Test Case Generation with Test Purpose Specification by MSCs*

Jens Grabowski, Dieter Hogrefe, and Robert Nahm
Institut fur Informatik, Universitat Bern, Langgassstrasse 51, CH-3012 Bern

This paper presents a new test case generation method based on formal system specifica-
tions in SDL. The test purpose of a specific test case is specified formally by one or many
Message Sequence Charts (MSCs). Based on the test purpose and the system specifica-
tion a complete test case can be generated automatically in the TTCN format, including
preamble, postamble and test body with all test verdicts.

1. Introduction

Formal description techniques (FDTs, i.e. LOTOS, Estelle and SDL) are frequently used
within industry and standardization bodies to describe the functional properties of com-
munication systems (e.g. OSI or ISDN). FDT descriptions can be simulated. Therefore,
the possible interactions between a system and its environment can be generated auto-
matically. Although test cases describe such interactions, the automatic generation of
test cases from FDT descriptions is still an open problem. Furthermore, there exists a
gap between research and practical testing.

Approaches coming from research like UIO [20] or the W-method [6] can handle systems
with a small state space. They test every state transition exactly one time. From a
successful test a behavioural equivalence between specification and implementation can
be concluded. The problems of these methods are state explosion and infinite state spaces.

State explosions occur for example when state space exponentially grows with the num-
ber of processes, or with the size of buffers. Even small examples may cause problems for
UIO or the W-method. None of the mentioned methods can be applied to systems with
an infinite state space. Unfortunately, FDTs force the specification of systems with an
infinite state space. Infinite signal queues of SDL processes or unlimited data descriptions
are two examples for this. However, there cannot exist test methods which guarantee be-
havioural equivalence for systems with an infinite state space. Even finite state machines
which communicate by means of unbounded FIFO buffers (i.e. the base model of SDL) are
as powerful as Turing Machines [2] for which the behavioural equivalence is undecidable
[14]. For testing, the situation is more complicated since there is in general no knowledge
about the whole implementation. Only the interactions between an implementation and
its environment are observed for a certain time.

Real systems are in general very complex. Therefore, approaches like UIO or the W-
method cannot be applied. The present procedure of writing test cases is an intuitive and
creative process which only is restricted by informal regulations. The intuition behind a

*This work was performed within the F & E project, no. 233, 'Conformance Testing - A Tool for the
Generation of Test Cases’, funded by Swiss PTT.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 2

test case is reflected by the so-called test purpose. A test purpose is an informal statement.
It denotes an important part of a specification which should be tested.

Our approach supports practical testing. It combines test purposes defined by Message
Sequence Charts (MSCs) [5, 8] and a corresponding SDL description [4] in order to gen-
erate test cases. MSCs (cf. Figure 2) are widespread means for the graphical visualisation
of selected system runs of communication systems [9]. A test purpose can be defined by
an MSC in form of the required signal exchange?. An MSC does not define a complete
test case. It does not describe the signal exchange which drives the implementation into
a state from which the MSC can be performed (preamble). It does not define the stimuli
which are necessary to drive the implementation back into an initial state after the MSC
is observed (postamble). It does not define what to do if a signal is observed which is
not defined in the MSC, and it does not describe the values of message parameters. The
missing information can be provided by an additional FDT description. We choose SDL
as FDT because SDL is more used within industry and standardization bodies than any

other standardized FDT [12].

2. The ideas of the method

In the following the ideas of our approach are illustrated by means of an example which
is taken from the behaviour of the Inres protocol [13].

2.1. Structure and behaviour of the Inres protocol

In the sequel the Inres protocol is briefly introduced. The architecture of the Inres pro-
tocol is shown in Figure 1. The Inres protocol renders a connection-oriented service for
data transmission. It uses a connectionless service. Data are transported from an Initiator
entity to a Responder entity. The used service is called Medium. Messages exchanged be-
tween Initiator, Initiator User, Responder, Responder User and Medium are called service
primitives (SPs) and the information units exchanged between Initiator and Responder
are called protocol data units (PDUs).

The Inres protocol works in three phases: connection establishment, data transfer and
disconnection (cf. Figure 2). For a connection establishment the Initiator gets a connec-
tion request CONreq from its user, then sends a CR to the Responder and waits for a
connection confirmation CC in return. After receiving CC the Initiator gives a CONconf
to its user and the connection is established. If a CC does not arrive within some time
limit, the Initiator will retransmit CR for three times. Afterwards, the Initiator indicates
the failed connection establishment by a DISind. When the Responder receives a CR from
the Initiator it gives a connection indication CONind to its user and waits for a response
CONresp in return. Upon arrival of CONresp, the Responder sends a CC to the Initiator
and waits for a first data package DT.

After connection establishment data can be transferred. The Initiator User gives a
data request DATreq to the Initiator, which then sends a DT to the Responder and then
waits for an acknowledgement AK. If the AK does not arrive within some time limit the

2It should be noted that some test purposes (e.g. time constraints, or reliability requirements) can not be
expressed by MSCs. But the use of MSCs for describing the class of test purposes which can be expressed
seems to be common industrial practice. Therefore, we concentrate on MSCs.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 3

Initiator Responder
User User
Initiator Responder
Medium

Figure 1: Architecture of the Inres protocol

Initiator_User Initiator Medium Responder Responder_User
—— C 1 C 1 C 1 C 1
CONreq MDATreq(CR) MDATInd(CR) CONind
Connection Establishment
CONconf MDATIind(CC) MDATreq(CC) CONresp
DATreq MDATreq(DT) MDATIind(DT) DATind
Data Transfer
MDATIind(AK) MDATreq(AK)
DISind MDATIind(DR) MDATreq(DR) DISreq Disconnection

Figure 2: Complete system run of the Inres protocol

Initiator retransmits the DT for three times. Afterwards, the Initiator assumes that the
connection is distroyed and indicates this by giving a DISind to its user. If the AK arrives
in time, the next data package, if present, is sent. When the Responder gets a DT form
the Initiator, it acknowledges the DT with an AK and gives a data indication DATind to
its user. Afterwards the Responder waits for the next DT.

A disconnection can be initiated by a DISreq from the Responder User. Upon arrival of
a DISreq the Responder sends a DR to the Initiator which then indicates the disconnection
by an DISind to its user.

Initiator and Responder have to use the Medium service for their communication. The
Medium service can be accessed by a data request MDATreq for transmission and by a
data indication MDATind for reception. The PDUs CR, CC, AK, DT and DR can be
considered as being parameters of MDATreq and MDATind. The MSC in Figure 2 shows a

complete system run including connection establishment, data transfer and disconnection.

2.2. Testing the retransmission of the Initiator

A suitable test architecture for testing the Initiator entity of the Inres protocol might be
the distributed test method [15] as sketched in Figure 3. The architecture of the Inres
protocol (cf. Figure 1) can be adjusted to the distributed test method. The Responder is

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 4

replaced by the lower tester (LT) and the upper tester (UT)? plays the role of the Initiator
User. It is assumed that the test architecture is an SDL description which can be derived
from the system specification. LT and UT are modeled as SDL processes which can send
and receive any valid signal at any time®*. A similar approach is used in [1]. The system
under test (SUT) consists of an Initiator implementation which is the implementation
under test (IUT) and a Medium implementation which is assumed to work correct.

We want to concentrate on testing a part of the retransmission property. In particular,
we want to test whether it is possible to perform a correctly connection establishment after
the third retransmission of the CR. The MSC in Figure 4 shows a scenario of which one
may think about in the context of testing the retransmission property. The UT initiates
a connection by CONreq. The LT waits for three CRs before it answers with CC which
will then in return result in CONconf at the UT. Since the MSC in Figure 4 does not
claim to define the entire scenario, it cannot be assumed that MSCs provides complete
test information.

LT

Medium

Figure 3: Distributed test method

2.3. The meaning and the representation of test cases

Our approach is based on the assumption, that an MSC defines a specific part of a test
case, the so-called test purpose. For explaining this, the meaning of the terms trace,
observable and test case have to be introduced, and the representation of test cases has
to be described.

Traces and observables. A trace describes the ordering of events which are performed
during a system run. A trace of an SDL description may include the events tasks, inputs,
outputs, decisions, etc. of its processes. An MSC is a possible representation of an SDL
trace. For testing, only inputs and outputs of LT and UT are interesting®. Therefore, we
call a trace which only includes inputs and outputs of LT and UT an observable.

3UT and LT communicate via so-called points of control and observation (PCOs) with the IUT. For
simplification the PCOs are not mentioned within the test case descriptions (e.g. Figure 4 and 5), but it
1s assumed that each tester serves its own PCO.

4For systems with a synchronous communication mechanism exists a simpler approach to define the
behaviour of the tester: the inputs and outputs of the system which can be observed by its environment
are inverted. Inputs become outputs and vice versa. Brinksma [3] uses this technique to define the
canonical tester.

SSUT, LT and UT in general exchange SPs.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 5
uT Initiator Medium LT
CONreq MDATreg(CR) | MDATInd(CR)
MDATreg(CR) | MDATInd(CR)
MDATreg(CR) | MDATInd(CR)
CONCconf MDATInd(CC) MDATreq(CC)

Figure 4: Connection establishment after the third retransmission of CR
An informal definition of test cases. A test case is defined in order to prove a
specific test purpose. A test purpose might be a set of events which have to be performed,
or a set of states which have to be reached by the TUT. A test case describes a set of
observables. Fach observable leads to a test verdict.

The test verdicts are PASS, INCONCLUSIVE and FAIL. PASS is given when the test
purpose is reached, FAIL is assigned when the SUT behaves in an incorrect way and
INCONCLUSIVE is given if neither FAIL nor PASS can be assigned.

A test case can be structured into three parts which are called preamble, testbody and
postamble. The testbody describes observables which indicate that the TUT behaves ac-
cording to the test purpose. The preamble drives the IUT from an initial state into a state
from which the testbody can be performed. The postamble checks whether the testbody
ends up in the correct state after it has been performed and drives the IUT back into an
initial state from which the next test case can be applied.

The representation of test cases. Test cases for conformance tests are usually rep-
resented by the Tree and Tabular Combined Notation (TTCN) which is standardized by
the ISO/IEC [16]. A TTCN test case for an Initiator implementation of the Inres proto-
col may look like the table in Figure 5. TTCN describes observables by means of a tree
notation (cf. Behaviour Description in Figure 5). The tree structure is determined by the
ordering and the indentation of the events. In general, the same indentation denotes a
branching (e.g. lines Nr. 2 and Nr. 15 in Figure 5) and the next larger indentation denotes
a succeeding event (e.g. lines Nr. 1 and Nr. 2 in Figure 5).

Events are characterized by the involved instance (i.e. LT or UT), by its kind (i.e. ”!”
denotes an output, ”?” describes an input) and by the SP which has to be send or received.
An example may clarify the notation. The statement UT!/CONreq describes the sending
of CONreq to the SUT by the UT. TTCN allows to specify events with arbitrary SPs by
using the OTHERWISE statement (e.g. UTTOTHERWISE in Figure 6).

Test verdicts are defined within a verdict column of the TTCN table. The verdict
column of Figure 5 only includes PASS and INCONCLUSIVE verdicts. In this example
FAIL behaviour is specified by a default behaviour description which is shown in Figure
6. Such defaults have to be referenced in the test case header (cf. Default in Figure 5).
TTCN offers much more facilities like Constraints, Labels, or Timer which are not relevant
for the understanding of this paper. A tutorial on TTCN can be found in [17].

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993

Test Case Dynamic Behaviour

Test Case Name: Test_Case 1

Group : Inres_Protocol/Initiator_Test/Connection_Establishment
Purpose : Connection Establishment after the third retransmission of a Connection Request
Default : Unexpected_Events
Comments :
Nr. | Label Behaviour Desription Constraint Ref. | Verdict Comments
1 UT!CONreq

2 LT?MDATIind(CR)

3 LT?MDATInd(CR)

4 LT?VIDATInd(CR)

5 LT!MDATreg(CC)

6 UT?CONconf

7 LT!MDATreg(DR)

8 UT?DISind (PASS)

9 LT2MDATreqg(CR) INCONC

10 LT?MDATIind(CR) INCONC

11 LT?MDATInd(CR) INCONC

12 UT?DISind INCONC

13 UT?DISind INCONC

14 UT?DISind INCONC

15 UT?DISind INCONC
Detailed Comments:

Figure 5: TTCN test case for the Inres protocol
Default Dynamic Behaviour

Test Step Name: Unexpected Events

Group : Inres_Protocol/Initiator_Test/Connection_Establishment

Objective: Handle unexpected Signals

Comments :

Nr. | Label Behaviour Desription Constraint Ref. | Verdict Comments

1 UT?20THERWISE FAIL

2 LT?0THERWISE FAIL

Detailed Comments :

Figure 6: Default behaviour for the TTCN test case in Figure 5

The role of MSCs and FDT descriptions for test case generation.
that an MSC defines the test purpose of a test case. This means that an MSC defines a
signal exchange which has to be performed by the SUT to get a PASS®. An MSC does
not describe the pre- and the postamble of the test case, responses of the SUT which lead
to a FAIL or an INCONCLUSIVE, and the parameter values of the signals which are
exchanged. In order to generate complete test cases the missing information has to be
added. Therefore, an additional FDT description of the test architecture is necessary.

It is assumed

5From a theoretical point of view an MSC can be interpreted as a liveness property of the FDT description.
It must be observable within a system run which leads from an initial state back to an initial state of the

FDT description.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 7

2.4. The observables of a test case

A test case consists of a set of observables. According to the test verdicts we distinguish
between observables which lead to a PASS, observables which lead to an INCONCLUSIVE
and observables which lead to a FAIL.

Possible pass observables. For generating a test case an observable has to be found
which drives the SUT from an initial state back to an initial state, whereby the signal
exchange defined within the MSC has to be performed without interrupts. We call an
observable which fulfils these criteria a possible pass observable”.

The observables which drive the SUT from an initial state to a state from which the
MSC is applicable can be interpreted as the preamble of the test case and the observables
which drive the SUT back into an initial state after the MSC has been applied can be
interpreted as the postamble.

We explain this by means of our test case example. The connection establishment of
the Inres protocol starts in an initial state. Therefore, no preamble has to be added and
our test case starts with the observable defined by the MSC in Figure 4. The MSC ends
in a state where the connection is established and data can be transferred. A possible
postamble is a normal disconnection which starts with the sending of MDATreq(DR) by
the LT and ends with the reception of a DISind by the UT. The MSC in Figure 7 shows
the MSC in Figure 4 enhanced by the disconnection. The TTCN description in Figure 5
describes the observable which is defined by the MSC in Figure 7 within the lines Nr. 1 to
Nr. 8. These lines also describe the possible pass observable of this example. The sketched
postamble is specified within the lines Nr. 7 and Nr. 8.

Inconclusive observables. If a possible pass observable is found, observables which
lead to an INCONCLUSIVE have to be generated. We call them inconclusive observables.
An inconclusive observable has the same prefix as a possible pass observable but its last
event is a response of the SUT which leads neither to a PASS nor to a FAIL. In our example
interrupts of the connection establishment by DISind lead to an INCONCLUSIVE. Within

Figure 5 these cases are shown in the lines Nr. 9 to Nr. 15.

Fail observables. Fuil observables are added to the TTCN test case description by
means of the OTHERWISE event and a default behaviour description (Figure 6).

Possible and unique pass observables. The possible pass observable of the TTCN
test case in Figure 5 is shown in the lines Nr. 1 to Nr. 8. But this observable does not
ensure that the MSC in Figure 7 has been performed during a test run. After the reception
of DISind a test verdict is assigned and the test case is finished. But according to the
SDL description of the Inres protocol a fourth MDATind(CR) may be on the way. In this
case the MSC in Figure 8 would be performed.

Such problems arise because the SUT is treated as a black box and therefore, L'T and UT
only have an incomplete system view. For the tester the SUT behaves in an indeterministic
way. In our example the indeterminism is caused by the asynchronous communication

“In general there can exist more than one possible pass observable for a test case.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993

uT Initiator Medium LT
—— —— ——

CONreq MDATreq(CR) MDATIind(CR)
MDATreq(CR) MDATIind(CR)

MDATreq(CR) MDATIind(CR)

CONconf MDATIind(CC) MDATreq(CC)

DISind MDATIind(DR) MDATreq(DR)

I I I I

Figure 7: MSC of Figure 4 with a possible postamble

uT Initiator Medium LT
——— ——— ————

CONreq MDATreq(CR) MDATINd(CR)
MDATreq(CR) MDATINd(CR)

MDATreq(CR) MDATInd(CR)

MDATreq(CR) MDATInd(CR)

CONconf MDATIind(CC) MDATeq(CC)

DISind MDATIind(DR) MDATIeq(DR)

— — — —

Figure 8: MSC describing a not expected system run

mechanism of SDL. Without seeing all input and output events of Initiator and Medium,
we cannot make any assumption about an ordering, or a time relation between the DISind
and a possible fourth MDATind(CR). However, if a fourth MDATind(CR) arrives, the
PASS in Figure 5 has to be overwritten by an INCONCLUSIVE.

The LT does not know how long it should wait for a fourth MDATind(CR) after the
reception of the DISind by the UT and before the assignment of a PASS. Therefore, a
test run according to Figure 7 cannot be distinguished from test runs according to Figure
8 in all cases. A new postamble has to be found.

A correct postamble of our example is shown within Figure 9. Instead of MDATreq(CR),
a data package DATreq® is transferred, but the reception by the LT is not acknowledged.
The Initiator retransmits the data package DT three times, indicates afterwards the dis-
connection and goes back into a disconnected state. The FIFO property of queues and
channels in SDL ensures that after the reception of the first MDATind(DT) no fourth

8Data is transported as a parameter of DATreq. Since this parameter does not influence the behaviour
of the Inres protocol it 1s omitted.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 9
uT Initiator Medium LT
— — —

CONreg MDATreq(CR) MDATIind(CR)
MDATreg(CR) | MDATInd(CR)
MDATreg(CR) | MDATInd(CR)
CONconf MDATInd(CC) MDATreq(CC)
DATreq MDATreq(DT) | MDATInd(DT)
MDATreq(DT) | MDATind(DT)
MDATreq(DT) | MDATind(DT)
MDATreq(DT) | MDATInd(DT)
DISind
— — — —

Figure 9: MSC of Figure 4 with a correct postamble

MDATind(CR) can be received. Thus, the reception of the DISind allows a unique as-
signment of a PASS.

We call a possible pass observable which uniquely ensures that the given MSC was
performed a unique pass observable. The complete and correct TTCN test case which
ensures that the test purpose given in Figure 4 was performed is shown in Figure 10. The
unique pass observable of this example is described in the lines Nr. 1 to Nr. 12.

3. On the implementation of the presented method

Within the previous chapter our approach is presented on an intuitive level by means of
an example. As a summary one can say that the approach is based on the calculation of
four sets of observables: possible pass, unique pass, inconclusive and fail observables. In
this chapter we explain how the observables can be calculated, how this is reflected in a
tool architecture and how our method can be extended for using more than one MSC as
test purpose.

3.1. The computation of the observables of a test case

The observables of a test case are generated in four steps. In a first step the possible pass
observables of the test case are computed. In a second step we check for each possible pass
observable whether it is a unique pass observable or not. Since we only need one unique
pass observable to ensure the MSC test purpose, we select one of the shortest. For the
chosen unique pass observable the corresponding inconclusive observables are generated
within a third and the fail observables are defined within a fourth step.

The computation of possible pass observables. The computation of possible pass
observables is a typical search problem. We have to find SDL traces which include the

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 10

Test Case Dynamic Behaviour

Test Case Name: Test Case 3

Group : Inres_Protocol/Initiator_Test/Connection_Establishment
Purpose : Connection Establishment
Default : Unexpected Events
Comments :
Nr. | Label Behaviour Desription Constraint Ref. | Verdict Comments
1 UT!CONreq
2 LT?MDATIind(CR)
3 LT?MDATIind(CR)
4 LT?MDATIind(CR)
5 LT!MDATreq(CC)
6 UT?CONconf
7 UTIDATreq
8 LT?MDATind(DT)

9 LT?MDATind(DT)

10 LT?MDATind(DT)

11 LT?MDATind(DT)

12 UT?DISind PASS
13 LT?MDATind(CR) INCONC
14 LT?MDATind(CR) INCONC
15 UT?DISind INCONC
16 UT?DISind INCONC
17 UT?DISind INCONC
18 UT?DISind INCONC

Detailed Comments :

Figure 10: TTCN test case description which ensures the test purpose of Figure 4

events specified by the MSC and which lead the SDL system from its initial state back
to its initial state. From such traces the possible pass observables are extracted. Unfor-
tunately, we cannot ensure that we find possible pass observables, because this problem is
equivalent to the reachability problem of turing machines [2] which is not decidable.

We search the required observables by simulating the SDL description and the MSC
in parallel. There exist several search methods like depth and breadth search. Breadth
search can not applied because it is impossible to store all possible states of the SDL
system®. Depth search also is not usable since we can not guarantee termination. As a
consequence we use a k-bounded depth search which evaluates all possible traces of length
k. If no trace with required properties is found, the search can be repeated with a higher
bound or stopped without results.

The computation of unique pass observables. For each possible pass observable we
have to check if it is a unique pass observable. In general there can exist none or a whole
set of unique pass observables for an MSC. For proving a test purpose defined by an MSC
we only need one. We choose one of the shortest unique pass observables to be the unique
pass observable of the generated test case.

9A state of an SDL system includes the control states of the processes, the contents of the queues and
the values of the variables.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 11

The computation of inconclusive observables. For the chosen unique pass observ-
able the corresponding inconclusive observables have to be generated. Therefore, the SDL
description is simulated according to the pass observable. The inconclusive observables
are ending in a response of the SUT from which one can conclude that the required unique
pass observable is not performed.

Fail observables. Fuail observables are added by means of the TTCN constructs OTH-
ERWISE and default behaviour. Therefore, they need not to be calculated.

3.2. On the optimization of the test case generation

The problem of generating test cases from SDL descriptions and MSCs is a search problem.
The expense of the search heavily depends on the SDL description which represents the
test architecture. The test architecture is derived from a system specification by omitting
not tested parts and by adding the SDL processes for LT and UT. An open problem of
the project is the optimal modelling of the test architecture, especially of LT and UT,
since this may decrease the search expense. Presently, our test processes behave like the
reasonable environment in [11]. A further optimization may include more restrictions on
the sequences of signals which can be sent and received, and restrictions on the values of
signal parameter.

3.3. The test case generation tool

Figure 11 presents the architecture of a tool which is developed at the University of
Berne and which implements the presented approach. The tool is structured in the three
parts SDL simulator, MSC' simulator and test case generator. Both simulators consist
of a transformator and an interpreter. The transformators read descriptions in phrase
representation of SDL (SDL/PR) and MSC (MSC/PR) and transform them into internal
representations. Afterwards the internal representations are simulated by the interpreters.
The test case generator is structured in four modules:

e Calculation of possible Pass observables.
e Calculation of unique Pass observables.

e Calculation of Inconclusive observables.

e Generation of the corresponding TTCN/MP! code'!.

The tool is implemented on Sun workstations. Its inputs are MSC/PR and SDL/PR
descriptions [5, 4], and its output is a TTCN/MP description [16]. Front- and backends
of the tool are commercial SDL, MSC and TTCN editors.

3.4. Using more than one MSC as test purpose

In general, it is possible to use more than one MSC as test purpose. Therefore, the relation
between the MSCs has to be specified. One can think about test purposes specified by a
set of MSCs which are combined by arbitrary AND and OR relations. An AND relation
of two MSCs means that both MSCs have to be performed to reach the specified test

OTTCN/MP denotes the machine processable form of TTCN.

HUTTCN/MP has a standardized ASCII syntax. During test case generation it is not very efficient to
use ASCII files as internal computer representation. As a consequence we have to translate our internal
representation into TTCN/MP.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 12

DL - Frontend MSC - Frontend
Tool
DL Simulator MSC Simulator
SDL Transformator MSC Transformator
\ \
SDL Interpreter MSC Interpreter

Test case generator

Calculation of possible pass observables
|
Calculation of unique pass observables
|
Calculation of inconclusive observables

\
Generation of TTCN/MP code

TTCN - Backend

Figure 11: The tool architecture

purpose. An OR relation of two MSCs means that one of the two has to be performed to
reach the test purpose. AND and OR can be realized by generating the observables for
the involved MSCs and by implementing the operations on the observables.

4. Summary

A method for the generation of test cases based on SDL descriptions and MSCs is pre-
sented. The approach assumes that the purpose of a test case is given by one or more
MSCs. Furthermore, the problem of assigning unique test verdicts is discussed and a so-
lution by defining unique pass observables is presented. The method is implemented and
its applicability for real systems will be proven by a following case study. More detailled
information can be found in [7, 10, 18, 19].

References

[1] Bourget-Rouger, A.; Combes, P.: Exhaustive validation and Test Generation in Elvis, in
SDL’89: The language at work - O. Faergemand and M.M. Marques (editors), North-
Holland, 1989.

SDL’93 - Using Objects (editors: O. Fergemand, A. Sarma), North-Holland, Oct. 1993 13

[2]

Brand, D.; Zafiropulo, P.: On Communicating Finite State Machines, in Journal of the
Association for Computing Machinery, April 1983.

Brinksma, E.: On the Existence of Canonical Tests, Technical Report INF-87-5, University
of Twente, Netherlands, 1987.

CCITT Recommendation Z.100: Specification and Description Language (SDL), Geneva,
1992.

CCITT Recommendation 7Z.120: Message Sequence Chart (MSC), Geneva, 1992.
Chow, T.S.: Testing Software Design Modeled by Finite State Machines, TEEE-SE,
4(3):178-187, 1978.

Grabowski, J.; Hogrefe, D.; Nahm, R.: Conformance Testing - ein Werkzeug zur Gener-
ierung von Testféllen, Ergdnzung zum Zwischenbericht des I & E Projektes Kontraktnum-
mer 233, finanziert durch die Schweizer PTT, 1992.

Grabowski, J.; Rudolph, E.; Message Sequence Chart (MSC) - A Survey of the new CCITT

Language for the Description of Traces within Communicating Systems, in Proceedings of
the 2nd GI/ITG Workshop on Formal Description Techniques for Distributed Systems in
Magdeburg (Germany), 1993.

Grabowski, J.; Graubmann, P.; Rudolph, E.: The Standardization of Message Sequence
Charts, Proceedings of the IEEE Software Engineering Standards Symposium 1993.

Grabowski, J.; Hogrefe, D.; Ladkin, P.; Leue, S.; Nahm, R.: Conformance Testing - A Tool
for the Generation of Test Cases, Interim Report of the F & E project contract no. 233,
funded by Swiss PTT, Berne 1992.

Hogrefe, D.: Automatic Generation of Test Cases from SDL-Specifications, in SDL-
Newsletters No. 12, 1988.

Hogrefe, D.: Conformance Testing of Communication Protocols in the Framework of Formal
Description Techniques, Technical Report TAM-91-007, University of Berne, 1991.

Hogrefe, D.: OSI Formal Specification Case Study: The INRES Protocol and Service,
Technical Report TAM-91-012, University of Berne, 1991.

Hopecroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Compu-
tation, Addison Wesley, 1979.

ISO/TIEC JTC 1/SC 21: Information Technology - Open Systems Interconnection - Con-
formance Testing Methodology and Framework - Part 1-5, IS 9646, 1991.

ISO/IEC JTC 1/SC 21: Information technology - Open Systems Interconnection - Con-
formance Testing Methodology and Framework - Part 3: The Tree and Tabular Combined
Notation, IS 9646-3, 1991.

Kroon, J.; Wiles, A.: A Tutorial on TTCN, in Protocol, Specification, Testing and Verifi-
cation, volume 11, North-Holland, 1991.

Nahm, R.: Semantics of Communicating Finite State Machines - Based on Graph Repre-
sentation and Automata Interpretation, Technical Report, University of Berne, 1993.

Nahm, R.: Semantics of Simple SDL, in Proceedings of the 2nd GI/ITG Workshop on
Formal Description Techniques for Distributed Systems in Magdeburg (Germany), 1993.

Wezeman, C.D.: Protocol Conformance Testing Using Multiple UIO-Sequences, in Protocol
Specification, Testing and Verification, volume 9, North-Holland, 1990.

