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Abstract

Chemical abstract machines (CHAMs) are used as the model to solve
the problem of finding possible communication paths between network
nodes. The information used for the construction of the CHAMs is re-
trieved by performing local observations at the different network nodes.
We introduce the model of CHAMs, explain the construction of different
types of CHAMs to solve our problem, and show the applicability of our
approach by describing a TCP/IP based experiment.
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1 Motivation

Networks often grow in an evolutionary fashion. Nodes are attached to or deleted from a network
mostly without considering the effect of these modifications onto the network behaviour as a
whole. For instance, this is the case in TCP/IP networks, but as well for telephony networks,
where the network is planned far more thoroughly.

In TCP/IP networks as well as in telephony networks, the operator does not have a clear
understanding of the route which a connection or communication takes through the network.
In most networks, an operator is only able observe the load of the different nodes and some
characteristics of the traffic between them. The concrete information flow of a connection,
i.e. the channels and gateways used, and the order of their use cannot be observed.

Software support to tackle this problem is available for local area networks (LANs) and TCP/IP
networks with SNMP software. The situation is worse for non-TCP/IP networks, like telephony
networks. Only local probes of the communication and signalling traffic at the network nodes
are available. Such local probes are often also available for LANs and TCP/IP networks.

Our aim is to define a model for the communication behaviour of a network which can be
constructed from the local observations of the network nodes. As you will see in the examples in
this paper, additional information can be gained from the combination of the local views, e.g. it
is possible to detect additional communication paths which have not been observed locally. In
case of network errors, such information may be valuable for network operators. However, until
now we have restricted our work to a path finding problem, but we hope that our work can also
be used to predict the communication behaviour of a network in case of addition or deletion of
network nodes. For such problems our network model may need simulation facilities.

In this paper, we will give an algorithm to combine local observations into a global model of the
communication behaviour of the network. For this, we make use of two approaches based on ideas
coming from chemistry and biology. Both approaches are rarely employed in computer science.
We will use the chemical computation metaphor presented in [6] as our formalism of choice, and
will use the idea of molecular computation presented in [1] as an inspiration to our solution. The
biological and chemical metaphors have been used for two reasons: On the one hand, routing in
LANs and telephony networks is performed in a massively parallel way. Hence, we are looking
for formalisms capturing this aspect. On the other hand, the formalism of CHAMs introduced
below allows the transformation into models of process systems, i.e. simulation models. Our
solution given in Section 3 could also be described using concepts of graph theory only, but then
there would be no formally clean way to obtain simulation models.



The rest of the paper is organised in the following manner: Chemical Abstract Machines and
DNA computing are introduced in Section 2. The construction of different Chemical Abstract
Machines from local observations is described and discussed in the main part of this paper
(Section 3). A case study showing the application of our approach is described in Section 4. In
Section 5 we conclude and give an outlook on future work.

2 Preliminaries

Before presenting a solution to the problem of discovering network behaviour from looking just
at local observations, we introduce the notion of Chemical Abstract Machines and the idea of
DNA computing.

2.1 Chemical Abstract Machines

The model of Chemical Abstract Machines (CHAMs) is based on the chemical metaphor first
put forward by Banatre and Le Métayer in [2, 3]. The idea behind this metaphor is to provide a
model where concurrent components are “moving” freely in a system, communicating with each
other when coming into contact. The metaphor is realised in the Gamma formalism.

Intuitively, a system state in Gamma is like a chemical solution, where molecules in the solution
are able to react which each other according to reaction rules. The solution is stirred by a
magical mechanism, providing possible contacts between molecules. This magical mechanism is
an “implementation” of the usual Brownian motion found in chemical solutions.

Formally, a chemical solution can simply be seen as a finite multiset of elements (which are
called molecules), denoted by
S ={mi,ma,...,myl}.

This also accounts for the stirring mechanism, as the elements are unordered and may be assumed
to make contact arbitrarily.

The notion of a CHAM was introduced in [5] and developed further in [6]. The Gamma formalism
is enhanced by extending the use of multisets, allowing them to be part of the molecules, and
by introducing a classification of transformation rules. The CHAM is meant to be a framework
for the description of the operational semantics of parallel languages and for the examination
and development of parallel computations.

A CHAM consists of a set of molecules m,m/,... and a state transition relation S — S’, with
the states S, 5’,... being finite multisets of molecules, called solutions. At the abstract level, we
assume the molecules to be terms built according to some given syntax.

Also, the standard notion of context as being terms with open places in them is used. The term
C[T] denotes the term that one gets when filling the open place in the context C[-] with the
term 7. A general membrane construct is used to transform a solution into a single molecule.
For this construct, no special notation is used, meaning that for any CHAM, any solution is
assumed to be a molecule as well.

Solution transformations S — S’ are given by means of rules. There are just two general rules,
called “laws”, which hold for any CHAM. The first law, the Chemical Law, states that reactions



can be performed freely in any solution (W denoting multiset union):

S =9 )
SWS 59 ws" (M)

The second law, the Membrane Law, asserts that solutions can evolve freely in any molecule
context:

S — s
{lCS1} = {ICs"]) (2)

These two rules are the only rules that involve an induction on the behaviour of a solution S:
Every other rule is purely local, i.e. it will only concern the molecules participating in a reaction.

In [7], the reaction rules S — S’ are classified into two kinds, formalising the transition relation
— as two binary relations over multisets = and . Intuitively, transitions S — S’ represent
proper reactions changing the solution on the left—hand side permanently to the solution on the
right—hand side. The reacting molecules may be called ions, as they often also exhibit interaction
capabilities (which were called valences in [6]) by having a special shape.

The other kind of transitions S = S’ are structural transformations and are not counted as
evaluation steps. We say that a solution is inert if it cannot perform any reaction except for
structural transformations. Structural transformations are reversible, like heating a chemical
solution and cooling it down to the same solution again. In the scope of this paper, we will
only consider reactions, but we will hint at the role structural transitions will play in our future
work.

2.2 DNA computing

The deoxyribonucleic acid (DNA) encodes genes and most of the operations in biological cells.
It uses a four letter alphabet of bases: A (adenine), C (cytosine), G (guanine) and T (thymine).
When viewed as a long string of letters, a strand of DNA does resemble the tape of a Turing
machine. Yet, from a molecular and chemical point of view, many operations on such strings
are nontrivial.

DNA normally comes double-stranded, containing two long strings of bases twisted around each
other in a helical form. The two strands are held together by specific binding forces between
the bases: A binds to T, and C binds to G, and vice versa. Hence, the sequence of bases in
one strand is complementary to the sequence of bases in the other strand, forming its Watson—
Crick complement. For example, the strand ACTGAG lines up with its Watson—Crick complement
TGACTC to form the following double-stranded molecule:

ACTGAG
TGACTC

In biological systems, DNA is reproduced by copying. Enzymes, specialised macro molecules,
are able to match patterns in double stranded DNA and to “cut” through the strands. For

instance, some enzyme may cut the sequence

GAATTC
CTTAAG

into the following subsequences:



G AATTC
CTTAA G

Note that the enzyme does not cut straight through the DNA: it leaves two short ends of single—
stranded DNA. These “sticky” ends may later realign either with their original partner, or with
some other complementary end floating around in the solution. Recombinant DNA technology
is based on these operations: cut DNA and permit single-stranded ends to find new partners
and recombine.

Adleman reported in [1] on how to solve a 7-node Hamiltonian path problem with these tech-
niques. We will show here a solution by Beaver (taken from [4]), which will provide a starting
point for our initial problem.

Given a graph G = (V, E) with V' = {vy,v9,...,v,} being the vertices, v; being the source
and v, being the destination, several small molecules are constructed representing the edges in
E. Each edge will be given a number of different representations, one for each position which
the edge can take in a complete path. This also restricts the length of possible paths, infinite
paths cannot be generated. Hence, a molecule e(v;,v;;d) is constructed to represent the edge
(v;,v;) € E as the d™ edge in a possible path.

For this, n? molecules v(v;,d) are constructed to encode the vertices v; from V at the respective
positions d on the path, together with their n? Watson—Crick complements o (v;, d). Beaver gives
in [4] for n = 4 the following example coding with five bases:

v(vi, 1) v(v;,2) v(vi,3) v(vi,4) | O(vi, 1) (v, 2) ©(vi,3) T(vi,4)
AACGA  AACGC  AACGG  AACGT | TTGCT TTGCG TTGCC  TTGCA
CACGA CACGC CACGG  CACGT | GTGCT GTGCG GTGCC  GTGCA
GACGA  GACGC  GACGG  GACGT | CTGCT CTGCG CTGCC  CTGCA
TACGA  TACGC TACGG  TACGT | ATGCT ATGCG  ATGCC  ATGCA

=W N | .

Molecules e(v;,vj;d) then are assembled from two sequences T(v;,d) and v(vj,d + 1), glued
together by an arbitrary, but fixed intervening sequence:

B(v;,d) GGGGG
cceee v(vj,d+1)

Hence, molecules e(v;,v;;d) and e(v;,vy;d + 1) can combine with build a larger molecule, since
the single-stranded right end of e(v;, v;;d) is complementary to the single-stranded left end of
e(vj,vg;d 4+ 1). In general, e(v;,v;;d) can combine with any one of several candidates of the
form e(j,k';d + 1). Thus, the possibility of pairing with different edges permits various paths
to be generated at random, depending on the random order in which the molecules collide. As
more than one molecule is generated for each edge, multiple paths can be examined in parallel.

For finding a Hamiltonian path in the graph, two special sequences LP and RP are generated
first. These sequences work as primers for a process called polymerase chain reaction (PCR):
molecules containing these primers get duplicated in the PCR, providing an emphasis of these
molecules in the test tubes. Molecules for the start L and end R of a path are constructed from
these primers in the following way:

L R
—_— —
LP v(n,n) RP

LP v(1,1) RP



To solve the problem of finding a Hamiltonian path in a graph using this method, for each edge
(vi,vj) € E and for each d with 1 < d < n—1 molecules e(v;, v;; d) are synthesised, the molecules
L and R are synthesised, the various fragments are mixed and allowed to anneal. As the vertices
are numbered with step numbers, chains found in the solution may have a length of at most
n — 1 edge sequences plus the length of the sequences for the L and R molecules. PCR is then
used to amplify the sequences which contain the primer sequences. Solutions of the problem are
those molecules which contain both primer sequences, provided the graph is free of loops.

3 Discovering the Behaviour of a Network

Our problem is to find a suitable model, i.e. a CHAM, for some aspects of network behaviour
which can be constructed from local observations of the network nodes. The aspect of the
network behaviour which we want to analyse is the possible information flow between terminal
nodes. In other words, we are looking for communication paths between telephones, fax devices,
or PCs.

We assume that some nodes in the network are able to initiate tests by trying to build up
connections to other nodes. The results for these tests can be either observed by the testing
node itself, as it is the case with the UNIX ping and traceroute commands, or by observing
the input/output behaviour of nodes, e.g. gateways, on the route. Without taking into account
this difference, we call these observations local observations, as they are made locally at a specific
node.

However, we do not want to see a collection of local observations. Instead, we want to see how
the network behaves globally. Hence, we have to condensate the information gained from the
local observations into a global observation.

3.1 Formulating a CHAM

Now that we have given a description of the problem, we formulate some chemical abstract
machines to solve this problem. To do this, we adapt some of the ideas presented for the
Hamiltonian path problem in [4] to our setting. In our problem statement, we focus on the
observation of paths

V1 —> V2 — ... — Up

in a network with vy, v9,...,v, being nodes of the network. To encode the directed nature
of such a path, we use symbols v(v;,v;) corresponding to the molecules v(v;,n) in Beaver’s
approach. Instead of encoding the position of a node in a path, we encode the destination of
the path, as we do not want to restrict the nodes to appear at specific positions in discovered
paths.

The small strands of DNA Beaver used in his approach can be encoded as pairs o(v;, vg)v(vj, vy),
denoting an edge from node v; to node v; on a path to vx. As we use strings of symbols as
our CHAM molecules, we do not need the intervening sequences to glue the single stranded
DNA molecules, but mark the position on the “upper” or “lower” strand of the DNA molecule
explicitly by using ©(v;, vy) for molecules on the upper strand and v(v;, vy) for molecules on the
lower strand. Pairs of such modules will be denoted with v(v;, vg).

Hence, we are able to define the set of molecules used in our first two CHAMs.



Definition 1 Let V = {vy,va,...,v,} be the set of nodes in the network to be examined. The
molecules of the CHAMs A and B are taken from the set

M = {v(vi,vj)w |vi,v; € Viw e M'}
U {wy(vi,v;) |vi,v; € Viw € M'}
U {0(vi, vj)w(vg, vr) | vi, vj, vk, v € Viw € M'}
u M,
with the set of molecules M' being defined as
M = {v(vi,v;) | vi,v; € V}*.

To model the reactions in the test tube, we give just one special reaction rule for our first CHAM,
the CHAM A.

Definition 2 Let the set of molecules M be defined as above. The special reaction rule for the
CHAM A has the form

UQ(/Uia vj)a 6(’01;7 v])w = UQ(’Ui, ’Uj), ’U/U(’Ui, ’Uj)’w, ﬁ(vh v])w
This reaction rule does not “consume” its educts to model the sufficient supply of DNA strands
in the test tubes. With this simple CHAM, we are able to formalise our problem. For an

observed path
P=vi >v9—... > v,

we encode the solution
enc(P) = {v(vy,vp)v(ve,vn), .., T(Vn—1, Vn)0(Vn, vy [}
For a local observation O = {Py, P, ..., Py}, we thus are able to encode a local solution as
enc(0) = Wpepenc(P),
joining the encoded solutions for the paths in an observation.
Example 1 Let the set of nodes in a network be V. = {a,b,c,d}, and assume that the local

observation O, = {a — b,a — ¢,a — b — d} has been made at node a. The local solution for
node a then is

enc(OQ,) = {5 (a, b)u(b, b)[}
¢ {v(a, c)o(c, o)t
W {v(a,d)v(b,d),v(b,d)v(d,d)[}
= {v(a,b)v(b,b),v(a,c)v(c,c),v(a,d)v(b,d),v(b,d)v(d,d)[}.

These local observations for each node can be combined into a global solution modelling the
routing behaviour of the complete network. Again, this is done by simply joining the multisets
of the solutions. Thus, let O,,,0,,,...0,, be the observations made for a network N. The
encoding of N is

enc(N) = enc(Oy, ) W enc(O,,) W ... W enc(O,, ).



Example 2 Let V' be the set of nodes in the network N and O, be the local observations for
node a as given in Example 1. Assume further that for the node b the single path b — ¢ — d
was observed, while for the nodes ¢ and d no observations have been made. Hence, every node
in the network is able to actively probe routes to other nodes and observe the results, but is not
able to see routes from other nodes routed over itself.

Then, the global solution for the network is determined as

enc(N) = enc(0g) W enc(Op) W enc(O.) W enc(Oy)
= {lv(a, b)u(b, ) (a, c)u(c, ¢),v(a, d)u(b,d),v(b, d)u(d, d)[}
W {v(b,d)v(c,d),v(c, d)v(d,d)[}
W {}w{}
= i E ;QE )),5( ,e)u(c, ¢),v(a, d)v(b,d),v(b, d)v(d,d),

To find the routes between two nodes v; and v; in a network, we simply build the solution

{lv(vs, ve), 0(ve, ve) [}

corresponding to the special molecules L and R in Beaver’s solution, mix it into the global
solution of the network and let reactions take place.

Example 3 Let the encoding of the network be given as in Example 2. To compute some of the
routes between the nodes b and d, we follow the reaction

enc(N) & {u(b, d),v(d, d)[}
= enc(N) W {u(b, d),v(d, d)[}
¢ {Jv(b, d)v(d,d),v(b,d)v(c,d) ]}
— enc(N) W {u(b, d),v(d, d)[}
¢ {Jv(b,d)v(d,d),v(b,d)v(c,d)[}
¢ {lv(b, d)v(d, d),v(b,d)v(c,d)v(d, d)[}
= enc(N) W {lu(b,d),v(d,d)[}
¢ {Jv(b, d)v(d, d),v(b,d)v(c,d) ]}
W {lv(b,d)v(d,d),v(b,d)v(c,d)v(d, d)}
W {v(b, d)v(c, d)v(d, d)}

using in each step the special reaction rule from Definition 2. The result of the reactions is a so-
lution containing the two inert molecules v(b, d)v(d,d) and v(b,d)v(e, d)v(d,d), which correspond
to the paths b — d and b — ¢ — d, respectively.

This last example shows that in the global solution, the whole is more than just the sum of its
parts: the path b — d found in the reaction has not been given as an observation, but has been
discovered in the reaction. Hence, when combining the local solutions into a global solution,
possible interactions between paths encoded in different solutions can be inferred during the
process of reaction.

But Example 3 also shows a problem of our first CHAM: the solutions obtained during the
reactions become more and more unwieldy. This can easily be alleviated by using a variant
reaction rule of the special reaction rule given in Definition 1, as is done in the definition of
our second CHAM B. This would consume parts of the solution, making the resulting solutions
smaller.



Definition 3 Let the set of molecules M be defined as in Definition 1. The special reaction rule
for the CHAM B has the form

’U/Q(via vj)a 6(’01;7 v])w = ’U/U(’Ui, ’Uj)’w, 5(/Uia v])w

This reaction rule forces the process of route discovery to terminate; yet it shifts the nondetermi-
nacy of the search process from inside the reactions to the outside, letting the CHAM *“decide”
which way to choose.

But how does this new CHAM relate to our original CHAM A? To state the formal connection,
we have to define a normal form on reactions first.

Definition 4 A reaction in the CHAM A is said to be in left—to—right form if and only if in
each application of the reaction rule

ww (v, vg), U(vi, v )w — v (v, V), wo(vi, vk )w, T(v;, v )w

we have w = v(vj,v) for some node v; of the network.

That is, a reaction is in left—to-right form if the molecules are built from left to right in a
stepwise fashion, just adding single steps to the right end of a molecule. With this definition,
we are able to state a normal form theorem.

Theorem 1 Let N be a network, containing nodes vs and vy. Let S be a solution found in a
reaction
enc(N) W {|v(vs, ve), 0(vg, v)[} —=* S.

Then there exists a unique reaction in left—to—right form leading to the same solution S.
Proof: Straightforward. O

With this theorem, we are able to state the formal connection between CHAM A and CHAM
B. We begin with the observation, that every solution found by CHAM B can also be found by
CHAM A.

Theorem 2 Let N be a network, containing nodes vs and vy. Let S be a solution found in a
reaction
enc(N) W {Jv(vs, vy),v(vg, ve) [} —* S

containing a molecule m of the form
m = v(vy,vp)v(v2,Vn) ... V(Vp—1, V) V(Vn, V),

in CHAM B. Then there exists a unique reaction in CHAM A leading to a solution S’ containing
m.
Proof: In each step of the reaction

enc(N) W {|v(vs,vy),v(vg, ve) [} =™ S,

add the educt uv(v;, vx) in the reaction step to the products of the step. The resulting chain of
reactions will be a reaction inside CHAM A. O



The main difference between CHAM A and CHAM B lies in the fact that CHAM A will compute
all possible answers, given enough time, while CHAM B is only able to compute one specific
answer. This is accounted for with the following theorem.

Theorem 3 Let N be a network, containing nodes vs and ve. For each reaction
enc(N) W {ju(vs,vt),v(ve, ve) [} —* S
performed by CHAM A containing an inert molecule m. of the form
m = v(vy,v,)v(v2,v,) ... V(Vp_1, V) V(Vn, Vp),
we are able to find a reaction
enc(N) W {lv(vs, vy), v(vg, vp) [} =+ S’

of CHAM B with m being an element of S’.
Proof: Filter out of the chain of reactions

enc(N) W {lv(vs, vy), 0(vg, vg)[} —=* S

all those reactions not leading to educts used in the production of m. Bring the remaining
reaction leading to m into left-to-right form, and remove the educts uv(v;, v;) from each reaction
step. The resulting chain of reactions is a reaction inside CHAM B. U

These two theorems establish that the CHAMs A and B in fact do find the same solutions. But
the two CHAMs share a further problem: the local solutions encoding the observations are not
inert — they are able to react inside themselves. This is alright and wanted when viewed from
the standpoint of DNA computing, but complicating a possible implementation of our CHAMs.
We will address this problem in the definition of our next CHAM.

3.2 Refined versions of the CHAMs

To overcome both problems, the growing size of the solutions and the non—inertness of the local
solutions, we choose a different encoding, building a refined version of our CHAMs. Instead of
using the o(-,-)/v(:,-) pairs for the encoding of observed edges between nodes, we now encode
these edges directly using symbols e(v;, v;; ;) for edges between the nodes v; and v; on a path
to vg. Hence, we get a different set of molecules:

Definition 5 Let V' = {vy,vq,...,v,} be the set of nodes in the network to be examined. The
molecules of the CHAMs C and D are taken from the set

M = {O(vi,vj)w |vi,v; € Viw e M'}
U {wQ(Uiavj) |’UZ',’U]‘ eViwe MI}

U {0(vs, vj)wo(vg, vy) | vi,vj, 05,0 € Viw € M'}
U {e(vi,vj;vg) | vi,vj, v €V}

u M,

with the set of molecules M' being defined as

M = {v(vi,v;) | vi,v; € V}™.



Hence, we just extend the set of molecules to also contain the encodings of edges. For an
observed path
P=vi—>uvy—... > v,

we now encode the solution
enc' (P) = {le(vi,v2;vn), - - -, e(Vp_1,vn;vn) [}

This way, we are able to formulate a bijective mapping between the encoding functions enc
and enc’. Again, for a local observation O = {Py, Py, ..., Py}, we encode the local solution as
enc'(O) = Wpeoenc' (P).

In the formulation of the reaction rule, we now allow non—inert molecules to only react with the

basic edge molecules, while disallowing the edge molecules to react with other edge molecules.

Definition 6 Let the set of molecules M be defined as above. The special reaction rule for
CHAM C has the form

UQ(”ZH ’Uk), 6(’1)2', Uy ’Uk) = UQ('Ui, Uk)a U’U(’UZ', 'Uk;)Q(IUj, ’Uk), 6(’1)2', Uy vk)'

Again, we do not “consume” the educts of the reaction to model a nearly infinite supply. The
notion of global solution can be adapted from the corresponding definition in Section 3.1 in the
same way as the definition of the local solution, i. e. by defining

enc'(N) = enc'(Oy,) W enc'(Oy,) W...Wenc'(Oy,)

for some network N and observations O,,,Oy,,...,0,, .

Example 4 Assume that the set of nodes V' and the observation O, are the same as in Example
1. The local solution for node a then is

enc'(0q) = {le(a, b; b) [}
¢ {le(a, o)l
o {e(a,b;d),e(b,d;d)[}
= {le(a, b; ), e(a, c;c), e(a,b;d), e(b, d; d)[}.

With these definitions, we are able to perform the search for routes between nodes with CHAM
C as well. The source and target for the search are supplied using the same method that was
used in Section 3.1.

Example 5 Let the encoding of the network be adapted from the one given in Fxample 2. To
compute some of the routes between the nodes b and d, we follow the reaction

enc'(N) ¥ {uv(b,d),v(d, d)[}
= enc'(N) W {v(b,d),v(d, d)}
¢ {lv(b, d)v(d, d),v(b,d)v(c, d)[}
= enc'(N) W {v(b,d),v(d, d)}
¢ {Jv(b,d)v(d,d),v(b,d)v(c,d)}
¢ {lv(b,d)v(d,d),v(b,d)v(c,d)v(d, d)[} °

—  enc (N )U{|( ), T
¢ {lv(b,d)v(d, d),v
¢ {Jv(b, d)v v
d) (d,

& {Jo (b,

b,
b, )(»)(dd)l}

d
.d
(o
d
d

v )

d),
(d, d),
(¢, d)v

=



using in each step the special reaction rule from Definition 6. The result of the reactions is a so-
lution containing the two inert molecules v(b, d)v(d,d) and v(b,d)v(e, d)v(d,d), which correspond
to the paths b — d and b — ¢ — d, respectively.

As we can see, the reaction in Example 5 is mostly equivalent to the one given in Example 3,
except for the encoding of the network. We are able to state the connection between the two
CHAMs A and C in the following theorems.

Theorem 4 Let N be a network, containing nodes vs and vy¢. For each reaction
enc' (N) W {lv(vs, vy),0(vg, v) |} —=* S

performed by CHAM C we are able to find a reaction
enc(N) W {v(vs, ve), v(ve, v)[} =" S

with

_ _ [ o(vi,vp)u(vs,ve)  mo= e(vi,vj;305)
S =G fdml. dm) = { = el
for CHAM A.
Proof: For each reaction of CHAM C, we map each intermediate solution S” by applying the
function ¢ elementwise, yielding a reaction step inside CHAM A. Doing this for the full reaction
results in a reaction in left—to-right form for CHAM A. O

For the reverse direction from CHAM A to C, we focus on the “interesting” reactions in CHAM
A, which build to incomplete or complete paths.

Theorem 5 Let N be a network with set of nodes V', containing nodes vs and vy. For each
reaction
enc(N) W {ju(vs, vy),v(vg, ve) [} —* S

performed by CHAM A containing molecules from the set

M = {v(vs,vi)wo(vj,v) | w € {v(vi,vp) | v; € V¥, 05 €V}
U {v(vs, vi)wo(vg,vy) | w € {v(vg,vy) |v; € VY,

we are able to give a reaction
enc'(N) & {v(vs, vr), 5 (v, v) [} =* 5,

in CHAM C where 8" contains the molecules from M' in the same multiplicities as S.

Proof: For each molecule from M’ occurring in S, a chain of reactions in left—to-right form
can be given. In each of the reaction steps, substitute e(v;,vj;v;) for each occurrence of
¥(v;,v¢)0(vj,v¢) in the products and educts. Combining the resulting reaction chains provides a
reaction in CHAM C leading to the required solution S’. O

Again, we have the problem that the process of reaction will not terminate because of an infinite
supply of non—inert molecules. Similar to Section 3.1, we tackle this problem by constructing a
fourth CHAM D based on CHAM C, changing the special reaction rule.



Definition 7 Let the set of molecules M be defined as in Definition 5. The special reaction rule
for the third CHAM has the form

uv(vs, vg), e(vi, vj;vE) — wo(vi, vE)v(v), vk), €(vi, vj; Vk).

We are able to state a connection between the reactions inside CHAM C and D, too. As in
Section 3.1, we first state the existence of normal form reactions.

Theorem 6 Let N be a network, containing nodes vs and vy. Let S be a solution found in a
reaction
enc'(N) & {Ju(vs, vr), 5(vg, v) [} =* S

in CHAM C. Then there exists a unique reaction in left—to—right form leading to the same
solution S.
Proof: Straightforward. O

Now, we are able to state the connection between the two CHAMs in the following two theorems.
The first one again states that each solution found by CHAM D can also be found by CHAM C.

Theorem 7 Let N be a network, containing nodes vy and vy. Let S be a solution found in a
reaction
enc' (N) W {lv(vs, vy), (v, v) [} =* S

containing a molecule m of the form

m = v(vy,v,)v(v2,v,) ... V(vp_1,vp)V(Vn, Vp),

in the CHAM D. Then there exists a unique reaction in CHAM C leading to a solution S’
containing m .
Proof: In each step of the reaction

enc’(N) @ {[u(vs, v2), D(vg, ve) [} =7 S,

add the educt uv(v;,vx) in the reaction step to the products of the step. The resulting chain of
reactions will be a reaction inside CHAM C. U

The second theorem parallels Theorem 3 in stating that each inert molecule found by CHAM C
can also be found by CHAM D.

Theorem 8 Let N be a network, containing nodes vs and v¢. For each reaction
enc' (N) W {lv(vs, vy), (v, v) [} =" S
performed CHAM C containing an inert molecule m of the form
m = v(vy,vp)v(v2,Vn) ... V(Vp—1, V) V(Vn, Vy),
we are able to find a reaction

enc'(N) & {|v(vs, v), 0 (vg, o) | =" S



in CHAM D with m being an element of S’.
Proof: As in the proof for Theorem 3, filter out of the chain of reactions

enc' (N) W {lu(vs, vy),0(vg, v) [} =" S

all those reactions not leading to educts used in the production of m. From all remaining
reactions, remove the educts of the form uw(v;,v;) from the products of the reaction step. The
resulting chain of reactions is a reaction inside CHAM D. O

To close the square, we are also able to state a connection between the CHAMs B and D. This
is done in the next two theorems.

Theorem 9 Let N be a network, containing nodes vs and ve. For each reaction
enc' (N) W {lv(vs,vy), (v, v) [} —=* S
performed by CHAM D we are able to find a reaction

enc(N) W {u(vs, ve), v(vg, v) [} =* S’

" (o5, 06 )00, 08) = e, 055 0)
_ , _ ) vlvi,vk)v(vi,vk)  m = e(vi, vj; vk
S =G foml olm) = { = el
for CHAM B.
Proof: Along the lines given for the proof of Theorem 4. O

Theorem 10 Let N be a network with set of nodes V, containing nodes vs and v,. For each
reaction
enc(N) & {|u(vs, ve),v(ve, ve) [} =" S

performed by CHAM B containing molecules from the set

M" = {v(vs,vr)wo(vj,v) | w € {v(vi,vp) | v; € V¥ 05 €V}
U Av(vs, ve)wo(vg, o) | w € {w(vg,vp) |v; € VY,

we are able to give a reaction
enc' (N) W {lv(vs,vy), (v, v) [} =" S,

in CHAM D where S’ contains the molecules from M' in the same multiplicities as S.
Proof: Along the lines given for the proof of Theorem 5. O

While CHAM A is the one closest to our intuitive idea of finding routes by using DNA computing,
CHAM D is the most accessible for practical implementations.

4 A TCP/IP based experiment

In order to show the applicability of our approach, a TCP/IP based experiment has been per-
formed. For this experiment, a UNIX script was executed on 12 workstations distributed over
Germany (8), Switzerland (2), the Netherlands (1) and Canada (1). The workstation in Canada



was hidden behind a firewall. It was able to find all other workstations, but none of the others
was able to find the canadian computer.

The script made extensive use of the UNIX ping command. Ping is normally used to check the
availability of a computer in a TCP/IP network. If used without options, ping indicates if a
computer is alive or not. By using ping with the options -s -Rv, detailed information about
the route used to check the availability of the computer can be retrieved. When executing our
script, each workstation tried to ping all other workstations and retrieved detailed information
about the trials. A section of the script reads:

echo ‘‘Station asterix.unibe.ch:’’ >> /tmp/results
ping -s -rv asterix.unibe.ch 56 10 >> /tmp/results

If the script is executed on the workstation atlas.informatik.mu-luebeck.de, the ping com-
mand aboove tries to reach asterix.iam.unibe.ch at the University of Berne in Switzerland.
The results of the trial looks like this:

Station asterix.unibe.ch:

64 bytes from asterix.unibe.ch (130.92.64.4):
icmp\_seq=0. time=1213."ms

IP options: <record route> 141.83.100.3, 141.83.100.1,
cisco-MU-Luebeck.medinf .mu-luebeck.de (188.1.132.213),
XR-Hamburgl.WiN-IP.DFN.DE (188.1.3.250),
ZR-Hamburgl .WiN-IP.DFN.DE (188.1.144.21),
ZR-Hannover1.WiN-IP.DFN.DE (188.1.144.25),
ZR-Koelnl1.WiN-IP.DFN.DE (188.1.144.53),

-—--asterix.unibe.ch PING Statistics—---

10 packets transmitted, 1 packets received,

90% packet loss round-trip

(ms) min/avg/max = 1213/1213/1213

In this special case, the route only has been recorded up to the node ZR-Koeln1.WiN-IP.DFN.DE,
and is lost from this point on.

The results of the trials have been analysed, and 179 additional computers used as gateways for
the ping information have been detected. So the virtual network to be analysed consisted of 11
active nodes which could make experiments and which could be reached by a ping command, 1
active node which could not be reached and 179 passive gateway nodes, making a total of 191
nodes.

For this network, we constructed the CHAM and started to analyse the model. We found several
new paths between the active nodes which should be possible in the real network but which were
not observed during our trials. Due to complexity and space limitation the constructed CHAM
cannot be presented here. However, the local view of atlas.informatik.mu-luebeck.deis as



follows:
{ e('143.83.100.3','141.83.100.1";' 130.92.64.4"),

(/
e('143.83.100.1',/ 188.1.132.213';' 130.92.64.4"),
e('188.1.132.213",/ 188.1.3.250';' 130.92.64.4"),
e('188.1.3.250",' 188.1.144.21";/ 130.92.64.4"),
e('188.1.144.21' 188.1.144.25";' 130.92.64.4"),
e('188.1.144.25"/ 188.1.144.53';' 130.92.64.4"),
e('188.1.144.53' ) uncharted subnet’; 130.92.64.4")
e("uncharted subnet')130.92.64.4";' 130.92.64.4")

I

It is obvious that the local view is just a rewriting of the ping result, except for the “uncharted
subnet” introduced after the gateway ZR-Koelnl.WiN-IP.DFN.DE.

However, at the time of writing this paper the analysis of the results of this experiment was not
fully completed. We will give more detailed information about the number of additional paths
found by executing the CHAM.

5 Conclusion and Outlook

We presented a solution for the problem of discovering the behaviour of a network from local
observations. Our work is based on the chemical computation metaphor presented in [6] and
the idea of molecular computation presented in [1]. Four different CHAMs have been defined
as solutions to our problem and their advantages and drawbacks have been discussed. The
applicability of our approach has been shown by an experiment in which we have constructed
a CHAM from local observations of UNIX workstations for a virtual TCP/IP network with
191 nodes. As a first result of this experiment the CHAM found additional routes through the
network which were not observed during the experiment.

Our future work is directed towards several goals: We intend to provide software support for the
analysis and visualisation of CHAM based network models. This work will be based on some
prototype tools which we have already developed for the analysis of the described experiment.
Our theoretical work will concentrate on applying our network model to more sophisticated
problems. A starting point will be to study whether our approach is suitable to predict a
network behaviour if nodes are added to or deleted from a network. Also, higher concepts in
CHAMs as, for instance, the airlock operator from [6] have to be examined. With respect to
this operator, it is planned to look at a relation between the CHAMs we presented and models
for process algebras as given in [6, 7] to generate simulation models from local observations.
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