

file A
7

3
3

file D

file B

5

Figure 4.3.: Different networks used as ABMS topology.

Bug-Entity-Network

In this network, the links between software entities and assigned bugs are stored. When the
environment creates a bug, this is created as node and randomly linked to an software entity
node. This network contains information about the status of the bug, i.e., whether it is fixed
or not. Following the example in Figure 4.3 (b), issue#1 is assigned file A and issue#2 and
issue#3 affect file B.

Entity-Network (Change-Coupling-Network)

To manage dependencies between software entities, we introduce the change-coupling-
network. This is created based on the changes performed by the developers. Every time
a developer touches two files in the same commit, an edge is created between the two files.
For every further common change the weight of the edge is increased by one. This network
represents a semantic description of the software. In Figure 4.3 (c) an example is illustrated,
where four files A−D and their amount of co-changes (weight of the edges) are shown. For
example, file A has been changed three times together with file C and seven times together
with file B.

4.2.2. Behavior Design: Strategies

In the following, we describe the behavior design of the different agents which is expressed
by defined strategies. The core and most sophisticated part of the model is the formalization
of developers behavior since it is responsible for the whole evolutionary process.

Simulation Models 46

Commit Strategy

The commits performed by the developers let the system grow and can include a bug fix.
In our STEPS model, the commit probability solely depends on the type of the developer
(core, maintainer, major, minor). Based on the role, it is determined whether the developer
works in a simulation round (day). For the actual work, i.e., file changes, the STEPS model
makes use of a geometric distribution to draw the number of files to be added, updated,
and deleted. Each of the actions follow a different distribution. Generally, a geometric
distribution models failures and successes of independent trials. More precisely, the number
of failures before the first success is modeled (see, e.g., [121]). We assume that developers
perform actions based on their necessity, therefore, the actions can be seen as failure, since
an adaption is needed. The other way around, if the system is in a satisfying state, this can
be interpreted as a success, since no work needs to be done. Thus, we have P(action) =
(1− p)k p with p the probability for the file creations, deletions, and updates and k the trial.
Moreover, the probabilities of creations and deletions decreases with increasing system
growth. In addition, the growth is restricted by the expected size of the software system.

File Selection Strategy

In this model, the file selection is modeled rather simply, since it is difficult to retrieve
information about the intention of developers from mining OSS projects. The intention
determining the files that need to be adapted, can be, e.g., the addition of functionality,
maintaining a certain part of the software, or debugging. A more precise investigation of
particular intentions, especially refactorings, can be found in [122].

For the STEPS model, the first software entity to work on is selected randomly, but we
assume that the probability of choosing entities already known by the developer is slightly
higher. This means that the developer has touched the file in a past simulation round. If the
commit includes more than one file, the other files are selected based on information on the
first one: the owner of that file, the category, and former changed entities (of the category).

Bug Fixing Strategy

As stated above, commits can also be targeted to fix a bug. In the STEPS simulation model,
this is a special commit. The probability for this kind of commit depends on the role of the
developer, e.g., a maintainer more likely intends to perform a bug fix commit. Also, the
experience on the file is taken into account. Like all simulation parameters, these probabil-
ities are estimated based on the mining of real software projects. For a bug fix commit, the
developer selects an entity containing a bug and up to five connected entities. This value
traces back to the work of Hattori and Lanza [114]. They found out that corrective mainte-
nance activities like bug fixes often refer to tiny commits with one to five entities. Overall,
they identified about 80% of all commits to be small commits.

47 4.3. DEVCON Simulation Model

4.3. DEVCON Simulation Model

The DEVCON (DEVeloper CONtribution) simulation model is an extension of the STEPS
simulation model. Both models share the topology design as well as the strategies. But, the
DEVCON model allows for dynamic project participation, e.g., developers can contribute to
a changing extent in the amount of work, i.e., in the number of commits and fixes. They are
also able to contribute to the project by communication activities which are considered to be
important for the project involvement of individual developers. For example, a developers
code contribution may be low due to time restrictions or other duties/interests, but she may
also be active in answering questions concerning pieces of software on which she possesses
knowledge.

Since the DEVCON model represents a refinement of the essential STEPS model, we
focus on motivating the design decisions that distinguish the STEPS model from the DE-
VCON model. The refined model is shown in Figure 4.4. The main differences lie in the
refinement of the developer roles, the impact on their behavior, and the incorporation of the
new state class. Moreover, DEVCON summarizes maintainer and core developers into core
developer, because maintainers are not present in every software project, but the instantia-
tion of the DEVCON model requires several representatives form the different classes.

The activities of developers directly impact the evolution of the other software entities.
How and how often the different types of developers change the software controls, e.g., the
occurrences of bugs, the software system growth, and the relations among files. By taking
the average behavior of developers, the general trends can be reproduced, but it may lack of
phases with less or particularly high project activity. Thus, we expect to add the ability of
reflecting such phenomena like an unsteadiness in the growth of the system and the work
of developers by introducing dynamic developer phases to the simulation model. In doing
so, the types of developers remain constant, but their behavior is adjusted according to
state probabilistic model realized by a HMM. It comprises probabilities to switch between
low, medium, and high involvement determined by the transitionMatrix for each developer
type. Additionally, it models the workload by a probability distribution (emissions) that
is responsible for the amount of contribution activities for the developers in the different
states. In the following, we describe the introduced model entity state and the impact on the
model as a whole.

State

Every developer occupies a state to every point in time (simulation round). We distinguish
between three different states: low, medium, and high. Since the developers can only change
their role every month, the check whether a change takes place or not is executed every
30th simulation round. The period of one month is chosen because we want to summarize
and combine developer activities and, therefore, some space for possible contributions is
required. The probabilities of such changes are defined in the transition probabilities de-

Simulation Models 48

Environment

fileCount : Integer

Developer

numberOfCommits : Integer
numberOfFixes : Integer
state: State

Bug

dateOfCreation : Real

computeLifespan() : Real

Category

SoftwareEntity

owner : Developer

computeLabelValue() : Real

MajorBug NormalBug MinorBug

createFiles()
updateFiles()
deleteFiles()
bugFix()

dateOfClosing : Real

numberOfChanges : Integer
numberOfAuthors : Integer
couplingDegree : Integer

1*
1 *

*

*

1

*

1

*works on

1

*

0..1

*

<<Enumeration>>

State

low
medium
high

CoreDeveloper

transitionMatrix
emissions

MajorDeveloper

transitionMatrix
emissions

MinorDeveloper

transitionMatrix
emissions

Figure 4.4.: Agent-Based Simulation Model for Software Evolution Including Developer
Involvement states.

scribed in Section 2.5. The state determines the amount of work spent by the developer in
the next month. For every state and developer role, a normal distribution constituting the
emission probabilities schedules the commits and bugfixes. This way, the agents are able to
vary their involvement over the time, which is, especially in OSS projects, a major factor.

4.4. Software Quality Assessment

The overall quality assessment of the software system under development is designed two-
layered. The first layer contains the bug occurrences. Therefore, one indicator of soft-
ware quality is the total amount of bugs in the system. Respecting the introduced change-
coupling-networks, it is also possible to identify problematic regions in the software, i.e.,
areas of connected entities with a lot of bugs assigned. For the second layer, we label
every entity according to its assigned bugs. Since we consider different severities, we de-
termine different factors that emerge to the quality label of the entity. These factors state
how much the different bug types affect the quality. All factors for bugs assigned to the
entity multiplied produce the label for the entity. Any further assignment is again multi-
plied to the current value. We consider the following bug factors: 0.825 for major bugs,
0.9 for normal bugs, and 0.98 for minor bugs. Created entities start with a value of 1. We
also preliminary classify entities with a label higher than 0.8 as acceptable and otherwise
as problematic. Thus, an entity containing one major and two minor bugs is labeled with
0.825 ·0.8 ·0.8 = 0.528 and, hence, a problematic one.

49 4.5. Challenges and Limitations

4.5. Challenges and Limitations

The introduced model is designed to answer general questions concerning software evo-
lution. Although the model is capable of forecasting general future trends for software
projects, there is space for further refinements of some model assumptions that could help
to improve the model and its accuracy. In the STEPS model, the developers under simula-
tion spend nearly the same effort in every simulation round depending on their role which
can display the average commit activity of developers but lacks of a deeper description of
their work including active and inactive phases as well as role changes. This is incorporated
in the DEVCON model. In addition, according to their behavior design described in Sec-
tion 4.2.2, the agents do not choose the files according to their intent, e.g., to choose all files
affected by a bug when fixing it. For this, the underlying aim that belongs to the activities
visible in their daily work, is of interest, but not that easy to retrieve.

The STEPS simulation model also leaves different project phases like development and
maintenance out. Instead, the corresponding activities are distributed according to the de-
veloper roles, but this cannot reflect the occurrences of such phases completely.

5. Instantiation of Simulation Models

In this chapter, we describe how we instantiate the models introduced in Chapter 4. We start
by stating the general process of parameter estimation for simulation models. Afterwards,
an overview of the data collection and preparation process is given. Following our exam-
ples, the approaches for the instantiation of the STEPS simulation model and the DEVCON
simulation model are explained in detail.

5.1. Parameter Estimation

For modeling software evolution scenarios and to support software project managers in their
decision making, we are interested in detecting rules and patterns describing the evolution
of software projects that can serve as input for our models. We aim to simulate real projects
and, therefore, make use of open source projects for the analyses. The main idea is to
parameterize the simulation models with information retrieved from a set of open source
projects, but we also test if we can forecast the evolution of projects using the parameters
retrieved from software mining for one particular software project. The starting point of our
analyses are the developers, since the evolution of the software and its artifacts strongly de-
pend on their behavior. This establishes the connection to ABMS. Agents own an individual
behavior retrieved from real world observations [123]. For the description of the behavior,
insights on the work of developers, their collaboration, and communication is important.
Besides, underlying factors like intentions and strategies are valuable, but more difficult to
grasp.

Needed information can be retrieved from VCSs, ITSs and MLs by mining. In addi-
tion, the data has to be preprocessed to function as input for the analyses. This process
is explained in the next section. To describe a certain behavior in the simulation, we use
observed patterns from the mining to fill the model with knowledge. To get the data ready
for analysis, it has to be preprocessed tailored towards the purpose. This step reaches from
reformatting to natural language processing. A miscellaneous toolbox is available for ex-
ploration of the prepared data depending on the focus of the analysis, e.g., Weka [124] for
machine learning applications. For the modeling part, we use Repast Symphony [50], an
open source ABMS platform. When the adjustment of the parameters in the simulation
model is done, the scenario under investigation can be run according the retrieved param-
eter set. By running the simulation, it can be checked whether the results produced are
reasonable. It can be the case that the model has to be adapted to get homogeneous results.

Instantiation of Simulation Models 52

Figure 5.1.: VCS data excerpt stored in the MySQL database.

We evaluate our models by comparing empirical with simulated data which is one of current
procedures in validating software simulation models [125].

5.2. Data Collection and Preparation

Although there are different simulation models aimed to answer different research questions
regarding software evolution, the starting point of our investigation is the same: we populate
a release history database [126] with data from GitHub using the tool CVSAnalY [127] for
the raw data extraction and store the information into a MySQL database. The tool can
handle SVN and git repositories. The repository comprises the whole history of a software
project including the timestamps, developer, the action (add, delete, update) on selected
files, commit message, and revision hash for each commit as depicted in Figure 5.1. In
addition, we extended this with bug information retrieved from the ITS. This means, that
additional bugfix information on commits is provided, i.e., if the commit implies a fix. For
this, we use the method introduced by Philip Makedonski [96].

With this as a basis, the data has to be preprocessed tailored towards the purpose. Based
on the mining process and the structure of the data, it can occur that commits are parsed
twice. Thus, first, we remove duplicate entries in the database. One common problem when
analyzing commits, is the merging of identities. Often, developers use different mailing
addresses or login names. Especially, for the matching across different platforms, this a
challenging task. Several tools and approaches exist to overcome this problem [28]. In our
approach, we use regular expressions for the matching process. These expression include
different combinations of the surname and the last name of authors, e.g., for Alex Wild also
awild and alexw is checked. Afterwards, the results are checked manually.

Another common problem is the missing link between introduced bugs and affected
files [19]. Often, this is solved by searching for the issue IDs in the commit message. Still,
this methods depend, e.g., on logging conventions, and the possibility to miss commits is
high. The other way around, it is possible to track responsible commits for an occurring
bug that is reported [128]. We address this by estimating the bug population through min-
ing and building heuristics on the emergence of bugs, e.g., that often changed modules are
more likely to be infected, or that developers who are not that experienced are more likely
to introduce new bugs.

Since the simulation aims to predict the overall quality of the software, the bug population
is fundamental for the approach. From the ITS, we can observe when an issue is reported

53 5.3. Instantiation of the STEPS Simulation Model

and when it is resolved. Thus, the lifespan of bugs can be easily calculated. We consider
the bug resolved when it is closed the last time, i.e., it can be reopened in the meantime.
Additionally, the ITS provides information on the severity of the bug. In Bugzilla, different
severities can occur which we summarize into minor, normal, and major bugs following the
method introduced in Section 4.2. The mined frequencies of the different types serve as
input for our simulation models.

5.3. Instantiation of the STEPS Simulation Model

In this section, we explain our ideas to fill the introduced STEPS simulation model with
knowledge. Since the model aims to answer basic questions regarding software evolution,
we concentrate on basic relationships and behavior which can be reflected within a simula-
tion. As the only active agents, the developers present a prominent role in the simulation.
Thus, the mining of their behavior is the main part of this work. Closely connected to their
work are the different network evolutions. The developers are directly responsible for all
structural changes in the networks such as commits and bugs introduced. Thus, developer
types and software networks are discussed in more detail now.

5.3.1. Developer Types

We already stressed the importance of respecting developer roles in Section 2.4. In our
study, the classification is made by evaluating commit and bugfix heuristics. For this, we
tested several boundary values for the separation of developer into the three types: core,
major, and minor. From the commit distribution gained by the mining process, the following
boundaries proved to be applicable: over 30% of all commits for core developers and over
2% of the commits for major developers, the rest is classified into minor developers. In
addition, we defined the role maintainer, who is active in coding as well in maintenance
work such as resolving bugs. Formally, a maintainer is a core developer or a major developer
with more than 15% of own commits as fixes. This role is quite specific and cannot be
detected in every project. This is due to the distribution of the work in the project, especially
in the open source context.

Another approach to classify developers into types is the popular onion model [100]. The
onion model assumes that 80% of the work is done by only 20% of the developers. Thus,
we calculated the 80% percentile of the number of commits made by each developer. To
illustrate the impact of the developer classification, we provide the following example: The
project K3b has 125 active developers in the observed time period. Using our described
approach, we identify one core, four major, and 120 minor developers. With the onion
model, we get 99 peripheral and 26 core developers.

Figure 5.2 shows all involved developers and their number of commits. The color in-
dicates the role identified. For the onion model, all developers below the 80% percentile

Instantiation of Simulation Models 54

onion model threshold

0

1000

2000

3000

4000

Developer

N
um

be
r

of
 C

om
m

its

role

core

major

minor

Figure 5.2.: Developer role classification own approach vs. onion model .

threshold are classified into peripheral and all developers with an equal or higher commit
rate are classified into core developers. Because of the huge amount of tiny developers with
only few commits this threshold is quite low with 13 commits. The blue line in Figure 5.2
indicates this threshold dividing the developers into core (right side of the line) and periph-
eral (left side of the line). Thus, for projects with many tiny contributors visible in the long
tail in Figure 5.2, the splitting is not suitable for the pursued approach.

The work the developers perform strongly depends on their role. Following the commit
strategy explained in Section 4.2.2, for each type the probabilities of file adds, updates, and
deletes have to be determined. This way, the geometric distribution depicting the project
growth can be specified. Besides, we use heuristics about bugfix probabilities of the dif-
ferent types. For this, we use the bugfix label introduced in Section 5.2 and identify the
amount bug fixing commits in relation to other commits.

55 5.3. Instantiation of the STEPS Simulation Model

5.3.2. Software Networks

In order to represent dependencies between the model entities, we use the networks in-
troduced in Section 4.2.1: the developer-entity-network, bug-entity-network, and change-
coupling network. For all three networks the knowledge can be retrieved from the VCS
and the ITS. We are especially interested in the characteristics, as well as the evolution
of these networks. This can shed light on software evolution phenomena like developer
turnover [59], collaboration [129], and failure prediction [83]. The understanding of such
observations is a main driver in our research. The graph exploration tool Gephi [130] facil-
itates this part of our approach. Beneficially, the tool also provides several network metrics.
In the following, we list the network metrics which are relevant for our work. We use the
definitions introduced in Chapter 4.2.1.

• node degree: Let Ex(G) = {(x,y) | y ∈ V (G)} be the subset of edges tied to node
x ∈ V (G), then the degree of v is defined as deg x = |Ex(G)|. Given this definition,
we are able to calculate the amount of dependencies of every node. The degree can
be interpreted as measurement for the involvement of the node in the network [131].
• weighted node degree: To take also the intensity of the ties into account, we con-

sider the weighted node degree, which sums up all weights w(e) of edges tied with
the node. Formally, the weighted node degree can be calculated by degweightedx =

∑e∈Ex(G) w(e).
• network modularity: The modularity mod(G) of a graph approximates how good the

graph can be divided into highly connected areas, i.e., communities.
• network diameter: Another structural property is the diameter dia(G), which is de-

fined as the maximum shortest path between a pair of nodes. This can be seen as an
indicator on the size as well as on the density of the network.

Real-world networks exhibit a characteristic structure [119], from which the term com-
munity arises. Communities can also be called clusters. The detection of those clusters is
a wide-spread task in graph analyses, especially in social network theory, e.g., identifying
groups and finding important persons within these groups. There exist some algorithms to
find communities in graphs [132]. Gephi uses a rather simple and fast method proposed by
Blondel et al. [133]. The algorithm tests the effects on the modularity for all possibilities
of nodes moving from the current to a neighbor community. Based on this knowledge, a
new network is built using the optimized community structure. In doing so, the network
can be divided into clusters using the modularity. In the change coupling graph, clusters
can represent semantically connected entities, e.g. GUI elements. Considering our devel-
oper networks, clusters could be a good indicator of working groups. The (weighted) node
degree can reveal insights on how active developers are and how strong they are involved
in the project. In case of the software entities in the change coupling graphs, important
modules can be detected. Besides, the modularity and the diameter helps us to understand
the structure of these graphs. For the maintainability of a software a low diameter is better,

Instantiation of Simulation Models 56

because the distances are shorter [3]. Evaluating the interplay of nodes, we consider the
average node degree, which provides a measurement for the granularity of the whole net-
work. Thus, highly connected graphs achieve a higher average degree. The same holds for
the average weighted degree providing an additional information on the magnitude.

For the simulation of software quality, we are interested in the relationship between struc-
tural changes and events like an increase of bugs introduced or changes in the team constel-
lation. Moreover, the effects of bug introducing and fixing on neighbor nodes, i.e., files, are
relevant for this part of our research.

For the concrete instantiation of the change coupling graph, we calculate the modularity-
based cluster size of the network. The network evolves based on this value and the general
derived evolution of these networks given the average degree distribution.

5.4. Instantiation of the DEVCON Simulation Model

Our second simulation model additionally allows for a variable activity of developers and
a more fine-grained description of their work in general. Since we also wanted to include
communication among developers, we incorporated mailing lists into our database. For
this, we use the MailboxMiner by Bettenburg et al. [20]. Thereby, we have collected all
information that we need for the analysis of developer contribution on the code level as well
as on a social interaction level.

Figure 5.3 visualizes our data processing cycle. Boxes represent processing steps while
ellipses indicate the output of the steps. First, the required data needs to be extracted and
collected for retrieving combined observation sequences (Section 5.4.1). Then, these ob-
servation sequences are classified into low, medium, and high developer involvement using
different classifiers (see Section 5.4.2). After using these sets for the HMM training of
individual developer models, it is finally possible to predict the most likely sequence of in-
volvement states that has produced the input observation sequence given the trained model
(Section 5.4.3). The trained models can be applied separately for prediction as well as inte-
grated in other applications like software process simulation as described in Section 5.4.4.

5.4.1. Mining of Developer Contribution Behavior

To derive a meaningful picture of developers’ contribution behavior we combine coding ac-
tivity in the number of monthly commits and bug fixes (from the VCS) with communication
activities visible in the number of bug comments to the ITS and posts in the ML. Commu-
nication behavior is a significant part of the daily work of developers, e.g., conferring about
how a bug should be fixed or the time plan and responsibilities for the next release. We
decide to use a state-based probabilistic model because we are not only interested in the
output produced by developers, but also in the underlying process that leads to the activities
which can be seen as states of project involvement controlling their work. Characterizing

57 5.4. Instantiation of the DEVCON Simulation Model

VCS

ITS

ML

Classification

HMM Training

commits

fixes

posts

comments
Manual

Combination

Observation
sequence

Observation
states

Labeled
observations

Figure 5.3.: Data collection and processing for the learning of observation states (adapted
from [12]).

developer behavior this way, can lead to a new method to summarize and predict developer
contribution behavior.

Using the information retrieved from the described data sources, we get a sequence of
four dimensional observations X = x1, ...,xn over the project duration in month n, where the
null vector is permissible. For example xi = (20,3,5,11) for 20 commits, 3 bug fixes, 5 bug
comments, and 11 ML posts performed by a developer in month i ∈ {1, ...,n}. For handling
multi dimensional observation spaces, it is convenient to reduce the size by mapping the
observations [134]. We use a classifier to solve this problem, that divides the observations
into low, medium, and high representatives. Then the contribution data is ready for the
actual training done by the Baum-Welch algorithm. With the trained model, we predict the
most likely sequence of observation states, i.e., developer involvement states.

Since we target to make statements that are true for groups of developers, we classify
the developers into roles based on their commit behavior. This step does not influence the
individual models, but it is valuable for drawing conclusions and comparing results as well
as for the construction of general contribution models.

Instantiation of Simulation Models 58

5.4.2. Classification

In order to train a HMM, we need labeled data for estimating the model parameters. Un-
fortunately, neither a corpus of labeled developer involvement data nor an already existing
algorithm or criteria for how to create such labels exist. We create an overall involvement
based on three different sub-types of project involvement: coding involvement, mailing list
involvement, and issue tracking involvement. We consider three states of involvement: low
involvement, medium involvement and high involvement. This means that a developer con-
tributes to a small, medium, or high amount to the project at a point in time with respect
to his single activities. Within this work, we use a semi-automated three step approach to
create the overall involvement from observed developer data. Step one is to create a manual
labeling for each sub-type, step two is to create a model for automated labeling of the re-
mainder of the data, and step three combines the three sub-involvement types, one for each
repository, into the overall involvement.

Manual labeling

Since there is no labeled data for developer contributions available, our first step is to create
a manual labeling of developer contributions. We require nine sets of manually labeled data:
one for each combination of the developer roles (core, major, minor) and the sub-types of
involvement (coding, mailing lists, issue tracking). For each set, we manually label twenty
monthly developer contributions. The manual labeling is expert-based and considers the
output of developers. For coding, the experts use the number of commits and number of
bugfixes as features, for mailing lists the number of ML posts, and for issue tracking the
number of ITS posts.

Machine learning for classification

The manually labeled data is the foundation for step two, i.e., the automation of the de-
veloper contribution labeling through machine learning. We consider three machine learn-
ing algorithms: a threshold learner, the k-Nearest Neighbor (KNN) algorithm, and random
forests.

The threshold learning approach was proposed by [135] for the determination of opti-
mal thresholds for software metrics. We selected this approach due to three reasons [12].
The first reason is interpretability for practitioners. Thresholds can be interpreted without
any knowledge of machine learning or the trained model. This kind of understandability
is important for the acceptance of models by practitioners. Moreover, this facilitates the
interpretation by experts to gain further insights. The second reason is the simplicity of
the approach. If such a simple approach already yields a good model, there is no reason to
consider more complex models, e.g., support vector machines. The third reason is the that
the intuition behind thresholds matches well with how involvement can be estimated. For

59 5.4. Instantiation of the DEVCON Simulation Model

example, the number of commits a developer performs is a logical estimator for the coding
activity.

The drawback of the threshold learning approach is that [135] proposed a rectangle based
learning algorithm. Basically, Herbold et al. suggest to learn an axis aligned rectangle that
separates two classes and use the lower bound of the rectangle as threshold. This kind
of algorithm can only deal with two-class problems, whereas we consider a three class
problem in this thesis (low, medium, high). To resolve this, we use the one-vs-followers
approach for multi-class learning. Basically, this means that we apply the rectangle learning
twice: 1) for learning a threshold that separates the low involvement from the medium
and high involvement; and 2) for learning a threshold that separates the low and medium
involvement from the high involvement. Using both thresholds together, we get can separate
the contribution behavior into the three classes.

As comparison to the threshold approach, we use the KNN algorithm. We use three dif-
ferent values for the neighbor hood size: k ∈ {1,3,5}. Our reason for using KNN is that the
algorithm is almost as simple as the threshold approach. Especially with k = 1, we simply
select the most similar developer we can find and assign the same label. Moreover, the
intuition of selecting the most similar developer to determine the involvement also makes
sense from an expert-oriented perspective. Finally, KNN handles the multi-class problem
naturally and does not require a workaround like the one-vs-follower approach [136]. With
k = 3 and k = 5 the KNN loses the advantage of the easy interpretability, as the label be-
comes a mean value over a larger neighborhood. However, the general quality of the label
should improve due to this. Hence, the additional values for k are used to estimate the
impact of using larger neighborhoods.

Finally, we use random forests. The reasons for this is that random forest [137] are one
of the most powerful approaches for classification problems [138]. Our rational for using
random forests is that we want to compare the two simple algorithms based on thresholds
and KNN to one powerful machine learning algorithm. This way, we want to determine
if the simple approaches suffice, or if a more powerful and less interpretable classification
technique is required. We selected random forest over other powerful approaches like, e.g.,
support vector machines [139], because they handle the multi-class problem naturally.

Final label assignment

To gain the overall label of a four dimensional observation, we follow the approach depicted
in Figure 5.4. Different contribution activities are classified one by one into low, medium,
or high, where commits and fixes together represent the code activities (VCS) besides bug
activity (ITS), and ML activity using the approach discussed above. This results in three
classification values for every developer and every month. After this, we assign the overall
classification value using a scored majority vote over the three sub-involvement types. A
low contribution on one of sub-types gives one point, medium contribution two points, and
high contribution three points. If the overall score is less than 5, the overall involvement is

Instantiation of Simulation Models 60

x1

x2

xn

...

Commits/fixes ML Posts Bug Comments label

low

low low

medium medium

medium medium high

medium

... ...

...

medium

high

low

by classifier

1 2 2 5

< 5: low
5-6: medium
> 6: high

Figure 5.4.: Classification of observations [12].

low, if the score is 5 or 6, the overall involvement is medium, and if the score is larger than
six the overall involvement is high.

Figure 5.4 depicts the example of an observed developer with low coding involvement,
medium ML involvement, and medium ITS involvement (x1). Thus, we get one point for
coding, two points each for ML and ITS involvement, i.e., five points overall. Thus, the
overall involvement of the observed developers’ contribution is medium.

5.4.3. HMMs for Developer Contribution Behavior

HMMs are appropriate for labeling observational sequences. The dynamics that can be
observed in software development can be presented by the changeover between the different
states and thus, poses a more realistic model of developers’ contributions than, e.g., an
average model. Since we make no additional conditional assumptions on the model, there
is no need for a more complex model like Conditional Random Fields (CRFs).

The problem where HMMs are used to detect the most likely sequence of hidden states
given a sequence of observations can be regarded as an unsupervised learning problem. We
aim to derive the hidden structure behind unlabeled data. For this, the recursive Baum-
Welch algorithm operates for the training of the HMM.

For the implementation we use the mhsmm package for R [140] that facilitates the pa-
rameter estimation process and provides predictions. Following the definitions given in
Section 2.5, we have Y = {y1,y2,y3} = {low,medium,high} (N = 3). The initial obser-
vation space consists of vectors xt ∈ R4, t = 1, ...,M where M is the number of distinct
observations. As stated in Section 5.4.1, we reduce the multiple observation space using
classification. Thereby, the observations X = x1, ...,xn where n is the project duration in
months, are classified into low, medium, and high involvement with 20 manually classified
observations. Based on this allocation three training sets are defined (one for each state),

61 5.4. Instantiation of the DEVCON Simulation Model

and thus the parameters of the multivariate normal emission distributions describing the out-
put probabilities can be derived. This is done in the HMM training for each developer under
investigation individually. Also the parameters for the transition matrices A are estimated
step by step. The matrices comprise the probabilities for the developer on how likely they
change the states from one to another. The same way, the initial distribution π is calculated.
As starting point for the estimation, averages of the observations are taken into account. For
the specification of the HMM, we simulate data from the retrieved distribution and fit the
individual model with this. After this step, the HMM λ = (A,B,π) is completely defined.
It is possible, that no HMM can be trained, e.g., if the observation sequence is too sparse.
The model also respects two state models, i.e., developers never reach the highest state. In
addition, also trivial models with only one state are possible, but this is very rare.

The last step involves the detection of the most likely sequence of hidden states that
generates X = x1, ...,xn. For this, the Viterbi algorithm is used. For each observation and
every point in time the corresponding state is calculated.

General Model

We combine the individual, developer-specific models that can be derived by building the
average for each developer role: core, major, and minor. This way, we can draw generalized
conclusions valid for groups of developers. Moreover, this kind of model can be used vice
versa, e.g., for the prediction of developer involvement and workload in the project based
on the role. One major benefit of a general, role-specific model is the handling of models
where the developer-specific calculation failed, thus it is appropriate for every developer.

The creation of the model treats every model parameter of λ = (A,B,π) separately. The
initial distribution π as well as the transition matrices A are combined building the entity-
wise average.

The emission distributions get combined with linear transformations. Let n be the number
of developer models available for role i ∈ {core,ma jor,minor}. Besides, let T = diag(1

n)
the transformation matrix. Then, we can compute the mean µi = ∑

n
m=1 T · µm and the co-

variances Σi = ∑
n
m=1 T · Σm · T t . This also results in a multivariate Gaussian [141]. The

great advantage of the general model is the applicability for all developers. The resulting
models are also practically interpretable, since they provide evidence on how developers of
the same role work and communicate. For our analysis, we compare the individual with
the general models and test the impact of different classifiers. All models are evaluated in
our case studies. The general models are evaluated in our applications: the prediction of
the activity of developers and the incorporation into a simulation model for software quality
assurance.

Instantiation of Simulation Models 62

5.4.4. Simulation of Software Processes with a Contribution Phases Model

For the DEVCON simulation model we concentrate on the new introduced states of the de-
veloper roles and how they are responsible for the contribution of one developer role. Dur-
ing the simulation, each developer is always in one of the following states: low, medium,
or high. The state stands for the involvement of the developer and thus, the resulting work-
load (drawn from the normal distribution) is based on her role and involvement state. For
example, a core developer in a medium state usually performs more commits than a minor
developer in a high state. The state is recomputed every month, based on the transition ma-
trix of the developer role. Since one simulation round represents one day, the computation
is executed every 30th round. After the state for the current month is computed, the number
of commits and bug fixes, i.e., the emissions, has to be determined. This number is normal
distributed with different parameters for each of the three states. The communication activ-
ity is currently not included in the simulation. The contribution of a developer is represented
by the number of commits and bug fixes she performs monthly. This model is more realistic
than the average commit behavior.

6. Case Studies

We designed three case studies aimed to answer our research questions and validate our
approach. These case studies are described in detail in the subsequent sections. For every
study, the setup, the results and a discussion of the results are reported.

6.1. Overall Design and Objectives

Generally, the case studies performed are designed to answer the research questions posed
in Section 1.2 with the superordinate research questions RQ 1 and RQ 2 in the back of our
mind. The studies have some steps in common that build the methodological foundation
for the tended analyses. Since all our studies rely on real data, the data has to be selected,
extracted, collected, and processed to be suitable for investigation. How this is done in
principle, is described in Section 5.2. Of course, the data has to be treated differently
according to the purpose, e.g., for the application of machine learning algorithms the data
has to be in a processable format.

As a starting point, we always build a software evolution model which sets all entities
needed for answering the research question in relation. Then, the parameters for the model
are estimated using mining techniques and afterwards incorporated into the model. This
way the software evolution model is instantiated, but may be adapted after running the
simulation, if the results are unfitting. This has to be done very careful because the causes
for this are versatile: an error in the implementation, a wrong model assumption, some
mistake in the analysis, or some simulation side effects. Thus, verification has to take part
already in the model building process as well as in both the implementation and analysis.
The case study presented first instantiates the simulation model as described in Section 5.3
and aims to answer RQ 1.1, RQ 1.2, and partly RQ 1.3. This model reflects basic software
evolution trends, e.g., commit behavior, bug occurrences, system growth, and the evolution
of software networks.

The second case study is not mainly concerned with the estimation of simulation param-
eters, but instead it validates our approach of a dynamic developer contribution model. It
reuses the main parts of the STEPS simulation model and extends it by phases of develop-
ers allowing them to switch between different degrees of project involvement. The model is
instantiated like described in Section 5.4. Here, a big part of the work is of methodological
nature. Overall, the case study is directed to the answer of RQ 2.1, RQ 2.2, RQ 2.3, and
RQ 2.4 as well as altogether as answer to RQ 2.

Case Studies 64

The third case study transfers the worked out approach into the context of project activ-
ity. Basically, the study focuses on finding a model that distinguishes between active and
inactive software projects. The main challenge present is to determine how much activity
can still be considered as inactive. The HMM takes this problem into account and produces
representatives of active and inactive projects. We also test the approach in praxis perform-
ing a crossovers study with students as participant. Overall, the case study is designed to
answer RQ 2.5.

6.2. Case Study 1: Feasibility of Simulation of Software
Evolution

Within this case study, the model introduced in Section 4.2 (Figure 4.2) is instantiated with
data from a real software project and validated by comparing empirical with simulated re-
sults as well as the transfer of the model to another software project context similar in size
and duration.

6.2.1. Setup

Overall, the study is aimed to investigate whether an Agent-based simulation model of
software evolution yields realistic results and what size of the parameter space is sufficient.
In addition, it tempts to set a balance between the parameter space and established model
assumptions. For the basic initialization, we selected K3b 7 as reference model. This project
has been chosen for various reasons: first, it has a sufficient long history with over ten years
of development. Besides, the design of the model requires the behavior of different types of
developers active in the project. In K3b, all types of developers could be identified. Since
we also need bug information about the project, it was also important that an ITS in addition
to the VCS is available. For validation, the project Log4j 8 was chosen, because we were
looking for a project which has similar characteristics as K3b, but diverges in at least one
point to test the transferability of the simulation model. In Table 6.1, the attributes of the
two projects are listed. Both possess over a decade of change history and are similar in
the size measured in the maximum number of files, although the amount for Log4j seems
higher at first sight which is caused by a more unsteady growth of the system. The most
prominent difference lies in number of developers involved in the project and, thus, in the
distribution of work. In K3b, 124 developers were active, whereas for Log4j only 20 have
been identified in the examined timespan.

For the actual instantiation, we distinguish between parameters gained by the mining
process and behavior that is implemented according to our model assumptions described

7https://userbase.kde.org/K3b
8https://logging.apache.org/log4j/2.x/

65 6.2. Case Study 1: Feasibility of Simulation of Software Evolution

Project Years #Developers #Commits Max(Files)

K3b 11 124 5605 1308

Log4j 14 20 3428 1999

Table 6.1.: Attributes of selected projects (adapted from [4]).

in Section 4.2. This includes the commit, file selection and bug fixing strategies (Sec-
tion 4.2.2), as well as the computation of the quality label (Section 4.4) and the stepwise
construction of the change coupling network based on the initial cluster size (Section 5.3.2).

The remaining parameters to set depend on the project properties. For this, we retrieve
knowledge about the number of developers as well as their inhibited role, their probabilities
of the different types of software changes, the assumed duration of the project, and the
expected size in number of files. How these are retrieved and validated, is described in the
following sections.

6.2.2. Evaluation Criteria

Generally, our approach is two-folded, since it uses software mining for the estimation of
parameters and investigation of software evolution as well as simulation for the prediction
of software evolution trends enriched with knowledge form the mining process. Thus, the
validation is also two-folded, whereat the simulation results naturally depends on the good-
ness of the mining process.

In this case study, we perform a lot of basic calculations which do not require a sophis-
ticated validation. Nevertheless, we cross check each retrieved value carefully. For the
validation of regression models for the average growth trends including the coupling degree
evolution, we use the adjusted R-squared value (e.g., [142]).

Comparable to the R-squared value, the adjusted R-squared value indicates how well
the regression fits the data. The main difference of the two measures lies in the following
characteristic: Whereas the regular R-squared value increases with every term added to the
model. Sometimes, this can lead to overfitting. In contrast, the adjusted R-squared value
takes this into account and does only increase if the model really gets better with additional
terms. Thus, for higher order models it is a good choice to use the adjusted R-squared value
for assessing the goodness of fit of a regression model.

Besides from testing the simulation framework itself, we validate the simulation results
by comparing metrics observed in real software projects with metric values produced by the
simulation which represents a common evaluation method in simulation studies [125].

Case Studies 66

6.2.3. Results

In this section, we present the results achieved within this case study. This includes a prob-
abilistic model of software changes, a definition of developer behavior, heuristics about bug
occurrences, as well as a representation of relations between software entities as networks,
i.e., developer-file networks and change coupling networks.

Software changes

The behavior of developers relates directly to the growth of the software, since it results
from the addition, deletions, and modification of files performed by the developers. Since
the file growth is modeled as the geometric distribution P(action) = P(X = k) = (1− p)k p
with p the probability for the file creations, deletions, and modifications and k the trial as
motivated in Section 4.2.2, the first thing to derive are the probabilities p for each developer
type. Here, one of the classified major developers is treated as maintainer due to the large
portion of maintenance work in the project. Maintenance commits are identified using the
introduced bugfix label. The application of these manually adapted heuristics led to an
identification of one core developer, one maintainer, three major developers, and 120 minor
developers.

As a next step, the above stated change probabilities p are calculated for populating the
geometric distribution. These probabilities arise from the different types of file changes
belonging to each commit, e.g, in a certain commit three files may be added, two more
modified, and one deleted. Summarizing all additions, modifications, and deletions of all
commits belonging to a developer type and building the average leads us to the desired
probabilities. Since the mean of the used version of the geometric distribution is defined as
E(X) = 1

p , it directly implies p = 1
E(X) . Hence, calculating the mean of the additions, dele-

tions, and modifications, respectively, per commit leads directly to the desired probability p
and, thus, to the population of the geometric distribution for each file change action.

Developer #Commits #Fixes Add Update Delete

Core 3397 874 0.6 5.5 0.4

Maintainer 509 152 0.9 3.5 0.3

Major 1353 362 0.2 5.2 0.4

Minor 346 127 0.1 2.0 0.04

Table 6.2.: Developers average commit behavior in K3b (adapted from [4]).
Add, update, and delete values are averages per commit.

The results are shown in Table 6.2. There, the overall amount of commits by the differ-
ent types are presented as well as the amount of comprised bugfix commits. Besides, the

67 6.2. Case Study 1: Feasibility of Simulation of Software Evolution

(a) Empirical (b) Simulated

Figure 6.1.: Empirical and simulated growth of K3b [10].

(a) Empirical (b) Simulated

Figure 6.2.: Empirical and simulated growth of Log4j.

change probabilities for the different file actions per commit are shown. Taking the average
commit behavior of developers adjusted with the change probabilities, is already sufficient
to perform basic simulation runs irrespective of the relationships between software entities.
The work shown in the table is distributed among one the identified portion of the core
developer, the maintainer, the major developers, and the minor developers.

Note that all simulation results produced for Log4j, origin from the instantiation of K3b
with just a few project-specific parameters adapted, i.e., we adjust the expected size, the
number of simulation rounds (days of development), as well as the team constellation (see
Table 6.2). In doing so, the growth in number of files, the general effort spent in commits,
and the average coupling degree could be mirrored. In the case of Log4j, we also have one
core developer and one maintainer, but five major developers and 13 minor developers. The

Case Studies 68

expected size can be estimated from the actual file growth (Figure 6.2a).
In Figure 6.1a the actual file evolution of K3b can be retraced which displays a sub-linear

growth rate. This conforms with the predominant file growth observed in the literature [76].
To assess the closeness of the simulation to reality, we compare the empirical growth trend
with the one produced by the basic simulation depicted in Figure 6.1b. Note that the scale
differs slightly since the two figures are generated from different tools, i.e., the latter is a
figure directly produced by the simulation tool. The comparison shows that the simulation
is able to reproduce the basic growth rate in number of files. In contrast, the growth of
Log4j is depicted in Figure 6.2a. This illustrates an example for an unsteady growth which
can be due to switches of branches, e.g., for a new (stable) release, integration of external
functionalities, or major refactorings. In the case of Log4j, imports from CVS to SVN are
responsible for a big portion of the unsteadiness.

Bug occurrence

For the creation of bugs, a rather simple method is used: From the ITS, heuristics about the
bug occurrence rate as well as the lifetime for bugs are retrieved. In doing so, we distin-
guish between major (including critical and crash) bugs, normal bugs, and minor (including
wishlist) bugs.

The mined rates can be viewed in Figures 6.3a and 6.3b. It is noticeable that whereas
the bug reports occur steadily over the project duration, the closing rates seem to cumulate
at certain points in time. We explain this phenomenon by the closeness of the high rates of
bugs closed to the dates of major releases. In the beginning of 2010, K3b 1.0 was released
and in spring 2010 K3b 2.0 was released both after high closing rates. This is due to the fact
that a lot of bug fixing is done before a release whereas bug reports – often from users of
the software project – come in every time. For Log4j, the bug reports and closing rates are
illustrated in Figures 6.4a and 6.4b, respectively. The observed trends are similar to K3b:
Bugs are reported steadily and often closed before a release, e.g., in May 2002 log4j 1.2
was released. For the purpose of simulation, we build averages on these rates and distribute
the bugs among the active developers introduced when they commit. The later bug fixes are
performed based on the experience and role of developers as declared in Section 4.2.2.

Software networks

As a next step, we also consider relationships between the different software entities in-
volved expressed by networks (see Section 4.2.1). The first network we investigate reflects
the work of developers on the files, i.e., the developer-entity network. For tracing the evolu-
tion of this network, we mined yearly networks mirroring the current state of collaboration.
Developers, who have a short path to reach each other, collaborate to a higher degree than
those whose distances are longer.

69 6.2. Case Study 1: Feasibility of Simulation of Software Evolution

(a) Reported (b) Closed

Figure 6.3.: Bug report and close rates in K3b.

(a) Reported (b) Closed

Figure 6.4.: Bug report and close rates in Log4j.

The yearly developer-file networks are shown in Figure 6.5. There, the red colored node
represents the identified core developer of K3b. It can be seen, that the central status of this
developer increases from year to year most dominating in 2006. Then, another developer
(blue node on the left side) spent much work in the project and inherits the central role more
and more. We were able to identify this developer as the maintainer of the project. This
so-called turnover in software projects is a common observation in the evolution of OSS
projects [143, 59, 144].

This observation can be supported by analyzing the evolution of the modularity value for
the yearly networks which is shown in Figure 6.6. The modularity (see Section 5.3.2) gives
information on the appropriateness of separation into connected entities, i.e., communities.
Therefore, a low value indicates that the work is not balanced, e.g., there is one predomi-
nant developer or, on the other hand, that developers work is distributed among numerous
software entities, and, hence, the project may lack specialists. Thus, from a software en-
gineering perspective, a medium to moderately high modularity is desired as it implies the
most balanced work. In Figure 6.6, it can be seen that with the predominance of the core

Case Studies 70

Figure 6.5.: Yearly Developer-file Networks for K3b [10].

0.0

0.1

0.2

0.3

0.4

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
year

m
od

ul
ar

ity

Figure 6.6.: Modularity of Developer-file Networks.

developer in 2006, we also have a very low modularity. The same holds true for the year
2012, when the maintainer takes over.

Similarly, we analyzed the evolution of the change coupling networks for modeling re-
lationships between software entities. These graphs also grow directly from the changes
recorded in the VCS. Files, that are changed together at least twice, are considered to be
related and, thus linked in the network. Every new created file is introduced as node. We
observe the evolution of file dependencies by building yearly change coupling networks.
As a first analysis step, we visualize the yearly networks with Gephi and calculate different
network metrics (see Section 5.3.2) for G the change coupling graph with V (G) the files
and E(G) the change coupling links: average(deg(x)), average(degweighted(x)), m(G), and
dia(G), for x ∈V (G).

A selection of the yearly coupling graphs is shown in Figure 6.7. Besides, the corre-
sponding values for the modularity as well as the average degree are reported. Comparing
the graphs for K3b and Log4j, it is noticeable that the general growth for K3b converges

71 6.2. Case Study 1: Feasibility of Simulation of Software Evolution

Figure 6.7.: File dependency graphs of K3b and Log4j including network modularity m(G)
and d := average(deg(x)) [4].

Figure 6.8.: Diameter dia(G) over the years for selected projects [4].

more dense than for Log4j. The color indicates the community based on the modularity fac-
tor and identifies semantically connected entities, e.g., certain sets of tests or GUI elements.
For both projects, the number of clusters increases faster in the beginning until (nearly)
stagnating. As the average degree indicates how many relations a file has in average, our
assumption is that it rises (slightly) together with the system growth. From the values in Fig-
ure 6.7 this assumptions gets confirmed apart from the change coupling network of Log4j
in 2012, where d slightly decreases. The overall amount of dependencies is higher for K3b
since the network evolves very dense and can not be fragmented into strong communities
very well. This observation is supported by the modularity values m. In contrast, Log4j
exhibits a clearer community structure. Although K3b includes a fewer number of files, it
has higher values for d, because the higher amount of loosely connected files lower d in the
case of Log4j.

Supportingly, we derive the diameter dia(G) for each years’ network shown in Figure 6.8.
There, the values for Log4j are also higher than for K3b, indicating hat the paths from one
node to another are longer.

Case Studies 72

(a) K3b (b) Log4j

Figure 6.9.: Average degree evolution for selected projects [4].

For the general evolution trend of the average number of dependencies (degree) per file,
we fit a regression curve to the empirically observed curve over the years. Hereby, we also
observe a sub-linear growth.

In Figure 6.9a The actual values for K3b are visualized as the red line in the graph whereas
the fitted line is presented as the black line. The best fit is achieved using a second order
model with an adjusted R-squared value of 0.97. The same analysis applied to Log4j results
in similar trend even though the adjusted R-squared value is lower (0.67) due to the unsteady
beginning and also end of the empirical coupling curve which can be retraced in Figure 6.9b.

Besides, the simulated average coupling degree is shown in Figures 6.9a and 6.9b. In the
simulation, Log4j reaches a better approximation.

The construction of the change coupling network under simulation uses the number of
communities derived by the modularity as well as the assumption that a developer works
more often on files that she knows. Based on the change probabilities the network estab-
lishes strong dependencies among the communities. However, the simulation permits a
more abstract view of software evolution focusing on the structural properties of the net-
work.

6.2.4. Discussion

Predominantly, this case study is designed to investigate which aspects of software evolution
can be modeled from an Agent-based perspective and, thus, produce reasonable results. In
addition, possible restrictions and challenges are expected to be exposed.

To model software evolution from the starting point of agents, we take the entities that
affect software evolution into account as agents in our model: software entities, bugs, and
developers. Since the developers influence the other model entities directly, they present
the only active agents. Hence, for a convenient model of software evolution, the work

73 6.3. Case Study 2: Dynamic Developer Contribution Model

of developers as well as the impact of their work on the software entities including bug
introduction has to be described. Essentially, the model which is introduced in Section 4.2
and concretely instantiated in this case study presents the answer to RQ 1.1.

To parametrize the identified STEPS model, we make use of software mining. In this
case study, we showed the feasibility of this approach by the application to two open source
software projects. In Section 5.3, we already presented the strategies to estimate these
parameters which were put into practice within this case study. Together, the strategies
proposed and exemplified this way can answer RQ 1.2, i.e., we can estimate parameters
suitable for Agent-based simulation by mining software repositories.

RQ 1.3 focuses on the identification of software evolution trends that can be simulated.
Since this question is stated quite broadly, an all-embracing answer to this is elusive. But,
through our case studies we can definitely state what kind of trends can be mirrored by
the simulation and also what is more challenging to reproduce. Within this case study,
we illustrated that the following trends can be mirrored: (sub-linear) file growth, average
developer contribution rates, average bug introducing rates for different kinds of bugs, and
the evolution of change coupling networks. However, the work also raises some challenges
in simulating software evolution.

Among these challenges is the observation that, although the project growth in number of
files can be controlled by the effort spent by developers, the simulation lacks of the ability
to mirror very unsteady growth trends like it is shown in Figure 6.2a.

Moreover, in the STEPS simulation model and, thus, in this case study, we use the av-
erage commit behavior of developers. In doing so, we are able to reproduce the number
of commits performed. Still, it is a well-known phenomenon that developers have different
levels of activity in certain points in time, especially in OSS projects. We concentrate on
this challenge in detail in case study 2.

Finally, the bug assignment to affected entities in this case study is based on a random-
ized method which can still display the occurrences. To mitigate the randomness, possible
solutions include bug introduction strategies based on certain commits [91].

6.3. Case Study 2: Dynamic Developer Contribution Model

The presented case study is designed to instantiate and evaluate the DEVCON simulation
model introduced in Section 4.3. The model gets instantiated with the average dynamically
adapted behavior of developers of eight software projects and evaluated in the simulation
applied to a subset of six projects.

6.3.1. Setup

The main goal of the performed studies is to support our hypothesis that we can describe
contribution behavior using HMMs. Moreover, we lay the foundations for our subsequent

Case Studies 74

applications. In this extension of the case study presented in [12], we use eight open source
software projects: Amarok, Ant, Egit, K3b, Konsole, Log4j, Poi, and Rekonq. The projects
are selected based on different properties: the availability of developer information from all
three data sources, the quantity of developers matching our role definition, and a minimum
of three years continuous development. Table 6.3 shows the properties for the chosen soft-
ware projects. It is notable, that tiny contributers are omitted for the HMM training, since
for them the observation space is too small. Thus, the presented amount of minor developers
can deviate.

Project Commits Developers Duration
(core|ma jor|minor) in months

Amarok 28043 (1|13|14) 104
Konsole 5746 (1|5|9) 190
Log4j 3498 (2|4|9) 160
Ant 15220 (1|5|14) 175
Poi 6095 (1|5|10) 152
Egit 3219 (0|4|7) 59

Rekonq 2606 (1|3|6) 36
K3b 6217 (1|4|4) 126

Table 6.3.: Overview of projects.

For all of the listed developers in the table, we train a HMM individually. Due to the
nature of HMMs, this is not possible if the observation sequence is too sparse. Therefore,
we are interested in examining how similar the contribution models for the same developer
role are. If the observed similarity is high, then the creation of general models as an average
over all individual models of a certain role can be helpful. This enables the prediction of
state sequences for every developer. Moreover, we are interested in the applicability of the
resulting models in the context of other software projects, e.g., prediction of developers’
workload, or the simulation of software phases.

We follow the process introduced in Section 5.4. The results of the different steps as well
as our method to evaluate them is presented in the following. Moreover, we discuss our
findings.

6.3.2. Evaluation Criteria

We aim to derive a dynamic contribution model for software developers based on HMMs.
Therefore, we build individual models for each developer. To know, if the resulting models
are appropriate we measure the accuracy of reproducing real contribution behavior.

We label our observation ourselves by classification as there exist no ground truth for the
right label. Thus, for the measurement of the accuracy, we count the number of differences

75 6.3. Case Study 2: Dynamic Developer Contribution Model

between classified instances and predicted instances by the HMM. Let Sclassi the state given
by the classifier and Si the HMM predicted state. Then we define:

mr :=
1
n ∑

i
1(Si 6= Sclassi)

with i ∈ (1, ...,n) the number of the project duration in months, i.e., the number of states
produced, and 1 the indicator function counting the occurrence of mismatches.

For calculating the pairwise correlations between contribution models for each developer
role we use Pearson’s product-moment correlation [145]. With this, we also check the
correlation between the different observed activities of developers, i.e., commits, bug fixes,
bug comments, and mailing list posts.

The evaluation of the general model simply applied and used as stand-alone tool happens
implicitly, since our developer general models are validated separately in the following
section.

The validation and verification of agent-based simulation models is a complex task. Fol-
lowing [146], the validation proceeds on three different layers: the conceptual model valida-
tion, the computational model verification, and the operational validation. Data validation
may be considered additionally, but the data used for model building origins from open
source software repositories and this establishes adequateness for modeling software evo-
lution phenomena naturally. The validation of the conceptual model requires ensuring that
assumptions made for the model creation are correct. In this study, the conceptual model
presents the developer contribution models and thus, is validated using mr and correlation
analyses. The computational verification is done internally by testing. The most extensive
step in our work is the operational validation which deals with evaluating the models output
behavior. Since we are mostly interested in a software quality trend analysis [112], we com-
pare the trends of simulated results with empirical observations to determine whether the
simulation model produces sufficient results. The simulation used there has also been vali-
dated itself. We also use an average over several simulation runs for handling the stochastic
variability.

6.3.3. Results

In the following we present our results for describing developers’ contribution behavior with
HMMs according to a given role classification. We first sketch our findings on individual
models and the general applicability of HMMs for that purpose and, afterwards, generalize
the results for general contribution models which can be used in practice.

Individual Developer Models

Starting with the extracted raw data consisting of the monthly commits, fixes, bug com-
ments, and ML posts, the observations first need to be combined for every developer. This

Case Studies 76

(a) Core developer (b) Core developer predicted

(c) Major developer (d) Major developer predicted

(e) Minor developer (f) Minor developer predicted

Figure 6.10.: Developer contribution patterns and resulting involvement states of Ant [12].

is done using regular expressions on the names and mail aliases followed by a manual vali-
dation and merge of remaining developers.

Naturally the observation space of developer activities is very big. Thus, we narrow it
down by classifying it into low, medium, and high activity. For this, commits and fixes are
considered together as commit activity, whereas bug comments are seen as bug activity, and
the ML posts are considered as ML activity. For the classification, we use basically three
different classifiers.

77 6.3. Case Study 2: Dynamic Developer Contribution Model

For each classifier, we use the same set of 20 manually classified observations for a
project. For the threshold classification, there is the advantage that it produces not only the
labels, but also the threshold, which can easily be interpreted as an indicator for the overall
work and communication in the project. For an overview of the thresholds for six of the
investigated projects see [12]. KNN selects the most similar developer, whereas Random
Forest selects the most voted label from the decision trees learned from the input behavior.
Then, an overall score is calculated for each observation as described in Section 5.4.2. All
of these methods result in a labeled observation sequence for each developer.

Now, all preprocessing is done and the actual HMM training takes place. The output of
the training combines the different activity layers and puts the result into one state express-
ing the involvement of the developer to each point in time. This state sequence is predicted
using the individually trained HMM λ j = (A j,B j,π j) for developer j. Developers tend to
start with low involvement, i.e., the initial probability distribution converges to π = (1,0,0).
The resulting transition matrices and emission distributions are analyzed in more detail in
the next section.

Developer contributions together with their predicted state sequences produced via the
Viterbi algorithm are depicted in Figures 6.10a-6.10f. On the left side (Figures 6.10a, 6.10c,
6.10e) the monthly activities for one core, one major, and one minor developer of Ant are
presented, whereas on the right side (Figures 6.10b, 6.10d, 6.10f) the according involvement
states are shown. Figure 6.10b represents a good example of a state pattern for core devel-
opers and Figure 6.10d presents a basic pattern for major developers. Besides, Figure 6.10f
shows an example of a minor developer who never reaches high involvement. For minor
developers, this case occurs approximately for half of the contributors.

On the whole, we were successful in training an individual HMM for 42 of 125 developers
included in our case study with the thresholder and random forest. For the KNN, we could
create 41 models, with k = 3 we reached 44 models, and for k = 5, 48 contribution models
were built successfully. In the other cases, the observation space was too sparse. To evaluate
the goodness of fit of the derived models, we calculated the misclassification rate mr as
defined in Section 6.3.2 that measures the distance between the classified states from the
raw observation data and the predicted states using HMMs.

Figure 6.11 shows the project-wise misclassification rate of all individual HMMs with
each classifier used. There we observed that, generally, all classifiers perform well with
few outliers. For some projects no or only one developer model could be built (poi with
thresholds, K3b with all classifiers). The best results were achieved for Konsole and Amarok
with almost all values lower than 0.1. The average mr for every classifier and every project
can be retraced in Table 6.4 with the best result for KNN3 having an average discrepancy
of 8.8%.

Case Studies 78

Figure 6.11.: Misclassification rate for individual contribution models.

Project Thresholds KNN KNN3 KNN5 Random Forest
Amarok 0.089 0.077 0.066 0.062 0.096

Ant 0.085 0.110 0.105 0.094 0.096
Egit 0.172 0.073 0.079 0.063 0.113
K3b 0.076 0.076 0.023 – 0.038

Konsole 0.070 0.077 0.068 0.052 0.072
Log4j 0.080 0.292 0.060 0.060 0.403

Poi – 0.132 0.236 0.249 0.125
Rekonq 0.070 0.101 0.140 0.109 0.101
average 0.097 0.108 0.100 0.088 0.127

Table 6.4.: Average mr for individual models.

General Developer Models

Knowing that we can model developers contribution behavior with HMMs, we are interested
in examining the similarity between the retrieved models according to our role definition. If
the observed similarity is high we are confident to build general models as an average per
role to use these models later for prediction purposes.

The dynamics of developers during open source software development become visible
within the transition matrices of the different developers. These matrices indicate how likely
the contributors switch between low, medium, and high involvement. Before we build gen-
eral models, we calculate the correlation between the transitions and compare the emission
distributions.

For transitions, Table 6.5 showcases the project-wise correlations for major models using
KNN5 (most individual models available). For K3b, no individual major models could be
retrieved. In the table, it can be seen that the transitions are highly correlated. The results
for core developers range from 0.979 to 0.999 and for minor developers the values spread
between 0.992 and 0.999. With other classifiers it behaves nearly the same unless for minor

79 6.3. Case Study 2: Dynamic Developer Contribution Model

Figure 6.12.: Means µk of individual core models.

models, low negative correlation can occur. We believe this to be due to the fact that minor
models are the most diverse under the investigated models and can depend strongly on the
project and even on particular developers. Moreover, some models only switch between
low and medium and, thus, never reach the high state. We observed the same considering
the entity-wise standard deviations. All correlations are reported in Appendix A.

The emissions present the workload of developers. The distribution models how likely
the commit, bug, and ML activities occur in the different states.

In contrast to the transitions, we observed a great diversity in the emissions distribu-
tions of individual developer contribution models. This means, that although the underlying
dynamics are similar for the same developer role, the workload is hard to characterize gen-
erally. The amount of work and communication activity may depend much on the personal
background, experience, and sociality of individual contributors.

Figure 6.12 illustrates this phenomenon. There, the mean values µk with k =
{low,medium,high} for all individual core models can be retraced. Generally, for low
involvement, there is no great diversity. As well, the expected values for bug fixes do not
spread that much. The highest variation occurs for bug comments in a high involvement

Project Amarok Ant Egit Konsole Log4j Poi Rekonq
Amarok – 0.991 0.994 0.993 0.982 0.988 0.982

Ant 0.991 – 0.996 0.968 0.950 0.998 0.949
Egit 0.994 0.996 – 0.978 0.961 0.994 0.960

Konsole 0.993 0.968 0.978 – 0.997 0.965 0.997
Log4j 0.982 0.950 0.961 0.997 – 0.946 0.999

Poi 0.988 0.998 0.994 0.965 0.946 – 0.945
Rekonq 0.982 0.949 0.960 0.997 0.999 0.945 –

Table 6.5.: Project-wise correlations of transition matrices of major developers.

Case Studies 80

state with a difference of over 60 comments. However, we believe that this divergence can
be comprised by a general distribution as an average over the individual models of a role.
Thus, we built general models and compare the performance of individual and universal
models.

Following the process described in Section 5.4.3, we derived three general HMMs
λi = (Ai,Bi,πi) with i ∈ {core,ma jor,minor}, one for each developer role. Since all
individual models converge towards π = (1,0,0), we consequentially get πi = (1,0,0) ∀i.

In Figure 6.13, the transition matrices of the general models are shown resulting from the
averages of all individual models. Here, we also chose the general models using KNN5 as
classifier, because it produced most individual models. The differences between the models
retrieved from the other classifiers are only slightly. All transition matrices as well as means
and covariance matrices of emissions are listed in Appendix B.

Acore =

low med. high

low 0.65 0.28 0.07

med. 0.39 0.48 0.13

high 0.09 0.22 0.69

, Ama jor =

low med. high

low 0.67 0.27 0.06

med. 0.37 0.52 0.11

high 0.08 0.17 0.75

,

Aminor =

low med. high

low 0.70 0.24 0.06

med. 0.30 0.51 0.19

high 0.09 0.16 0.75

.

Figure 6.13.: General transition matrices for developer roles over all projects.

Figure 6.13 shows how likely it is to switch between the states low, medium, and high for
the different developer roles. There we observed that it is more likely to stay in a state than
to switch between states (high values on the diagonal). Comparing the matrices between
the developer roles, we observed that the general differences in terms of transitions of all
developers are very low. Thus, the dynamics in developer project involvement are similar
among all developers.

Contrariwise, the workload expressed by the emission distributions can vary a lot among

State Core Major Minor
low (1,0,5,1) (1,0,2,1) (1,0,1,1)

medium (22,6,27,13) (12,3,6,11) (7,3,2,12)
high (33,11,50,45) (14,4,11,27) (3,1,4,5)

Table 6.6.: Means µk of emissions for the general model.

81 6.3. Case Study 2: Dynamic Developer Contribution Model

Figure 6.14.: Correlation plot for general models.

roles, and even within the same group of developers even though not to that extent. The
distributions cover the likelihood of the observations to occur in the current state.

In Table 6.6, the means µk, k = {low,medium,high} are reported for each developer role.
As an example, a major developer in a high involvement state is expected to perform 14
commits, 4 fixes, 11 ML posts, and 27 bug comments in average. Surprisingly, we observed
higher means for minor developers in a medium state than in a high state. We suppose this
to be due to the small amount of information available for minor developers in a high state
(resulting also in a high standard variation). The only factor that is higher in this case is the
ML activity, which means that minor developers benefit more from discussions and, thus,
also contribute in a high manner.

Figure 6.14 visualizes the correlation matrices Σk of the general emission distributions.
Ellipses that are inclined to the right mean positive correlation whereas ellipses inclined to
the left represent negative correlations. The stronger the ellipse is filled, the stronger the
correlation is. For all developer roles, we observe a (slight to strong) correlation between

Case Studies 82

Figure 6.15.: Misclassification rate for general contribution models.

commits and fixes. That points out that more code developed leads naturally to more bugs
fixed. In a high state, there is for every developer role a correlation between bug fixes and
bug comments. This effect can be caused by the need of exchange with other developers
about bugs when fixing more. Other patterns that occur seem to be more irregular. The spo-
radic negative correlations between, e.g., ML activity and bug fixes may indicate temporary
concentration on a piece of work.

project Thresholds KNN KNN3 KNN5 Random Forest
Amarok 0.189 0.164 0.158 0.161 0.168

Ant 0.137 0.096 0.102 0.0974 0.105
Egit 0.305 0.242 0.240 0.239 0.279
K3b 0.056 0.058 0.058 0.070 0.060

Konsole 0.109 0.075 0.096 0.102 0.089
Log4j 0.114 0.102 0.114 0.103 0.124

Poi 0.091 0.077 0.074 0.079 0.087
Rekonq 0.188 0.137 0.140 0.147 0.151
average 0.149 0.120 0.124 0.125 0.133

Table 6.7.: Average mr for universal models.

For a better comparability of the performance of individual and general models, we also
calculated the misclassification rate mr for our general models. The results are shown in
Figure 6.15. The best results are achieved for the projects K3b, Konsole, Log4j, and Poi.
Average misclassification rates for the used classifiers and projects can be retraced in Ta-
ble 6.7. The average mr ranges from 12% for KNN to 14,9% for the thresholds based
approach. Thus, it only performs about 1-5% worse in comparison to individually retrieved
contribution models. Moreover, the general models are appropriate for all developers, i.e.,
for all 125 developers we successfully predicted the most likely sequence of involvement
states given the observations. This highlights the major advantage of the general models.

To demonstrate the usage of the general model, we present two application scenarios:

83 6.3. Case Study 2: Dynamic Developer Contribution Model

Figure 6.16.: Prediction of commits for
24 months.

Figure 6.17.: Prediction of involvement
states for 24 months.

one for the usage of the HMM general model as stand-alone predictor and one embedded
into our simulation model which constitutes our DEVCON simulation model.

Application 1: Prediction of Workload

We now show an example application for the prediction of developers’ project output. This
means, that we consider a software project from the view of a project manager. It is impor-
tant to plan the projects resources foresighted. For example, when making decision about
the team constellation, it can be of help to estimate in advance what developer activity,
e.g., in number of commits, will be present. This estimation can give the project manager
feedback in her decision making. Assuming that the project manager aims to estimate the
workload and project involvement of the intended team members for the next 24 months.
She plans to involve one core developer, two major developers, and five minor develop-
ers. With our general models for the distinct roles, the manager can forecast the activity of
the team for the next two years. Figure 6.16 shows the predicted outcome in terms of the
commits performed of the different developers for one simulation run. Major and minor
developers’ values are presented as an average of all developers of the same role. The cor-
responding involvement states are shown in Figure 6.17. Over the whole forecasting period,
323 commits of the core developers, 149 commits of the involved major developers, and 63
commits of all minor developers are predicted considering the average over ten simulation
runs.

Application 2: Simulation of Software Processes

The second application demonstrates the prospects of using the proposed model in context
of our simulation tool. The results of a simulation model taking different software planning
factors into account, can help to estimate the risks of the project (see [147]). The proposed
simulation model aims to forecast software (quality) trends like the growth, bug population,
and activity spent by the developers.

For the estimation of suitable model parameters, we mine real projects. Since the gen-
eral models are built as an average of open source projects, the simulation model used for

Case Studies 84

0

2000

4000

Adds Deletions Modifications
type of change

nu
m

be
r

of
 c

ha
ng

es role

core

maintainer

major

minor

Figure 6.18.: Types of changes by type
for Log4j.

0

10000

20000

Adds Deletions Modifications
type of change

nu
m

be
r

of
 c

ha
ng

es

role

core

major

minor

Figure 6.19.: Types of changes by type
for Ant.

the evaluation was also fed with information of these projects except of K3b and Rekonq,
since they were not part of the first study in this context exhibiting only very slight differ-
ences compared to our preliminary work [12]. Therefore, a lot of parameters describing the
behavior of software developers (as agents) needed to be re-estimated: activity, workload
(number of commits/fixes), and types of changes per commit. The developer activity and
commit frequencies are modeled on the one hand based on the general models and on the
other hand based on average heuristics for the used projects for comparability.

In figures 6.18 and 6.19 the changes per developer role are shown. These changes include
adds, deletions, and modifications. The changes performed can be project-specific and also
depend on the amount of developers of the different roles involved (compare Table 6.3).
K3b and Log4j are the only projects having a real maintainer (marked as core in the table).
They naturally perform a lot of modifications since they fix a huge amount of bugs.

After the mining, the parameters of the simulation model are adapted according to the
mining results. Then, for each project the parameter set is adapted: number of different
developers per role, expected size, and project duration. For all experiments an average of
five simulation runs is considered.

A general observation and achievement is that with the adapted simulation model, we
can simulate more unsteady growth trends with high activity phases, which more likely
represent the reality than an idealized growth curve.

An example is illustrated in Figure 6.20. There the growth rises and falls time dependent
from the workload of developers constituting in their states displayed in Figure 6.21. The
states are presented as average over all involved developers of the same role. In Egit, only
major and minor developers are identified. For example, the large amount of major devel-
opers contributing high in simulation round 100-300 (Figure 6.21) entails a strong increase
in the total number of files (Figure 6.20). Such behavior also has an effect on the evolution
of coupling, bug population, and overall software quality.

For the validation, we compare empirical project trends, with the simulated trends. We
observe, that the greatest difference between the new standard average model and the im-

85 6.3. Case Study 2: Dynamic Developer Contribution Model

Figure 6.20.: Simulated project growth in Number Of Files (NOF) for Egit.

Figure 6.21.: Simulated developer states for Egit.

plemented HMM-based general model, arise in terms of the activity of developers, i.e.,
commits performed and files touched. Thus, we report the affected metrics NOF and NOC
(Number of Commits) in this work. Other trends were just slightly affected and still repre-
sentable.

In Table 6.8, the metrics NOF and NOC are reported for all projects under simulation. We
observed, that the simple average model as an instantiation of the STEPS model in almost
all cases produces too few files and in half of the cases also too few commits. For Konsole
and Poi the simulated results match the empirical observations, but for Log4j too much

Case Studies 86

Project NOF NOFST EPS NOFDEVCON NOC NOCST EPS NOCDEVCON

Amarok 3200 1500 2364 28043 6100 13797
Ant 2200 1364 2056 15220 7483 15598
Egit 1450 525 963 3219 995 2663

Konsole 315 314 350 5746 6939 15362
Log4j 620 524 696 3498 6177 13184

Poi 4000 1730 2916 6095 5738 12278

Table 6.8.: Empirical and simulated metrics.
NOF=Number of Files, NOFST EPS=NOF simulated, NOFDEVCON=NOF simu-
lated with developer phases, NOC=Number of Commits, NOCST EPS=NOC sim-
ulated, NOCDEVCON=NOC simulated with developer phases.

activity is simulated. On the contrary, the DEVCON simulation model performs better in
NOF , even though a little too less in some cases. Considering NOC, the developers are too
active except for Ant and Egit where it fits well, and Amarok, where the simulated results
are too low.

6.3.4. Discussion

First, we analyzed individual developer contribution models retrieved via HMMs. Gener-
ally, the state sequence patterns are similar for the same developer role. We observed that
core developers tend to be continuously active. They can also stay in a high state although
contributing less. The fact that open source developers may work on specific tasks and
distribute their work independently is more visible in the behavior of the other roles. This
results in more irregular state patterns. We also observed that minor developers seem to
benefit more from discussions than coding some times which helps them to be in a higher
involvement state.

The average misclassification rate of the individual models reaches from 8.8% to 12.7%
depending on the classifier. In summary, we can answer RQ 2.1 like following: Developers’
contribution behavior can be modeled accurately using multi-dimensional HMMs.

Furthermore, we observed that developers tend to behave similar in terms of their dynam-
ics, but their workload can differ significantly. That matches our intuition in so far that the
amount of work spent by developers do not only depend on their role and involvement in the
project, but also is influenced by other factors, e.g., their expertise [57], experience, inter-
ests, and collaboration factors. For a more accurate model, personal aspects may be taken
into consideration. This presents an interesting conclusion, because the involvement dy-
namics can be expressed generally whereas the actual workload is more complex to model.
Notably, the general model performs only about 1-5% worse in comparison to individual
models. This already states the answer to RQ 2.2.

87 6.4. Case Study 3: Dynamic Project Activity Model

For the simple use of the general contribution models, we showed that it can simulate
basic behaviors of developers and their activity in a project. This could also be used for
companies to estimate the course of open source projects before using it for development.
For a more sophisticated feedback, practitioners could respect more factors belonging to the
software development life cycle, e.g., like a simulation tool. These observations form the
answer to RQ 2.3.

Considering the application of the general HMMs for our simulation, we can say that
the average models perform best for mid-size projects and that the phases simulation per-
forms slightly better for the given projects. Moreover, more realistic curves could be pro-
duced with the phases model. But, it is a major challenge to build a model which is valid
for projects different in size and workload. To tackle this problem, one could introduce a
project size parameter to adapt the workload of developers according to the project size. Al-
ternatively, models for different sizes or different development strategies could be learned.
Practitioners should be cautious using the introduced method since our approach is based
on randomly selected projects and may not represent the desired project context. Our ap-
proach is also aimed to be interpreted as a decision help in terms of trend analyses instead
of construe numbers. These observations pose the answer to RQ 2.4.

6.4. Case Study 3: Dynamic Project Activity Model

The aim of this case study is to evaluate the approach for OSS dynamics in another similar
context. The statistical learning via HMMs is transfered into the summarization of the
project activity as a whole to assess whether a project is still under (active) development.

6.4.1. Setup

For evaluating project activity, we consider developer activity visible in commits, developer
interest retrieved by mailing list posts, and user interest defined by posts in the user mailing
list. The assumption behind the choice of these attributes is that a "healthy" software project
lives from the contribution of developers as well as the usage and discussions by users of
the software. The importance of the developer as well as the user mailing list for project
communication is, e.g., highlighted in [148].

The case study is designed to assess project activity based on commits (developer activity)
and ML posts by developers (developer interest) and users (user interest). Therefore, we
counted commits from the VCS as well as ML posts from the dedicated mailing lists. In
comparison to our other studies, we used the SmartSHARK platform [30] to retrieve the
desired information. SmartSHARK allows to process mailing list data which can be very
large and can additionally used directly with R. Our approach is summarized in Figure 6.22.
After collecting the data, we let our analysis run and get a sequence of underlying activity
states via the HMM training and the Viterbi algorithm. The main idea behind this is the

Case Studies 88

SmartSHARK

Developer
 Activity User

Interest

Developer
 Interest

VCS
ML

HMM training

Inactive or active ?

Figure 6.22.: Data Mining and Processing for the Evaluation of Project Activity.

assumption that the summary of the different layers of activity into one (non-observable)
state facilitates the evaluation of a project and therefore, aids decisions concerning the use
(for managers, users) or participation (for developers) of the project.

The modeling and classification is done similar to the learning of developers’ contri-
bution behavior as explained in Section 5.4.2. The only difference is the length of the
input observation, since we have three observations for each month instead of four, e.g.,
xi = (31,58,112) with 31 commits, 58 developer posts, and 112 user posts representing the
project activity in month i ∈ {1, ...,n} and n the duration of the project in month. Still, the
observations are treated the same way, since in Case Study 2, two observations were sum-
marized into one activity level (code contribution) which also ends up in three pre-labeled
states.

Data Selection and Cleansing

To assess project activity, we mine commit as well as mailing list data. Thus, a prerequisite
for selected projects in this case study is the availability of the VCS and the ML. For
the mailing list, we distinguish between developers and user based on the name of the
mailing list, e.g, zookeeper-dev for the developers and zookeper-user for the users. The
availability of these two lists establishes another prerequisite. Besides, for some projects
contained in the SmartSHARK database the user mailing list is used only sporadically such
that the data is too few for our experiments. Moreover, all projects belonging to Apache

89 6.4. Case Study 3: Dynamic Project Activity Model

Commons are not appropriate for this study, since they share a common mailing list.
After this filtering, a subset of 16 Apache projects remained. In the following, we give an
overview of selected projects containing the field of applications and project characteristics.

Accumulo [accumulo.apache.org] Accumulo is a distributed key-value store database
engine using Hadoop and Zookeeper. Aa many other projects, Accumulo was incubated by
Apache and its usage is widespread.

Ant Ivy [ant.apache.org/ivy/] Apache Ant Ivy is a sub-project of Ant, functioning
as package dependency manager. Ant is a XML-based tool for the automation of build
processes.

Archiva [archiva.apache.org] Archiva is a web-based repository management sys-
tem to build artifacts. Therefore, it can work together with maven repositories providing
on-demand mirroring of the artifacts.

Cayenne [cayenne.apache.org] The Cayenne project develops a Java object-to-
relational mapping framework. With the integrated modeler, users are able to generate code
directly from database schemes.

Deltaspike [deltaspike.apache.org] Deltaspike provides a set of CDI (Context and
Dependency Injection) for Java projects. As an extension, it has to be used in conjunction
with an CDI implementation.

Kafka [kafka.apache.org] Kafka is a distributed streaming platform that runs as
cluster and is able to contain different data centers. Thereby, Kafka provides storing and
processing of streams.

Mahout [mahout.apache.org] Mahout is a distributed mathematical and machine
learning framework. As such, it is especially convenient for large scale algorithms and
applications. Often, it is used together with Apache Spark, a popular computing framework,
as back-end.

Nutch [nutch.apache.org] Nutch is a scalable web crawler. It originates from Lucene,
which is an information retrieval library. Nutch supports batch processing (using Hadoop)
and rich storage possibilities.

Opennlp [opennlp.apache.org] OpenNLP is a machine learning based toolkit for
natural language processing (NLP).

Case Studies 90

Pig [pig.apache.org] Pig is a platform that aims to facilitate the analysis of large data
sets. The analysis programs usually run on Hadoop clusters. It uses a high-level language
which is able to handle MapReduce jobs.

Storm [storm.apache.org] Storm is a distributed real-time computation framework.
Hence, it is comparable to Apache Spark. Both platforms are highly scalable and flexible.
Depending on your need, Storm can offer some advantages over Spark and vice versa, e.g.,
in multi-language support (provided by Storm).

Struts [struts.apache.org] Struts is a Java web application framework. It separates
the elements of the Model View Controller (MVC) concept, such that larger applications
are easier to develop and maintain.

Tez [tez.apache.org] Tez is a distributed execution framework aims to support data
processing on Hadoop. For this, it uses complex directed-acyclic-graphs (DAGs) of tasks
and can reduce the amount of MapReduce jobs this way.

Tika [tika.apache.org] Tika is a meta data and text analysis toolkit. It supports a
large set of file types and is flexible for different usages (e.g., as Java library, command-line
tool). Tika is often used for search engine indexing.

Xerces [xerces.apache.org/xerces2-j/] Generally, Xerces provides a set of
software libraries for parsing and processing XML files. The version integrated in the
SmartSHARK database is the xerces2 java parser.

Zookeeper [zookeeper.apache.org] Zookeeper started as sub-project of Hadoop and
provides similar features for large distributed systems, such as synchronization, coordina-
tion of processes, and configuration service.

Project properties are listed in Table 6.9. The table contains the observed time period,
the total number of commits in the timespan, the corresponding amount of posts in the
developer mailing list, as well as the number of posts done by users.

The period of selected projects starts at the initial commit at GitHub. Sometimes the
starting point has to be adapted when some old project history is imported, but the mailing
list discussions starts later. This can be the case for projects which became an Apache
project during their life-cycle like Apache Ant Ivy which adopted Ivy as sub-project of Ant.
Since the SmartSHARK database is steadily updated and the mining of mailing lists was not
complete for the year 2018, we cut all gathered observations at the end of 2017 to guarantee
the availability of all data needed for our experiments.

We discovered a special case for the Zookeeper project which had four MLs: two for
developers and two for users. This is due to the import of the mailing lists before becoming

91 6.4. Case Study 3: Dynamic Project Activity Model

Project Period Commits Developer posts User posts
Accumulo 10/2011−12/2017 9760 11314 7393
Ant-Ivy 06/2005−12/2017 3175 45347 9121
Archiva 11/2005−12/2017 10250 3710 4437
Cayenne 01/2007−12/2017 6546 8960 12224

Deltaspike 12/2001−12/2017 2296 5540 2192
Kafka 08/2011−12/2017 6544 26547 35737

Mahout 01/2008−12/2017 4133 15184 22647
Nutch 01/2005−12/2017 3498 9102 33995

Opennlp 09/2008−12/2017 2684 3307 2898
Pig 09/2003−12/2017 5064 5729 15184

Storm 10/2013−12/2017 11953 4554 14173
Struts 02/2006−12/2017 5944 41116 215461
Tez 03/2013−12/2017 3568 1546 2022
Tika 03/2007−12/2017 4816 5003 3186

Xerces 11/1999−12/2017 7787 12711 14202
Zookeeper 11/2007−12/2017 2889 6773 11361

Table 6.9.: Projects properties.

an Apache project. Therefore, we combined the two lists belonging to the same group of
people.

The mining of mailing lists can be a tedious task since the data is of unstructured nature.
Therefore, a careful preprocessing is required [20] even if we are not interested in the con-
tent of the messages. Besides removing duplicates, we also removed empty messages as
well as automatically generated messages produced by the VCS or ITS. For filtering theses
messages we created a list of keywords which was extended step by step during the min-
ing process. All messages containing a listed keyword in the subject were filtered before
analysis. The identified keywords are the following:

GitHub, cvs commit, svn commit, jira, Build, Hudson build, Jenkins build, ANNOUNCE,
DO NOT REPLY, Nutch Wiki.

For the user mailing list, we only had to filter empty messages. For cleaning the commit
data, we filtered duplicated commits which occurred when a developer committed on a
selected branch and later on another branch. These commits could be identified comparing
the author date and the commit message.

Case Studies 92

6.4.2. Evaluation Criteria

We aim to describe the activity level of OSS projects based on different communication and
contribution factors indicating the interest in the project. In addition, we aim to detect pat-
terns for active and inactive projects which can be used for interpreting whether a project is
likely to become inactive. For the HMM training, we use labels generated by different clas-
sifiers. To check whether the states produced by the HMM mirror these activity estimate,
we use the misclassification rate mr introduced in Section 6.3.2 and used in Case Study 2.

To evaluate the application of HMMs for assessing project activity, we compare our ag-
gregated approach expressed by the resulting sequence of hidden states with a simple view
(plot) on the single activities. For this, we perform an AB/BA crossover study which is
explained in the next section.

For the evaluation of the crossover study, we calculate the effect sizes and their variances
according to Madeyski et al. [72] as introduced in Section 2.6.

Since no well-accepted definition of (in)activity of software projects exist, we establish
a ground truth by an expert opinion. In doing so, we ask two software engineers working
at our institute to label the sixteen projects as active or inactive, respectively. These experts
take the projects commit history, as well as the project website, release history, and stats
provided by GitHub into account for judging the projects. In the case of disagreement, the
two experts discuss until they reach an agreement.

We compare this definition with the threshold-based, where a project is declared as in-
active where no commits are visible in the VCS over a certain period of time, often 12
months [149].

6.4.3. Results

The results of this case study are two-folded. It consists of a mining and statistical learning
part to recognize patterns and levels of project activity. For evaluation of the results, we
performed an AB/BA crossover study to assess the intepretability of a summarization of
different activities into one state. Thus, we first report all results concerning the mining part
followed by the results of the AB/BA crossover study.

Mining

From SmartSHARK, we derive the monthly observations in number of commits, developer
posts, and user posts for each project. To narrow down the observation space, we classify the
observations into low, medium, and high activity. For this, we use a subset of 20 manually
classified observations as input for the classifiers. As classifiers, we use KNN3 and Random
Forests, since the choice of the classifier only had a small impact on the results as shown
in Case Study 2 (Section 6.3.3). Still, we take two different classifiers for comparison into
account. Again, the overall score is assigned via a majority vote.

93 6.4. Case Study 3: Dynamic Project Activity Model

Figure 6.23.: Density of misclassification rate for all project activity models.
Dashed lines represent the corresponding means.

The pre-labeled observation sequence is used for the HMM training. As an output, we
get a summary of the three levels of activity into one state. The resulting sequence of these
states which most likely produced the observations is calculated using the project-based
fitted HMM λ j = (A j,B j,π j) for each project j. Comparable to the developer contribution
models, all projects tend to start with low activity, i.e, π j = (1,0,0) ∀ j.

In Figure 6.23, the misclassification rate mr for all projects and classifiers is shown. The
mean over all projects for each classifier is drawn as a dashed line. For K-nearest neighbor,
all projects could be trained, whereas for Random Forests one project failed. For KNN,
we reach a value of mean(mr) = 0.19 and for Random Forests we get mean(mr) = 0.18.
Thus, Random Forests perform slightly better. Generally, the error rate is higher than for
developers’ contribution models. This is due to the smaller sample size and, thus projects
which are adverse for the HMM training, e.g., that often switch between low and high
skipping the medium state, carry more weight into the mean score. Examples for such
projects are Zookeeper and Cayenne.

A deeper analysis of the resulting HMMs for project activity is conducted after the label-
ing by experts, since then we can examine characteristics of active and inactive projects and
compare the results for the identified subsets of projects.

Expert Labeling

For the separation of OSS projects into different groups of activity, we employed an expert
team of two software engineers working at the institute of computer science. The experts
task was to classify the projects by means of activity visible on the projects website and
GitHub page, e.g., by examining the amount and history of commits, forks, and releases.
As a first step, each expert build an opinion on their own and as a second step, they discuss
when they disagree.

Case Studies 94

During the experts’ discussions, the issue arose that some projects seem to be in between,
not active in contributing in a fairly fashion anymore, but still fixing bugs and bringing up
releases. Thus, the experts decided to introduce a third group which contain projects under
maintenance. As a result, they came up with four active projects, ten maintenance projects,
and two inactive projects. For our crossover study, we include maintenance projects in the
group of active projects.

Taking the definition by Khondhu et al. [149] into account, the only project of our case
study classified as inactive would be the Ant project which is considered as under mainte-
nance in our study. The reason for this is that this is the only project where there were no
commits performed over a subsequent time period of 12 months. In our approach, the other
activities (developer and user interest) were enough to keep the project alive.

Model Comparison

The starting point of our model comparison are the OSS projects classified by the experts.
This expert classification resulted in four active projects, ten projects under maintenance,
and two inactive projects. First, we compared the state-based representations of the different
groups of projects visually. By this, we identified similar patterns for the different levels of
activity. Hence, we give an example for each group and describe the observed pattern.

Active Projects Active projects often exhibit an alive beginning with a falling level of
activity, but still regular actions. The example project in Figure 6.24 shows this trend. The
course can also be steadily increasing.

(a) activity plot (b) states plot

Figure 6.24.: Example of a project classified as active (Cayenne).

Maintenance Projects Similar to active projects, projects under maintenance show an ac-
tive beginning with decreasing trend. Still, in contrast to the active ones, here the current
activity can be more irregularly or very little. Figure 6.25 shows a project classified as main-
tenance project. This pattern is caused by a typical phenomenon in OSS projects: At the

95 6.4. Case Study 3: Dynamic Project Activity Model

beginning there is an increasing interest in the project and a high development effort. After
the projects evolve stable, only bugfixes for new releases or other adoptions to evolutionary
effects have to be conducted.

(a) activity plot (b) states plot

Figure 6.25.: Example of a project classified as under maintenance (Mahout).

Inactive Projects In our study, the inactive projects are clearly distinguishable from the
others. After a period of mixed activity (mostly medium and high) a long period of low
activity follows. In Figure 6.26, such an example is shown for the project xerces.

(a) activity plot (b) states plot

Figure 6.26.: Example of a project classified as inactive (Xerces).

The benefit of using HMMs for the assessment of project activity, is the summarization
of activities into one representative state. Thus, it implicitly determines how many activity
is enough to be in a medium or high state. Vice versa, it provides thresholds for the amount
of activity which can occur for inactive projects.

Like we did for the individual developer HMMs (Case Study 2), we perform a correlation
analysis for models of the same type. All correlations can be found in Appendix C. Showing
a strong correlation, we calculated universal models for each activity type proceeding the
same way: we build averages for each matrix entry for the transformation matrices. In

Case Studies 96

addition, the emissions modeled as multivariate Gaussians could be combined using linear
transformations (see Section 5.4.3).

Aactive =

low med. high

low 0.67 0.25 0.08

med. 0.35 0.45 0.20

high 0.12 0.25 0.63

, Amaintenance =

low med. high

low 0.67 0.25 0.07

med. 0.34 0.46 0.20

high 0.07 0.30 0.62

,

Ainactive =

low med. high

low 0.67 0.27 0.06

med. 0.37 0.47 0.16

high 0.06 0.33 0.61

.

Figure 6.27.: General transition matrices for project activity over all projects.

Figure 6.27 shows the retrieved general transitions matrices based on the k-Nearest
Neighbor classification. The difference for Random Forests as classifier is only marginal.
All transitions and emissions for Random Forests can be found in Appendix D. For the
transition matrices, we observed that the probabilities for switching between the states are
quite similar. Though, some differences could be figured out: Active projects have a higher
probability to go from a high state directly into a low state and vice versa. The reason
for this could be that active projects are more often in a high state and also switch more
frequently between all three states due to the nature of open source projects. Moreover,
inactive projects generally tend to have lower probabilities for adopting the state of high
activity. This is nearby since they always show a longer period of low activity or even
inactivity.

State Active Maintenance Inactive
low (35,80,118) (14,37,51) (15,43,66)

medium (33,120,202) (17,64,128) (9,33,139)
high (79,198,264) (31,100,229) (16,72,194)

Table 6.10.: Means µk of emissions for the general project activity model.

The emission distributions for each universal model consist of three three-dimensional
vectors µk describing the mean values of the summarized activities developer activity, de-
veloper interest, and user interest, with k ∈ {low,medium,high}. There, we observed that
for low and medium activity the developer interest as well as the user interest are more in-
fluential since the differences for the means of developer activity are tiny or even decreasing
(for active and inactive projects). This means that discussions are more important than code

97 6.4. Case Study 3: Dynamic Project Activity Model

Figure 6.28.: Example of an activity plot
(method A).

Figure 6.29.: Example of a states plot
(method B).

contribution in periods of less activity to keep the project alive. Naturally, active projects
have the highest means in general followed by maintenance and inactive projects. Interest-
ingly, in a low state, inactive projects are slightly more active on average than maintenance
projects. This can be due to general similar behavior of the two types with the difference
that in maintenance projects the activity in higher states is more distinctive due to regular
bug fixes and preparation for releases.

AB/BA Crossover Study

To evaluate the benefit of using HMMs for assessing project activity, we perform an AB/BA
crossover study. Therefore, we compare a technique which directly process developer ac-
tivity, developer interest, and user activity pictured as a multiple line plot - referred to as
method A - with a plot showing the aggregated activity retrieved from applying Viterbi to
the project-specific trained HMM which is defined as method B.

Figure 6.28 shows the different levels of activity, i.e. the activity plot (method A) whereas
Figure 6.29 presents the HMM-based representation, i.e., the states plot (method B) for the
same project (Accumulo). The expected benefit of using technique B, is that the overall
project activity can be assessed more intuitively. With this, we aim to facilitate the decision
making process to join as well as to use the investigated software project.

For the crossover study, we designed a questionnaire with the following characteristics:

• Each of the 16 projects is presented one time either by method A or by method B.
• Each participant has to judge eight projects with method A and eight projects with

method B.
• Half of the participants judge eight projects with method A followed by eight projects

with method B and the other half vice versa. The first group is referred to as Sequence
Group 1 (SG1) and the second group establishes Sequence Group 2 (SG2).
• Each project has to be evaluated independently and marked as active or inactive.

Case Studies 98

In addition, the participants are asked to mark how sure the feel about their decision. For
this, there are four options available: very, fairly, halfway, and little. This design decision
is motivated by the projects where the experts had problems to put them into active or
inactive and came up with the maintenance state. We assume, that the sureness decreases
even for those projects. To take this for our evaluation into account, we determine the
correlation between sureness and wrong classifications. Another suggestion by the experts
was to consider maintenance projects as active in the questionnaire since it requires some
background knowledge about software development to judge whether a project may be
under maintenance. But, everybody can judge a plot whether there is much or low activity
visible.

The first page of the questionnaire gives a short introduction into the task and the last page
presents an overall evaluation comparing the two methods, where the participant should
evaluate which method can be used more intuitively.

To generate the questionnaires meeting the requirements listed above, we apply stratified
sampling [150]. There, the data is divided in disjunct groups called strata and a sample
is drawn using a specified design. We apply stratified random sampling, i.e., the chosen
design is random. This way, we guarantee that each participant get the same amount of
representatives of the two strata active and inactive. An example of a designed questionnaire
can be found in Appendix E.

As participants, we chose a students course on software testing offered at the University
of Göttingen including 28 master students. Sometimes, researches argue on the representa-
tiveness of students as software professionals, but a larger study [151] on this topic pointed
out that concerns are valid when experience matters, but for the introduction of a new tech-
nique, no significant differences could be found.

To evaluate the results, we calculate the score achieved by each participant. The score
indicates the percentage of projects classified by the participant in agreement with the ex-
perts classification. During analysis, one questionnaire turned out to be invalid, since the
participant marked all projects as active with high sureness. Thus, we omit the participant
for our analyses.

Sequence Group Statistic Score AP Score SP Diff Participant Total
SG1 Mean 0.6786 0.625 0.0536 1.3036

Var 0.0234 0.0409 -0.0175 0.0642
Obs. 14 14 14 14

SG2 Mean 0.6923 0.6538 0.0385 1.3462
Var 0.0563 0.0317 0.0246 0.0879
Obs. 13 13 13 13

Table 6.11.: Descriptive statistics of AB/BA study.

99 6.4. Case Study 3: Dynamic Project Activity Model

−0.4

−0.2

0.0

0.2

0.4

SG1 SG2
Sequence group

sc
or

e
di

ffe
re

nc
e

Figure 6.30.: Boxplot of score differences between techniques in SG1 and SG2.

AP before SP SP before AP0.25

0.375

0.5

0.625

0.75

0.875

1

0 10 20
Participant

S
co

re

Score AP

Score SP

Figure 6.31.: Individual scores of participants of each sequence group.

For comparing the outcomes of participants produced by the two chosen techniques, we
first calculated the basic descriptive statistics of the experiment. Those are shown in Ta-
ble 6.11. For each sequence group, we calculate the means and variances of the scores as
well as the differences between method A and method B. Score AP is referred to the score
achieved by judging the activity plots whereas Score SP is the score reached by judging the
states plot.

Additionally, Figure 6.30 shows a boxplot of the score differences in the two sequence
groups SG1 and SG2. Both median values are at 0.125. The only difference lies in the size
of the boxes, which indicates a slightly higher variance in the data for SG2. However, both
boxes are close to zero, which indicates no significant effect between method A and method
B.

Moreover, we report the individual outcome of participants in Figure 6.31. In both
groups, eight participants performed better using method A (Score AP). In SG1 (AP be-

Case Studies 100

fore SP), three participants reached a higher score with method B (Score SP), while in SG2
(SP before AP), this is true for four of the participants. The rest performed equally with
both techniques. This could be an indicator that the activity plots are more intuitive. Still,
if this is a significant effect cannot be judged yet. Thus, we proceed with calculating the
effect sizes as well as their variances.

Calculation of Effect Sizes

For a deeper analysis, we need to have a closer look at the data from the crossover study.
From the basic statistics shown in Table 6.11, we can calculate all needed measurements
for a meaningful analysis of the crossover study. The calculation relies on the formulas
introduced in Section 2.6. To ensure the correctness of the values, we additionally use the
R package lme4 [152] as suggested by Madeyski et al. [72] which is designed to fit linear
models. For comparison, the R output is provided in Appendix F.

Statistic Description Value
τ̂ technique effect size 0.0460
π̂ period effect size -0.0076

λ̂AB period by treatment interaction effect -0.0426
s2

IG within period and within technique variance 0.0368
s2

di f f difference score variance 0.0373
s2

w within participant variance 0.0182
ρ̂ correlation between outcomes in both periods 0.4940

var(τ̂) variance of technique effect size 0.0014
seτ̂ standard error of technique effect size 0.0367
t t-test for significance of technique effect size 1.2534

Table 6.12.: Statistics of AB/BA study.

Table 6.12 shows all retrieved measurements for the conducted study. First of all, the
period effect size π̂ is extremely small. The technique effect size with 0.0460 as well as
the interaction effect size with −0.0426 are larger in comparison with the period effect
size but still low. This observation implies that the score achieved is neither dependent
on the sequence of the techniques nor the technique itself or the time period. Generally,
the students performed slightly better using the activity plots (method A). For the states
plot (method B), it turned out that the students’ judgments were slightly better using this
technique first. Anyhow, no significant differences could be figured out.

Furthermore, the correlation between the outcomes in both periods is with 0.4940 rela-
tively small, i.e., the correlation between repeated measures is low [72].

Given the t-statistic of 1.2534 and the degrees of freedom d f = n1 +n2−2 = 14+13−
2 = 25, the p− value is 0.2217, i.e., the result is not significant at α = 0.05.

101 6.4. Case Study 3: Dynamic Project Activity Model

Figure 6.32.: Percentage of correctly classified projects per sureness.

Figure 6.33.: Percentage of correctly classified projects per type and method.

As a next step, we check our assumption, whether the sureness of the students correlates
with wrong classifications, especially for maintenance projects. First of all, we analyzed
how strong the sureness correlates with right classifications. For this, we calculated the
percentage of correct answers per sureness level.

Figure 6.32 shows that the answer where the participants were sure reached the best score
with 76% correctness. Surprisingly, this is followed by little sureness with 73%. We believe
this to be due to the nature of guessing as well as the difficulty to judge projects with low
activity, particularly maintenance projects, as still active.

For fairly and halfway sure, the participants reach 60% correctness and 59%, respectively.
This means, that their intuition matches roughly the reality.

Additionally, we are interested in the investigated behavior for the different types of
projects: active, inactive, and maintained.

Figure 6.33 depicts the ratio of correctly assessed projects per project type and method.
From this, we inferred that inactive projects were most easy to identify for the participants.

Case Studies 102

They reach 0.88% with method A and 0.86% with method B for inactive projects. For
active projects, the participants were able to identify 74% of the projects with method A and
69% of the active projects with method B. Finally, the analysis confirmed our assumption
that maintenance projects are the most difficult to judge displayed by the relatively low
percentage of correct assignments: 61% correctly identified maintenance projects and 57%
accordance using method B. This finding deliver insight into the issue of judging whether a
software project is still maintained.

In summary, we identified common activity state patterns that helps practitioners to judge
a project as still active or maintained with the help of HMMs. The advantage by the visual
simplification of the different levels of activity could not be confirmed within our AB/BA
study. Though, the expected values for activities together with the observed pattern can be
used as an indicator whether a project is active or not.

6.4.4. Discussion

Firstly, we transferred our approach of using state based probabilistic models for open
source software project dynamics to assess project activity. Different from Case Study 2, we
only take the aggregated number of commits and ML posts by all developers into account
to get a whole picture of project activity instead if individual contributions. We enrich this
information with user interest in the project (user posts). We successfully trained a HMM
for every software project and the average misclassification rate mr resulted in 0.18 for Ran-
dom Forests and 0.19 with KNN. Although this values are not as low as for the developer
contribution model, we still can state that we can model projects activity with a state based
probabilistic model, i.e. HMM, which poses the first part of the answer to research question
RQ 2.5.

To classify the projects into active and inactive, we performed an expert labeling. Out
of it, the experts identified many projects lying "in between" and, thus, introduced a third
category: maintenance projects.

To assess possible advantages of the state based representation of project activity, we
performed an AB/BA study where we compared this with a basic multiple line plot for the
three levels of activity: developer activity, developer interest, and user interest. We calcu-
lated all important effect sizes following the guidelines by Madeyski et al. [72] revealing
no significance in the results. Anyway, the crossover study supported our assumption that
maintenance projects are the most difficult to assess with the lowest percentage of correctly
identified projects with about 20% less than for inactive projects.

Again, we build general HMMs for our analysis, one for each activity layer: Active, in-
active, and maintenance. Generally, we found similar patterns for the same type of project
concerning the state sequence. Supportingly, the learned average models show differences
which help to characterize project activity. One finding indicates that in periods of little
activity, discussions are a major factor to keep the project alive. As such, it can help prac-

103 6.4. Case Study 3: Dynamic Project Activity Model

titioners to evaluate project activity and, thus, aid decisions regarding joining and using
software projects. This finding completes the answer to research question RQ 2.5.

To provide a more concrete classification going without manual interpretation, a classifier
could be learned based on the resulting models, e.g., the number of times the different states
are occupied relatively to the the projects duration, the expected values of the different
activity layers, and the trend displayed by the the activity of the last months related to the
overall activity. However, the data provided in this case study is too few and, thus, hinders
the learning of such a classifier.

7. Discussion

This section discusses the results gained from our case studies and interpret them related to
the approaches applied. We start with a summary of the answers to our research question
from the beginning of this thesis. Following, we report strengths and limitations of the
approach. Finally, we discuss threats of validity of our work.

7.1. Answers to Research Questions

We summarize the answers to the research questions that were introduced in Section 1.2
and that arise from the finding of the conducted case studies.

7.1.1. RQ 1: Can we model software evolution using Agent-Based simulation?

In RQ 1, we ask whether we can model software evolution using Agent-based simulation.
This research question is addressed in one large case study concentrating on different as-
pects: First, we need to identify what entities should be part of a meaningful model of
software evolution as well as which parameters are needed to describe the process which
relates to RQ 1.1. According to the software evolution literature and our idea of software
evolution, we determined developers, software entities, e.g., files, classes, and methods, and
bugs as model entities. To complement the model, relationships and attributes need to be
identified. All this has to be done before the actual model can be evaluated. Thus, to answer
RQ 1.1, a lot of preprocessing steps are necessary. Essential design decisions like the work
of developers arise from the nature of software evolution since their work is visible by their
commit behavior (changes to the software entities). Still, the granularity, e.g., the size of
the commit, affected lines, has to be determined to find balance between model complexity
and simplification. The proposed model (STEPS) to answer the research question mirrors
basic commit behavior of different types of developers, bug occurrences, system growth,
and relationships expressed by software networks, e.g., the change coupling graph for re-
lated software entities, i.e., files, induced by common changes to the repository. From this,
we inferred suitable parameters by software mining that can instantiate software projects
and measure the desired outcome. In the related case study, we identified the following
changeable parameters able to display the mentioned software evolution scenarios: number
of core, major, and minor developers, expected size of the system, expected project dura-
tion, and the initial cluster size of the change coupling graph. Thus, the answer to RQ 1.1 is
the following:

Discussion 106

Important parameters for the simulation of software evolution are the team constellation of
developers, the expected system size, the project duration and the initial cluster size of the
change coupling graph.

The next question RQ 1.2 deals with the estimation of required simulation parameters that
are fixed and serve as input for the simulation model, e.g, the amount of work done by a core
developer. The defined model determines the parameters that are needed and then in our
approach retrieved by software repository mining. We make use of machine learning as well
as statistical learning to grasp complex behavior, e.g., fitting by distribution to the number
of commits performed instead of just taking the average of all developers. The approach is
evaluated in two case studies, one for general software evolution (STEPS) and one for the
extended DEVCON model reflecting a more fine-grained developer behavior. The results
showed that the strategy can be successfully used to estimate suitable parameters. In the
case studies, we compared empirical with simulated trends and compared values for, e.g.,
the number of files, the average change coupling degree, the number of nodes (files) and the
number of commits. Consequently, we answer RQ 1.2 the following:

Simulation parameters can be estimated using mining software repositories and applying
statistical learning methods.

Considering RQ 1.3, that asks which software evolution phenomena can be simulated,
the answer cannot be entire, since there no register where all software evolution phenomena
are listed exist. There might be more phenomena which we are not aware of at the moment.
For this reason we selected different aspects of software evolution and tested on how good
they can be mirrored using Agent-based simulation. Our case studies illustrated possible
simulations of the following trends and phenomena: (sub-linear) file growth, average (dy-
namic) developer contribution behavior, bug introduction rates, and the evolution of change
coupling networks. Thus, we answer RQ 1.2 the following:

Our simulation of software evolution can mirror software evolution phenomena like sub-
linear file growth, developer dynamics, bug introduction rates, and the evolution of change
coupling networks.

7.1.2. RQ 2: How can we model developer contribution behavior?

The second main research question RQ 2 is dedicated to modeling developers’ contribution
behavior. We answer this question with the help of several subquestions. The first sub-
question RQ 2.1 ask whether a state-based probabilistic model is appropriate for modeling

107 7.1. Answers to Research Questions

developers’ contribution behavior. The idea of using a state-based model for the activities
of developers is inspired by the nature of OSS projects. There, developers can choose freely
which project they want to join, at which time of day they want to work and to which extent
they contribute. Therefore, a model allowing for different states of involvement is benefi-
cial. We choose HMMs as suitable for the approach. Another advantage of using HMMs
is that the multi-dimensional version allows for multiple observations at the same point in
time. We choose to include communication activities as well as code-related activities to
describe developers’ contribution. To train HMMs from empirical software repository data,
a classification step needs to be done beforehand since no labeled contribution data, i.e.,
whether a developer is low, medium, or highly involved a point in time, exists. Thus, within
our case study we evaluated on the one hand the choice of the classifier and on the other
hand the goodness of fit of the HMM to the data. This is done by measuring the amount of
mismatches between the learned hidden state and the classified one (misclassification rate).
For every developer an individual HMM is trained. The results showed that the average
misclassification rate for the individual models reaches from 8.8% to 12.7% depending on
the classifier. These findings already state the answer to RQ 2.1:

Developers’ contribution behavior can be modeled accurately using state-based probabilis-
tic models like multi-dimensional HMMs.

To address RQ 2.2, that asks for the similarity of retrieved contribution models for the
same developer type, we perform a correlation analysis for the transitions and compare the
emissions of the general models. Since the transitions are highly correlated for the same
developer type, we built general models taking the average over all HMMs that belong to
the role. Thus, we build three general HMMs, one for each developer type (core, major,
minor). These general models reveal some interesting insights: Firstly, the transitions are
similar among all types of developers, but the emissions are quite different. This matches
our intuition since the underlying dynamics maybe similar for all OSS developers, but their
workload depend besides the assigned role on more factors, e.g., personality, expertise, tech-
nical and social interest in the project. Thus, the workload of developers is more complex to
model. Furthermore, we evaluated the general models applied for training each developer
state sequence again. The general models perform only 1−5% worse in comparison to the
individually trained models. A major advantage of the general models is that they are also
appropriate for developers where an individual model cannot be trained, e.g., due to sparse
observation data. Together, these observations present the answer to RQ 2.2:

Retrieved HMMs for the developer role are very similar in terms their transitions, but their
emissions can be more diverse.

Discussion 108

The next subquestion RQ 2.3 asks whether the retrieved general models can be applied
in practice. To demonstrate the applicability we use the general developer models as stand-
alone method to predict contribution behavior of a given set of developers. Besides, we
embedded the general models into our simulation tool as refinement of the implemented
developer behavior. Both methods are demonstrated in our case studies supporting the
usage of general models in practice. This answers RQ 2.3:

General contribution models can be applied in practice, e.g, to predict future contributions
of developers or for the simulation of software evolution.

For RQ 2.4, that asks if such a fine-grained developer contribution model improve simula-
tion results, we compared simulation results for the STEPS (average contribution behavior)
as well as the DEVCON model (fine-grained state-based contribution behavior). In doing
so, we compared metrics like the project growth in number of files and the total number
of commits. There we observed that for both simulation models the best matching metric
values are achieved for mid-size projects. A significant improvement of simulation results
cannot be confirmed which answers RQ 2.4:

Although able to reflect more realistic trends in the simulation of software evolution, signifi-
cant results, e.g., for the comparison of empirical and simulated data, cannot be confirmed.

The last subquestion RQ 2.5 addresses the transferability of the proposed approach. We
investigate this question in a separate case study where we use HMMs for summarizing
project activity and describe the underlying dynamics of developer contribution as well as
developer and user discussions. In contrast to the work done so far, we take the aggre-
gated number of commits and ML posts into account, since we want to generalize from the
individual level to the project level. The HMM training was successful for every project
included in the case study. Although the average misclassification rate was higher than for
modeling developer contribution, we can say that project activity can be modeled using
state-based probabilistic models like HMMs. One major goal of this application is a pos-
sible characterization of project activity and, more importantly, project inactivity based on
the trained state sequence. The early detection of software project that are likely to become
inactive is a challenging task in software engineering. No labeled data of project activity
exist which is the first burden in preprocessing the data. Therefore, we performed an expert
labeling. The experts detected many projects that are not completely active, but also not yet
inactive. Thus, we introduced a third state specifying maintenance projects. By analyzing
general models built for each type of activity, we observed common characteristics, e.g., in
terms of the state sequence pattern and the output produced in a low, medium, or high state.
Although the approach produced fruitful results, for universal guidelines the data used is

109 7.2. Strengths and Limitations

too small. Though, projects that are repeatedly in a low state, are more risky to become
inactive. The advantage of our approach to existing approaches is that a low state does not
necessary mean a total lack of activity. Instead, the HMM decides how much activity can
be tolerated in a low state. Altogether, we can answer RQ 2.5 positively although limited
by the amount of data used for the study:

A state based probabilistic model can be used for modeling project activity. On the project-
specific level, they can help users and developers to get an overview of the project activity.

7.2. Strengths and Limitations

A major benefit of using simulation for software evolution is that it can be instantiated for
every project and it is flexible to test different sets of parameters. This way, a feedback loop
is established that helps project managers in making decisions. Different trends concerning
software evolution can be simulated. However, the projects used for mining and parameter
estimation may not be representative for other projects. Still, our case studies showed that
the used simulation model produces reliable results matching the empirical values. More-
over, the size of the software graphs is limited due to the platform used. Very large projects
with more than 10,000 files may lead to runtime problems. Thus, the next step is to improve
the scalability, e.g., by using another platform or another type of execution of the simula-
tion. Besides, there are many factors influencing software evolution a project manager may
be interested in. Therefore, the proposed simulation model is extensible for other factors
effecting the software development process.

The results of the HMM training for software developers can display actual contribution
behavior like demonstrated in our case studies. It provides an overview on contributions
on the individual level as well as on the project level when using general models. The
HMMs can describe the underlying dynamics of OSS developers very well by allowing
different states of involvement varying over the time. The general models can be applied
solely as well as, e.g., for a fine-grained extension of developer behavior in the simulation.
The later enables more realistic contribution and consequential file growth trends within
the simulation. The HMMs also proved to be usable for summarizing project activity and
offering a characterization for active, inactive, and maintenance projects. Due to the amount
of data collected, no universal classifier could be trained.

Finally, the mining that constitutes a large part of this work depends partly on tools that
are not developed on our own. This is good on the one hand since saving time and effort, but
it can be also laborious because of potential adoptions needed to ensure desired functionality
and reliance on the functioning of the tools.

Discussion 110

7.3. Threats to Validity

In this Section, we discuss the threats to validity of our work. In doing so, we distinguish
between internal validity and external validity.

7.3.1. Internal Validity

For the internal validity we recognize the threat that the choice of metrics to describe de-
velopers’ contribution behavior is discretionary and strongly depend on the expectations on
the desired model as well as its presentation. For example, one could focus the analysis
more on the technical contribution, taking additional factors like LOC written and docu-
mentation work into account. Also, focusing on social involvement, co-editing or social
ties could be worth investigating. Regardless, based on the related work and the focus of
this work we believe that a combination of commit and communication activity can describe
the contribution behavior of developers appropriately.

As input for the classification step, we decided to manually classify 20 items of the ob-
servation sequence. We are aware that this may introduce a research bias. Other approaches
for the role identification like clustering [58] or network measures [153] were not consid-
ered in this thesis. This may also have an impact on the misclassification rate and the model
parameters. The same issue occurs for the expert labeling in the case of project activity.
Other labeling approaches may lead to different results.

The data preprocessing steps are highly relevant for the usefulness of the data. We tried
to tackle this by using a combination of automated approaches followed by a manual in-
spection. Nevertheless, other preprocessing techniques could reduce or increase problems
with the data. The same holds true for the classifiers and machine learning techniques used
with an impact on the goodness of fit since strongly depending on the data and underlying
assumptions on the data.

7.3.2. External Validity

We calculated over 40 individual HMMs and predicted the most likely states for 125 devel-
opers of eight open source software projects. These projects differ in their size, background,
and team constellation. The insights gained from this study may not be precisely transfer-
able to other project contexts, especially closed source, because of the representativeness of
the data. A lot of factors can be different in closed software development, e.g., motivation,
effort, attitude, organizational structures, background of developers. Hence, the need for
more studies in other project types arises.

Simulation studies raise additional threats to validity to software engineering research.
[154] identified possible threats and also published a set of guidelines for simulation based
studies in software engineering. One big issue is the output analysis of simulated results.
The nature of simulation involves stochastic processes. Thus, every simulation run differs

111 7.3. Threats to Validity

slightly. It is important to figure out the number of simulation runs and parameter sets
needed to evaluate the designed simulation model. Moreover, the underlying stochastic
needs to be tested and compared carefully. Moreover, the number of assumptions on the
simulation model should be moderate to gain comprehensible results. We use repository
mining to enrich our model with valid assumptions. The rules implemented are validated
individually. Also, we use several simulation runs and parameter settings for every simula-
tion model and check the transferability of results. Nevertheless, we cannot be sure that the
ground truth we assume, gained form repository mining, really represents the real world.
In the construction of the simulation some model assumptions are made, and thus, other
design decisions may yield different results.

8. Conclusion

In this section, we conclude the work done for this thesis. In doing so, we summarize our
findings and give an outlook on future work.

8.1. Summary

This thesis presents an approach to describe software evolution and its main factors involv-
ing humans, artifacts, and bugs, from the starting point of developers’ behavior. Software
developers influence the state of the software entities including their quality directly by
their daily work, i.e., creating and modifying code, taking part in discussion, and producing
and resolving bugs. We investigate different facets of software evolution with the focus on
software developers: project involvement dynamics, general software evolution patterns,
the impact of developer roles (classification), and project activity. Several vehicles aid our
research in these directions: software repository mining, Agent-based modeling and sim-
ulation, statistical learning, especially HMMs, and machine learning. For evaluation, we
performed three major case studies presenting different methods to assess the overall aim.

First of all, an idea of how software evolution can be modeled and what are important
parameters for an Agent-based simulation that describe the software evolution process had
to be identified before focusing on the special role of developers within this construct. To
pursue this goal, we present an approach that uses a model of software evolution (STEPS)
that contains the following agents: developers as active agents performing actions like cre-
ations, updates, and deletions on software artifact agents and bug agents that can occur and
be fixed (both passive).

The determination of modeling parameters as well as the description of interactions be-
tween agents presents the first part of the approach. Although the estimation of model
parameters is the more laborious step, the model is equally important since a simulation can
only be as good as its model. The main challenge in building a good model is the tradeoff
between empirical realism and simplicity [155]. Therefore, simulation models should not
be too complex, but also not to superficial. In the proposed simulation model, software
changes as driving factors of software evolution are responsible for the system growth and
the occurrence of bugs which can be resolved by the developers. Additionally, we differen-
tiate between different types of developers, i.e., core, major, and minor, as well as different
kinds of bugs, i.e., major, normal, and minor bugs. Developer collaboration is expressed
by co-editing software artifacts. For the evolution of the software structure, links between

Conclusion 114

software entities that are frequently changed together are taken into account. All described
parameters need to be examined and their evolution described to feed the simulation.

The parameter estimation to instantiate our simulation models is based on data gath-
ered by mining open source software repositories. In doing so, patterns and heuristics are
learned which serve as input for the desired models. The case studies showed the feasibility
of Agent-based simulation for software evolution, i.e, they revealed important simulation
parameters, produced realistic results, but also demonstrated challenges to respect in the
following studies, e.g., temporary inactivity of developers or unsteady project growth pat-
terns.

Since the findings so far showed that the simplistic simulation missed switches in the
work and resulting growth patterns, we focused on building a model reflecting developer
dynamics. This approach is based on HMMs for developer contribution on different layers,
i.e., it considers monthly commits, bug fixes, mailing list posts, and bug comments for
individual developers. Based on this observations, a HMM is trained which describes the
individual developer behavior. The produced models allows for dynamic behavior in so
far that developers can vary their involvement by transitioning different states, i.e., low,
medium, and high.

Since the retrieved models were highly correlated for the same type of developers, we
build general models as an average of all core, major, and minor models. Furthermore,
we demonstrated the application of these in practice in different scenarios: On the one
hand, general models can be used to predict the workload of developers given the team
constellation. On the other hand, we showed how the general models can be embedded into
the simulation tool and, thus allowing dynamic behavior in the simulation as the related
case study shows. However, the conducted case study also showed some limitations of the
approach: The general models cannot explicitly predict whether a developer will became
inactive in the future, it rather describes the general trend and, thus, inactivity is mirrored
in low states over a larger period of time. Besides, the simulation is sensitive to the project
size and workload of individuals. The latter can be tempered by the dynamic contribution
models.

The last presented case study pursues the goal to summarize project activity based on
activities done by developers and users and judge whether a project is still active or main-
tained based on this input. For this, the HMM learning is applied to the project activity
data retrieved form the VCS as well as developer and user MLs. To establish a ground
truth for project activity, we use an expert labeling grouping the projects in active, under
maintenance, and inactive. Again, we build general models to identify group-specific char-
acteristics. The related case study emphasizes the special role of maintenance projects. The
difficulty of the determination whether software projects are still maintained gets also sup-
ported by a performed crossover study with students as participants. Summarily, we provide
some guidelines to identify such projects.

115 8.2. Outlook

8.2. Outlook

The work performed for this thesis advances the state of the art in simulations of software
evolution and developers’ contribution behavior. Our research can be used as the basis for
multiple further research directions. The current simulation of software processes presented
in this thesis focuses on selected software evolution scenarios. Although offering multiple
facets of the software development process as well as potential side-effects, there is space
for further investigations. On the one hand, the selection as well as the amount of the
mined software projects influence the parameter estimation process and, thus, the knowl-
edge that serves the simulation models. In order to maximize the generality of the results,
it is required to investigate more projects, especially large size projects. On the other hand,
apart from generality, the opposite, i.e., specialty of software processes is an interesting is-
sue. For example, it is an open question whether we can predict special software evolution
scenarios like the loss of central contributors, abrupt (periods) of project inactivity, or ma-
jor design/structural changes with a high certainty. This thesis the problem the other way
around by offering the play through of different scenarios by changing parameters.

In the area of characterizing developer behavior, role changes of developers are not ex-
plored, e.g., under which circumstances a major developer advance to a core developer.
Some deeper explorations to find rules for this phenomenon, especially if they can be devi-
ated from the HMM would be interesting. We already tested the impact of the role classi-
fication on the HMMs, but did not include social network analysis for detecting developer
roles. For example, the most influential (identified by degree or centrality measures) de-
velopers could by seen as the core developers. By the evolution of the network, there are
role changes directly visible for every snapshot. Besides, other networks like bug-based
collaboration networks [129] could be used as an input for such an analysis.

Moreover, a concrete classifier for project activity could not be learned. Therefore, more
data needs to be collected and extracted. An additional idea to deepen this work is to use the
gained experiences to provide an alert system which warns the user if the risk is increased
that the project will become inactive within the next time.

Bibliography

[1] R. Alfayez, P. Behnamghader, K. Srisopha, and B. Boehm, “How does contributors
involvement influence open source systems,” in 2017 IEEE 28th Annual Software
Technology Conference (STC), Sept 2017, pp. 1–8.

[2] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project
risk analysis using bayesian networks with causality constraints,” Decision
Support Systems, vol. 56, pp. 439 – 449, 2013. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167923612003338

[3] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-based analysis
and prediction for software evolution,” in Proceedings of the 34th Intern.Conf. on
Softw. Eng. (ICSE). IEEE, 2012.

[4] V. Honsel, D. Honsel, S. Herbold, J. Grabowski, and S. Waack, “Mining software
dependency networks for agent-based simulation of software evolution.” The Fourth
International Workshop on Software Mining, 2015.

[5] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software repositories
to understand software evolution,” in Software Evolution. Springer Berlin Heidel-
berg, 2008, pp. 37–67.

[6] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi, “Empirical stud-
ies of open source evolution,” in Software Evolution: State-of-the-art and research
advances, T. Mens and S. Demeyer, Eds. Springer Verlag, 2008, ch. 11, pp. 263–
288.

[7] J. Lima, C. Treude, F. F. Filho, and U. Kulesza, “Assessing developer contribution
with repository mining-based metrics,” in Software Maintenance and Evolution (IC-
SME), 2015 IEEE International Conference on, Sept 2015, pp. 536–540.

[8] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive software
evolution,” in Proceedings of the Eighth International Workshop on Principles of
Software Evolution, ser. IWPSE ’05. Washington, DC, USA: IEEE Computer So-
ciety, 2005, pp. 113–122.

[9] X. Ben, S. Beijun, and Y. Weicheng, “Mining developer contribution in open source
software using visualization techniques,” in Proceedings of the Third International

http://www.sciencedirect.com/science/article/pii/S0167923612003338
http://www.sciencedirect.com/science/article/pii/S0167923612003338

Bibliography 118

Conference on Intelligent System Design and Engineering Applications (ISDEA),
2013, pp. 934–937.

[10] V. Honsel, D. Honsel, and J. Grabowski, “Software process simulation based on min-
ing software repositories.” The Third International Workshop on Software Mining,
2014.

[11] V. Honsel, “Statistical learning and software mining for agent based simulation of
software evolution,” in Doctoral Symposium at the 37th International Conference on
Software Engineering (ICSE), 2015.

[12] V. Honsel, S. Herbold, and J. Grabowski, “Hidden markov models for the prediction
of developer involvement dynamics and workload,” in 12th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering (PROMISE),
2016.

[13] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proc. IEEE,
vol. 68, no. 9, pp. 1060–1076, September 1980.

[14] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, “Metrics
and laws of software evolution - the nineties view,” in Proceedings of the 4th Inter-
national Symposium on Software Metrics, ser. METRICS ’97. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 20–.

[15] W. W. Royce, “Managing the development of large software systems: concepts
and techniques,” Proc. IEEE WESTCON, Los Angeles, pp. 1–9, August
1970, reprinted in Proceedings of the Ninth International Conference on
Software Engineering, March 1987, pp. 328–338. [Online]. Available: http:
//www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf

[16] M.-W. Online, “Merriam-webster online dictionary,” 2016. [Online]. Available:
http://www.merriam-webster.com

[17] M. Lehman and J. Ramil, “Towards a theory of software evolution - and its practical
impact (working paper),” in Invited Talk, Proceedings Intl. Symposium on Principles
of Softw. Evolution, ISPSE 2000, 1-2 Nov. Press, 2000, pp. 2–11.

[18] M. M. Lehman, G. Kahen, and J. F. Ramil, “Behavioural modelling of long-
lived evolution processes: Some issues and an example,” Journal of Software
Maintenance, vol. 14, no. 5, pp. 335–351, Sep. 2002. [Online]. Available:
http://dx.doi.org/10.1002/smr.259

[19] A. Bachmann, C. Bird, F. Rahman, P. T. Devanbu, and A. Bernstein, “The missing
links: bugs and bug-fix commits.” in SIGSOFT FSE, G.-C. Roman and K. J. Sullivan,
Eds. ACM, 2010, pp. 97–106.

http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.merriam-webster.com
http://dx.doi.org/10.1002/smr.259

119 Bibliography

[20] N. Bettenburg, E. Shihab, and A. E. Hassan, “An empirical study on the risks of using
off-the-shelf techniques for processing mailing list data,” in 2009 IEEE International
Conference on Software Maintenance, Sept 2009, pp. 539–542.

[21] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes, and
M. W. Godfrey, “The msr cookbook: mining a decade of research.” in MSR,
T. Zimmermann, M. D. Penta, and S. Kim, Eds. IEEE Computer Society, 2013, pp.
343–352. [Online]. Available: http://dblp.uni-trier.de/db/conf/msr/msr2013.html#
HemmatiNBKWHG13

[22] H. Kagdi, M. Collard, and J. I. Maletic, “Towards a taxonomy of approaches for
mining of source code repositories,” vol. 30, pp. 1–5, 07 2005.

[23] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric approach,”
in Encyclopedia of Software Engineering. Wiley, 1994.

[24] N. B. Ruparelia, “The history of version control,” SIGSOFT Softw. Eng.
Notes, vol. 35, no. 1, pp. 5–9, Jan. 2010. [Online]. Available: http:
//doi.acm.org/10.1145/1668862.1668876

[25] C. Bird, P. C. Rigby, E. T. Barr, D. J. Hamilton, D. M. German, and P. Devanbu,
“The promises and perils of mining git,” in Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories, ser. MSR
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–10. [Online].
Available: http://dx.doi.org/10.1109/MSR.2009.5069475

[26] K. Ayari, P. Meshkinfam, G. Antoniol, and M. D. Penta, “Threats on building models
from cvs and bugzilla repositories: the mozilla case study,” in CASCON, 2007.

[27] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” in
Proceedings of the 2005 International Workshop on Mining Software Repositories,
ser. MSR ’05. New York, NY, USA: ACM, 2005, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/1082983.1083147

[28] M. Goeminne and T. Mens, “A comparison of identity merge algorithms for
software repositories,” Science of Computer Programming, vol. 78, no. 8, pp. 971 –
986, 2013, special section on software evolution, adaptability, and maintenance &
Special section on the Brazilian Symposium on Programming Languages. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167642311002048

[29] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories,” in Proceedings
of the 2013 International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 422–431. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486844

http://dblp.uni-trier.de/db/conf/msr/msr2013.html#HemmatiNBKWHG13
http://dblp.uni-trier.de/db/conf/msr/msr2013.html#HemmatiNBKWHG13
http://doi.acm.org/10.1145/1668862.1668876
http://doi.acm.org/10.1145/1668862.1668876
http://dx.doi.org/10.1109/MSR.2009.5069475
http://doi.acm.org/10.1145/1082983.1083147
http://www.sciencedirect.com/science/article/pii/S0167642311002048
http://dl.acm.org/citation.cfm?id=2486788.2486844

Bibliography 120

[30] F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, “Addressing problems
with replicability and validity of repository mining studies through a smart data
platform,” Empirical Softw. Engg., vol. 23, no. 2, pp. 1036–1083, Apr. 2018.
[Online]. Available: https://doi.org/10.1007/s10664-017-9537-x

[31] T. Zimmermann and P. Weißgerber, “Preprocessing cvs data for fine-grained analy-
sis,” in In MSR ’04: Proceedings of the 1st International Workshop on Mining Soft-
ware Repositories. IEEE Computer Society, 2004, pp. 2–6.

[32] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learn-
ing Tools and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011.

[33] B. Leventhal, “An introduction to data mining and other techniques for advanced
analytics,” Journal of Direct, Data and Digital Marketing Practice, vol. 12, no. 2,
pp. 137–153, Oct 2010. [Online]. Available: https://doi.org/10.1057/dddmp.2010.35

[34] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,
Inc., 1997.

[35] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, ser.
Springer Series in Statistics. New York, NY, USA: Springer New York Inc., 2001.

[36] M. J. Kearns, U. V. Vazirani, and U. Vazirani, An introduction to computational
learning theory, 1994.

[37] R. P. L. Buse and T. Zimmermann, “Information needs for software development
analytics,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 987–996.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337343

[38] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, “Software analytics
in practice,” IEEE Softw., vol. 30, no. 5, pp. 30–37, Sep. 2013. [Online]. Available:
http://dx.doi.org/10.1109/MS.2013.94

[39] W. M. Turski, “Reference model for smooth growth of software systems,” IEEE
Trans. Softw. Eng., vol. 22, no. 8, pp. 599–600, Aug. 1996. [Online]. Available:
http://dl.acm.org/citation.cfm?id=235681.235686

[40] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Validating the use of topic
models for software evolution,” in 2010 10th IEEE Working Conference on Source
Code Analysis and Manipulation, Sept 2010, pp. 55–64.

[41] J. Hao and E. Mendes, “Usage-based statistical testing of web applications,”
in Proceedings of the 6th International Conference on Web Engineering, ser.

https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1057/dddmp.2010.35
http://dl.acm.org/citation.cfm?id=2337223.2337343
http://dx.doi.org/10.1109/MS.2013.94
http://dl.acm.org/citation.cfm?id=235681.235686

121 Bibliography

ICWE ’06. New York, NY, USA: ACM, 2006, pp. 17–24. [Online]. Available:
http://doi.acm.org/10.1145/1145581.1145585

[42] J. Banks, Handbook of simulation : principles, methodology, advances, applications,
and practice, ser. A Wiley-Interscience publication. New York: J. Wiley & sons,
1998. [Online]. Available: http://opac.inria.fr/record=b1094393

[43] R. Maidstone, “Discrete event simulation, system dynamics and agent based simula-
tion: Discussion and comparison,” 2012.

[44] A. Borshchev and A. Filippov, “From System Dynamics and Discrete Event to Prac-
tical Agent Based Modeling: Reasons, Techniques, Tools,” in The 22nd International
Conference of the System Dynamics Society, Jul. 2004.

[45] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation,” in
Proceedings of the 37th Conference on Winter Simulation, ser. WSC ’05. Winter
Simulation Conference, 2005, pp. 2–15.

[46] A. S. Rao and M. P. Georgeff, “Bdi agents: From theory to practice,” in Proceedings
of the first International Conference on Multi-Agent Systems (ICMAS), 1995, pp.
312–319.

[47] C. M. Macal and M. J. North, “Agent-based modeling and simulation,” in Winter
Simulation Conference, ser. WSC ’09. Winter Simulation Conference, 2009, pp.
86–98.

[48] C. Macal and M. North, “Introductory tutorial: Agent-based modeling and simula-
tion,” in Proceedings of the 2014 Winter Simulation Conference. IEEE Press, 2014,
pp. 6–20.

[49] S. Tisue and U. Wilensky, “Netlogo: A simple environment for modeling complex-
ity,” in in International Conference on Complex Systems, 2004, pp. 16–21.

[50] M. North, “The repast suite,” online. [Online]. Available: http://repast.sourceforge.
net/

[51] A. Drogoul, E. Amouroux, P. Caillou, B. Gaudou, A. Grignard, N. Marilleau,
P. Taillandier, M. Vavaseur, D.-A. Vo, and J.-D. Zucker, “GAMA: multi-level and
complex environment for agent-based models and simulations (demonstration),” in
international conference on Autonomous agents and multi-agent systems, United
States, 2013, pp. 1361–1362. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-00834498

[52] M. I. Kellner, R. J. Madachy, and D. M. Raffo, “Software process simulation
modeling: Why? what? how?” Journal of Systems and Software, vol. 46, no. 2–3,

http://doi.acm.org/10.1145/1145581.1145585
http://opac.inria.fr/record=b1094393
http://repast.sourceforge.net/
http://repast.sourceforge.net/
https://hal.archives-ouvertes.fr/hal-00834498
https://hal.archives-ouvertes.fr/hal-00834498

Bibliography 122

pp. 91 – 105, 1999. [Online]. Available: //www.sciencedirect.com/science/article/
pii/S0164121299000035

[53] H. Zhang, B. Kitchenham, and D. Pfahl, Software Process Simulation Modeling: An
Extended Systematic Review. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 309–320. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-14347-2_27

[54] S. Athey and G. Ellison, “Dynamics of open source movements,” Journal of
Economics & Management Strategy, vol. 23, no. 2, pp. 294–316, 2014. [Online].
Available: http://dx.doi.org/10.1111/jems.12053

[55] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational structure on
software quality: An empirical case study,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE). ACM, 2008.

[56] A. Meneely and L. Williams, “Socio-technical developer networks: should
we trust our measurements?” in ICSE, R. N. Taylor, H. C. Gall, and
N. Medvidovic, Eds. ACM, 2011, pp. 281–290. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icse/icse2011.html#MeneelyW11

[57] P. Bhattacharya, I. Neamtiu, and M. Faloutsos, “Determining developers’ expertise
and role: A graph hierarchy-based approach.” in ICSME. IEEE Computer Society,
2014, pp. 11–20.

[58] L. Yu and S. Ramaswamy, “Mining cvs repositories to understand open-source
project developer roles,” in Proceedings of the Fourth International Workshop on
Mining Software Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 8–11.

[59] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and J.-R. Falleri, “Impact of devel-
oper turnover on quality in open-source software,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: ACM, 2015, pp. 829–841.

[60] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb, “Configuring
global software teams: A multi-company analysis of project productivity, quality,
and profits,” in Proceedings of the 33rd International Conference on Software
Engineering, ser. ICSE ’11. New York, NY, USA: ACM, 2011, pp. 261–270.
[Online]. Available: http://doi.acm.org/10.1145/1985793.1985830

[61] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my code!:
Examining the effects of ownership on software quality,” in Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA: ACM, 2011, pp.
4–14. [Online]. Available: http://doi.acm.org/10.1145/2025113.2025119

//www.sciencedirect.com/science/article/pii/S0164121299000035
//www.sciencedirect.com/science/article/pii/S0164121299000035
http://dx.doi.org/10.1007/978-3-642-14347-2_27
http://dx.doi.org/10.1111/jems.12053
http://dblp.uni-trier.de/db/conf/icse/icse2011.html#MeneelyW11
http://dblp.uni-trier.de/db/conf/icse/icse2011.html#MeneelyW11
http://doi.acm.org/10.1145/1985793.1985830
http://doi.acm.org/10.1145/2025113.2025119

123 Bibliography

[62] A. Iqbal, M. Karnstedt, and M. Hausenblas, “Analyzing social behavior of software
developers across different communication channels (s).” in SEKE. Knowledge
Systems Institute Graduate School, 2013, pp. 113–118. [Online]. Available:
http://dblp.uni-trier.de/db/conf/seke/seke2013.html#IqbalKH13

[63] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments: An approach
for software requirements evolution,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 582–591. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486865

[64] C. Subramaniam, R. Sen, and M. L. Nelson, “Determinants of open source software
project success: A longitudinal study,” Decision Support Systems, vol. 46, no. 2, pp.
576 – 585, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167923608001814

[65] R. Sen, S. S. Singh, and S. Borle, “Open source software success: Measures and
analysis,” Decision Support Systems, vol. 52, no. 2, pp. 364 – 372, 2012. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S016792361100159X

[66] J. Coelho, M. T. Valente, L. L. Silva, and E. Shihab, “Identifying unmaintained
projects in github,” in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser. ESEM
’18. New York, NY, USA: ACM, 2018, pp. 15:1–15:10. [Online]. Available:
http://doi.acm.org/10.1145/3239235.3240501

[67] J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is it all lost? a study of inactive open
source projects,” in Open Source Software: Quality Verification, E. Petrinja, G. Succi,
N. El Ioini, and A. Sillitti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 61–79.

[68] L. R. Rabiner and B. H. Juang, “An introduction to hidden markov models,” IEEE
ASSp Magazine, 1986.

[69] A. B. Poritz, “Hidden Markov models: a guided tour,” in International Conference
on Acoustics, Speech, and Signal Processing, vol. 1, 1988, pp. 7–13. [Online].
Available: http://dx.doi.org/10.1109/ICASSP.1988.196495

[70] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software engineering exper-
iments: Benefits and perils,” IEEE Transactions on Software Engineering, vol. 42,
no. 2, pp. 120–135, Feb 2016.

[71] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, and G. Tortora, “On the
impact of uml analysis models on source-code comprehensibility and modifiability,”

http://dblp.uni-trier.de/db/conf/seke/seke2013.html#IqbalKH13
http://dl.acm.org/citation.cfm?id=2486788.2486865
http://dl.acm.org/citation.cfm?id=2486788.2486865
http://www.sciencedirect.com/science/article/pii/S0167923608001814
http://www.sciencedirect.com/science/article/pii/S0167923608001814
http://www.sciencedirect.com/science/article/pii/S016792361100159X
http://doi.acm.org/10.1145/3239235.3240501
http://dx.doi.org/10.1109/ICASSP.1988.196495

Bibliography 124

ACM Trans. Softw. Eng. Methodol., vol. 23, no. 2, pp. 13:1–13:26, Apr. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2491912

[72] L. Madeyski and B. Kitchenham, “Effect sizes and their variance for ab/ba crossover
design studies,” Empirical Software Engineering, vol. 23, no. 4, pp. 1982–2017,
Aug 2018. [Online]. Available: https://doi.org/10.1007/s10664-017-9574-5

[73] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum
Associates, 1988.

[74] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal of the
Econometric Society, pp. 245–259, 1945.

[75] T. Mens and S. Demeyer, Software Evolution, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[76] M. W. Godfrey and Q. Tu, “Evolution in open source software: A case study,” in
Proc. Int’l Conf. Software Maintenance (ICSM). Los Alamitos, California: IEEE
Computer Society Press, 2000, pp. 131–142.

[77] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of open-source and
closed-source software products,” IEEE Trans. Softw. Eng., vol. 30, no. 4, pp. 246–
256, Apr. 2004. [Online]. Available: https://doi.org/10.1109/TSE.2004.1274044

[78] I. Herraiz, G. Robles, and J. u. M. Gonzalez-Barahon, “Comparison between slocs
and number of files as size metrics for software evolution analysis,” in Proceedings
of the Conference on Software Maintenance and Reengineering, ser. CSMR ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 206–213. [Online].
Available: http://dl.acm.org/citation.cfm?id=1116163.1116405

[79] A. Capiluppi and J. F. Ramil, “Studying the evolution of open source systems at
different levels of granularity: two case studies,” in Proceedings. 7th International
Workshop on Principles of Software Evolution, 2004., Sept 2004, pp. 113–118.

[80] S.-K. Huang and K.-m. Liu, “Mining version histories to verify the learning process
of legitimate peripheral participants,” SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp.
1–5, May 2005. [Online]. Available: http://doi.acm.org/10.1145/1082983.1083158

[81] A. Meneely, L. Williams, W. Snipes, and J. Osborne, “Predicting failures with
developer networks and social network analysis,” in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, ser.
SIGSOFT ’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 13–23. [Online].
Available: http://doi.acm.org/10.1145/1453101.1453106

http://doi.acm.org/10.1145/2491912
https://doi.org/10.1007/s10664-017-9574-5
https://doi.org/10.1109/TSE.2004.1274044
http://dl.acm.org/citation.cfm?id=1116163.1116405
http://doi.acm.org/10.1145/1082983.1083158
http://doi.acm.org/10.1145/1453101.1453106

125 Bibliography

[82] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Mining email
social networks,” in Proceedings of the 2006 International Workshop on Mining
Software Repositories, ser. MSR ’06. New York, NY, USA: ACM, 2006, pp.
137–143. [Online]. Available: http://doi.acm.org/10.1145/1137983.1138016

[83] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module networks predict
failures?” in Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. SIGSOFT ’08/FSE-16. New York, NY,
USA: ACM, 2008, pp. 2–12.

[84] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy, “If your version control system could
talk,” in ICSE Workshop on Process Modelling and Empirical Studies of Software
Engineering, 1997.

[85] M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between change cou-
pling and software defects,” in Proc. of the 16th Working Conf. on Rev. Eng. IEEE
Computer Society, 2009.

[86] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in source code
files with decision tree learners,” in Proceedings of the 2006 International Workshop
on Mining Software Repositories, ser. MSR ’06. New York, NY, USA: ACM, 2006,
pp. 119–125. [Online]. Available: http://doi.acm.org/10.1145/1137983.1138012

[87] Y. Zhou, M. Würsch, E. Giger, H. C. Gall, and J. Lü, “A bayesian network based ap-
proach for change coupling prediction,” in 2008 15th Working Conference on Reverse
Engineering, Oct 2008, pp. 27–36.

[88] I. S. Wiese, R. T. Kuroda, R. Re, G. A. Oliva, and M. A. Gerosa, “An empirical
study of the relation between strong change coupling and defects using history and
social metrics in the apache aries project,” in Open Source Systems: Adoption and
Impact, E. Damiani, F. Frati, D. Riehle, and A. I. Wasserman, Eds. Cham: Springer
International Publishing, 2015, pp. 3–12.

[89] C. Tantithamthavorn, A. Ihara, and K. ichi Matsumoto, “Using co-change histories to
improve bug localization performance,” 2013 14th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, pp. 543–548, 2013.

[90] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in Proceedings
of the 28th International Conference on Software Engineering, ser. ICSE ’06. New
York, NY, USA: ACM, 2006, pp. 361–370.

[91] S. Kim, E. J. Whitehead, and Y. Zhang, “Classifying Software Changes: Clean or
Buggy?” Software Engineering, IEEE Transactions on, vol. 34, no. 2, pp. 181–196,
Mar. 2008. [Online]. Available: http://dx.doi.org/10.1109/TSE.2007.70773

http://doi.acm.org/10.1145/1137983.1138016
http://doi.acm.org/10.1145/1137983.1138012
http://dx.doi.org/10.1109/TSE.2007.70773

Bibliography 126

[92] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a re-
ported bug,” in 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010), May 2010, pp. 1–10.

[93] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix
this bug?” in Proceedings of the Fourth International Workshop on Mining Software
Repositories, ser. MSR ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 1–. [Online]. Available: http://dx.doi.org/10.1109/MSR.2007.13

[94] M. Gharehyazie, D. Posnett, and V. Filkov, “Social activities rival patch submission
for prediction of developer initiation in oss projects.” in ICSM. IEEE Computer
Society, 2013, pp. 340–349.

[95] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer contribution
from software repository data,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New York, NY, USA:
ACM, 2008, pp. 129–132.

[96] P. Makedonski, “Developer-Centric Software Assessment,” Ph.D. dissertation, Göt-
tingen, Germany, Jun. 2018.

[97] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery in free/libre and
open source software team communications,” in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences - Volume 06, ser. HICSS
’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 118.1–. [Online].
Available: https://doi.org/10.1109/HICSS.2006.101

[98] C. Amrit and J. van Hillegersberg, “Exploring the impact of socio-technical
core-periphery structures in open source software development,” Journal of
Information Technology, vol. 25, no. 2, pp. 216–229, Jun 2010. [Online]. Available:
https://doi.org/10.1057/jit.2010.7

[99] A. Terceiro, L. R. Rios, and C. Chavez, “An empirical study on the structural com-
plexity introduced by core and peripheral developers in free software projects,” in
Software Engineering (SBES), 2010 Brazilian Symposium on. IEEE, 2010, pp. 21–
29.

[100] K. Crowston and J. Howison, “The social structure of free and open source software
development,” First Monday, vol. 10, no. 2, 2005.

[101] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of the core team
of developers in libre software projects,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories, May 2009, pp. 167–170.

http://dx.doi.org/10.1109/MSR.2007.13
https://doi.org/10.1109/HICSS.2006.101
https://doi.org/10.1057/jit.2010.7

127 Bibliography

[102] M. Joblin, S. Apel, C. Hunsen, and W. Mauerer, “Classifying developers into
core and peripheral: An empirical study on count and network metrics,” in
Proceedings of the 39th International Conference on Software Engineering, ser.
ICSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 164–174. [Online].
Available: https://doi.org/10.1109/ICSE.2017.23

[103] P. V. Singh, Y. Tan, and N. Youn, “A hidden markov model of developer learning
dynamics in open source software projects.” Information Systems Research, vol. 22,
no. 4, pp. 790–807, 2011.

[104] Y. Gao and G. Madey, “Towards understanding: A study of the sourceforge.net com-
munity using modeling and simulation,” in Proceedings of the 2007 Spring Simula-
tion Multiconference - Volume 2, ser. SpringSim ’07. San Diego, CA, USA: Society
for Computer Simulation International, 2007, pp. 145–150.

[105] N. Minar, R. Burkhart, C. Langton, M. Askenazi et al., “The swarm simulation sys-
tem: A toolkit for building multi-agent simulations,” 1996.

[106] B. Spasic and B. S. S. Onggo, “Agent-based simulation of the software development
process: a case study at avl.” in Winter Simulation Conference, O. Rose and
A. M. Uhrmacher, Eds. WSC, 2012, pp. 400:1–400:11. [Online]. Available:
http://dblp.uni-trier.de/db/conf/wsc/wsc2012.html#SpasicO12

[107] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development: Guidelines for
Process Integration and Product Improvement, 3rd ed. Addison-Wesley Profes-
sional, 2011.

[108] R. Cherif and P. Davidsson, “Software development process simulation: Multi agent-
based simulation versus system dynamics,” in Multi-Agent-Based Simulation X,
G. Di Tosto and H. Van Dyke Parunak, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 73–85.

[109] R. Agarwal and D. Umphress, “A flexible model for simulation of software devel-
opment process,” in Proceedings of the 48th Annual Southeast Regional Conference.
ACM, 2010, p. 40.

[110] N. Smith and J. F. Ramil, “Agent-based simulation of open source evolution,” in
Software Process Improvement and Practice, 2006.

[111] U. Abelein and B. Paech, “Understanding the influence of user participation
and involvement on system success – a systematic mapping study,” Empirical
Software Engineering, vol. 20, no. 1, pp. 28–81, Feb 2015. [Online]. Available:
https://doi.org/10.1007/s10664-013-9278-4

https://doi.org/10.1109/ICSE.2017.23
http://dblp.uni-trier.de/db/conf/wsc/wsc2012.html#SpasicO12
https://doi.org/10.1007/s10664-013-9278-4

Bibliography 128

[112] D. Honsel, V. Herbold, M. Welter, J. Grabowski, and S. Waack, “Monitoring
software quality by means of simulation methods,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’16. ACM, 2016, pp. 11:1–11:6. [Online]. Available:
http://doi.acm.org/10.1145/2961111.2962617

[113] M. Welter, D. Honsel, V. Herbold, A. Staedler, J. Grabowski, and S. Waack, “As-
sessing Simulated Software Graphs using Conditional Random Fields,” in Post-
Proceedings of the Clausthal-Göttingen International Workshop on Simulation Sci-
ence 2017, ser. Communications in Computer and Information Science (CCIS).
Springer, 2018.

[114] L. Hattori and M. Lanza, “On the nature of commits.” in ASE Workshops. IEEE,
2008, pp. 63–71.

[115] J. Long, “Understanding the role of core developers in open source software devel-
opment,” Journal of Information, Information Technology, and Organizations, vol. 1,
pp. 75–85, 2006.

[116] H. Xia, “A collective-intelligence view on the linux kernel developer community,”
Int. J. Knowl. Syst. Sci., vol. 1, no. 3, pp. 20–32, Jul. 2010. [Online]. Available:
http://dx.doi.org/10.4018/jkss.2010070102

[117] F. Rahman and P. Devanbu, “Ownership, experience and defects: A fine-grained
study of authorship,” in Proc. of the 33rd Intern. Conf. on Softw. Eng. (ICSE). ACM,
2011.

[118] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proceedings of the 31st
International Conference on Software Engineering, ser. ICSE ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 298–308. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070530

[119] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5,
pp. 75 – 174, 2010.

[120] R. J. Wilson, Introduction to Graph Theory. New York, NY, USA: John Wiley &
Sons, Inc., 1986.

[121] N. Balakrishnan and V. Nevzorov, A Primer on Statistical Distributions. Wiley,
2003. [Online]. Available: https://books.google.de/books?id=aOC5lwEACAAJ

[122] D. Honsel, N. Fiekas, V. Herbold, M. Welter, T. Ahlbrecht, S. Waack, J. Dix, and
J. Grabowski, “Simulating Software Refactorings based on Graph Transformations,”

http://doi.acm.org/10.1145/2961111.2962617
http://dx.doi.org/10.4018/jkss.2010070102
http://dx.doi.org/10.1109/ICSE.2009.5070530
https://books.google.de/books?id=aOC5lwEACAAJ

129 Bibliography

in Post-Proceedings of the Clausthal-Göttingen International Workshop on Simu-
lation Science 2017, ser. Communications in Computer and Information Science
(CCIS). Springer, 2018.

[123] C. M. Macal and M. J. North, “Tutorial on agent-based modelling and simulation,”
Journal of Simulation, vol. 4, no. 3, pp. 151–162, 2010.

[124] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter,
vol. 11, no. 1, pp. 10–18, 2009.

[125] H. Gong, H. Zhang, D. Yu, and B. Liu, “A systematic map on verifying
and validating software process simulation models,” in Proceedings of the
2017 International Conference on Software and System Process, ser. ICSSP
2017. New York, NY, USA: ACM, 2017, pp. 50–59. [Online]. Available:
http://doi.acm.org/10.1145/3084100.3084106

[126] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history database from
version control and bug tracking systems,” in Proceedings of the International Con-
ference on Software Maintenance, ser. ICSM ’03. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 23–32.

[127] C. G. Campos, “Cvsanaly,” 2014. [Online]. Available: http://metricsgrimoire.github.
io/CVSAnalY/

[128] T.-D. B. Le, M. Linares-Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker: Automated
linking of issue reports and commits leveraging rich contextual information,”
in Proceedings of the 2015 IEEE 23rd International Conference on Program
Comprehension, ser. ICPC ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp.
36–47. [Online]. Available: http://dl.acm.org/citation.cfm?id=2820282.2820290

[129] Q. Hong, S. Kim, S. C. Cheung, and C. Bird, “Understanding a developer social
network and its evolution.” in ICSM. IEEE, 2011, pp. 323–332.

[130] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source software for
exploring and manipulating networks.” in Proc. of the 3rd Intern. AAAI Conf. on
Weblogs and Social Media (ICWSM), 2009.

[131] T. Opsahl, F. Agneessens, and J. Skvoretz, “Node centrality in weighted networks:
Generalizing degree and shortest paths,” Social Networks, vol. 32, no. 3, pp. 245 –
251, 2010.

[132] J. Leskovec, K. J. Lang, and M. Mahoney, “Empirical comparison of algorithms for
network community detection,” in Proceedings of the 19th International Conference

http://doi.acm.org/10.1145/3084100.3084106
http://metricsgrimoire.github.io/CVSAnalY/
http://metricsgrimoire.github.io/CVSAnalY/
http://dl.acm.org/citation.cfm?id=2820282.2820290

Bibliography 130

on World Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp.
631–640. [Online]. Available: http://doi.acm.org/10.1145/1772690.1772755

[133] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, p. P10008, 2008. [Online]. Available:
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008

[134] L. Xiaolin, M. Parizeau, and R. Plamondon, “Training hidden markov models with
multiple observations-a combinatorial method.” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 22, no. 4, pp. 371–377, 2000.

[135] S. Herbold, J. Grabowski, and S. Waack, “Calculation and optimization of thresholds
for sets of software metrics,” Empirical Software Engineering, vol. 16, no. 6, pp.
812–841, 2011.

[136] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[137] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.
[Online]. Available: http://dx.doi.org/10.1023/A:1010933404324

[138] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised
learning algorithms,” in Proceedings of the 23rd International Conference on
Machine Learning, ser. ICML ’06. New York, NY, USA: ACM, 2006, pp.
161–168. [Online]. Available: http://doi.acm.org/10.1145/1143844.1143865

[139] T. van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene,
B. de Moor, and J. Vandewalle, “Benchmarking Least Squares Support Vector Ma-
chine Classifiers,” Machine Learning, vol. 54, no. 1, pp. 5–32, 2004.

[140] J. O’Connell and S. Højsgaard, “Hidden semi markov models for multiple
observation sequences: The mhsmm package for R,” Journal of Statistical Software,
vol. 39, no. 4, pp. 1–22, 2011. [Online]. Available: http://www.jstatsoft.org/v39/i04/

[141] M. Taboga, Lectures on probability theory and mathematical statistics. CreateSpace
Independent Pub., 2012.

[142] W. D. Berry, W. D. Berry, S. Feldman, and D. Stanley Feldman, Multiple regression
in practice. Sage, 1985, no. 50.

[143] Y. Tymchuk, A. Mocci, and M. Lanza, “Collaboration in open-source projects: Myth
or reality?” in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: ACM, 2014, pp. 304–307.

http://doi.acm.org/10.1145/1772690.1772755
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://dx.doi.org/10.1023/A:1010933404324
http://doi.acm.org/10.1145/1143844.1143865
http://www.jstatsoft.org/v39/i04/

131 Bibliography

[144] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “The rise and fall of a
central contributor: Dynamics of social organization and performance in the gentoo
community,” CoRR, vol. abs/1302.7191, 2013.

[145] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, 2nd
Edition, 2nd ed. Wiley-Interscience, Jan. 1999. [Online]. Available: http:
//www.worldcat.org/isbn/0471190454

[146] R. G. Sargent, “Verification and validation of simulation models,” in Proceedings of
the Winter Simulation Conference, ser. WSC ’11. Winter Simulation Conference,
2011, pp. 183–198. [Online]. Available: http://dl.acm.org/citation.cfm?id=2431518.
2431538

[147] M. Uzzafer, “A simulation model for strategic management process of software
projects,” Journal of Systems and Software, vol. 86, no. 1, pp. 21 – 37, 2013. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S016412121200177X

[148] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen, “Communication
in open source software development mailing lists,” in Proceedings of the
10th Working Conference on Mining Software Repositories, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 277–286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487139

[149] J. Khondhu, A. Capiluppi, and K.-J. Stol, “Is it all lost? a study of inactive open
source projects,” in Open Source Software: Quality Verification, E. Petrinja, G. Succi,
N. El Ioini, and A. Sillitti, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 61–79.

[150] S. Thompson, Sampling, ser. CourseSmart. Wiley, 2012. [Online]. Available:
https://books.google.de/books?id=-sFtXLIdDiIC

[151] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of professionals
in software engineering experiments?” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1, May 2015, pp. 666–676.

[152] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting linear mixed-effects models
using lme4,” Journal of Statistical Software, vol. 67, no. 1, pp. 1–48, 2015.

[153] M. Pohl and S. Diehl, “What dynamic network metrics can tell us about developer
roles,” in Proceedings of the 2008 International Workshop on Cooperative and Hu-
man Aspects of Software Engineering, ser. CHASE ’08. New York, NY, USA:
ACM, 2008, pp. 81–84.

http://www.worldcat.org/isbn/0471190454
http://www.worldcat.org/isbn/0471190454
http://dl.acm.org/citation.cfm?id=2431518.2431538
http://dl.acm.org/citation.cfm?id=2431518.2431538
http://www.sciencedirect.com/science/article/pii/S016412121200177X
http://dl.acm.org/citation.cfm?id=2487085.2487139
https://books.google.de/books?id=-sFtXLIdDiIC

Bibliography 132

[154] B. B. N. de França and G. H. Travassos, “Experimentation with dynamic simulation
models in software engineering: planning and reporting guidelines,” Empirical
Software Engineering, vol. 21, no. 3, pp. 1302–1345, Jun 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9386-4

[155] A. Maria, “Introduction to modeling and simulation,” in Proceedings of the 29th
conference on Winter simulation. IEEE Computer Society, 1997, pp. 7–13.

https://doi.org/10.1007/s10664-015-9386-4

A. Correlations of Transition Matrices of
Individual Developer Behavior

In the following, we list all project-wise correlations for the transitions matrices of devel-
opers sharing the same role.

Correlations of Transition Matrices of Individual Developer Behavior 134

(a) Core developers

(b) Major developers

(c) Minor developers

Figure A.1.: Role-wise correlation plots for all individual developer models using thresh-
olds as classifier.

135

(a) Core developers

(b) Major developers

(c) Minor developers

Figure A.2.: Role-wise correlation plots for all individual developer models using KNN as
classifier.

Correlations of Transition Matrices of Individual Developer Behavior 136

(a) Core developers

(b) Major developers

(c) Minor developers

Figure A.3.: Role-wise correlation plots for all individual developer models using KNN3 as
classifier.

137

(a) Core developers

(b) Major developers

(c) Minor developers

Figure A.4.: Role-wise correlation plots for all individual developer models using KNN5 as
classifier.

Correlations of Transition Matrices of Individual Developer Behavior 138

(a) Core developers

(b) Major developers

(c) Minor developers

Figure A.5.: Role-wise correlation plots for all individual developer models using Random
Forests as classifier.

B. Hidden Markov Models for Universal
Developer Contribution Behavior

In the following, we list all produced general contribution models that are not taken as an
example within the thesis. This means, we report for each classifier the transition matrices,
means of the emissions, and covariance matrices of emissions.

KNN5

For KNN5, the transitions and means of emissions were already mentioned. Thus, we start
with covariance matrices Σk belonging to the means µk in Table 6.6. Together, this specifies
the emission distributions N (k; µk,Σk).

We start with the general model for core developers:

Σlow =

16.060 1.573 −5.583 −1.568
1.572 0.906 −0.969 0.096
−5.583 −0.969 19.531 4.663
−1.568 0.096 4.663 1.927

 ,

Σmedium =

65.503 21.913 −43.114 −38.509
21.913 18.879 9.771 −14.291
−43.114 9.771 149.776 13.233
−38.509 −14.291 13.233 73.591

 ,

Σhigh =

59.347 34.465 56.746 −37.852
34.465 35.317 29.253 −39.568
56.746 29.253 88.749 −62.445
−37.852 −39.568 −62.445 339.419

 .

Figure B.1.: Covariance matrices of the core developer general model.

Hidden Markov Models for Universal Developer Contribution Behavior 140

For the major developers, we get the following matrices:

Σlow =

0.183 0.064 0.340 0.199
0.064 0.097 0.136 0.042
0.340 0.136 1.902 0.506
0.199 0.042 0.506 3.965

 ,

Σmedium =

5.682 1.380 1.069 −0.842
1.380 1.314 −0.102 −0.366
1.069 −0.102 7.957 −10.388
−0.842 −0.366 −10.388 48.673

 ,

Σhigh =

0.843 −0.045 0.188 −0.189
−0.045 0.498 −0.237 1.581
0.188 −0.237 0.376 −0.623
−0.189 1.581 −0.623 7.537−0.623

 .

Figure B.2.: Covariance matrices of the major developer general model.

Finally, the covariances of minor developers can be expressed by these matrices:

Σlow =

0.120 0.018 0.029 0.036
0.018 0.031 −0.010 −0.027
0.029 −0.010 0.287 −0.077
0.036 −0.027 −0.077 0.294

 ,

Σmedium =

1.174 0.093 0.116 6.432
0.093 0.076 0.029 0.655
0.116 0.029 1.017 0.858
6.432 0.655 0.858 48.106

 ,

Σhigh =

0.020 0.006 0.001 0.015
0.006 0.003 0.000 0.009
0.001 0.000 0.000 −0.000
0.015 0.009 −0.000 0.064

 .

Figure B.3.: Covariance matrices of the minor developer general model.

141

Thresholds

Acore =

low med. high

low 0.65 0.28 0.07

med. 0.39 0.48 0.13

high 0.09 0.22 0.69

, Ama jor =

low med. high

low 0.67 0.27 0.06

med. 0.37 0.53 0.10

high 0.07 0.17 0.76

,

Aminor =

low med. high

low 0.70 0.24 0.06

med. 0.30 0.51 0.19

high 0.09 0.16 0.75

.

Figure B.4.: General transition matrices for developer roles over all projects.

State Core Major Minor
low (1,0,5,1) (1,0,2,1) (1,0,1,1)

medium (22,6,27,13) (12,3,6,11) (7,3,2,12)
high (33,11,50,45) (13,4,11,26) (3,1,4,5)

Table B.1.: Means µk of emissions for the general model.

We start with the general model for core developers:

Σlow =

0.216 0.031 0.447 0.141
0.031 0.018 0.082 0.009
0.447 0.082 8.074 0.784
0.141 0.009 0.784 0.740

 ,

Σmedium =

22.525 1.980 −5.432 −1.370
1.980 2.578 −13.656 −0.361
−5.432 −13.656 997.357 −20.015
−1.370 −0.361 −20.015 5.054

 ,

Σhigh =

86.289 10.060 94.972 18.876
10.060 8.928 10.462 14.923
94.972 10.462 230.876 10.453
18.876 14.923 10.453 110.327

 .

Figure B.5.: Covariance matrices of the core developer general model.

Hidden Markov Models for Universal Developer Contribution Behavior 142

For the major developers, we get the following matrices:

Σlow =

0.382 0.024 0.613 −0.028
0.024 0.016 0.010 0.021
0.613 0.010 1.568 −0.074
−0.028 0.021 −0.074 0.357

 ,

Σmedium =

2.257 0.275 0.995 0.048
0.275 0.099 0.323 0.026
0.995 0.323 3.728 0.617
0.048 0.026 0.617 0.718

 ,

Σhigh =

0.372 0.049 −0.029 0.196
0.049 0.026 −0.049 0.096
−0.029 −0.049 0.605 −0.209
0.196 0.096 −0.209 0.691

 .

Figure B.6.: Covariance matrices of the major developer general model.

Finally, the covariances of minor developers can be expressed by these matrices:

Σlow =

0.092 0.006 0.009 0.009
0.006 0.015 −0.009 −0.002
0.009 −0.009 0.300 −0.015
0.009 −0.002 −0.015 0.075

 ,

Σmedium =

0.737 0.320 −0.076 0.702
0.320 0.358 −0.097 0.116
−0.076 −0.097 0.619 0.431
0.702 0.116 0.431 9.003

 ,

Σhigh =

1.428 0.126 0.031 8.585
0.126 0.028 0.016 0.790
0.031 0.016 0.603 0.345
8.585 0.790 0.345 64.314

 .

Figure B.7.: Covariance matrices of the minor developer general model.

143

KNN

Acore =

low med. high

low 0.67 0.26 0.07

med. 0.39 0.46 0.15

high 0.10 0.23 0.67

, Ama jor =

low med. high

low 0.64 0.30 0.06

med. 0.39 0.48 0.13

high 0.09 0.19 0.72

,

Aminor =

low med. high

low 0.74 0.25 0.01

med. 0.29 0.70 0.01

high 0.02 0.03 0.95

.

Figure B.8.: General transition matrices for developer roles over all projects.

State Core Major Minor
low (4,1,5,2) (1,0,2,2) (1,0,1,1)

medium (20,8,32,16) (12,4,8,22) (10,3,2,20)
high (32,16,47,50) (17,5,13,30) (0,0,0,1)

Table B.2.: Means µk of emissions for the general model.

We start with the general model for core developers:

Σlow =

14.877 1.237 −2.692 −0.850
1.237 0.890 0.374 0.488
−2.692 0.374 6.355 2.962
−0.850 0.488 2.962 2.282

 ,

Σmedium =

59.545 21.424 −23.843 −45.184
21.424 16.644 −8.199 −17.000
−23.843 −8.199 62.687 −3.350
−45.184 −17.000 −3.350 93.667

 ,

Σhigh =

33.824 22.523 25.361 −20.830
22.523 25.093 20.369 −30.849
25.361 20.369 89.609 −112.080
−20.830 −30.849 −112.080 332.444

 .

Figure B.9.: Covariance matrices of the core developer general model.

Hidden Markov Models for Universal Developer Contribution Behavior 144

For the major developers, we get the following matrices:

Σlow =

0.197 0.066 0.330 0.232
0.066 0.086 0.100 0.046
0.330 0.100 1.640 0.526
0.232 0.046 0.526 4.431

 ,

Σmedium =

0.569 0.195 0.037 −0.265
0.195 0.318 −0.163 −0.496
0.037 −0.163 7.094 −10.258
−0.265 −0.496 −10.258 54.044

 ,

Σhigh =

1.302 0.362 0.018 0.758
0.362 0.350 −0.030 0.716
0.018 −0.030 0.928 −0.068
0.758 0.716 −0.068 4.148

 .

Figure B.10.: Covariance matrices of the major developer general model.

Finally, the covariances of minor developers can be expressed by these matrices:

Σlow =

0.0252 0.036 0.055 0.055
0.036 0.097 −0.009 0.038
0.055 −0.009 0.400 −0.130
0.055 0.038 −0.130 0.665

 ,

Σmedium =

2.230 0.056 0.144 7.339
0.056 0.228 0.040 0.729
0.144 0.040 1.410 0.465
7.339 0.729 0.465 61.310

 ,

Σhigh =

0.163 0.046 0.009 0.120
0.046 0.020 0.002 0.062
0.009 0.002 0.001 −0.001
0.120 0.062 −0.001 0.455

 .

Figure B.11.: Covariance matrices of the minor developer general model.

145

KNN3

Acore =

low med. high

low 0.65 0.27 0.08

med. 0.38 0.48 0.14

high 0.11 0.22 0.67

, Ama jor =

low med. high

low 0.65 0.28 0.07

med. 0.39 0.51 0.10

high 0.07 0.16 0.77

,

Aminor =

low med. high

low 0.74 0.25 0.01

med. 0.28 0.71 0.01

high 0.01 0.01 0.98

.

Figure B.12.: General transition matrices for developer roles over all projects.

State Core Major Minor
low (5,1,6,2) (1,0,2,1) (1,0,0,1)

medium (24,8,27,15) (19,5,9,19) (9,2,2,14)
high (41,15,52,52) (17,6,11,30) (0,0,0,0)

Table B.3.: Means µk of emissions for the general model.

We start with the general model for core developers:

Σlow =

17.045 1.425 −3.051 −1.075
1.425 0.952 0.332 0.398
−3.051 0.332 7.111 2.713
−1.075 0.398 2.713 1.780

 ,

Σmedium =

72.075 26.101 −30.528 −31.626
26.101 20.590 −9.736 −11.246
−30.528 −9.736 51.270 0.568
−31.626 −11.246 0.568 33.832

 ,

Σhigh =

50.915 27.544 44.978 −29.978
27.544 29.515 26.661 −35.730
44.978 26.661 133.822 −139.170
−29.978 −35.730 −139.170 403.406

 .

Figure B.13.: Covariance matrices of the core developer general model.

Hidden Markov Models for Universal Developer Contribution Behavior 146

For the major developers, we get the following matrices:

Σlow =

0.153 0.053 0.266 0.105
0.053 0.078 0.089 0.048
0.266 0.089 1.381 0.273
0.105 0.048 0.273 2.159

 ,

Σmedium =

3.900 0.918 0.643 −0.522
0.918 0.870 0.020 −0.400
0.643 0.020 6.416 −7.407
−0.522 −0.400 −7.407 41.816

 ,

Σhigh =

0.496 0.011 −0.072 −0.327
0.011 0.268 −0.099 0.764
−0.072 −0.099 0.189 −0.322
0.096 0.764 −0.322 3.237

 .

Figure B.14.: Covariance matrices of the major developer general model.

Finally, the covariances of minor developers can be expressed by these matrices:

Σlow =

0.133 0.023 0.030 0.049
0.023 0.045 −0.008 0.035
0.030 −0.008 0.276 −0.061
0.049 0.035 −0.061 0.265

 ,

Σmedium =

1.291 0.047 0.137 6.390
0.047 0.165 0.033 0.708
0.137 0.033 0.977 0.987
6.390 0.708 0.987 47.705

 ,

Σhigh =

0.051 0.008 0.004 0.013
0.008 0.002 0.001 0.002
0.004 0.001 0.001 0.001
0.013 0.002 0.001 0.0110.002

 .

Figure B.15.: Covariance matrices of the minor developer general model.

147

Random Forests

Acore =

low med. high

low 0.65 0.26 0.09

med. 0.39 0.47 0.14

high 0.10 0.23 0.67

, Ama jor =

low med. high

low 0.64 0.30 0.06

med. 0.40 0.49 0.11

high 0.08 0.15 0.77

,

Aminor =

low med. high

low 0.67 0.27 0.06

med. 0.33 0.61 0.06

high 0.15 0.07 0.78

.

Figure B.16.: General transition matrices for developer roles over all projects.

State Core Major Minor
low (4,1,5,1) (1,0,2,1) (1,0,1,2)

medium (21,7,25,16) (11,4,7,18) (10,2,5,21)
high (35,13,51,47) (16,5,15,26) (4,2,6,6)

Table B.4.: Means µk of emissions for the general model.

We start with the general model for core developers:

Σlow =

14.822 1.212 −2.706 −0.970
1.212 0.840 0.329 0.381
−2.706 0.329 5.881 2.382
−0.970 0.381 2.382 1.669

 ,

Σmedium =

59.034 21.561 −23.572 −44.758
21.561 16.751 −7.763 −16.946
−23.572 −7.763 40.146 −2.557
−44.75 −16.946 −2.557 93.036

 ,

Σhigh =

37.598 22.701 32.255 −21.391
22.701 24.927 20.772 −30.993
32.255 20.772 103.350 −113.049
−21.39 −30.993 −113.049 332.874

 .

Figure B.17.: Covariance matrices of the core developer general model.

Hidden Markov Models for Universal Developer Contribution Behavior 148

For the major developers, we get the following matrices:

Σlow =

0.197 0.063 0.302 0.204
0.063 0.076 0.088 0.039
0.302 0.088 1.511 0.470
0.204 0.039 0.470 3.955

 ,

Σmedium =

0.484 0.172 0.149 −0.217
0.172 0.249 −0.121 −0.492
0.149 −0.121 6.154 −9.083
−0.217 −0.492 −9.083 47.912

 ,

Σhigh =

0.882 0.239 0.177 0.423
0.239 0.259 0.001 0.540
0.177 0.001 0.479 −0.063
0.423 0.540 −0.063 47.912

 .

Figure B.18.: Covariance matrices of the major developer general model.

Finally, the covariances of minor developers can be expressed by these matrices:

Σlow =

0.313 0.076 0.042 0.032
0.076 0.045 0.004 −0.059
0.042 0.004 0.617 −0.272
0.032 −0.059 −0.272 1.605

 ,

Σmedium =

2.882 0.196 0.250 7.858
0.196 0.270 0.029 0.875
0.250 0.029 2.032 1.043
7.858 0.875 1.043 63.613

 ,

Σhigh =

1.443 0.278 0.787 0.476
0.278 0.305 0.090 0.938
0.787 0.090 1.854 −2.494
0.476 0.938 −2.494 10.430

 .

Figure B.19.: Covariance matrices of the minor developer general model.

C. Correlations of Transition Matrices of
Project Activity

Correlations of Transition Matrices of Project Activity 150

Table C.1.: Correlations of transition matrices for project activity.

A
ctivity

Project
A

ccum
ulo

C
ayenne

K
afka

Storm
A

ntivy
A

rchiva
D

eltaspike
M

ahout
N

utch
O

pennlp
Struts

Tez
Tika

Z
ookeeper

Pig
X

erces
A

ctive
A

ccum
ulo

–
0.94

0.91
0.98

0.81
0.95

0.98
0.97

0.94
0.99

0.96
0.94

0.95
0.94

0.99
0.97

C
ayenne

0.94
–

0.89
0.94

0.87
0.89

0.88
0.96

0.97
0.91

0.96
0.97

0.96
0.80

0.93
0.94

K
afka

0.91
0.89

–
0.95

0.95
0.75

0.87
0.95

0.91
0.91

0.94
0.93

0.80
0.84

0.86
0.96

Storm
0.98

0.94
0.95

–
0.89

0.91
0.96

0.98
0.96

0.98
0.97

0.96
0.93

0.92
0.97

0.99
M

aintenance
A

ntivy
0.81

0.87
0.95

0.89
–

0.68
0.74

0.87
0.91

0.79
0.91

0.92
0.76

0.67
0.78

0.92
A

rchiva
0.95

0.89
0.75

0.91
0.68

–
0.92

0.87
0.89

0.92
0.90

0.88
0.98

0.87
0.98

0.89
D

eltaspike
0.98

0.88
0.87

0.96
0.74

0.92
–

0.95
0.89

0.99
0.92

0.89
0.91

0.97
0.96

0.93
M

ahout
0.97

0.96
0.95

0.98
0.87

0.87
0.95

–
0.93

0.97
0.95

0.94
0.91

0.92
0.94

0.96
N

utch
0.94

0.97
0.91

0.96
0.91

0.89
0.89

0.93
–

0.92
0.99

0.99
0.95

0.79
0.95

0.98
O

pennlp
0.99

0.91
0.91

0.98
0.79

0.92
0.99

0.97
0.92

–
0.95

0.92
0.92

0.96
0.97

0.96
Struts

0.96
0.96

0.94
0.97

0.91
0.90

0.92
0.95

0.99
0.95

–
0.99

0.95
0.83

0.96
0.99

Tez
0.94

0.97
0.93

0.96
0.92

0.88
0.89

0.94
0.99

0.92
0.99

–
0.94

0.79
0.94

0.98
Tika

0.95
0.96

0.80
0.93

0.76
0.98

0.91
0.91

0.95
0.92

0.95
0.94

–
0.82

0.98
0.93

Z
ookeeper

0.94
0.80

0.84
0.92

0.67
0.87

0.97
0.92

0.79
0.96

0.83
0.79

0.82
–

0.91
0.87

Inactive
Pig

0.99
0.93

0.86
0.97

0.78
0.98

0.96
0.94

0.95
0.97

0.96
0.94

0.98
0.91

–
0.96

X
erces

0.97
0.94

0.96
0.99

0.92
0.89

0.93
0.96

0.98
0.96

0.99
0.98

0.93
0.87

0.96
–

D. Hidden Markov Models for Project Activity

In the following, we list all produced project activity models that are not taken as an example
within the thesis. This means, we report for each classifier the transition matrices, means of
the emissions, and covariance matrices of emissions.

KNN3

For KNN3, the transitions and means of emissions were already mentioned. Thus, we start
with covariance matrices Σk belonging to the means µk in Table 6.10. Together, this specifies
the emission distributions N (k; µk,Σk).

We start with the covariance matrices for active projects:

Σlow =

217.83 −15.08 60.92
−15.08 115.43 77.85
60.92 77.85 494.23

 ,

Σmedium =

462.87 −84.63 −20.28
−84.63 2232.02 496.23
−20.28 496.23 3654.10

 ,

Σhigh =

1409.69 215.84 −783.13
215.84 924.86 382.31
−783.13 382.31 3676.08

 .

Figure D.1.: Covariance matrices of active models.

For maintenance projects we received the following matrices:

Σlow =

 5.41 10.30 −0.97
10.30 40.64 3.44
−0.97 3.44 27.06

 ,

Σmedium =

 22.82 −28.59 −9.73
−28.59 454.65 −0.03
−9.73 −0.03 82.21

 ,

Σhigh =

 52.94 116.14 6.01
116.14 570.83 46.89

6.01 46.89 171.93

 .

Figure D.2.: Covariance matrices of maintenance models.

Hidden Markov Models for Project Activity 152

Finally, for inactive projects we get:

Σlow =

49.01 14.21 0.74
14.21 29.02 15.40
0.74 15.40 163.35

 ,

Σmedium =

 490.79 −148.40 21.85
−148.40 192.88 −15.65

21.85 −15.65 825.36

 ,

Σhigh =

 725.25 1137.02 −425.60
1137.02 6411.84 34.14
−425.60 34.14 5986.13

 .

Figure D.3.: Covariance matrices of inactive models.

Random Forests

For the transitions with Random Forests as classifier, we received the following:

Aactive =

low med. high

low 0.67 0.25 0.08

med. 0.30 0.46 0.24

high 0.12 0.30 0.58

, Amaintenance =

low med. high

low 0.67 0.25 0.08

med. 0.35 0.43 0.22

high 0.08 0.33 0.59

,

Ainactive =

low med. high

low 0.67 0.26 0.07

med. 0.37 0.47 0.16

high 0.05 0.34 0.61

.

Figure D.4.: General transition matrices for project activity over all projects.

153

For the means of emission distributions we get the following:

State Active Maintenance Inactive
low (27,57,104) (14,37,50) (14,40,66)

medium (33,126,255) (17,60,122) (8,32,137)
high (90,183,263) (30,99,215) (13,70,195)

Table D.1.: Means µk of emissions for the general project activity model.

We now report all covariance matrices for Random Forests:

Σlow =

 50.83 40.55 −46.40
40.55 172.17 −211.10
−46.40 −211.10 2847.52

 ,

Σmedium =

 484.20 −581.10 −170.71
−581.10 3927.29 1644.29
−170.71 1644.29 3133.87

 ,

Σhigh =

1341.98 −138.67 −382.68
−138.67 4493.06 1952.04
−382.68 1952.04 3752.65

 .

Figure D.5.: Covariance matrices of active models.

Σlow =

 5.71 11.48 −0.95
11.48 42.25 0.02
−0.95 0.02 22.18

 ,

Σmedium =

 26.50 −18.05 −9.08
−18.05 402.10 −0.51
−9.08 −0.51 62.61

 ,

Σhigh =

41.53 57.03 13.38
57.03 360.59 79.52
13.38 79.52 176.76

 .

Figure D.6.: Covariance matrices of maintenance models.

Hidden Markov Models for Project Activity 154

Σlow =

49.64 12.37 −2.12
12.37 27.72 15.75
−2.12 15.75 95.01

 ,

Σmedium =

 407.33 −116.06 30.88
−116.06 181.69 −28.04

30.88 −28.04 703.03

 ,

Σhigh =

 731.86 1112.20 −462.54
1112.20 6339.42 64.59
−462.54 64.59 5929.46

 .

Figure D.7.: Covariance matrices of inactive models.

E. Questionnaire for AB/BA Crossover Study

Task Description

On the following pages, you will find a picture displaying the activity of
an open source software project over the time on each.

Please judge for each project whether you would consider it as active
or inactive and mark your decision.

Please do not compare the projects. Assess each project individually
and intuitively without referring back or forth to other projects.

1

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

2

Questionnaire for AB/BA Crossover Study 156

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

3

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

4

157

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

5

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

6

Questionnaire for AB/BA Crossover Study 158

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

7

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

8

159

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

9

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

10

Questionnaire for AB/BA Crossover Study 160

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

11

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

12

161

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

13

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

14

Questionnaire for AB/BA Crossover Study 162

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

15

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

16

163

active: 2 inactive: 2
How sure are you? very 2 fairly 2 halfway 2 little 2

17

Task Evaluation

Please evaluate which method you prefer:

Both equal

Thank you for your participation!

18

Questionnaire for AB/BA Crossover Study 164

F. R Output for the Calculation of Effect
Sizes

output.txt

Linear mixed model fit by REML [’lmerMod’]

Formula: value ~ TimePeriod + variable + 1 Participant

Data: scores_long

REML criterion at convergence: -21.5

Scaled residuals:

Min 1Q Median 3Q Max

-1.77505 -0.55080 0.06193 0.57809 1.95494

Random effects:

Groups Name Variance Std.Dev.

Participant Intercept 0.01863 0.1365

Residual 0.01819 0.1349

Number of obs: 54, groups: Participant, 27

Fixed effects:

Estimate Std. Error t value

Intercept 0.688823 0.040942 16.824

TimePeriodR2 -0.007555 0.036729 -0.206

variableScore_states -0.046016 0.036729 -1.253

Correlation of Fixed Effects:

Intr TmPrR2

TimePeridR2 -0.432

vrblScr_stt -0.432 -0.037

	Introduction
	Motivation
	Scope
	Goals and Contributions
	Impact
	Structure of the Thesis

	Foundations
	Software Evolution
	Mining Software Repositories
	Software Metrics
	Data Sources
	Data Preparation
	Data Mining
	Software Analytics and Statistical Learning

	Agent-Based Simulation
	What is an Agent?
	Applications and Tools
	Simulation of Software Processes

	Developer Contribution Behavior
	Hidden Markov Models
	Notations
	Baum-Welch algorithm
	Viterbi algorithm

	AB/BA crossover

	Related Work
	Mining of Software Evolution Trends
	Developer Contribution Behavior
	Software Process Simulation
	OSS Project Activity

	Simulation Models
	General Modeling Process
	STEPS Simulation Model
	Topology Design: Networks
	Behavior Design: Strategies

	DEVCON Simulation Model
	Software Quality Assessment
	Challenges and Limitations

	Instantiation of Simulation Models
	Parameter Estimation
	Data Collection and Preparation
	Instantiation of the STEPS Simulation Model
	Developer Types
	Software Networks

	Instantiation of the DEVCON Simulation Model
	Mining of Developer Contribution Behavior
	Classification
	HMMs for Developer Contribution Behavior
	Simulation of Software Processes with a Contribution Phases Model

	Case Studies
	Overall Design and Objectives
	Case Study 1: Feasibility of Simulation of Software Evolution
	Setup
	Evaluation Criteria
	Results
	Discussion

	Case Study 2: Dynamic Developer Contribution Model
	Setup
	Evaluation Criteria
	Results
	Discussion

	Case Study 3: Dynamic Project Activity Model
	Setup
	Evaluation Criteria
	Results
	Discussion

	Discussion
	Answers to Research Questions
	RQ 1: Can we model software evolution using Agent-Based simulation?
	RQ 2: How can we model developer contribution behavior?

	Strengths and Limitations
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	Summary
	Outlook

	Bibliography
	Correlations of Transition Matrices of Individual Developer Behavior
	Hidden Markov Models for Universal Developer Contribution Behavior
	Correlations of Transition Matrices of Project Activity
	Hidden Markov Models for Project Activity
	Questionnaire for AB/BA Crossover Study
	R Output for the Calculation of Effect Sizes

