
E. Sherratt (Ed.): SAM 2002, LNCS 2599, pp. 233–252, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Graphical Format of TTCN-3 in the Context of
MSC and UML

Ina Schieferdecker and Jens Grabowski

1FOKUS Berlin, Germany, schieferdecker@fokus.fhg.de
2MU Lübeck, Germany, grabowski@itm.mu-lübeck.de

Abstract. Graphical system design techniques like Message Sequence Chart
(MSC) and Unified Modelling Language (UML) are gaining more and more
acceptance because they ease the development, understanding, and maintenance
of software systems. In the testing area no accepted graphical test specification
and implementation techniques exist. To overcome this shortcoming, a
graphical presentation format for the Testing and Test Control Notation (GFT)
has been defined. GFT supports the graphical design, implementation,
visualization, documentation and tracing of test behaviour. GFT is based on
MSC and extends it with test specific concepts like verdicts and defaults. GFT
is also the basis for the definition of a UML testing profile to enable the
integrated system and test development with UML models. This paper discusses
GFT and its relation to MSC and to the UML testing profile.

1 Motivation

It is well known that test development accounts for a significant portion of the overall
effort required for the development of software systems. Consequently, research on
testing has focused on how the development and validation of test suites can be made
easier, faster and cheaper. To this end, test suite specifications have been hard to
develop, to read and to understand. An alternative is the graphical specification of test
cases.

This paper discusses two approaches for the graphical presentation and
development of test cases, which have been developed on the basis of the Testing and
Test Control Notation (TTCN-3 [1]): the Graphical Presentation Format for TTCN-3
(GFT [4]) and the UML 2.0 Testing Profile (U2TP [6]). TTCN-3 is the only
standardised language for the specification and implementation of test cases. TTCN-3
has been developed to support black-box testing on the basis of behavioural interface
specifications of a system under test (SUT). Black-box testing means that the SUT is
considered to be a black-box, i.e., the internal structure of the SUT is not known.
Stimuli are sent to the SUT and the responses from the SUT are observed and
compared with the expected responses that are prescribed by the specification of the
SUT [19], [20], [21], [22]. If expected and observed responses differ, then a fault has
been discovered. A pair of stimuli and expected responses is termed a test purpose. A
test case is an implementation of a test purpose. Implementation means that in
addition to the pure stimuli-response-behaviour of the SUT, properties of the test
system also have to be considered, e.g., distribution and co-ordination of test

234 I. Schieferdecker and J. Grabowski

components. TTCN-3 allows an easy and efficient description of complex distributed
test behaviour. It is a modular language and has a similar look and feel to a typical
programming language. However, in addition to the typical programming constructs,
it contains all the important features necessary to specify test procedures and their
control. There has been a requirement from the TTCN-3 users group to provide a
graphical presentation formats for TTCN-3 test specifications. Consequently, the
Tabular Presentation Format for TTCN-3 (TFT) [3] for the visualization of data and
the Graphical Presentation Format for TTCN-3 (GFT) for the visualization of
behaviour have been defined. Both formats are independent from each other and
allow developing complete TTCN-3 specifications within each of the formats. This
paper concentrates on GFT. While TTCN-3 copes solely with test specification and
test implementation, the objective of the UML is to support the complete software
development process including testing. For example, in [13] and [14] the use of UML
to support test development has been investigated to encourage the parallel
development of a test suite together with a system specification. The suggested test
development activities are straightforward: the identification of the independent
system component is followed by a definition of the test configuration, test case
structure and test cases. An UML based test tool chain has been proposed by the
AGEDIS project [15]. The approach is characterized by the goal to reuse and adopt
existing system validation and test code generation tools. However, the support for
the resulting test specifications in UML is in terms of well-defined test specification
means rather limited. Therefore, the work on a UML 2.0 Testing Profile has been
initiated. Both, GFT and U2TP allow the graphical development of test cases and
support the graphical visualization and documentation of test cases as well as tracing
of test case executions. The possibility to clearly discriminate between different parts
of a test description and between different language constructs is one of the main
points that are strongly in favour of using graphical test specifications. Contrary to
that, the textual test descriptions appear to be quite homogenous, making it more
difficult to get an idea about the essentials. Within graphical test specifications,
language constructs can be graphically differentiated in order to increase the
readability.

GFT and U2TP differ in several aspects. The main difference is that GFT is a
presentation format for TTCN-3 having the full expressiveness of TTCN-3, while
U2TP is the testing profile of UML being an integral part of UML following the UML
concepts. There is no one-to-one mapping between TTCN-3 und U2TP. GFT can be
used in “pure” test contexts as well as in combination with other system development
approaches. U2TP can be used in integrated system and test development processes
based on UML. Hence, GFT and U2TP serve different purposes and are targeted at
different user domains. The relationship between GFT, MSC and U2TP is depicted in
Fig.1. GFT is based on MSC and supports a one-to-one, bi-directional mapping to
TTCN-3. U2TP will be based on UML 2.0. Both, UML 2.0 and U2TP are currently
under development, so that the current status can be described only. U2TP will use
not only UML 2.0 interaction diagrams (being based on selected MSC concepts), but
will use also e.g. UML 2.0 state machines (being based on selected SDL concepts)
and class and deployment diagrams from “pure” UML. There will be a mapping to
TTCN-3 but not vice versa. Other mappings will support established software testing
approaches like JUnit or TET.

The Graphical Format of TTCN-3 in the Context of MSC and UML 235

MSC-2000

Graphical Format
of TTCN-3

UML 2.0

UML 1.4

SDL-2000

UML
Testing Profile

T
T
C
N
-
3

Software
testing
like
JUnit,
TET, etc.

Fig. 1. Relationship between GFT, MSC and U2TP

The paper explores these relationships in more detail. Section 1 introduces GFT,
Section 2 describes the relation of MSC and GFT and Section 3 discusses U2TP and
its relation to GFT. A summary concludes the paper.

2 Overall View of GFT

GFT is based on MSC [5] and supports the graphical presentation and definition of
TTCN-3 test specifications. MSC is a trace language for the specification and
description of the communication behaviour of system components and their
environment by means of message interchange.

testcase MyTestCase () runs on MyMTC
self

MyMTC

MyPCOport

MyTemplate1

MyTemplate2

alt

MyMessageType

x > 0

function MyFunction () runs on MyMTC
self

MyMTC

MyPCOport

MyTemplate1

MyTemplate2

alt

MyMessageType

x > 0

altstep MyAltstep () runs on MyMTC
self

MyMTC
MyPCOp

M Template1

MyTemplate2

a

MyMessageType

0

module MyModule() {
 testcase MyTestCase()
 { }
 function MyFuntion() runs on MyMTC
 { }
 altstep MyAltstep()
 { [x>0] MyPCOPort.receive(MyMessageType: MyTemplate1)
 [] MyPCOPort.receive(MyTemplate2) {stop;} } }

GFT

TTCN-3
Code

Graphical
Test Design

Generation

Visualization

Round Trip Engineering

Fig. 2. Use of GFT

GFT is a test specific extension of a subset of MSC to widen the applicability of MSC
in the testing process. In order to have adequate means for presenting TTCN-3 test

236 I. Schieferdecker and J. Grabowski

specifications with MSC, GFT adds test specific concepts of TTCN-3 such as port
instances and test verdicts. The majority of extensions are textual extensions only,
e.g., GFT diagrams include TTCN-3 keywords and statements. Graphical extensions
are defined to emphasize test specific aspects in GFT diagrams. Where possible, GFT
is defined like MSC, so that established MSC tools can be used for the graphical
definition of TTCN-3 test specifications in terms of GFT. GFT provides a test system
(test components) centered view, i.e., GFT diagrams describe how the test
components send stimuli to the SUT, and observe expected responses from the SUT,
as well as reacting to unexpected responses [17][16]. GFT concentrates on the local
view on test component behaviours using basic concepts of MSC. This local view
enables in particular a one-to-one mapping between GFT and TTCN-3 core such that
TTCN-3 test specifications can be designed within GFT. A combined use of
generation and visualization leads to round trip engineering for TTCN-3 (Fig.2):
TTCN-3 code can be generated from GFT and visualized by GFT in an iterative way.
GFT represents graphically the behaviour definitions of TTCN-3 like test cases or
functions. It does not provide graphics for data aspects like, e.g., the declaration of
types or templates. By allowing the usage of TTCN-3 code within GFT diagrams, it is
possible to develop complete TTCN-3 modules with GFT. GFT also defines no
graphical representation for the structure of a TTCN-3 module. The TTCN-3 module
structure may be provided in form of an organizer view (Fig.3) or an MSC document-
like presentation. An advanced tool may even support different presentations of the
same object, e.g., the organizer view in Fig.3 indicates that the behaviour of the
control part is available in TTCN-3 code, as TFT table and as GFT diagram.

module DHCP_Srv

definitions

control

core GFT
TFT

import from DHCP_Declarations

core

type MTCtype

core

parameter Srv_configuration

TFT

testcase AA_1

core GFT

Fig. 3. Organizer view of a TTCN-3 module

2.1 GFT Diagrams

GFT diagrams represent behaviour definitions of a TTCN-3 module. Such behaviour
definitions are the control part of a module, test cases, functions and altsteps.
Consequently, GFT distinguishes between control diagrams, test case diagrams,
function diagrams and altstep diagrams. A GFT control diagram (Fig.4) provides a

The Graphical Format of TTCN-3 in the Context of MSC and UML 237

graphical presentation of the control part of a TTCN-3 module. The heading of a
control diagram consists of the keyword control followed by the module name. Initial
variable declarations may also be found in the diagram header. A GFT control
diagram only includes one instance (also called control instance) with the instance
name control without any type information. The behaviour of the module control part
is specified along the control instance.

control ExampleModule
var verdicttype overallVerdict;

control

overallVerdict := execute (myTestcase ())

for (var integer i:= 0; i < 10; i := i +1)

for-loop

variable
declaration

overallVerdict := pass

if (overallVerdict != pass)

test case
execution

if-statement

goto label

instance
termination

L1

L1
label

Fig. 4. GFT control diagram

GFT presents test case definitions in terms of a test case diagrams (Fig.5). The header
of a test case diagram is the complete signature of the test case in TTCN-3 syntax,
i.e., the keyword testcase followed by the test case name, formal parameter
specification, and (optional) runs on- and system-clauses. Initial variable declarations
may also be found in the diagram header. A GFT test case diagram includes one
component instance, also called MTC instance, that represents the main test
component (MTC) and one port instance for each port owned by the MTC. In order to
distinguish the two kinds of instances graphically, port instances have a dashed
instance line. Apart from the FIFO order defined by the TTCN-3 semantics for
connections, no further event order is defined for port instances. For the MTC
instance, the standard event ordering for an MSC instance is assumed. The name of
the MTC instance is mtc and the (optional) associated type should be identical to the
component type referred to in the runs on clause of the test case signature. The names
of the port instances refer to the port names defined in the component type definition
of the MTC and the (optional) type information has to be consistent with the
component type definition of the MTC. Functions and altsteps are used to define and
structure the behaviour of the test components and the behaviour of the module
control part. In GFT, they are visualized in form of function and altstep diagrams.
Both kinds of diagrams are very similar. Their heading is the interface of the
presented definition and the diagram body includes one instance with the name self
that either represents a test component or the module control. The body of a function
or altstep diagram that defines or structures the behaviour of a test component (Fig.6)
is identical to the body of a test case diagram.

238 I. Schieferdecker and J. Grabowski

2.2 GFT Presentations of TTCN-3 Statements and Operations

GFT provides graphics for the most significant TTCN-3 statements and operations.
Some TTCN-3 constructs have no graphical representation, e.g., declarations, calls of
functions without graphical presentation, or attributes associated to a GFT diagram.
They have to be presented in action boxes and text symbols. TTCN-3 data types and
values are brought into GFT using the mechanism to parameterise MSC with arbitrary
data languages. Data is incorporated into GFT in a number of places, such as diagram
parameters, control variables, verdicts, component and port instances, message
values, timers, action boxes, or references. Data is used in two distinguishable ways
either statically, such as in the parameterisation of a GFT diagram, or dynamically,
such as in the acquisition of a value by a message receipt. All declarations, values,
type definitions and data manipulations are specified using the TTCN-3 notation.

testcase testcaseExample ()
runs on MyMTCtype system TestsystemType

var SonType MySon := null;

mtc

MyMTCtype

MyPCOport

default activation

map operation
var default MyDefault :=
activate(altstepExample)

mySon :=
SonType.create

map(system.PCO,
self.MyPCOport)

MySon.start
(SonBehavior ())

InitTemplate

AnswerTemplate

pass

MySon

deactivate (MyDefault)

component creation

component start

port control
operations

verdict assignment

component stops
another component

default deactivation

component
stops itself

stop

start

clear

Preamble ()

call of a function
or altstep

Fig. 5. GFT test case diagram

The GFT representations of the TTCN-3 configuration operations create, map,
connect, start component, stop component, start port, clear port and stop port are

The Graphical Format of TTCN-3 in the Context of MSC and UML 239

shown in Fig.5. The creation of a test component is described by a create symbol and
the start of its execution is represented by a start symbol. The termination of a test
component is described by means of two symbols: The MSC stop symbol is used if a
test component stops itself1 and a special component stop symbol is used, if a test
component stops another test component. The component reference associated to a
component stop symbol addresses the component to be stopped. Mapping and
connecting ports have to be done by using the TTCN-3 map and connect operations
within action boxes. Special start, clear and stop conditions are used to represent the
TTCN-3 operations for controlling ports, i.e., start port, clear port and stop port.
Within GFT, message-based communication is described by means of messages
(Fig.6). Along GFT instance axes representing test components, a TTCN-3 send
operation is represented by the origin of a message arrow and a TTCN-3 receive
operation is described by an arrowhead. On top of the message arrow the message
type may be given, and below the message arrow a TTCN-3 template has to be
provided. A template may be defined in the definitions part of a TTCN-3 module and
is then referenced in the GFT message, or is provided in terms of an in-line definition.

TTCN-3 supports procedure-based communications, where a test component can
either play the role of a calling party or the role of a called party. For the calling party,
TTCN-3 provides the call operation to call a re- mote procedure, the getreply
operation to handle replies from remote, and the catch operation to catch exceptions
triggered by the remote side. In GFT, these operations are modelled by means of
messages (Fig.6). The name placed above the message arrow refers to the name of the
remote procedure, and the operations are specified as prefixes to the message name.
Values sent and received by the different operations are given in TTCN-3 syntax
below the message arrow. TTCN-3 distinguishes between non-blocking and blocking
procedure-based communication. In GFT, blocking call operation is described by
using inline expressions that group all messages belonging to the call and suspension
regions. Dashed timer symbols are used to describe the (optional) time guard of a
blocking call. For the specification of non-blocking calls, blocking areas and inline
expressions are omitted. An example for a blocking call operation is shown in Fig.6.
The test component self calls MyProc. The call is guarded with a duration of 20ms.
After the call, the test component either receives a reply, catches an exception or the
guarding timer expires. For the called party, TTCN-3 provides the getcall operation
for accepting a call from remote, the reply operation to reply to an accepted call and
the raise operation to raise an exception if required by the testing situation. In GFT,
these operations are again represented by messages with the operation names as
prefixes to the message names. In addition, an activation region may be used to
indicate the flow of control that belongs to the handling of the accepted call. In Fig.6,
the test component accepts the call of procedure MyProc by means of a getcall
operation. Depending on the evaluation of the Boolean expressions in the guarding
conditions, the test component replies to the call, or raises an exception. GFT uses the
MSC timer symbols and provides a one to one mapping for the TTCN-3 timer
operations start, stop and timeout to the corresponding MSC symbols set, reset and
timeout. The TTCN-3 timer operations running and read have no graphical

1 As shown in 0, the MSC stop symbol is also used to represent the stopping of the module

control.

240 I. Schieferdecker and J. Grabowski

counterpart in GFT. They have to be specified in action boxes or in guarded
conditions.

function PTCbehavior () runs on MyPTCtype

self

MyPTCtype

MyProcPort

map(system.ProcPCO,
self.MyProcPort)

call MyProc

(var1, var2)

blocking call with
reply, exception and

guarding timer

guarding timer

return with return
value ‘result’

call

getreply MyProc

Temp1 -> value result

20E-3

catch MyProc

Temp2 -> value reason

fail

Temp3 -> param (var3)

getcall MyProc

if (S1)

reply MyProc

Temp4 value result

raise MyProc

Temp5

result

timeout of the
guarding timer

handling of an
incoming call

Fig. 6. GFT function diagram

In TTCN-3, the verdict of a test component is handled as a special object whose value
can only be accessed by the operations setverdict (for setting the verdict value) and
getverdict (for retrieving the actual verdict value). To emphasize the importance of
verdicts, GFT uses conditions, containing the verdict value as special keywords for
setting component verdicts. An example for a verdict set operation is described in
Fig.5. A pass verdict is assigned after the reception of an AnswerTemplate message.
For retrieving the verdict value, the getverdict operation can be used within an action
box. In TTCN-3, a special default mechanism is used to handle unexpected or
exceptional behaviour of the SUT during the test run. The mechanism is based on
altsteps that define the default behaviour of a test component or the module control.
An altstep can be activated as default behaviour and may afterwards be deactivated

The Graphical Format of TTCN-3 in the Context of MSC and UML 241

using activate and deactivate statements. GFT provides a default symbol to emphasize
the activation and deactivation of defaults. An example for the activation and
deactivation of default altstepExample is given in Fig.5.

2.3 Alternative, Cyclic, and Interleaved Behaviour

TTCN-3 provides several possibilities to describe alternative, cyclic and interleaved
behaviour. In GFT, all possibilities are represented using MSC in-line expressions
with new operators that correspond to the TTCN-3 statements. The TTCN-3
statements for describing alternative behaviour are if-else and alt. Examples of the
GFT representation of alternative behaviour are provided in Fig.4 and Fig.6. GFT
represents the Boolean guards of the alternatives in an alt statement by using guarding
conditions. The matching conditions of the receiving operations are described in the
templates of the messages, calls, replies and exceptions to be received. For the
presentation of an else branch within an alt statement, a guarding condition with the
special keyword else has to be used. Cyclic behaviour refers to the TTCN-3 loop
statements for, while and do-while. In GFT all loop statements are represented by
means of inline expressions with the corresponding loop operator, i.e., GFT
introduces the operators for, while and do-while for inline expressions. The different
exit criteria for the loops are part of the loop operator. An example for the GFT
representation of a for loop can be found in Fig.4. TTCN-3 also provides a possibility
to describe interleaved behaviour by means of the interleave statement. Therefore,
GFT provides an interleave operator for in-line expressions to represent interleaved
behaviour in an appropriate way.

2.4 Invocation of Test Cases, Functions, and Defaults

Altsteps and functions can be called in other GFT diagrams by using the MSC
reference symbol. The reference symbol should cover all component, control and port
instances known by the called function or altstep. Fig.5 shows the call of a Preamble,
which may either be provided in form of a function or an altstep. GFT provides an
execute symbol to emphasize the execution of test cases. The control diagram in Fig.4
includes one execute symbol. It specifies the execution of the test case myTestcase
within a loop. The TTCN-3 statements return, repeat, goto and label2 allow
specifying the transfer of control. GFT provides special symbols to represent these
statements. The return symbol with an optional associated return value underneath is
used to describe the termination of a function graphically (Fig.6). It specifies the
return of control and an optional return value to the calling entity, i.e., module control,
test case, altstep or function. The repeat symbol is used to force a new snapshot and
the re-evaluation of an alt statement. It may be used within an alt statement or for
describing the termination of an altstep. The latter case causes a new snapshot and the
re-evaluation of the alt statement in which the altstep has been invoked.

2 The symbols goto and label allow to specify the transfer of control within a GFT diagram.

The example in 0 describes the transfer of control to label L1, if value of variable
overallVerdict is not equal to pass.

242 I. Schieferdecker and J. Grabowski

3 GFT and MSC

The MSC language is a graphical means for describing the behaviour of distributed
reactive systems in form of traces. A main advantage of the MSC language is its clear
graphical layout, which immediately gives an intuitive understanding of the described
behaviour. Using MSC as a presentation format for TTCN-3 considerably improves
the readability of test cases and makes them more understandable3. Although GFT
uses most of the graphical MSC symbols, the inscriptions of some MSC symbols have
been adapted to the needs of testing and, in addition, some new symbols have been
defined in order to emphasize test specific aspects. New GFT symbols have been
defined e.g. for the representation of port instances and the creation of test
components. The new symbols are summarized in Table 1.

Table 1. Special GFT Symbols, extending MSC

GFT Element Symbol Description
Port instance symbol

Used to represent port instances

Labelling symbol

Used for TTCN-3 labelling and goto, to be attached to a
component symbol

Goto symbol

Used for TTCN-3 labelling and goto, to be attached to a
component symbol

Default symbol

Used for TTCN-3 activate and deactivate statement, to be
attached to a component symbol

Return symbol

Used for TTCN-3 return statement, to be attached to a
component symbol

Repeat symbol

Used for TTCN-3 repeat statement, to be attached to a
component symbol

Create symbol

Used for TTCN-3 create statement, to be attached to a
component symbol

Start implicit timer
symbol

Used for TTCN-3 implicit timer start in blocking call, to be
within a call inline expression and attached to a component
symbol

Timeout implicit
timer symbol

Used for TTCN-3 timeout exception in blocking call, to be
within a call inline expression and attached to a component
symbol

Execute symbol

Used for TTCN-3 execute test case statement, to be attached to a
component instance symbol

In addition, specific inline expressions for for, while, do-while and call statements
have been added. MSC has been extended in order to enable the definition of features
specific to TTCN-3 like port instances and defaults as well as to improve the
readability and to highlight test specific aspects like verdicts or test case execution.
Besides the extended graphical means, GFT is based on the TTCN-3 semantics.

3 It should be pointed out that GFT is not intended as a standalone language, but as a

presentation and visualization means for TTCN-3 test behaviour only.

The Graphical Format of TTCN-3 in the Context of MSC and UML 243

However, the semantic relation between GFT and MSC can be defined along the
following mappings:

GFT MSC

TTCN-3
core

(a) gft_to_msc

(b) gft_to_core

(f) TTCN-3 filter

trans

TTCN-3
Traces

(d) TTCN-3 semantics

1

Further
TTCN-3

definitions

3

MSC

MSC
Traces

4

Set of filtered
TTCN-3 traces

Set of filtered
MSC traces

2

5

(g) MSC filter

(c) msc_minus_ports

(e) MSC semantics

(h) Relation

Fig. 7. Semantic relation between GFT and MSC

The GFT and MSC diagrams (1 and 2 in Fig.7) refer to a set of diagrams describing
the behaviour of one test component or module control only. The TTCN-3
information needed in MSC (3 in Fig.7) is related to the data managed and
manipulated by the specified test component or module control. The filtering
operations (4 in Fig.7) on the traces will be different: on the MSC side only non-
TTCN-3 events are filtered away, while on the TTCN-3 side the filtering is related to
the events described in the GFT diagram and to one component only. This means, if
several components use the same function (represented as a GFT diagram), the traces
produced by each component have to be investigated separately. In result of these
mappings, a simple ‚subset‘ relation between the filtered TTCN-3 traces and the
filtered MSC traces holds: the set of traces on the TTCN-3 side might be bigger due
to the specifics of TTCN-3 default mechanism and component termination. The
relationship between GFT and MSC is summarized in Table 2.

4 GFT and U2TP

The UML 2.0 Testing Profile (U2TP) defines a way to specify test procedures
unambiguously within UML. It is dedicated to enable the integrated system and test
development by using wherever possible information from the system model within
the test model. Specific objectives are to base the UML Testing Profile on existing
black-box test technologies, in particular on TTCN-3, and to enable the abstract test
specification for established software testing methods.

244 I. Schieferdecker and J. Grabowski

Table 2. Summary of GFT and MSC relation

GFT MSC
Objective TTCN-3 test behaviour specification,

tracing and documentation
General purpose trace language for
system specification, design,
simulation, testing, and
documentation

Control, test case, function and altstep
diagrams

Basic and high-level MSCs, MSC
documents

Local, test component view only Local and global view
Communication between test
component and port instances only

Communication between instances
and environment (gates)

TTCN-3 data Open data interface
Variables belonging to test component
instances and to GFT diagrams

Variables belonging to instances
only

Specific actions for component
handling

Instance creation and termination

Specific actions for default handling ---
Specific constraints for verdict
handling

Differences in Concepts

Alt, if, for, while, do-while, call inline
expression

Alt, opt, exc, loop inline expression

TTCN-3 traces MSC tracesSemantics
Comparable

4.1 An Overview on U2TP

So far, UML technology has focused primarily on the definition of system structure
and behaviour and provides limited means for describing test procedures. However,
with the approach towards system engineering according to model-driven
architectures with automated code generation, the need for solid conformance testing,
certification and branding has increased. Therefore, a proposal for a UML Testing
Profile (U2TP) has been initiated by FOKUS. It solicits proposals for the following:
� A U2TP based upon the UML metamodel,
� that enables the specification of tests for structural (static) and behavioural (dy-

namic) aspects of computational UML models, and
� that is capable of inter-operation with existing test technologies for black-box

testing.
IBM, Ericsson, FOKUS, Motorola, Rational, Softeam, Telelogic and the University of
Lübeck formed a consortium to develop this U2TP, which will be developed in three
stages:
1. The concept space together with the terminology.
2. The meta-model for the concept space aligned with the UML 2.0 meta-model.
3. The syntactic elements for the stereotypes of the UML testing profile.

The work will be based on recent developments in testing such as the results from
TTCN-3 [2] and COTE [10]. The initial intend to base the U2TP just on GFT could
not be taken directly as additional requirements from software testing together with
the alignment with UML required additions and generalizations to the concepts of
TTCN-3. However, the U2TP will be defined such that a mapping onto TTCN-3 is
possible in order to enable the reuse of existing TTCN-3 infrastructures. Major
generalizations are

The Graphical Format of TTCN-3 in the Context of MSC and UML 245

� The separation of test behaviour and test evaluation by introducing a new test com-
ponent: the arbiter to evaluate the system observations and to calculate the verdict.
This enables the easy reuse of test behaviour for other testing kinds without
changing the test behaviour but just the arbiter. This concept is comparable to the
evaluate function of TSSL [11].

� The integration of the concepts test control, test group and test case into just one
concept of a test case, which can be decomposed into several lower level test cases.
This enables the easy reuse of test case definitions in various hierarchies. A test
suite is then just a top-level test case. This concept is comparable to the test object
concept of TSSL.

� The support of data partitions not only for observations, but also for stimuli. This
allows describing test cases logically without having the need to define the stim-
ulus data completely but as a set or range of values. This concept is comparable to
the concept of Test Data Definitions (TDD) of ADL [12].

Furthermore, some additions will widen the practical usability of the U2TP:
� An initial test configuration will be used to describe the initial setup of the test

components and the connectivity to the SUT and between each other
� Component and deployment diagrams will be used to enable the definition of soft-

ware components realizing a test suite and their requirements regarding test exe-
cution on certain nodes in a network

The different background of the U2TP members has lead to an intensive discussion on
the basic set of terms. A number of topics allow alternative views. We will address
these issues in an overview on the actual terminology. It has been agreed to
distinguish three major groups of terms:
� Test architecture, i.e. the elements and their relationship which are used in a test,
� Test data, i.e. the structures and meaning of values to be processed in a test, and
� Test behaviour, which address the observations and activities during a test.

The test architecture sub package covers the concepts for specifying test
components, the interfaces of and connections between test components and to the
system under test. Test components are active entities within the test system, which
perform the test behaviour defined in a test case (the Test Behaviour sub package) by
using test data as defined in the test data sub package. The test architecture is a set of
related classes and/or components for which test contexts with test configurations and
test cases may be specified. The test configuration is the collection of test components
and connections between the test components and to the SUT. The test configuration
defines both (1) test components and connections when a test case is started (the
initial test configuration) and (2) the maximal number of test components and
connections during the test execution. The initial test configuration is the precondition
for a test case to be executed. A test component is an active object within a test
system performing the test scenario. A test component has a set of interfaces via
which it may communicate with other test components or with the SUT via its
connections when the interfaces are connected. In addition to test components, utility
parts can be used to denote helper and miscellaneous parts for testing.

246 I. Schieferdecker and J. Grabowski

ATMTest

 «testContext»
ATMConfig

«testCase»
+validWithdrawal() : Verdict
+invalidPIN() : Verdict
-authorizeCard() : Verdict

«testComponent»
HWEmulator

 ref
default ClassifierDefault()

IATM IScreen, ICardMachine,
IMoneyBox

hwCom

Account

balance : Integer
number : String

credit(a : Integer)
debit(a : Integer)

* accounts

ATM::CardData

pinCode : Integer
number : String

isPinCorrect(c: Integer) :
Boolean

«testComponent»
BankEmulator

IAccount

bePort

* cards

-pinOk : Boolean
-enteredPIN : String
-message : String

ATMTest ATM
«import»

Fig. 8. An example test architecture

An arbiter is a specific test component to evaluate test results and to assign the
overall verdict of a test case. There is a default arbiter for functional, conformance
testing, which generates pass, fail, inconc, and error as verdict, where these verdicts
are ordered as pass < inconc < fail < error. The system under test (SUT) is
characterised by the set of interfaces via which a real SUT can be controlled and
observed during testing (by means of communication). An SUT can be on different
abstraction levels: a complete system, a subsystem thereof, a single component, object
or even a class. An example is given for a bank automaton - an ATM. The bank
automaton offers various interfaces, in particular, a port to the bank network and
interfaces to the user to insert and withdraw a bankcard as well as to take the money.
The test objective is to check that debit account is possible provided that enough
funds are available. An example test configuration for a bank automaton is shown in
Fig.8. The test case is defined for ATM being the SUT. The test package ATMTest
imports the definition from the ATM SUT and defines the test context ATMconfig as
well as the classes for the test components HWEmulator and BankEmulator. The test
context is used to define the test cases validWithdrawal(), invalidPIN() and
authorizeCard() and the test configuration, which is the internal structure of test
context. It uses two test components: a bank emulator be and a hardware emulator hw.
A utility part current is used to represent the bankcard used during the tests. The test
components are connected with the SUT via interfaces.

The test data sub package covers the concepts for data sent to the SUT and
received from the SUT. Mechanisms in order to change and compare test data are
used to enable precise and succinct test specifications. Data can be concrete (i.e. a
specific value) or abstract (i.e. a logically described set of values) Logical partitions
are used to define such value sets within test parameters. Coding rules are part of the
test specification and denote the encoding and decoding of test data. With the help of
coding rules, the interfaces of the SUT can be bound to certain encodings such as for
CORBA GIOP/IIOP, IDL, ASN.1 PER or XML. In the ATM example, different
messages to and from the SUT are used. They are declared in the class diagram of the
ATM

The Graphical Format of TTCN-3 in the Context of MSC and UML 247

enterPin(in PIN:string {length = 4})
messageDisplay(in Message:string)
enterAmount(in Amount:integer)
deliverMoney(in Amount:integer)

In the test behaviour, concrete data is used for example like
enterPin(validPIN())
messageDisplay("EnterPIN")
enterAmount(x:=SufficientFunds())
deliverMoney(x)

Here, validPIN is a characterization for a PIN to be valid and provides a valid PIN for
test execution. "EnterPIN" as well as "DebitAccount" are concrete values. Also,
SufficientFunds() is a logical characterization. The selected value is bound to x, so
that it can be reused in the subsequent test behaviour, i.e. in order to check that the
correct amount of money is delivered. Although the basic concepts for test data are
defined, the details of their realization within U2TP are open – in particular as UML
provides limited means for data modelling only. For example, further investigations
are required for exception handling, pattern matching and value binding.

«testContext»
ATMContext

«sut»
atm : BankATM

hwe :
HWEmulator

be : BankEmulator

atmPort

hwCom

bePort netCom

<<utility>>
current : CardData

Fig. 9. An example test configuration

The test behaviour sub package defines as the top-level notion a test context and a
related collection of tests. In contrast,. in [1] a ’test suite’ comprises a set of ’test
cases’. However by considering the term test case as a set of cooperating test
components allows e.g. to combine two test cases into one test case, which makes use
of the two original test cases. From this understanding the latter view (i.e. without the
dedicated "top level" test suite) is more flexible and useful in the context of e.g.
integration testing or test deployment and therefore used by the U2TP. A test case is a
specification of one case to test the system, including what to test with which input,
result, and under which conditions. It uses a concrete technical specification of how
the SUT should be tested - the test behaviour. A test case is the implementation of a
test objective for a particular test configuration, which is defined by the test
behaviour. A test case uses an arbiter to evaluate the outcome of its test behaviour. A
test objective is a general description of what should be tested. The test behaviour is
the specification of behaviour performed on a given test configuration, i.e. sequences,
alternatives, loops and defaults of stimuli to and observations from the SUT. Test
behaviours can be defined by any behavioural diagram of UML 2.0, i.e. as interaction
diagrams or state machines. There can be a designated main test behaviour for a given
test configuration. By invocation, test cases can make use of other test behaviours.
TTCN-3 Verdicts such as pass and fail are predefined as the outcome of a test case.
In addition, user defined verdicts and arbiters can be used to denote specific test
outcomes for example for performance tests. Every test component handles a local

248 I. Schieferdecker and J. Grabowski

verdict. When a test component terminates, its verdict is reported to the arbiter for
calculation of the overall verdict for the test case. A validation action is an action to
evaluate the status of the execution of a test scenario by assessing the SUT
observations and/or additional characteristics/parameters of the SUT. A validation
action is performed by a test component and sets the local verdict of that component.
U2TP uses implicit validation actions when matching the observed responses from the
SUT to the expected ones. A match leads implicitly to pass while a mismatch leads to
the current series of defaults. Defaults can be defined on four levels: individually for
events in interaction diagrams or for states in state machines, for test component parts
of test configurations, for test components of a specific class or for all test
components in a test system, i.e. the metadefault(). These defaults are evaluated in
sequence – from the event default up to the metadefault. The metadefault defines the
deferral of any event that cannot be matched to a subsequent evaluation. During the
execution of a test case a test trace is generated. It is the log of a test case execution
containing logs for each action performed during that test case execution as well as
containing the test result of that test case execution. A log action can be used to log
additional information in the test trace. Parts of the test behaviour for an example test
case are shown below. A sequence diagram is used here to denote the information
exchange between the test components and the SUT.

sd ValidWithdrawal

hwe
«sut»
atm be

ref
authorizeCard()

selectOperation(withdrawal)

true
withdraw(amount)

netCom

findAccount(current)

account

display(”Take cash”)

deliverMoney(amount)

true

debitAccount(account, amount)

true

constant Integer amount {findAccount(current).balance > amount }

setverdict(pass
)

default
DisplayDefault

atmPort

Fig. 10. An example test case

This test case depicts the test for a valid withdrawal of money: after authorization of
the bankcard (by referencing to the authorizeCard sequence diagram) the withdrawal
operation is selected and an amount requested, which is smaller than the balance on
the card. This is defined by a logical partition with a constraint on amount (see top
right of the figure). The SUT than interacts with the bank emulator be to debit the
account and delivers the money afterwards. An event specific default DisplayDefault
is used for the display event in order to handle different display messages specifically.
Finally, the verdict is set to pass. Implicit assumptions ease the definition of the test

The Graphical Format of TTCN-3 in the Context of MSC and UML 249

behaviour. For example, a timer4 is implicitly started whenever a response from the
SUT is awaited. If the timeout occurs without any reaction from the SUT, a fail
verdict is assigned – this is handled by the metadefault. Furthermore, a pass is as-
signed whenever the received response matches the expected one.

4.2 The Relationship between GFT and U2TP

MSC (being the basis of GFT) forms a central constituent of UML 2.0 and is
employed for the formalisation of Interaction Diagrams (being both sequence
diagrams and activity diagrams). Since there is no accepted test notation in UML yet,
this was an ideal opportunity to bring TTCN-3 in form of GFT to the attention of the
UML world. In this context, a graphical format is of particular importance since UML
is exclusively based on graphical modelling techniques. In fact, GFT is the archetype
for U2TP. U2TP uses several concepts being developed in GFT: sequence diagrams
are for example considered to be the first choice to define test behaviour, but not the
only one as state machines can also be used. Specific symbols are defined for defaults
and verdict handling.

Still, GFT and U2TP differ in several respects: U2TP is based on the object
oriented paradigm of UML, where behaviours are bound to objects only, while GFT is
based on the TTCN-3 concept of functions and binding of functions to test
components. U2TP uses additional diagrams to define e.g. the test architecture, test
configuration and test deployment. Test behaviour can be defined as interaction
diagrams but also as state machines. While GFT supports dynamic configurations in
terms of kind and number of test components and the connectivity to the SUT and
between test components5, U2TP uses static configurations where only the number of
test components may vary but not the structure of the connections between test
components. In addition, U2TP has only one FIFO queue per test component, while
GFT uses a FIFO queue per test component port. The verdict handling in GFT is
bound to the well-established verdict handling of conformance testing, while U2TP
uses in addition the ability of user-defined verdicts and the arbitration of verdicts, i.e.
the definition of algorithms of when and how verdicts are determined. Additional
validation actions can be used to calculate local verdicts of test components by the use
of external information from the test execution context. Another difference is that of
default handling for unexpected or irrelevant behaviour from the SUT: GFT uses
function-based defaults which can be dynamically activated and deactivated during
test execution, while U2TP uses structural defaults, which are bound to the structure
of a test system – from test component level down to event/state level – leading to a
defaults hierarchy and less dynamic default handling. Although the data part is not yet
on a solid basis it is clear that U2TP will support UML data only, i.e. primitive types
and classes, while GFT supports all types available in TTCN-3: basic types, user-
defined structured types (record, record of, set, set of, enumerated, union), and
anytype. In addition, any imported data like ASN.1 or IDL is supported. Overall, GFT

4 Please note that UML 2.0 currently does not define a timer concept, so that U2TP will add

timers, timeouts, and the starting, stopping and reading of timers.
5 In TTCN-3 and hence in GFT, ports can even be connected, reconnected, started, stopped

and cleared during test execution, which leads to dynamic test configurations in terms of
connectivity between test components and to the SUT.

250 I. Schieferdecker and J. Grabowski

covers all TTCN-3 features while U2TP is targeted at UML with restricted means for
TTCN-3. A mapping from U2TP to TTCN-3 will be possible but not the other way
around. The relationship between GFT and U2TP is summarized in Table 3.

Table 3. Summary of GFT and U2TP relation

GFT U2TP
Objective Graphical presentation format of

TTCN-3 with a one-to-one mapping to
TTCN-3 code

Integrated system and test
development in UML

Basis TTCN-3 and MSC UML 2.0 package, class,
interaction and state machine
diagrams

Function-based without inheritance Object oriented
Dynamic test configurations Static test configurations
Test components with several FIFO
queues per port and specific queue
handling operations

Test components with single FIFO
queue only, limited queue handling
only (e.g. defer)

Fixed verdict semantics Verdict validation and arbitration
Function-based default behaviours Structure-based default behaviours

Differences in Concepts

TTCN-3 type system and other
imported data languages

UML class diagrams and other
profiled data

Expressiveness Full expressiveness of TTCN-3 Limited TTCN-3 expressiveness

5 Summary and Outlook

MSC and dialects thereof are used throughout the engineering process of test
development: for the specification of test purposes to define the specific objective of a
test, via the specification of test cases to define the concrete test behaviour, up to the
visualization of test executions – despite the fact that no standardized graphical test
notation for test purposes, test behaviour and test traces exist yet. Therefore, several
test specific, proprietary extensions to MSC have been proposed and are used to make
it applicable in a testing context. Within the area of conformance testing, MSC is
already well established for the specification of test purposes, and as such for the
automatic generation of TTCN test cases [8][9]. Beyond that, MSCs have been
proposed for a selected visualisation of TTCN descriptions by means of simulation
techniques [7]. Although MSC has been used for limited test specification in the past,
the latest version of the language now contains constructs that make the
comprehensive MSC specification of test suites feasible. Such language constructs
include MSC composition, object oriented modelling, as well as data. These enabled
the definition of GFT. Furthermore, MSC and dialects in general are often used by
commercial test devices and test platforms to represent test traces, for example, MSCs
are used by Agilent BSTS or NetTest InterWatch. In addition, proprietary extensions
towards test behaviour definition are used for example by Tektronix G20.

Both, GFT and U2TP are aimed at well-defined specification means for testing in
order to close the gap between practical needs of graphical test specification and the
lack of standardized approaches to do that. GFT is tailored towards the representation
and visualization of TTCN-3 test behaviour. The first advantage of GFT is
highlighting test specifics with special graphics to ease readability and improve the
understanding. The second advantage of GFT in comparison with TTCN-3 refers to
the description of the communication behaviours between test components and their
ports. Within GFT all ports may be represented by different port instances.
Consequently the test events belonging to different ports are clearly separated

The Graphical Format of TTCN-3 in the Context of MSC and UML 251

visually, in contrast to TTCN-3 core notation, where all events appear in a mixed
form.

We described the extensions that are needed to MSC in order to facilitate the
adequate representation of TTCN-3. GFT supports a bi-directional mapping which is
defined in form of an executable mapping using the functional programming
language, Standard ML of New Jersey (SML/NJ)6. Firstly, both the TTCN-3 and GFT
grammars are represented as separate SML data types on the basis of which a set of
mapping functions that map the GFT data types onto the TTCN-3 data types for each
GFT object (i.e. test case diagram, test step diagram, control diagram, and function
diagram) and the other way around. One purpose behind this activity on an executable
mapping has been to aid the validation of the graphical grammar and language
concepts of GFT. Future work will reconsider the global view to denote the
interaction of test components within test behaviours and the use of enhanced high-
level MSCs – the concept of hyperMSCs [16] – for GFT. Commercial tool support for
GFT is already available. Existing MSC tools can be used for test specification
purposes7 [8], but the first new test tools supporting the whole GFT definition will be
available on the market soon [18].

Furthermore, with the interest in MSC within OMG, as a potential candidate for
UML v2.0, there was a further possibility to use GFT as a basis for the UML testing
profile. The integration of system and test related information supports independent
test laboratories in their work, but also the system engineers to perform the test runs
by their own. The status of the basic test concepts and terminology, which have been
presented in this paper, could be regarded as a consensus of different test experts
working in heterogeneous IT fields like object-oriented systems or telecom protocols.
Fundamental elements of test architecture, test data and test behaviour have been
collected and applied exemplarily using different UML diagrams. A comparison with
the established concepts of the test notation standard TTCN confirms the suitability of
the selected definitions in the UML profile for testing. The UML testing profile
language elements can be mapped to TTCN-3 but not vice versa. One problem is for
example the lack of timers in UML 2.0 At the time of writing this paper the work on
the UML profile for testing is still ongoing in OMG and no final decisions have been
made. Due to the dependencies on the UML2.0 release it is expected that the final
submission of the UML profile for testing will not be available before 2003.
Nevertheless the importance of testing with UML has to be elaborated earlier to assist
its acceptance.

References

[1] ISO/IEC 9646-3 (1998): “Information technology – Open systems interconnection –
Conformance testing methodology and framework – Part 3: The Tree and Tabular
combined Notation (TTCN)”

[2] ETSI ES201873–1v220 (2002) TTCN-3: Core Language.

6 SML/NJ is open source and is freely available from Bell Laboratories, (http://cm.bell-

labs.com/cm/cs/what/smlnj/).
7 If MSC editors are used, specific graphical GPF symbols have to be modelled by using

keywords, naming conventions or TTCN-3 core notation in other symbols.

252 I. Schieferdecker and J. Grabowski

[3] ETSI ES201873–2v220 (2002) TTCN-3: Tabular Presentation Format.
[4] ETSI DES201873–3v220 (2002) TTCN-3: Graphical Presentation Format.
[5] ITU-T Recommendation Z.120 (2000): Message Sequence Charts (MSC).
[6] OMG: The Initial Submission to the RFP on the UML Testing Profile, April 2002.
[7] J. Grabowski, T. Walter. Visualisation of TTCN Test Cases by MSCs, SAM98, Proc. of the

1st Workshop on SDL and MSC, Humboldt University Berlin, 1998.
[8] P. Baker, C. Jervis, D. King: An Industrial use of FP: A Tool for Generating Test Scripts

from System Specifications. – Scottish Functional Programming Workshop/Trends in
Functional Programming.

[9] J. Grabowski, D. Hogrefe. TTCN, SDL- and MSC-based specification and automated test
case generation for INAP. Proc. of the 8th Intern. Conf. on Telecommunication Systems
(ICTS'2000) – Modeling and Analysis", Nashville, March 2000.

[10] C. Jard, S. Pickin: COTE – Component Testing using the Unified Modelling Language. –
ERCIM News No.48, January 2002.

[11] T. Vassiliou-Gioles, M. Li, I. Schieferdecker, M. Born, M. Winkler: Configuration and
Execution Support for Distributed Systems.– IWTCS’99, Budapest, Hungary, Sept. 1999.

[12] The Open Group: ADL 2.0 Translation System, 1998. http://adl.opengroup.org/
[13] M. Born, I. Schieferdecker, M. Li: Test Framework for Component-Based Systems, Intern.

Workshop on Distributed System Validation and Verification (DSVV'2000), Taipei
(Taiwan), April 2000.

[14] M. Born, I. Schieferdecker, M. Li: UML Framework for Automated Generation of
Component-Based Test Systems. – Intern. Conf. on Software Engineering Applied to
Networking and Parallel/ Distributed Computing (SNPD'00), Reims, France (2000).

[15] C. Crichton et al.: Using UML for Automatic Test Generation: Proc. of the Intern. Conf.
On Automated Software Engineering, ASE’2001.

[16] E. Rudolph, I. Schieferdecker, J. Grabowski: HyperMSC – a Graphical Representation of
TTCN. Proc. of the 2nd Workshop on SDL and MSC (SAM’2000), Grenoble (France),
June, 26 – 28, 2000.

[17] E. Rudolph, I. Schieferdecker, J. Grabowski: Development of an MSC/UML Test Format.
FBT’2000 – Formale Beschreibungstechniken für verteilte Systeme (Editors: J.
Grabowski, S. Heymer), Shaker Verlag, Aachen, June 2000.

[18] Testing Technologies. TT Tool Series. http://www.testingtech.de/products
[19] ANSI/IEEE. Glossary of Software Engineering Terminology. ANSI/IEEE Std 729–1983,

ANSI/IEEE Std 729–1983, 1983.
[20] B. Beizer. Software Testing Techniques Second Edition. Van Nostrand Reinhold New

York, 1990.
[21] G. J. Myers: The Art of Software Testing. John Wiley, 1979.
[22] Sommerville: Software engineering. Addison Wesley, 1989

	2.1	GFT Diagrams
	2.2	GFT Presentations of TTCN-3 Statements and Operations
	2.3	Alternative, Cyclic, and Interleaved Behaviour
	2.4	Invocation of Test Cases, Functions, and Defaults
	4.1	An Overview on U2TP
	4.2	The Relationship between GFT and U2TP
	References

