
1Test Case Generation with Test Purpose Speci�cation by MSCs�Jens Grabowski, Dieter Hogrefe, and Robert NahmInstitut f�ur Informatik, Universit�at Bern, L�anggassstrasse 51, CH-3012 BernThis paper presents a new test case generation method based on formal system speci�ca-tions in SDL. The test purpose of a speci�c test case is speci�ed formally by one or manyMessage Sequence Charts (MSCs). Based on the test purpose and the system speci�ca-tion a complete test case can be generated automatically in the TTCN format, includingpreamble, postamble and test body with all test verdicts.1. IntroductionFormal description techniques (FDTs, i.e. LOTOS, Estelle and SDL) are frequently usedwithin industry and standardization bodies to describe the functional properties of com-munication systems (e.g. OSI or ISDN). FDT descriptions can be simulated. Therefore,the possible interactions between a system and its environment can be generated auto-matically. Although test cases describe such interactions, the automatic generation oftest cases from FDT descriptions is still an open problem. Furthermore, there exists agap between research and practical testing.Approaches coming from research like UIO [20] or the W-method [6] can handle systemswith a small state space. They test every state transition exactly one time. From asuccessful test a behavioural equivalence between speci�cation and implementation canbe concluded. The problems of these methods are state explosion and in�nite state spaces.State explosions occur for example when state space exponentially grows with the num-ber of processes, or with the size of bu�ers. Even small examples may cause problems forUIO or the W-method. None of the mentioned methods can be applied to systems withan in�nite state space. Unfortunately, FDTs force the speci�cation of systems with anin�nite state space. In�nite signal queues of SDL processes or unlimited data descriptionsare two examples for this. However, there cannot exist test methods which guarantee be-havioural equivalence for systems with an in�nite state space. Even �nite state machineswhich communicate by means of unbounded FIFO bu�ers (i.e. the base model of SDL) areas powerful as Turing Machines [2] for which the behavioural equivalence is undecidable[14]. For testing, the situation is more complicated since there is in general no knowledgeabout the whole implementation. Only the interactions between an implementation andits environment are observed for a certain time.Real systems are in general very complex. Therefore, approaches like UIO or the W-method cannot be applied. The present procedure of writing test cases is an intuitive andcreative process which only is restricted by informal regulations. The intuition behind a�This work was performed within the F & E project, no. 233, 'Conformance Testing - A Tool for theGeneration of Test Cases', funded by Swiss PTT.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 2test case is re
ected by the so-called test purpose. A test purpose is an informal statement.It denotes an important part of a speci�cation which should be tested.Our approach supports practical testing. It combines test purposes de�ned by MessageSequence Charts (MSCs) [5, 8] and a corresponding SDL description [4] in order to gen-erate test cases. MSCs (cf. Figure 2) are widespread means for the graphical visualisationof selected system runs of communication systems [9]. A test purpose can be de�ned byan MSC in form of the required signal exchange2. An MSC does not de�ne a completetest case. It does not describe the signal exchange which drives the implementation intoa state from which the MSC can be performed (preamble). It does not de�ne the stimuliwhich are necessary to drive the implementation back into an initial state after the MSCis observed (postamble). It does not de�ne what to do if a signal is observed which isnot de�ned in the MSC, and it does not describe the values of message parameters. Themissing information can be provided by an additional FDT description. We choose SDLas FDT because SDL is more used within industry and standardization bodies than anyother standardized FDT [12].2. The ideas of the methodIn the following the ideas of our approach are illustrated by means of an example whichis taken from the behaviour of the Inres protocol [13].2.1. Structure and behaviour of the Inres protocolIn the sequel the Inres protocol is brie
y introduced. The architecture of the Inres pro-tocol is shown in Figure 1. The Inres protocol renders a connection-oriented service fordata transmission. It uses a connectionless service. Data are transported from an Initiatorentity to a Responder entity. The used service is calledMedium. Messages exchanged be-tween Initiator, Initiator User, Responder, Responder User and Medium are called serviceprimitives (SPs) and the information units exchanged between Initiator and Responderare called protocol data units (PDUs).The Inres protocol works in three phases: connection establishment, data transfer anddisconnection (cf. Figure 2). For a connection establishment the Initiator gets a connec-tion request CONreq from its user, then sends a CR to the Responder and waits for aconnection con�rmation CC in return. After receiving CC the Initiator gives a CONconfto its user and the connection is established. If a CC does not arrive within some timelimit, the Initiator will retransmit CR for three times. Afterwards, the Initiator indicatesthe failed connection establishment by a DISind. When the Responder receives a CR fromthe Initiator it gives a connection indication CONind to its user and waits for a responseCONresp in return. Upon arrival of CONresp, the Responder sends a CC to the Initiatorand waits for a �rst data package DT.After connection establishment data can be transferred. The Initiator User gives adata request DATreq to the Initiator, which then sends a DT to the Responder and thenwaits for an acknowledgement AK. If the AK does not arrive within some time limit the2It should be noted that some test purposes (e.g. time constraints, or reliability requirements) can not beexpressed by MSCs. But the use of MSCs for describing the class of test purposes which can be expressedseems to be common industrial practice. Therefore, we concentrate on MSCs.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 3
Medium

Initiator

User User
Initiator Responder

ResponderFigure 1: Architecture of the Inres protocol
DISreqMDATreq(DR)MDATind(DR)DISind

Initiator_User Initiator Medium Responder

MDATreq(CR) MDATind(CR) CONindCONreq

CONrespMDATreq(CC)MDATind(CC)CONconf

DATreq MDATreq(DT) MDATind(DT) DATind

MDATind(AK) MDATreq(AK)

Responder_User

Connection Establishment

Data Transfer

DisconnectionFigure 2: Complete system run of the Inres protocolInitiator retransmits the DT for three times. Afterwards, the Initiator assumes that theconnection is distroyed and indicates this by giving a DISind to its user. If the AK arrivesin time, the next data package, if present, is sent. When the Responder gets a DT formthe Initiator, it acknowledges the DT with an AK and gives a data indication DATind toits user. Afterwards the Responder waits for the next DT.A disconnection can be initiated by a DISreq from the Responder User. Upon arrival ofa DISreq the Responder sends a DR to the Initiator which then indicates the disconnectionby an DISind to its user.Initiator and Responder have to use the Medium service for their communication. TheMedium service can be accessed by a data request MDATreq for transmission and by adata indication MDATind for reception. The PDUs CR, CC, AK, DT and DR can beconsidered as being parameters of MDATreq and MDATind. The MSC in Figure 2 shows acomplete system run including connection establishment, data transfer and disconnection.2.2. Testing the retransmission of the InitiatorA suitable test architecture for testing the Initiator entity of the Inres protocol might bethe distributed test method [15] as sketched in Figure 3. The architecture of the Inresprotocol (cf. Figure 1) can be adjusted to the distributed test method. The Responder is



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 4replaced by the lower tester (LT) and the upper tester (UT)3 plays the role of the InitiatorUser. It is assumed that the test architecture is an SDL description which can be derivedfrom the system speci�cation. LT and UT are modeled as SDL processes which can sendand receive any valid signal at any time4. A similar approach is used in [1]. The systemunder test (SUT) consists of an Initiator implementation which is the implementationunder test (IUT) and a Medium implementation which is assumed to work correct.We want to concentrate on testing a part of the retransmission property. In particular,we want to test whether it is possible to perform a correctly connection establishment afterthe third retransmission of the CR. The MSC in Figure 4 shows a scenario of which onemay think about in the context of testing the retransmission property. The UT initiatesa connection by CONreq. The LT waits for three CRs before it answers with CC whichwill then in return result in CONconf at the UT. Since the MSC in Figure 4 does notclaim to de�ne the entire scenario, it cannot be assumed that MSCs provides completetest information.
Medium

IUT

UT
LT

PCO1

PCO2Figure 3: Distributed test method2.3. The meaning and the representation of test casesOur approach is based on the assumption, that an MSC de�nes a speci�c part of a testcase, the so-called test purpose. For explaining this, the meaning of the terms trace,observable and test case have to be introduced, and the representation of test cases hasto be described.Traces and observables. A trace describes the ordering of events which are performedduring a system run. A trace of an SDL description may include the events tasks, inputs,outputs, decisions, etc. of its processes. An MSC is a possible representation of an SDLtrace. For testing, only inputs and outputs of LT and UT are interesting5. Therefore, wecall a trace which only includes inputs and outputs of LT and UT an observable.3UT and LT communicate via so-called points of control and observation (PCOs) with the IUT. Forsimpli�cation the PCOs are not mentioned within the test case descriptions (e.g. Figure 4 and 5), but itis assumed that each tester serves its own PCO.4For systems with a synchronous communication mechanism exists a simpler approach to de�ne thebehaviour of the tester: the inputs and outputs of the system which can be observed by its environmentare inverted. Inputs become outputs and vice versa. Brinksma [3] uses this technique to de�ne thecanonical tester.5SUT, LT and UT in general exchange SPs.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 5
Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

UT LT

Figure 4: Connection establishment after the third retransmission of CRAn informal de�nition of test cases. A test case is de�ned in order to prove aspeci�c test purpose. A test purpose might be a set of events which have to be performed,or a set of states which have to be reached by the IUT. A test case describes a set ofobservables. Each observable leads to a test verdict.The test verdicts are PASS, INCONCLUSIVE and FAIL. PASS is given when the testpurpose is reached, FAIL is assigned when the SUT behaves in an incorrect way andINCONCLUSIVE is given if neither FAIL nor PASS can be assigned.A test case can be structured into three parts which are called preamble, testbody andpostamble. The testbody describes observables which indicate that the IUT behaves ac-cording to the test purpose. The preamble drives the IUT from an initial state into a statefrom which the testbody can be performed. The postamble checks whether the testbodyends up in the correct state after it has been performed and drives the IUT back into aninitial state from which the next test case can be applied.The representation of test cases. Test cases for conformance tests are usually rep-resented by the Tree and Tabular Combined Notation (TTCN) which is standardized bythe ISO/IEC [16]. A TTCN test case for an Initiator implementation of the Inres proto-col may look like the table in Figure 5. TTCN describes observables by means of a treenotation (cf. Behaviour Description in Figure 5). The tree structure is determined by theordering and the indentation of the events. In general, the same indentation denotes abranching (e.g. lines Nr. 2 and Nr. 15 in Figure 5) and the next larger indentation denotesa succeeding event (e.g. lines Nr. 1 and Nr. 2 in Figure 5).Events are characterized by the involved instance (i.e. LT or UT), by its kind (i.e. "!"denotes an output, "?" describes an input) and by the SP which has to be send or received.An example may clarify the notation. The statement UT!CONreq describes the sendingof CONreq to the SUT by the UT. TTCN allows to specify events with arbitrary SPs byusing the OTHERWISE statement (e.g. UT?OTHERWISE in Figure 6).Test verdicts are de�ned within a verdict column of the TTCN table. The verdictcolumn of Figure 5 only includes PASS and INCONCLUSIVE verdicts. In this exampleFAIL behaviour is speci�ed by a default behaviour description which is shown in Figure6. Such defaults have to be referenced in the test case header (cf. Default in Figure 5).TTCN o�ers muchmore facilities like Constraints, Labels, or Timer which are not relevantfor the understanding of this paper. A tutorial on TTCN can be found in [17].



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 6
Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Test_Case_1
Inres_Protocol/Initiator_Test/Connection_Establishment

(PASS)

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

LT!MDATreq(DR)

LT?MDATreq(CR) INCONC

6
7
8
9
10
11
12
13
14
15

LT?MDATind(CR)
LT?MDATind(CR)

INCONC
INCONC

INCONC
INCONC
INCONC

INCONC

Unexpected_Events
Connection Establishment after the third retransmission of a Connection Request

UT!CONreq

UT?CONconf

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

Nr. VerdictConstraint Ref.

Figure 5: TTCN test case for the Inres protocol
Detailed Comments :

1
2

Label Behaviour Desription Comments

UT?OTHERWISE
LT?OTHERWISE

FAIL
FAIL

Group :

Default Dynamic Behaviour

Test Step Name : Unexpected Events
Inres_Protocol/Initiator_Test/Connection_Establishment

Objective : Handle unexpected Signals
Comments :

VerdictNr. Constraint Ref.Figure 6: Default behaviour for the TTCN test case in Figure 5The role of MSCs and FDT descriptions for test case generation. It is assumedthat an MSC de�nes the test purpose of a test case. This means that an MSC de�nes asignal exchange which has to be performed by the SUT to get a PASS6. An MSC doesnot describe the pre- and the postamble of the test case, responses of the SUT which leadto a FAIL or an INCONCLUSIVE, and the parameter values of the signals which areexchanged. In order to generate complete test cases the missing information has to beadded. Therefore, an additional FDT description of the test architecture is necessary.6From a theoretical point of view an MSC can be interpreted as a liveness property of the FDT description.It must be observable within a system run which leads from an initial state back to an initial state of theFDT description.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 72.4. The observables of a test caseA test case consists of a set of observables. According to the test verdicts we distinguishbetween observables which lead to a PASS, observables which lead to an INCONCLUSIVEand observables which lead to a FAIL.Possible pass observables. For generating a test case an observable has to be foundwhich drives the SUT from an initial state back to an initial state, whereby the signalexchange de�ned within the MSC has to be performed without interrupts. We call anobservable which ful�ls these criteria a possible pass observable7.The observables which drive the SUT from an initial state to a state from which theMSC is applicable can be interpreted as the preamble of the test case and the observableswhich drive the SUT back into an initial state after the MSC has been applied can beinterpreted as the postamble.We explain this by means of our test case example. The connection establishment ofthe Inres protocol starts in an initial state. Therefore, no preamble has to be added andour test case starts with the observable de�ned by the MSC in Figure 4. The MSC endsin a state where the connection is established and data can be transferred. A possiblepostamble is a normal disconnection which starts with the sending of MDATreq(DR) bythe LT and ends with the reception of a DISind by the UT. The MSC in Figure 7 showsthe MSC in Figure 4 enhanced by the disconnection. The TTCN description in Figure 5describes the observable which is de�ned by the MSC in Figure 7 within the lines Nr. 1 toNr. 8. These lines also describe the possible pass observable of this example. The sketchedpostamble is speci�ed within the lines Nr. 7 and Nr. 8.Inconclusive observables. If a possible pass observable is found, observables whichlead to an INCONCLUSIVE have to be generated. We call them inconclusive observables.An inconclusive observable has the same pre�x as a possible pass observable but its lastevent is a response of the SUT which leads neither to a PASS nor to a FAIL. In our exampleinterrupts of the connection establishment by DISind lead to an INCONCLUSIVE.WithinFigure 5 these cases are shown in the lines Nr. 9 to Nr. 15.Fail observables. Fail observables are added to the TTCN test case description bymeans of the OTHERWISE event and a default behaviour description (Figure 6).Possible and unique pass observables. The possible pass observable of the TTCNtest case in Figure 5 is shown in the lines Nr. 1 to Nr. 8. But this observable does notensure that the MSC in Figure 7 has been performed during a test run. After the receptionof DISind a test verdict is assigned and the test case is �nished. But according to theSDL description of the Inres protocol a fourth MDATind(CR) may be on the way. In thiscase the MSC in Figure 8 would be performed.Such problems arise because the SUT is treated as a black box and therefore, LT and UTonly have an incomplete system view. For the tester the SUT behaves in an indeterministicway. In our example the indeterminism is caused by the asynchronous communication7In general there can exist more than one possible pass observable for a test case.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 8
Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 7: MSC of Figure 4 with a possible postamble
MDATreq(CC)MDATind(CC)CONconf

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CR) MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 8: MSC describing a not expected system runmechanism of SDL. Without seeing all input and output events of Initiator and Medium,we cannot make any assumption about an ordering, or a time relation between the DISindand a possible fourth MDATind(CR). However, if a fourth MDATind(CR) arrives, thePASS in Figure 5 has to be overwritten by an INCONCLUSIVE.The LT does not know how long it should wait for a fourth MDATind(CR) after thereception of the DISind by the UT and before the assignment of a PASS. Therefore, atest run according to Figure 7 cannot be distinguished from test runs according to Figure8 in all cases. A new postamble has to be found.A correct postamble of our example is shown within Figure 9. Instead of MDATreq(CR),a data package DATreq8 is transferred, but the reception by the LT is not acknowledged.The Initiator retransmits the data package DT three times, indicates afterwards the dis-connection and goes back into a disconnected state. The FIFO property of queues andchannels in SDL ensures that after the reception of the �rst MDATind(DT) no fourth8Data is transported as a parameter of DATreq. Since this parameter does not in
uence the behaviourof the Inres protocol it is omitted.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 9
MDATreq(CC)MDATind(CC)CONconf

MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

DISind

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

DATreq MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

UT LT

Figure 9: MSC of Figure 4 with a correct postambleMDATind(CR) can be received. Thus, the reception of the DISind allows a unique as-signment of a PASS.We call a possible pass observable which uniquely ensures that the given MSC wasperformed a unique pass observable. The complete and correct TTCN test case whichensures that the test purpose given in Figure 4 was performed is shown in Figure 10. Theunique pass observable of this example is described in the lines Nr. 1 to Nr. 12.3. On the implementation of the presented methodWithin the previous chapter our approach is presented on an intuitive level by means ofan example. As a summary one can say that the approach is based on the calculation offour sets of observables: possible pass, unique pass, inconclusive and fail observables. Inthis chapter we explain how the observables can be calculated, how this is re
ected in atool architecture and how our method can be extended for using more than one MSC astest purpose.3.1. The computation of the observables of a test caseThe observables of a test case are generated in four steps. In a �rst step the possible passobservables of the test case are computed. In a second step we check for each possible passobservable whether it is a unique pass observable or not. Since we only need one uniquepass observable to ensure the MSC test purpose, we select one of the shortest. For thechosen unique pass observable the corresponding inconclusive observables are generatedwithin a third and the fail observables are de�ned within a fourth step.The computation of possible pass observables. The computation of possible passobservables is a typical search problem. We have to �nd SDL traces which include the



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 10

Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Inres_Protocol/Initiator_Test/Connection_Establishment
Connection Establishment

6
7
8
9
10
11
12
13
14
15
16
17
18

Test_Case_3

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

PASS

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(CR) INCONC
LT?MDATind(CR) INCONC

INCONC
INCONC
INCONC
INCONC

UT!CONreq

UT?CONconf
UT!DATreq

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Unexpected Events

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

VerdictNr. Constraint Ref.

Figure 10: TTCN test case description which ensures the test purpose of Figure 4events speci�ed by the MSC and which lead the SDL system from its initial state backto its initial state. From such traces the possible pass observables are extracted. Unfor-tunately, we cannot ensure that we �nd possible pass observables, because this problem isequivalent to the reachability problem of turing machines [2] which is not decidable.We search the required observables by simulating the SDL description and the MSCin parallel. There exist several search methods like depth and breadth search. Breadthsearch can not applied because it is impossible to store all possible states of the SDLsystem9. Depth search also is not usable since we can not guarantee termination. As aconsequence we use a k-bounded depth search which evaluates all possible traces of lengthk. If no trace with required properties is found, the search can be repeated with a higherbound or stopped without results.The computation of unique pass observables. For each possible pass observable wehave to check if it is a unique pass observable. In general there can exist none or a wholeset of unique pass observables for an MSC. For proving a test purpose de�ned by an MSCwe only need one. We choose one of the shortest unique pass observables to be the uniquepass observable of the generated test case.9A state of an SDL system includes the control states of the processes, the contents of the queues andthe values of the variables.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 11The computation of inconclusive observables. For the chosen unique pass observ-able the corresponding inconclusive observables have to be generated. Therefore, the SDLdescription is simulated according to the pass observable. The inconclusive observablesare ending in a response of the SUT from which one can conclude that the required uniquepass observable is not performed.Fail observables. Fail observables are added by means of the TTCN constructs OTH-ERWISE and default behaviour. Therefore, they need not to be calculated.3.2. On the optimization of the test case generationThe problem of generating test cases from SDL descriptions and MSCs is a search problem.The expense of the search heavily depends on the SDL description which represents thetest architecture. The test architecture is derived from a system speci�cation by omittingnot tested parts and by adding the SDL processes for LT and UT. An open problem ofthe project is the optimal modelling of the test architecture, especially of LT and UT,since this may decrease the search expense. Presently, our test processes behave like thereasonable environment in [11]. A further optimization may include more restrictions onthe sequences of signals which can be sent and received, and restrictions on the values ofsignal parameter.3.3. The test case generation toolFigure 11 presents the architecture of a tool which is developed at the University ofBerne and which implements the presented approach. The tool is structured in the threeparts SDL simulator, MSC simulator and test case generator. Both simulators consistof a transformator and an interpreter. The transformators read descriptions in phraserepresentation of SDL (SDL/PR) and MSC (MSC/PR) and transform them into internalrepresentations. Afterwards the internal representations are simulated by the interpreters.The test case generator is structured in four modules:� Calculation of possible Pass observables.� Calculation of unique Pass observables.� Calculation of Inconclusive observables.� Generation of the corresponding TTCN/MP10 code11.The tool is implemented on Sun workstations. Its inputs are MSC/PR and SDL/PRdescriptions [5, 4], and its output is a TTCN/MP description [16]. Front- and backendsof the tool are commercial SDL, MSC and TTCN editors.3.4. Using more than one MSC as test purposeIn general, it is possible to use more than one MSC as test purpose. Therefore, the relationbetween the MSCs has to be speci�ed. One can think about test purposes speci�ed by aset of MSCs which are combined by arbitrary AND and OR relations. An AND relationof two MSCs means that both MSCs have to be performed to reach the speci�ed test10TTCN/MP denotes the machine processable form of TTCN.11TTCN/MP has a standardized ASCII syntax. During test case generation it is not very e�cient touse ASCII �les as internal computer representation. As a consequence we have to translate our internalrepresentation into TTCN/MP.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 12

Generation of TTCN/MP code

TTCN - Backend

Test case generator

MSC Interpreter SDL Interpreter 

SDL Simulator MSC Simulator

Tool

MSC - FrontendSDL - Frontend

SDL Transformator MSC Transformator

Calculation of possible pass observables

Calculation of unique pass observables

Calculation of inconclusive observablesFigure 11: The tool architecturepurpose. An OR relation of two MSCs means that one of the two has to be performed toreach the test purpose. AND and OR can be realized by generating the observables forthe involved MSCs and by implementing the operations on the observables.4. SummaryA method for the generation of test cases based on SDL descriptions and MSCs is pre-sented. The approach assumes that the purpose of a test case is given by one or moreMSCs. Furthermore, the problem of assigning unique test verdicts is discussed and a so-lution by de�ning unique pass observables is presented. The method is implemented andits applicability for real systems will be proven by a following case study. More detailledinformation can be found in [7, 10, 18, 19].References[1] Bourget-Rouger, A.; Combes, P.: Exhaustive validation and Test Generation in Elvis, inSDL'89: The language at work - O. Faergemand and M.M. Marques (editors), North-Holland, 1989.



SDL'93 - Using Objects (editors: O. F�rgemand, A. Sarma), North-Holland, Oct. 1993 13[2] Brand, D.; Za�ropulo, P.: On Communicating Finite State Machines, in Journal of theAssociation for Computing Machinery, April 1983.[3] Brinksma, E.: On the Existence of Canonical Tests, Technical Report INF-87-5, Universityof Twente, Netherlands, 1987.[4] CCITT Recommendation Z.100: Speci�cation and Description Language (SDL), Geneva,1992.[5] CCITT Recommendation Z.120: Message Sequence Chart (MSC), Geneva, 1992.[6] Chow, T.S.: Testing Software Design Modeled by Finite State Machines, IEEE-SE,4(3):178{187, 1978.[7] Grabowski, J.; Hogrefe, D.; Nahm, R.: Conformance Testing - ein Werkzeug zur Gener-ierung von Testf�allen, Erg�anzung zum Zwischenbericht des F & E Projektes Kontraktnum-mer 233, �nanziert durch die Schweizer PTT, 1992.[8] Grabowski, J.; Rudolph, E.; Message Sequence Chart (MSC) - A Survey of the new CCITTLanguage for the Description of Traces within Communicating Systems, in Proceedings ofthe 2nd GI/ITG Workshop on Formal Description Techniques for Distributed Systems inMagdeburg (Germany), 1993.[9] Grabowski, J.; Graubmann, P.; Rudolph, E.: The Standardization of Message SequenceCharts, Proceedings of the IEEE Software Engineering Standards Symposium 1993.[10] Grabowski, J.; Hogrefe, D.; Ladkin, P.; Leue, S.; Nahm, R.: Conformance Testing - A Toolfor the Generation of Test Cases, Interim Report of the F & E project contract no. 233,funded by Swiss PTT, Berne 1992.[11] Hogrefe, D.: Automatic Generation of Test Cases from SDL-Speci�cations, in SDL-Newsletters No. 12, 1988.[12] Hogrefe, D.: Conformance Testing of Communication Protocols in the Framework of FormalDescription Techniques, Technical Report IAM-91-007, University of Berne, 1991.[13] Hogrefe, D.: OSI Formal Speci�cation Case Study: The INRES Protocol and Service,Technical Report IAM-91-012, University of Berne, 1991.[14] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Compu-tation, Addison Wesley, 1979.[15] ISO/IEC JTC 1/SC 21: Information Technology - Open Systems Interconnection - Con-formance Testing Methodology and Framework - Part 1-5, IS 9646, 1991.[16] ISO/IEC JTC 1/SC 21: Information technology - Open Systems Interconnection - Con-formance Testing Methodology and Framework - Part 3: The Tree and Tabular CombinedNotation, IS 9646-3, 1991.[17] Kroon, J.; Wiles, A.: A Tutorial on TTCN, in Protocol, Speci�cation, Testing and Veri�-cation, volume 11, North-Holland, 1991.[18] Nahm, R.: Semantics of Communicating Finite State Machines - Based on Graph Repre-sentation and Automata Interpretation, Technical Report, University of Berne, 1993.[19] Nahm, R.: Semantics of Simple SDL, in Proceedings of the 2nd GI/ITG Workshop onFormal Description Techniques for Distributed Systems in Magdeburg (Germany), 1993.[20] Wezeman, C.D.: Protocol Conformance Testing Using Multiple UIO-Sequences, in ProtocolSpeci�cation, Testing and Veri�cation, volume 9, North-Holland, 1990.


