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Abstra
tChemi
al abstra
t ma
hines (CHAMs) are used as the model to solvethe problem of �nding possible 
ommuni
ation paths between networknodes. The information used for the 
onstru
tion of the CHAMs is re-trieved by performing lo
al observations at the di�erent network nodes.We introdu
e the model of CHAMs, explain the 
onstru
tion of di�erenttypes of CHAMs to solve our problem, and show the appli
ability of ourapproa
h by des
ribing a TCP/IP based experiment.
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k.de1 MotivationNetworks often grow in an evolutionary fashion. Nodes are atta
hed to or deleted from a networkmostly without 
onsidering the e�e
t of these modi�
ations onto the network behaviour as awhole. For instan
e, this is the 
ase in TCP/IP networks, but as well for telephony networks,where the network is planned far more thoroughly.In TCP/IP networks as well as in telephony networks, the operator does not have a 
learunderstanding of the route whi
h a 
onne
tion or 
ommuni
ation takes through the network.In most networks, an operator is only able observe the load of the di�erent nodes and some
hara
teristi
s of the traÆ
 between them. The 
on
rete information 
ow of a 
onne
tion,i.e. the 
hannels and gateways used, and the order of their use 
annot be observed.Software support to ta
kle this problem is available for lo
al area networks (LANs) and TCP/IPnetworks with SNMP software. The situation is worse for non{TCP/IP networks, like telephonynetworks. Only lo
al probes of the 
ommuni
ation and signalling traÆ
 at the network nodesare available. Su
h lo
al probes are often also available for LANs and TCP/IP networks.Our aim is to de�ne a model for the 
ommuni
ation behaviour of a network whi
h 
an be
onstru
ted from the lo
al observations of the network nodes. As you will see in the examples inthis paper, additional information 
an be gained from the 
ombination of the lo
al views, e.g. itis possible to dete
t additional 
ommuni
ation paths whi
h have not been observed lo
ally. In
ase of network errors, su
h information may be valuable for network operators. However, untilnow we have restri
ted our work to a path �nding problem, but we hope that our work 
an alsobe used to predi
t the 
ommuni
ation behaviour of a network in 
ase of addition or deletion ofnetwork nodes. For su
h problems our network model may need simulation fa
ilities.In this paper, we will give an algorithm to 
ombine lo
al observations into a global model of the
ommuni
ation behaviour of the network. For this, we make use of two approa
hes based on ideas
oming from 
hemistry and biology. Both approa
hes are rarely employed in 
omputer s
ien
e.We will use the 
hemi
al 
omputation metaphor presented in [6℄ as our formalism of 
hoi
e, andwill use the idea of mole
ular 
omputation presented in [1℄ as an inspiration to our solution. Thebiologi
al and 
hemi
al metaphors have been used for two reasons: On the one hand, routing inLANs and telephony networks is performed in a massively parallel way. Hen
e, we are lookingfor formalisms 
apturing this aspe
t. On the other hand, the formalism of CHAMs introdu
edbelow allows the transformation into models of pro
ess systems, i.e. simulation models. Oursolution given in Se
tion 3 
ould also be des
ribed using 
on
epts of graph theory only, but thenthere would be no formally 
lean way to obtain simulation models.



The rest of the paper is organised in the following manner: Chemi
al Abstra
t Ma
hines andDNA 
omputing are introdu
ed in Se
tion 2. The 
onstru
tion of di�erent Chemi
al Abstra
tMa
hines from lo
al observations is des
ribed and dis
ussed in the main part of this paper(Se
tion 3). A 
ase study showing the appli
ation of our approa
h is des
ribed in Se
tion 4. InSe
tion 5 we 
on
lude and give an outlook on future work.2 PreliminariesBefore presenting a solution to the problem of dis
overing network behaviour from looking justat lo
al observations, we introdu
e the notion of Chemi
al Abstra
t Ma
hines and the idea ofDNA 
omputing.2.1 Chemi
al Abstra
t Ma
hinesThe model of Chemi
al Abstra
t Ma
hines (CHAMs) is based on the 
hemi
al metaphor �rstput forward by Banâtre and Le M�etayer in [2, 3℄. The idea behind this metaphor is to provide amodel where 
on
urrent 
omponents are \moving" freely in a system, 
ommuni
ating with ea
hother when 
oming into 
onta
t. The metaphor is realised in the Gamma formalism.Intuitively, a system state in Gamma is like a 
hemi
al solution, where mole
ules in the solutionare able to rea
t whi
h ea
h other a

ording to rea
tion rules. The solution is stirred by amagi
al me
hanism, providing possible 
onta
ts between mole
ules. This magi
al me
hanism isan \implementation" of the usual Brownian motion found in 
hemi
al solutions.Formally, a 
hemi
al solution 
an simply be seen as a �nite multiset of elements (whi
h are
alled mole
ules), denoted by S = fjm1;m2; : : : ;mkjg:This also a

ounts for the stirring me
hanism, as the elements are unordered and may be assumedto make 
onta
t arbitrarily.The notion of a CHAM was introdu
ed in [5℄ and developed further in [6℄. The Gamma formalismis enhan
ed by extending the use of multisets, allowing them to be part of the mole
ules, andby introdu
ing a 
lassi�
ation of transformation rules. The CHAM is meant to be a frameworkfor the des
ription of the operational semanti
s of parallel languages and for the examinationand development of parallel 
omputations.A CHAM 
onsists of a set of mole
ules m;m0; : : : and a state transition relation S ! S0, withthe states S; S0; : : : being �nite multisets of mole
ules, 
alled solutions. At the abstra
t level, weassume the mole
ules to be terms built a

ording to some given syntax.Also, the standard notion of 
ontext as being terms with open pla
es in them is used. The termC[T ℄ denotes the term that one gets when �lling the open pla
e in the 
ontext C[�℄ with theterm T . A general membrane 
onstru
t is used to transform a solution into a single mole
ule.For this 
onstru
t, no spe
ial notation is used, meaning that for any CHAM, any solution isassumed to be a mole
ule as well.Solution transformations S ! S0 are given by means of rules. There are just two general rules,
alled \laws", whi
h hold for any CHAM. The �rst law, the Chemi
al Law, states that rea
tions




an be performed freely in any solution (℄ denoting multiset union):S ! S0S ℄ S00 ! S0 ℄ S00 (1)The se
ond law, the Membrane Law, asserts that solutions 
an evolve freely in any mole
ule
ontext: S ! S0fjC[S℄jg ! fjC[S0℄jg (2)These two rules are the only rules that involve an indu
tion on the behaviour of a solution S:Every other rule is purely lo
al, i.e. it will only 
on
ern the mole
ules parti
ipating in a rea
tion.In [7℄, the rea
tion rules S ! S0 are 
lassi�ed into two kinds, formalising the transition relation! as two binary relations over multisets 
 and 7!. Intuitively, transitions S 7! S0 representproper rea
tions 
hanging the solution on the left{hand side permanently to the solution on theright{hand side. The rea
ting mole
ules may be 
alled ions, as they often also exhibit intera
tion
apabilities (whi
h were 
alled valen
es in [6℄) by having a spe
ial shape.The other kind of transitions S 
 S0 are stru
tural transformations and are not 
ounted asevaluation steps. We say that a solution is inert if it 
annot perform any rea
tion ex
ept forstru
tural transformations. Stru
tural transformations are reversible, like heating a 
hemi
alsolution and 
ooling it down to the same solution again. In the s
ope of this paper, we willonly 
onsider rea
tions, but we will hint at the role stru
tural transitions will play in our futurework.2.2 DNA 
omputingThe deoxyribonu
lei
 a
id (DNA) en
odes genes and most of the operations in biologi
al 
ells.It uses a four letter alphabet of bases: A (adenine), C (
ytosine), G (guanine) and T (thymine).When viewed as a long string of letters, a strand of DNA does resemble the tape of a Turingma
hine. Yet, from a mole
ular and 
hemi
al point of view, many operations on su
h stringsare nontrivial.DNA normally 
omes double{stranded, 
ontaining two long strings of bases twisted around ea
hother in a heli
al form. The two strands are held together by spe
i�
 binding for
es betweenthe bases: A binds to T, and C binds to G, and vi
e versa. Hen
e, the sequen
e of bases inone strand is 
omplementary to the sequen
e of bases in the other strand, forming its Watson{Cri
k 
omplement. For example, the strand ACTGAG lines up with its Watson{Cri
k 
omplementTGACTC to form the following double{stranded mole
ule:ACTGAGTGACTCIn biologi
al systems, DNA is reprodu
ed by 
opying. Enzymes, spe
ialised ma
ro mole
ules,are able to mat
h patterns in double stranded DNA and to \
ut" through the strands. Forinstan
e, some enzyme may 
ut the sequen
eGAATTCCTTAAGinto the following subsequen
es:



G AATTCCTTAA GNote that the enzyme does not 
ut straight through the DNA: it leaves two short ends of single{stranded DNA. These \sti
ky" ends may later realign either with their original partner, or withsome other 
omplementary end 
oating around in the solution. Re
ombinant DNA te
hnologyis based on these operations: 
ut DNA and permit single{stranded ends to �nd new partnersand re
ombine.Adleman reported in [1℄ on how to solve a 7{node Hamiltonian path problem with these te
h-niques. We will show here a solution by Beaver (taken from [4℄), whi
h will provide a startingpoint for our initial problem.Given a graph G = (V;E) with V = fv1; v2; : : : ; vng being the verti
es, v1 being the sour
eand vn being the destination, several small mole
ules are 
onstru
ted representing the edges inE. Ea
h edge will be given a number of di�erent representations, one for ea
h position whi
hthe edge 
an take in a 
omplete path. This also restri
ts the length of possible paths, in�nitepaths 
annot be generated. Hen
e, a mole
ule e(vi; vj ; d) is 
onstru
ted to represent the edge(vi; vj) 2 E as the dth edge in a possible path.For this, n2 mole
ules v(vi; d) are 
onstru
ted to en
ode the verti
es vi from V at the respe
tivepositions d on the path, together with their n2 Watson{Cri
k 
omplements v(vi; d). Beaver givesin [4℄ for n = 4 the following example 
oding with �ve bases:i v(vi; 1) v(vi; 2) v(vi; 3) v(vi; 4) v(vi; 1) v(vi; 2) v(vi; 3) v(vi; 4)1 AACGA AACGC AACGG AACGT TTGCT TTGCG TTGCC TTGCA2 CACGA CACGC CACGG CACGT GTGCT GTGCG GTGCC GTGCA3 GACGA GACGC GACGG GACGT CTGCT CTGCG CTGCC CTGCA4 TACGA TACGC TACGG TACGT ATGCT ATGCG ATGCC ATGCAMole
ules e(vi; vj ; d) then are assembled from two sequen
es v(vi; d) and v(vj ; d + 1), gluedtogether by an arbitrary, but �xed intervening sequen
e:v(vi; d) GGGGGCCCCC v(vj ; d+ 1)Hen
e, mole
ules e(vi; vj ; d) and e(vj ; vk; d+ 1) 
an 
ombine with build a larger mole
ule, sin
ethe single{stranded right end of e(vi; vj ; d) is 
omplementary to the single{stranded left end ofe(vj ; vk; d + 1). In general, e(vi; vj ; d) 
an 
ombine with any one of several 
andidates of theform e(j; k0; d + 1). Thus, the possibility of pairing with di�erent edges permits various pathsto be generated at random, depending on the random order in whi
h the mole
ules 
ollide. Asmore than one mole
ule is generated for ea
h edge, multiple paths 
an be examined in parallel.For �nding a Hamiltonian path in the graph, two spe
ial sequen
es LP and RP are generated�rst. These sequen
es work as primers for a pro
ess 
alled polymerase 
hain rea
tion (PCR):mole
ules 
ontaining these primers get dupli
ated in the PCR, providing an emphasis of thesemole
ules in the test tubes. Mole
ules for the start L and end R of a path are 
onstru
ted fromthese primers in the following way:L Rz }| {LPLP v(1; 1) z }| {v(n; n) RPRP



To solve the problem of �nding a Hamiltonian path in a graph using this method, for ea
h edge(vi; vj) 2 E and for ea
h d with 1 � d � n�1 mole
ules e(vi; vj ; d) are synthesised, the mole
ulesL and R are synthesised, the various fragments are mixed and allowed to anneal. As the verti
esare numbered with step numbers, 
hains found in the solution may have a length of at mostn� 1 edge sequen
es plus the length of the sequen
es for the L and R mole
ules. PCR is thenused to amplify the sequen
es whi
h 
ontain the primer sequen
es. Solutions of the problem arethose mole
ules whi
h 
ontain both primer sequen
es, provided the graph is free of loops.3 Dis
overing the Behaviour of a NetworkOur problem is to �nd a suitable model, i.e. a CHAM, for some aspe
ts of network behaviourwhi
h 
an be 
onstru
ted from lo
al observations of the network nodes. The aspe
t of thenetwork behaviour whi
h we want to analyse is the possible information 
ow between terminalnodes. In other words, we are looking for 
ommuni
ation paths between telephones, fax devi
es,or PCs.We assume that some nodes in the network are able to initiate tests by trying to build up
onne
tions to other nodes. The results for these tests 
an be either observed by the testingnode itself, as it is the 
ase with the UNIX ping and tra
eroute 
ommands, or by observingthe input/output behaviour of nodes, e.g. gateways, on the route. Without taking into a

ountthis di�eren
e, we 
all these observations lo
al observations, as they are made lo
ally at a spe
i�
node.However, we do not want to see a 
olle
tion of lo
al observations. Instead, we want to see howthe network behaves globally. Hen
e, we have to 
ondensate the information gained from thelo
al observations into a global observation.3.1 Formulating a CHAMNow that we have given a des
ription of the problem, we formulate some 
hemi
al abstra
tma
hines to solve this problem. To do this, we adapt some of the ideas presented for theHamiltonian path problem in [4℄ to our setting. In our problem statement, we fo
us on theobservation of paths v1 ! v2 ! : : :! vnin a network with v1; v2; : : : ; vn being nodes of the network. To en
ode the dire
ted natureof su
h a path, we use symbols v(vi; vj) 
orresponding to the mole
ules v(vi; n) in Beaver'sapproa
h. Instead of en
oding the position of a node in a path, we en
ode the destination ofthe path, as we do not want to restri
t the nodes to appear at spe
i�
 positions in dis
overedpaths.The small strands of DNA Beaver used in his approa
h 
an be en
oded as pairs v(vi; vk)v(vj ; vk),denoting an edge from node vi to node vj on a path to vk. As we use strings of symbols asour CHAM mole
ules, we do not need the intervening sequen
es to glue the single strandedDNA mole
ules, but mark the position on the \upper" or \lower" strand of the DNA mole
uleexpli
itly by using v(vi; vk) for mole
ules on the upper strand and v(vj ; vk) for mole
ules on thelower strand. Pairs of su
h modules will be denoted with v(vi; vk).Hen
e, we are able to de�ne the set of mole
ules used in our �rst two CHAMs.



De�nition 1 Let V = fv1; v2; : : : ; vng be the set of nodes in the network to be examined. Themole
ules of the CHAMs A and B are taken from the setM = fv(vi; vj)w j vi; vj 2 V ;w 2M 0g[ fwv(vi; vj) j vi; vj 2 V ;w 2M 0g[ fv(vi; vj)wv(vk; vl) j vi; vj ; vk; vl 2 V ;w 2M 0g[ M 0;with the set of mole
ules M 0 being de�ned asM 0 = fv(vi; vj) j vi; vj 2 V g�:To model the rea
tions in the test tube, we give just one spe
ial rea
tion rule for our �rst CHAM,the CHAM A.De�nition 2 Let the set of mole
ules M be de�ned as above. The spe
ial rea
tion rule for theCHAM A has the formuv(vi; vj); v(vi; vj)w 7! uv(vi; vj); uv(vi; vj)w; v(vi; vj)w:This rea
tion rule does not \
onsume" its edu
ts to model the suÆ
ient supply of DNA strandsin the test tubes. With this simple CHAM, we are able to formalise our problem. For anobserved path P = v1 ! v2 ! : : :! vnwe en
ode the solutionen
(P ) = fjv(v1; vn)v(v2; vn); : : : ; v(vn�1; vn)v(vn; vn)jg:For a lo
al observation O = fP1; P2; : : : ; Pmg, we thus are able to en
ode a lo
al solution asen
(O) = ℄P2Oen
(P );joining the en
oded solutions for the paths in an observation.Example 1 Let the set of nodes in a network be V = fa; b; 
; dg, and assume that the lo
alobservation Oa = fa ! b; a ! 
; a ! b ! dg has been made at node a. The lo
al solution fornode a then isen
(Oa) = fjv(a; b)v(b; b)jg℄ fjv(a; 
)v(
; 
)jg℄ fjv(a; d)v(b; d); v(b; d)v(d; d)jg= fjv(a; b)v(b; b); v(a; 
)v(
; 
); v(a; d)v(b; d); v(b; d)v(d; d)jg:These lo
al observations for ea
h node 
an be 
ombined into a global solution modelling therouting behaviour of the 
omplete network. Again, this is done by simply joining the multisetsof the solutions. Thus, let Ov1 ; Ov2 ; : : : Ovn be the observations made for a network N . Theen
oding of N is en
(N) = en
(Ov1) ℄ en
(Ov2) ℄ : : : ℄ en
(Ovn):



Example 2 Let V be the set of nodes in the network N and Oa be the lo
al observations fornode a as given in Example 1. Assume further that for the node b the single path b ! 
 ! dwas observed, while for the nodes 
 and d no observations have been made. Hen
e, every nodein the network is able to a
tively probe routes to other nodes and observe the results, but is notable to see routes from other nodes routed over itself.Then, the global solution for the network is determined asen
(N) = en
(Oa) ℄ en
(Ob) ℄ en
(O
) ℄ en
(Od)= fjv(a; b)v(b; b); v(a; 
)v(
; 
); v(a; d)v(b; d); v(b; d)v(d; d)jg℄ fjv(b; d)v(
; d); v(
; d)v(d; d)jg℄ fjjg ℄ fjjg= fjv(a; b)v(b; b); v(a; 
)v(
; 
); v(a; d)v(b; d); v(b; d)v(d; d);v(b; d)v(
; d); v(
; d)v(d; d)jg:To �nd the routes between two nodes vs and vt in a network, we simply build the solutionfjv(vs; vt); v(vt; vt)jg
orresponding to the spe
ial mole
ules L and R in Beaver's solution, mix it into the globalsolution of the network and let rea
tions take pla
e.Example 3 Let the en
oding of the network be given as in Example 2. To 
ompute some of theroutes between the nodes b and d, we follow the rea
tionen
(N) ℄ fjv(b; d); v(d; d)jg7! en
(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg7! en
(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)v(d; d)jg7! en
(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)v(d; d)jg℄ fjv(b; d)v(
; d)v(d; d)jg
;

using in ea
h step the spe
ial rea
tion rule from De�nition 2. The result of the rea
tions is a so-lution 
ontaining the two inert mole
ules v(b; d)v(d; d) and v(b; d)v(
; d)v(d; d), whi
h 
orrespondto the paths b! d and b! 
! d, respe
tively.This last example shows that in the global solution, the whole is more than just the sum of itsparts: the path b! d found in the rea
tion has not been given as an observation, but has beendis
overed in the rea
tion. Hen
e, when 
ombining the lo
al solutions into a global solution,possible intera
tions between paths en
oded in di�erent solutions 
an be inferred during thepro
ess of rea
tion.But Example 3 also shows a problem of our �rst CHAM: the solutions obtained during therea
tions be
ome more and more unwieldy. This 
an easily be alleviated by using a variantrea
tion rule of the spe
ial rea
tion rule given in De�nition 1, as is done in the de�nition ofour se
ond CHAM B. This would 
onsume parts of the solution, making the resulting solutionssmaller.



De�nition 3 Let the set of mole
ules M be de�ned as in De�nition 1. The spe
ial rea
tion rulefor the CHAM B has the formuv(vi; vj); v(vi; vj)w 7! uv(vi; vj)w; v(vi; vj)w:This rea
tion rule for
es the pro
ess of route dis
overy to terminate; yet it shifts the nondetermi-na
y of the sear
h pro
ess from inside the rea
tions to the outside, letting the CHAM \de
ide"whi
h way to 
hoose.But how does this new CHAM relate to our original CHAM A? To state the formal 
onne
tion,we have to de�ne a normal form on rea
tions �rst.De�nition 4 A rea
tion in the CHAM A is said to be in left{to{right form if and only if inea
h appli
ation of the rea
tion ruleuv(vi; vk); v(vi; vk)w 7! uv(vi; vk); uv(vi; vk)w; v(vi; vk)wwe have w = v(vj ; vk) for some node vj of the network.That is, a rea
tion is in left{to{right form if the mole
ules are built from left to right in astepwise fashion, just adding single steps to the right end of a mole
ule. With this de�nition,we are able to state a normal form theorem.Theorem 1 Let N be a network, 
ontaining nodes vs and vt. Let S be a solution found in area
tion en
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S:Then there exists a unique rea
tion in left{to{right form leading to the same solution S.Proof: Straightforward. �With this theorem, we are able to state the formal 
onne
tion between CHAM A and CHAMB. We begin with the observation, that every solution found by CHAM B 
an also be found byCHAM A.Theorem 2 Let N be a network, 
ontaining nodes vs and vt. Let S be a solution found in area
tion en
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S
ontaining a mole
ule m of the formm = v(v1; vn)v(v2; vn) : : : v(vn�1; vn)v(vn; vn);in CHAM B. Then there exists a unique rea
tion in CHAM A leading to a solution S0 
ontainingm.Proof: In ea
h step of the rea
tionen
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S;add the edu
t uv(vi; vk) in the rea
tion step to the produ
ts of the step. The resulting 
hain ofrea
tions will be a rea
tion inside CHAM A. �



The main di�eren
e between CHAM A and CHAM B lies in the fa
t that CHAM A will 
omputeall possible answers, given enough time, while CHAM B is only able to 
ompute one spe
i�
answer. This is a

ounted for with the following theorem.Theorem 3 Let N be a network, 
ontaining nodes vs and vt. For ea
h rea
tionen
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed by CHAM A 
ontaining an inert mole
ule m of the formm = v(v1; vn)v(v2; vn) : : : v(vn�1; vn)v(vn; vn);we are able to �nd a rea
tion en
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0of CHAM B with m being an element of S0.Proof: Filter out of the 
hain of rea
tionsen
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sall those rea
tions not leading to edu
ts used in the produ
tion of m. Bring the remainingrea
tion leading tom into left{to{right form, and remove the edu
ts uv(vi; vj) from ea
h rea
tionstep. The resulting 
hain of rea
tions is a rea
tion inside CHAM B. �These two theorems establish that the CHAMs A and B in fa
t do �nd the same solutions. Butthe two CHAMs share a further problem: the lo
al solutions en
oding the observations are notinert | they are able to rea
t inside themselves. This is alright and wanted when viewed fromthe standpoint of DNA 
omputing, but 
ompli
ating a possible implementation of our CHAMs.We will address this problem in the de�nition of our next CHAM.3.2 Re�ned versions of the CHAMsTo over
ome both problems, the growing size of the solutions and the non{inertness of the lo
alsolutions, we 
hoose a di�erent en
oding, building a re�ned version of our CHAMs. Instead ofusing the v(�; �)=v(�; �) pairs for the en
oding of observed edges between nodes, we now en
odethese edges dire
tly using symbols e(vi; vj ; vk) for edges between the nodes vi and vj on a pathto vk. Hen
e, we get a di�erent set of mole
ules:De�nition 5 Let V = fv1; v2; : : : ; vng be the set of nodes in the network to be examined. Themole
ules of the CHAMs C and D are taken from the setM = fv(vi; vj)w j vi; vj 2 V ;w 2M 0g[ fwv(vi; vj) j vi; vj 2 V ;w 2M 0g[ fv(vi; vj)wv(vk; vl) j vi; vj ; vk; vl 2 V ;w 2M 0g[ fe(vi; vj ; vk) j vi; vj ; vk 2 V g[ M 0;with the set of mole
ules M 0 being de�ned asM 0 = fv(vi; vj) j vi; vj 2 V g�:



Hen
e, we just extend the set of mole
ules to also 
ontain the en
odings of edges. For anobserved path P = v1 ! v2 ! : : :! vnwe now en
ode the solutionen
0(P ) = fje(v1; v2; vn); : : : ; e(vn�1; vn; vn)jg:This way, we are able to formulate a bije
tive mapping between the en
oding fun
tions en
and en
0. Again, for a lo
al observation O = fP1; P2; : : : ; Pmg, we en
ode the lo
al solution asen
0(O) = ℄P2Oen
0(P ).In the formulation of the rea
tion rule, we now allow non{inert mole
ules to only rea
t with thebasi
 edge mole
ules, while disallowing the edge mole
ules to rea
t with other edge mole
ules.De�nition 6 Let the set of mole
ules M be de�ned as above. The spe
ial rea
tion rule forCHAM C has the formuv(vi; vk); e(vi; vj ; vk) 7! uv(vi; vk); uv(vi; vk)v(vj ; vk); e(vi; vj ; vk):Again, we do not \
onsume" the edu
ts of the rea
tion to model a nearly in�nite supply. Thenotion of global solution 
an be adapted from the 
orresponding de�nition in Se
tion 3.1 in thesame way as the de�nition of the lo
al solution, i. e. by de�ningen
0(N) = en
0(Ov1) ℄ en
0(Ov2) ℄ : : : ℄ en
0(Ovn)for some network N and observations Ov1 ; Ov2 ; : : : ; Ovn .Example 4 Assume that the set of nodes V and the observation Oa are the same as in Example1. The lo
al solution for node a then isen
0(Oa) = fje(a; b; b)jg℄ fje(a; 
; 
)jg℄ fje(a; b; d); e(b; d; d)jg= fje(a; b; b); e(a; 
; 
); e(a; b; d); e(b; d; d)jg:With these de�nitions, we are able to perform the sear
h for routes between nodes with CHAMC as well. The sour
e and target for the sear
h are supplied using the same method that wasused in Se
tion 3.1.Example 5 Let the en
oding of the network be adapted from the one given in Example 2. To
ompute some of the routes between the nodes b and d, we follow the rea
tionen
0(N) ℄ fjv(b; d); v(d; d)jg7! en
0(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg7! en
0(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)v(d; d)jg7! en
0(N) ℄ fjv(b; d); v(d; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)jg℄ fjv(b; d)v(d; d); v(b; d)v(
; d)v(d; d)jg℄ fjv(b; d)v(
; d)v(d; d)jg
;



using in ea
h step the spe
ial rea
tion rule from De�nition 6. The result of the rea
tions is a so-lution 
ontaining the two inert mole
ules v(b; d)v(d; d) and v(b; d)v(
; d)v(d; d), whi
h 
orrespondto the paths b! d and b! 
! d, respe
tively.As we 
an see, the rea
tion in Example 5 is mostly equivalent to the one given in Example 3,ex
ept for the en
oding of the network. We are able to state the 
onne
tion between the twoCHAMs A and C in the following theorems.Theorem 4 Let N be a network, 
ontaining nodes vs and vt. For ea
h rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed by CHAM C we are able to �nd a rea
tionen
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0with S = ℄m2S0fj�(m)jg; �(m) = � v(vi; vk)v(vj; vk) m = e(vi; vj ; vk)m otherwisefor CHAM A.Proof: For ea
h rea
tion of CHAM C, we map ea
h intermediate solution S00 by applying thefun
tion � elementwise, yielding a rea
tion step inside CHAM A. Doing this for the full rea
tionresults in a rea
tion in left{to{right form for CHAM A. �For the reverse dire
tion from CHAM A to C, we fo
us on the \interesting" rea
tions in CHAMA, whi
h build to in
omplete or 
omplete paths.Theorem 5 Let N be a network with set of nodes V , 
ontaining nodes vs and vt. For ea
hrea
tion en
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed by CHAM A 
ontaining mole
ules from the setM 00 = fv(vs; vt)wv(vj ; vt) j w 2 fv(vi; vt) j vi 2 V g�; vj 2 V g[ fv(vs; vt)wv(vt; vt) j w 2 fv(vi; vt) j vi 2 V g�g;we are able to give a rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0;in CHAM C where S0 
ontains the mole
ules from M 0 in the same multipli
ities as S.Proof: For ea
h mole
ule from M 0 o

urring in S, a 
hain of rea
tions in left{to{right form
an be given. In ea
h of the rea
tion steps, substitute e(vi; vj ; vt) for ea
h o

urren
e ofv(vi; vt)v(vj ; vt) in the produ
ts and edu
ts. Combining the resulting rea
tion 
hains provides area
tion in CHAM C leading to the required solution S0. �Again, we have the problem that the pro
ess of rea
tion will not terminate be
ause of an in�nitesupply of non{inert mole
ules. Similar to Se
tion 3.1, we ta
kle this problem by 
onstru
ting afourth CHAM D based on CHAM C, 
hanging the spe
ial rea
tion rule.



De�nition 7 Let the set of mole
ules M be de�ned as in De�nition 5. The spe
ial rea
tion rulefor the third CHAM has the formuv(vi; vk); e(vi; vj ; vk) 7! uv(vi; vk)v(vj ; vk); e(vi; vj ; vk):We are able to state a 
onne
tion between the rea
tions inside CHAM C and D, too. As inSe
tion 3.1, we �rst state the existen
e of normal form rea
tions.Theorem 6 Let N be a network, 
ontaining nodes vs and vt. Let S be a solution found in area
tion en
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sin CHAM C. Then there exists a unique rea
tion in left{to{right form leading to the samesolution S.Proof: Straightforward. �Now, we are able to state the 
onne
tion between the two CHAMs in the following two theorems.The �rst one again states that ea
h solution found by CHAM D 
an also be found by CHAM C.Theorem 7 Let N be a network, 
ontaining nodes vs and vt. Let S be a solution found in area
tion en
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S
ontaining a mole
ule m of the formm = v(v1; vn)v(v2; vn) : : : v(vn�1; vn)v(vn; vn);in the CHAM D. Then there exists a unique rea
tion in CHAM C leading to a solution S0
ontaining m .Proof: In ea
h step of the rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S;add the edu
t uv(vi; vk) in the rea
tion step to the produ
ts of the step. The resulting 
hain ofrea
tions will be a rea
tion inside CHAM C. �The se
ond theorem parallels Theorem 3 in stating that ea
h inert mole
ule found by CHAM C
an also be found by CHAM D.Theorem 8 Let N be a network, 
ontaining nodes vs and vt. For ea
h rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed CHAM C 
ontaining an inert mole
ule m of the formm = v(v1; vn)v(v2; vn) : : : v(vn�1; vn)v(vn; vn);we are able to �nd a rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0



in CHAM D with m being an element of S0.Proof: As in the proof for Theorem 3, �lter out of the 
hain of rea
tionsen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sall those rea
tions not leading to edu
ts used in the produ
tion of m. From all remainingrea
tions, remove the edu
ts of the form uv(vi; vj) from the produ
ts of the rea
tion step. Theresulting 
hain of rea
tions is a rea
tion inside CHAM D. �To 
lose the square, we are also able to state a 
onne
tion between the CHAMs B and D. Thisis done in the next two theorems.Theorem 9 Let N be a network, 
ontaining nodes vs and vt. For ea
h rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed by CHAM D we are able to �nd a rea
tionen
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0with S = ℄m2S0fj�(m)jg; �(m) = � v(vi; vk)v(vj; vk) m = e(vi; vj ; vk)m otherwisefor CHAM B.Proof: Along the lines given for the proof of Theorem 4. �Theorem 10 Let N be a network with set of nodes V , 
ontaining nodes vs and vt. For ea
hrea
tion en
(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� Sperformed by CHAM B 
ontaining mole
ules from the setM 00 = fv(vs; vt)wv(vj ; vt) j w 2 fv(vi; vt) j vi 2 V g�; vj 2 V g[ fv(vs; vt)wv(vt; vt) j w 2 fv(vi; vt) j vi 2 V g�g;we are able to give a rea
tionen
0(N) ℄ fjv(vs; vt); v(vt; vt)jg 7!� S0;in CHAM D where S0 
ontains the mole
ules from M 0 in the same multipli
ities as S.Proof: Along the lines given for the proof of Theorem 5. �While CHAM A is the one 
losest to our intuitive idea of �nding routes by using DNA 
omputing,CHAM D is the most a

essible for pra
ti
al implementations.4 A TCP/IP based experimentIn order to show the appli
ability of our approa
h, a TCP/IP based experiment has been per-formed. For this experiment, a UNIX s
ript was exe
uted on 12 workstations distributed overGermany (8), Switzerland (2), the Netherlands (1) and Canada (1). The workstation in Canada



was hidden behind a �rewall. It was able to �nd all other workstations, but none of the otherswas able to �nd the 
anadian 
omputer.The s
ript made extensive use of the UNIX ping 
ommand. Ping is normally used to 
he
k theavailability of a 
omputer in a TCP/IP network. If used without options, ping indi
ates if a
omputer is alive or not. By using ping with the options -s -Rv, detailed information aboutthe route used to 
he
k the availability of the 
omputer 
an be retrieved. When exe
uting ours
ript, ea
h workstation tried to ping all other workstations and retrieved detailed informationabout the trials. A se
tion of the s
ript reads:e
ho ``Station asterix.unibe.
h:'' >> /tmp/resultsping -s -rv asterix.unibe.
h 56 10 >> /tmp/resultsIf the s
ript is exe
uted on the workstation atlas.informatik.mu-luebe
k.de, the ping 
om-mand aboove tries to rea
h asterix.iam.unibe.
h at the University of Berne in Switzerland.The results of the trial looks like this:Station asterix.unibe.
h:64 bytes from asterix.unibe.
h (130.92.64.4):i
mp\_seq=0. time=1213.~msIP options: <re
ord route> 141.83.100.3, 141.83.100.1,
is
o-MU-Luebe
k.medinf.mu-luebe
k.de (188.1.132.213),XR-Hamburg1.WiN-IP.DFN.DE (188.1.3.250),ZR-Hamburg1.WiN-IP.DFN.DE (188.1.144.21),ZR-Hannover1.WiN-IP.DFN.DE (188.1.144.25),ZR-Koeln1.WiN-IP.DFN.DE (188.1.144.53),----asterix.unibe.
h PING Statisti
s----10 pa
kets transmitted, 1 pa
kets re
eived,90% pa
ket loss round-trip(ms) min/avg/max = 1213/1213/1213In this spe
ial 
ase, the route only has been re
orded up to the node ZR-Koeln1.WiN-IP.DFN.DE,and is lost from this point on.The results of the trials have been analysed, and 179 additional 
omputers used as gateways forthe ping information have been dete
ted. So the virtual network to be analysed 
onsisted of 11a
tive nodes whi
h 
ould make experiments and whi
h 
ould be rea
hed by a ping 
ommand, 1a
tive node whi
h 
ould not be rea
hed and 179 passive gateway nodes, making a total of 191nodes.For this network, we 
onstru
ted the CHAM and started to analyse the model. We found severalnew paths between the a
tive nodes whi
h should be possible in the real network but whi
h werenot observed during our trials. Due to 
omplexity and spa
e limitation the 
onstru
ted CHAM
annot be presented here. However, the lo
al view of atlas.informatik.mu-luebe
k.deis as



follows: fj e(0143:83:100:30 ;0 141:83:100:10 ;0 130:92:64:40);e(0143:83:100:10 ;0 188:1:132:2130 ;0 130:92:64:40);e(0188:1:132:2130 ;0 188:1:3:2500 ;0 130:92:64:40);e(0188:1:3:2500 ;0 188:1:144:210 ;0 130:92:64:40);e(0188:1:144:210 ;0 188:1:144:250 ;0 130:92:64:40);e(0188:1:144:250 ;0 188:1:144:530 ;0 130:92:64:40);e(0188:1:144:530 ;0 un
harted subnet 0;0 130:92:64:40)e(0un
harted subnet 0;0 130:92:64:40 ;0 130:92:64:40)jgIt is obvious that the lo
al view is just a rewriting of the ping result, ex
ept for the \un
hartedsubnet" introdu
ed after the gateway ZR-Koeln1.WiN-IP.DFN.DE.However, at the time of writing this paper the analysis of the results of this experiment was notfully 
ompleted. We will give more detailed information about the number of additional pathsfound by exe
uting the CHAM.5 Con
lusion and OutlookWe presented a solution for the problem of dis
overing the behaviour of a network from lo
alobservations. Our work is based on the 
hemi
al 
omputation metaphor presented in [6℄ andthe idea of mole
ular 
omputation presented in [1℄. Four di�erent CHAMs have been de�nedas solutions to our problem and their advantages and drawba
ks have been dis
ussed. Theappli
ability of our approa
h has been shown by an experiment in whi
h we have 
onstru
teda CHAM from lo
al observations of UNIX workstations for a virtual TCP/IP network with191 nodes. As a �rst result of this experiment the CHAM found additional routes through thenetwork whi
h were not observed during the experiment.Our future work is dire
ted towards several goals: We intend to provide software support for theanalysis and visualisation of CHAM based network models. This work will be based on someprototype tools whi
h we have already developed for the analysis of the des
ribed experiment.Our theoreti
al work will 
on
entrate on applying our network model to more sophisti
atedproblems. A starting point will be to study whether our approa
h is suitable to predi
t anetwork behaviour if nodes are added to or deleted from a network. Also, higher 
on
epts inCHAMs as, for instan
e, the airlo
k operator from [6℄ have to be examined. With respe
t tothis operator, it is planned to look at a relation between the CHAMs we presented and modelsfor pro
ess algebras as given in [6, 7℄ to generate simulation models from lo
al observations.A
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