Test Case Specification Based on MSCs and ASN.1

Jens Grabowski®, Dieter Hogrefe?, Iwan Nussbaumer’, and Andreas Spichiger®
“University of Berne, Institut for Informatics, Neubriickstr. 10, 3012 Berne, Switzerland

*Siemens-Albis AG, Offentl. Vermittlungssysteme, Steinenschanze 2, 4051 Basel,
Switzerland

Informal test specifications are formalized by means of MSCs. Message definitions and
constraints are included. For this purpose a new concept for the reference and modifica-
tion of constraints is introduced. The formalized test specifications can be implemented
automatically. Our approach is explained by means of a test case for a layer 3 ISDN
protocol (ITU-T Rec. Q.931). The method is implemented in a set of prototype tools.

1. Introduction

For the specification and implementation of test cases for a telecommunication product
certain tasks have to be carried out. The whole procedure is shown in Fig. 1. Within the
figure, the rectangles represent tasks and the ellipses describe data or documents which
serve as input for, or are produced by the different tasks.

All three tasks are based on international standards, e.g. ITU-T recommendations,
and additional customer or country specific requirements, e.g. PTT requirement catalogs.
Since these documents mainly are written in plain text, all tasks have to be carried out
manually by protocol specialists.

The definition of a test case specification (Task 1) is based on the relevant protocol
standards and, in most cases, on additional country and customer specific requirements.?
A test case specification shall be independent from the concrete implementation and the
test equipment. Fig. 3 shows such a test case specification for a layer 3 protocol of an
ISDN? switching system. Later on we will come back to this example.

Task 2, the specification of data types and default constraints, is based on the same
documents as Task 1. The data type description comprises the definition of messages® and
message parameters. For the parameters often default constraints exist. Such a constraint
may define a concrete value or restrict the range of parameter values. Default constraints
also have to be specified formally. The output of Task 2 is a file which is interpretable by
the test equipment.

!Country specific requirements may for example be caused by the currency. A Swiss tax counter may
count in 10 Rappen units and a German one may use 10 Pfennig units.

2ISDN is an abbreviation for ’Integrated Services Digital Networks’.

3According to the OSI basic reference model [7] protocol entities exchange protocol data units (PDUs)
and abstract service primitives (ASPs). Since this paper does not treat the OST model, we use the more
general term message. But the abbreviation ASP will occur in several data descriptions.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 2

TASK 1:

Definition of a Test Case
Test Case Specification
Specification

N

Standards and TASK 3: |
AdQ|t|ona| Implementation of Executable
Requirements a Test Case Test Case

TASK 2:

Speciication o pelault Consrain
Data Types and Descrinti
Default Constraints escription

Figure 1. The specification and implementation of test cases

For the implementation of a test case (Task 3) the test case specification and the
data type and default constraint specification have to be combined to an executable test
case. An executable test case can be considered to be the program which controls the
test equipment when the test case is executed. Often a test case specification is not
sufficient to serve as implementation basis. Concrete parameter values may depend on test
purpose or country specific requirements. Consequently, during test case implementation
the standards and the additional requirements have to be consulted.

All tasks in Fig. 1 are performed manually. This is the main problem of the whole
procedure. Errors may be a result of misunderstanding or misinterpretation of the relevant
standards or test case specifications. The intuition and experience of the persons which
perform the tasks is a decisive factor for the quality of the test suite and the test itself.

One possibility to improve the whole procedure is to increase the quality of the stan-
dards. Here, we have to distinguish between the description of the protocol behaviour
and the specification of the exchanged data units.

For the behaviour description the use of standardized formal description techniques,
i.e. SDL [2], can help to avoid ambiguities and misinterpretations. Unfortunately, the
behaviour descriptions in existing protocol standards are written mainly in plain text
which is enriched by informal drawings.

For the data description the situation is more promising. The data description lan-
guage ASN.1 [16] is frequently used within protocol standards. One reason for the broad
acceptance of this language is that there exist encoding rules which allow an automatic
implementation of the data types and data values [17]. For our application example
(cf. Section 2) which is based on the ITU-T Recommendation .931 [11] the situation is
not so good.).931 includes no formal data descriptions. Therefore the ASN.1 definitions
in this paper are produced by hand.

Due to the mentioned problems, the Tasks 1 and 3 in Fig. 1 are the most critical parts in
the test case specification and implementation procedure. Task 2 can be considered to be
easy if the standard includes a formal data specification, e.g. in the ASN.1 notation. The
data description only has to be adapted to country and customer specific requirements.

Task 1 is based completely on informal documents. It cannot be automated without
improving the quality of the standards. This might be a goal for the future, but our
current work is based mainly on already existing standards.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 3

Test Manager

/7

|Test Device A I ISDN Switching System |Test Device B I

Main Processor

LTG LTG
Layer 3 (Q.931)

Figure 2. An ISDN test environment

[t is our aim is to improve the implementation of a test case (Task 3). This is done by
formalizing the test case specification (Task 1) and by avoiding the direct influence of the
Standards and Additional Requirements on Task 3. The information of the Standards
and Additional requirements go exclusively into Task 1.

The feasibility of this approach was shown in an application to the GSM* standard.
The test case specifications (Task 1) were formulated in a machine processable form
which is very close to the example given in Fig. 3. Tools were developed to interpret
these specifications and translate them into executable code. With few additions this
code could directly be used to control the test devices.

Experience from this GSM application showed that the overall effort on the way to
executable test cases decreased, although specific tools had to be developed for the inter-
pretation of the formalized test case specifications. But it also showed that a more general
approach is needed to perform the same procedure on other applications. In particular the
tools were of a rapid prototype nature, specifically created for the GSM application. The
objective of the cooperation between the University of Bern and Siemens-Albis AG was
to define a generally applicable method for the automation of Task 3. The method will
be presented in this article. The description will focus on the data part of the method.

2. An application example

In this section we present an application example on which we base the description of our
method for the automatic generation of executable test cases.

2.1. A test environment for an ISDN system
One of our applications is the test a layer 3 protocol within a Line Trunk Group (LTG) of
an ISDN switching system (cf. Fig. 2). The protocol is given by the ITU-T Recommenda-

*GSM is an abbreviation for ‘Groupe Speciale Mobile’.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 4

tion Q.931 [11]. The Q.931 protocol is implemented within the LTG and there is no direct
access to this implementation. Each LTG has only standardized interfaces which may be
connected with a telephone. The interface of an LTG to the main processor is proprietary
and not standardized. A possibility to test the .931 protocol is to use the whole ISDN
system as test environment.” Fig. 2 shows such a test system. The test devices access the
LTG only via the standardized interfaces. The devices are controlled by a test manager
which also records the test results.

This test method allows to use the same test cases for testing the LTG alone and for
testing the integration of the LTG in the ISDN switching system. The whole procedure
is also in line with the standardized ‘Conformance Testing Methodology and Framework’
[8]. The use of standardized interfaces is a prerequisite to guarantee the interworking of
telecommunication products from several manufacturers.

2.2. The informal specification of test cases

Fig. 3 presents an example of a test case specification for the test environment shown in
Fig. 2. The test case specification is given by informal diagrams and plain text. The shown
notation is very close to a notation which is used within the Siemens-Albis AG. But, it is
not specific to Siemens-Albis. We know from several other telecommunication companies
that they use very similar test case descriptions. We also like to mention that there exist
more than 1700 test case specification in the same form which only test the Swiss specific
adaptations of the LTG. They are all specified and implemented by hand. The various
possibilities to make errors force the need of methods for the automatic specification and
implementation of test cases.

The test case specification in Fig. 3 consists of two parts. A textual description and a
diagram called general message flow. The textual description includes a test case identi-
fier, a test purpose, a test configuration, preconditions which have to be satisfied before the
test case can be applied to the tested system and a hint about further control of the test.
The general message flow diagram gives some indication about the sequence of messages
which shall be observed when the test case is executed. In the following we refer to this
test case specification by using the test case name KDSAOUX.

There are several reasons for the popularity of test case descriptions as shown in Fig. 3.
One is of course the fact that all relevant information of a test case can be written
on one page. Another reason is the use of informal diagrams (in our example it is called
general message flow) which immediately gives an intuitive understanding of the described
behaviour. As a consequence of these facts we searched for a graphical formalism which
is almost as easy to use as the shown diagram, but which is formal enough to improve
the test case implementation.

3. Describing the test case behavior with MSCs

We identified the Message Sequence Chart (MSC) language to be adequate for our pur-
poses. MSC is a graphical language, it is standardized by ITU-T [18], it has a formal
semantics [19] and there exist tools which support the use of the language [5,14,15].

°In practice the use of a whole ISDN switching system is very expensive. As a consequence for testing
purposes parts of the ISDN system are often only simulated.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway

Pre-conditions:

General message flow:

Test case identifier: EDSAQUX

Test purpose: The test shall ensure that after connection establish-
ment Subscriber A receives at least three Information messages.
The display parameter within the Information message shall have
the format ’Fr. x.x0’ (0 < x <9).

Test configuration: Subscriber-A-SWITCH-Subscriber-B

- The system is in its initial state n(0).
- The tax parameter ABS is not set.
- The tax units are set for time rates of 0,3 Rp/s.

Control: Observation of the tax display

Connect Acknow edge

Subscri ber A | SDN system Subscriber B
Set up
Set up Acknowl edge
| nformati on Set up
Connect Connect

I nformati on

Connect Acknow edge

I nformati on

I nformation

Rel ease Conpl et e

Rel ease Conpl ete

Figure 3. The specification of the test case FDSAOUX

3.1. Test case specification with MSC

The MSC standard Z.120 includes two syntactical forms: MSC/PR as pure textual and
MSC/GR as graphical representation. An MSC® in MSC/GR representation can be trans-
formed automatically into a corresponding MSC/PR representation. We profit by the
graphical form in the test case specification and base our algorithms on the MSC/PR
form. This gives us the flexibility to use several graphical tools for test case specification.

Because of simplicity in this paper we only present examples in the MSC/GR form.

Fig. 4 presents an example of an MSC. The diagram describes the message flow between
the instances A, A_SAP, B.SAP and B. The instances are represented by vertical axes.
The messages are described by horizontal arrows. An arrow origin and the corresponding

SThe term MSC is used for a diagram written in the MSC language and the language itself. Where

necessary, we distinguish between both by using the terms MSC language and MSC diagram.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 6

msc EDSAOUX
A A_SAP B_SAP B

Setup

SetupAcknowledge

Information
SYNCHRONIZATION

Setup

< CallProceeding Connect

ConnectAcknowledge
SYNCHRONIZATION

Connect

ConnectAcknowledge

Information

Information

Information

ReleaseComplete
SYNCHRONIZATION

ReleaseComplete

Figure 4. MSC describing the general message flow in Figure 3

arrow head denote sending and consumption of a message. In addition to the message
name, parameters may be assigned to a message. The send and receive actions along
an instance axis are ordered totally. The order of events on different instance axes is
mediated by the messages, i.e. a message must be sent before it can be received. The
inscribed hexagon in Fig. 4 which covers the instances A_SAP and B_SAP is a so-called
condition. It denotes the state n(0) which the covered instances have in common.

Further constructs of the MSC language concern instance actions, timer handling, in-
stance creation, instance termination, the order of events along an instance axis (coregion),
and the refinement of instance axes by means of so-called submscs. A complete introduc-
tion to the MSC language can be found in [4].

The MSC in Fig. 4 describes the general message flow in Fig. 3. The two standardized
service access points (SAPs) of the ISDN system and the two subscribers A and B are
represented by the individual axes A_SAP, B_.SAP, A, and B.

The initial state n(0) is not included in the general message flow of Fig. 3, but it is
mentioned in the informal text. Since such preconditions might be relevant for test case
implementation, it is added by means of a condition.

The SYNCHRONIZATION messages are also not part of the general message flow di-
agram. This is due to the fact that the protocol standard).931 states that there exist
several dependencies between certain messages at the different SAPs. For test case im-
plementation such information is relevant, because it might be necessary to synchronize

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 7

the test devices. In Fig. 1 the influence of the protocol standard on the test case imple-
mentation is described by an arrow. In order to automate the test case implementation
this influence has to be suppressed. In our case this is done by adding information to
the MSC test case specification. Therefore the dependencies between events on different
instance axes are defined explicitly by the SYNCHRONIZATION messages.

The dashed arrow describes the optional message CallProceeding. CallProceeding may
occur immediately after the Information message is sent by subscriber A. Whether the
message occurs depends on the configuration of the whole ISDN system. Sometimes the
tester has no influence on this configuration, although the possible arrival of CallProceed-
ing has to be treated. The concept of optional messages is not part of the standardized
MSC language. By the use of the MSC standard the only way to express the possible
occurrence of an optional message is to specify two alternative MSCs. Of course, this is
awkward and not very user-friendly. As a consequence we introduced optional messages
and represent them by dashed arrows. We also introduced some further MSC constructs
which facilitate the test case description. Like the optional message they can be seen as
abbreviations for situations which are clumsy to express with the current MSC standard.
A more detailed description of these extensions can be found in [6,14]

Obviously, the MSC in Fig. 4 offers the same intuitive understanding of the required
system behaviour as the diagram in Fig. 3. The example also shows that it is possible
to suppress the influence of standards on the test case implementation. Furthermore, the
MSC/PR form offers a standardized interface for tool supported test case implementa-
tion. These facts lead to the conclusion that the MSC language is appropriate for the
specification of test cases.

3.2. MSC and TTCN

The output of Task 3 is a set of executable test cases. For the automation of Task 3 we
need a representation for executable test cases. Currently, most test case implementations
are proprietary for a certain environment, e.g. the several manufacturers of test equipment
use proprietary programming languages. However, the situation seems to change. The
availability of TTCN” as standardized test case description language [9], existing and
forthcoming standardized TTCN test suites, e.g. [10,3], and customer demands force
manufacturers of test equipment to develop TTCN compiler or interpreter, e.g. [1,13].
Therefore we also have chosen TTCN for the representation of executable test cases.

A TTCN test case description can be divided into a static and a dynamic part. The
static part includes the type and constraint definitions of the exchanged messages. The
dynamic part defines the possible sequences of so-called test events which shall be per-
formed by the test equipment when the test case is executed.

The event sequences are specified by means of a tree notation. Fig. 5 shows an example.
The tree notation can be found in the Behaviour Description column. The tree structure
is determined by the ordering and the indentation of the specified events. In general, the
same indentation denotes a branching (i.e. alternative events, e.g. lines Nr. 6 and 15) and
the next larger indentation denotes a succeeding event (e.g. lines Nr. 1 and 2). Events
are characterized by the involved entities (i.e. A and B), by its kind (i.e. ”!” denotes a
send event and 77”7 describes a receive event) and by the message which should be sent

“TTCN is an abbreviation for *Tree and Tabular Combined Notation’.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 8

Test Case Dynamic Behaviour
Test Case Name : EDSAOUX
Group
Purpose . The test shall ensure that after connection establishment Subscriber A receives at least three
Information messages.
Default : UnexpectedEvents
Comments . The display parameter of an Information message shall have the format 'FR. x.x0’ (0=<x=<9)
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 AlSetup SetupDefSend
2 A?SetupAcknowledge SetupAcknowledgeDefRec
3 Allnformation InformationDefSend
4 B?Setup SetupDefRec
5 B!Connect ConnectDefSend
6 B?ConnectAcknowledge ConnectAckDefRec
7 A?CallProceeding CallProceedingDefRec
8 A?Connect ConnectDefRec
9 AlConnectAcknowledge ConnectAckDefSend
10 A?Information InformationEDSAOUX
11 A?Information InformationEDSAOUX
12 A?Information InformationEDSAOUX
13 AlReleaseComplete ReleaseCompleteDefSend
14 B?ReleaseComplete ReleaseCompleteDefRec PASS
15 A?Connect ConnectDefRec
16 AlConnectAcknowledge ConnectAckDefSend
17 A?Information InformationEDSAOUX
18 A?Information InformationEDSAOUX
19 A?Information InformationEDSAOUX
20 AlReleaseComplete ReleaseCompleteDefSend
21 B?ReleaseComplete ReleaseCompleteDefRec PASS
Detailed Comments :

Figure 5. TTCN test case EDSAOUX

or received. An example may clarify the notation. The statement B?ReleaseComplete
denotes the reception of the message ReleaseComplete by the entity B.

The dynamic part of a TTCN test case can be computed automatically from an MSC.
This is done be selecting the test events which shall be performed by the test devices
within the MSC and by arranging them according to the time dependencies which are
defined by the order along the instance axis or mediated by messages. The TTCN test
case in Fig. 5 defines the test events of the test case EDSAOUX. It is generated from the
MSC in Fig. 4. Although the algorithm seems to be simple, it should be noted that MSC
and TTCN are different languages with different semantics. This has to be considered
during the transformation. Since we want to focus on the data aspect of the test case
description, we do not describe the details here. A more comprehensive discussion on the
algorithms can be found in [6] and [14].

The TTCN table in Fig. 5 includes some further information. An entry in the Verdict
column assigns a so-called test verdict to a test run. The verdicts indicate the success
of the test run. The entries in the Constraints Ref. column refer to TTCN or ASN.1
constraints. In the following we describe a mechanism to generate constraint references
automatically.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 9

ASN1 ASP Type Definition

ASP Name : Information
PCO Type : A
Comments : Reference 3.1.8, u<—->n, local

Type Definition

SEQUENCE

{ProtocolDiscriminator [0] ProtocolDiscriminator_type,
CallReference [1] CallReference_type,

MessageType [2] MessageType_type,

SendingComplete [3] SendingComplete_type OPTIONAL,
Display [4] Display_type OPTIONAL,

KeypadFacility [5] KeypadFacility _type OPTIONAL,
CalledPartyNumber [6] CalledPartyNumber_type OPTIONAL}

Detailed Comments :

Figure 6. ASN.1 type definition Information_type

4. MSCs and data descriptions

In the previous section the test case specification with MSCs and the automatic gener-
ation of the dynamic part of a TTCN test case has been discussed. In order to gain
complete TTCN test cases one of our major objective is to include the data description
in the test case specification. For this purpose the MSCs have to be related to data type
and constraint definitions. We distinguish between two kinds of constraints. Default con-
straints which are provided by the standards and country specific requirements and test
case specific constraints. Test case specific constraints define value restrictions which are
only valid in the context of the test case. They are often hidden in the purpose of the
test case but have to be coded explicitly when the test case is implemented.

4.1. Data type and default constraint definitions

As described in Section 1 we can assume for Task 3 that data type and default constraint
definitions are given in a form which can be interpreted by a machine®. The relations
between these definitions and the messages in an MSC are defined implicitly by the
message name. The message name refers to a type definition which itself includes, or
refers to the type definitions of the message parameters. We explain this by means of the
test case EDSAOUX.

The Information messages in the test case EDSAOUX (cf. Fig. 4) refers to the ASN.1
definition in Fig. 6. The test case checks a part of the Display parameter in the re-
ceived information messages. The Display parameter has the type Display_type. The
corresponding type definition is shown in Fig. 7.

For most messages and message parameter values the protocol standard, and the ad-
ditional user requirements provide default constraints, i.e. they define default values or
restrict the value range. The default constraint for the Information message is shown in
Fig. 8. The constraint refers to the default constraints for the parameter values. Fig. 9
presents the default constraint of the Display parameter. The value of d_id is completely
defined by the bit string ‘00101000 B. The possible values of d_length are listed. Contrary

to this, the question mark states that the value of d_info is not restricted. According to

8In our example it is assumed to be in ASN.1.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 10

ASN1 Type Definition

Type Name : Display_type
Comments : Information element Display, Reference 4.5.15

Type Definition

SEQUENCE

{d_id [0)] OCTET STRING (SIZE (1)),

d_length [1] OCTET STRING (SIZE (1)),

d_info [2] OCTET STRING (SIZE (0..32)) OPTIONAL}

Detailed Comments :

Figure 7. ASN.1 type definition Display_type

ASN1 ASP Constraint Declaration

Constraint Name : InformationDefRec

ASP Type : Information

Derivation Path

Comments : Default constraint for Information messages which are received

Constraint Value

{ProtocolDiscriminator ProtocolDiscriminatorDefRec,
CallReference CallReferenceDefRec,

MessageType '01111011'B,

SendingComplete SendingCompleteDefRec IF_PRESENT,
Display DisplayDefRec IF_PRESENT,

KeypadFacility KeypadFacilityDefRec IF_PRESENT,
CalledPartyNumber CalledPartyNumberDefRec IF_PRESENT}

Detailed Comments :

Figure 8. ASN.1 constraint InformationDefRec

ASN1 Type Constraint Declaration

Constraint Name : DisplayDefRec

ASN1 Type : Display_type

Derivation Path

Comments : Default constraint for Display values which are received

Constraint Value

{d_id '00101000'B,
d_length (0?'H, '1?'H, '20’H),
d_info ?}

Detailed Comments :

Figure 9. ASN.1 constraint DisplayDefRec

the type definition in Fig. 7 it is an arbitrary string of octets with a maximal length of
32 (in hexadecimal form '20’H). The format which should be checked by the test case
EDSAOUX is encoded in d_info. d_length describes the length of d_info in form of a
hexadecimal string. For the default constraints the names of the messages are sufficient
to generate the corresponding entries of the TTCN test case description.

4.2. Test case specific constraints
Test case specific constraints are important for two reasons. Sometimes, it is necessary to
send specific message parameter values to drive the tested protocol into a state from which

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 11

ASN1 ASP Constraint Declaration

Constraint Name : InformationEDSAOUX

ASP Type : Information

Derivation Path

Comments : Test case specific constraint for Information messages (Test case name: EDSAOUX)

Constraint Value

{ProtocolDiscriminator ProtocolDiscriminatorDefRec,
CallReference CallReferenceDefRec,

MessageType '01111011'B,

SendingComplete SendingCompleteDefRec IF_PRESENT,
Display DisplayEDSAOUX,

KeypadFacility KeypadFacilityDefRec IF_PRESENT,
CalledPartyNumber CalledPartyNumberDefRec IF_PRESENT}

Detailed Comments:

Figure 10. ASN.1 constraint Informationl!DSAOUX

the test purpose can be proved, and test purposes often include constraints on message
parameter values. Also the test purpose of EDSAOUX includes a test case specific value
constraint. It requires to check the Display parameter format of the Information message.
The format definition "Fr. .20’ (0 < x <9) (cf. Fig. 3) is a constraint on the range of the
Display parameter.

Test case specific constraints have to be defined formally when the test case is imple-
mented. Currently, the definition of the test case specific constraints is based on the
informal test purpose description in the abstract test case, the data type definitions, the
standards and the additional requirements. We described this situation in Fig. 1. Since
it is our goal to automate the test case implementation we have to suppress the influence
of the additional requirements and standards. Our way to do this is to formalize the data
aspects of test purposes, 1.e. we include the test case specific constraints in the test case
specification. We have two possibilities to introduce test case specific value constraints in
MSCs. They can be explicitly defined in the MSCs, or they can be defined elsewhere and
the MSCs refer to them.

The first possibility is problematic, because the constraints may become too big for the
MSC. For the test case EDSAOUX the ASN.1 constraint for the Information message is
shown in Fig. 10. This constraint refers to another constraint which checks the format of
the Display parameter (cf. Fig. 11). However, the constraints of the Information message
comprise two pages, and they should be valid for each received Information message of
the MSC in Fig. 4. One will loose all clearness if the MSC and all constraints are defined
in the same diagram.

The second possibility is problematic, because the principle of locality is violated. A
reference mechanism may lead to situations where the relevant parts of a test case de-
scription are defined at different locations. In the test case EDSAOUX, the test case
specific constraint for the Information message would have be referred in the test case
specification. The test purpose relevant constraint on the Display parameter itself would
only be referred in the constraint of the Information message. Therefore there would be
no direct indication of the test purpose in the test case specification.

Often, a test case specific constraint only differs slightly from an existing default con-
straint. In the test case EDSAOUX the default constraint and the test case specific

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 12

ASN1 Type Constraint Declaration

Constraint Name : DisplayEDSAOUX

ASN1 Type : Display_type

Derivation Path

Comments : Test case specific constraint for Display values (Test case name: EDSAOUX)

Constraint Value

{d_id '00101000'B,

d_length '08'H,

d_info

{'01000110'B, '01110010’B, '00101110’B, '00100000’B, ('00110???'B, '0011100?'B), '00101110'B,
('001107?7?'B, '00111007?'B), '00110000'B}}

Detailed Comments : d_info describes the format: 'FR. x.x0’ (0=<x=<9)

Figure 11. ASN.1 constraint DisplayEDSAOUX

Message M
Part P1 P2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, LN fe N
/N /N
Part P11 P12 P21 P22 («M>; <P1>, <P2>; <P11>, <P12>, <P21>, <P22>)
(a) Message structure (b) Structure of an RL statement

Figure 12. RL statements and the message structure

constraint of the Information message are only different with respect to the Display pa-
rameter constraint (cf. Fig. 8, 10). In such a case it is more appropriate to specify the
difference to a default constraint than to rewrite the whole default constraint.

4.3. A reference mechanism for test case specific constraints

As consequence of the discussion in the previous section we decided to develop a comfort-
able reference mechanism which allows to refer to self written test case specific constraints,
and which provides possibilities to define test case specific constraints by modifying ex-
isting constraints. Additionally, it allows to define test case specific constraints directly
within an MSC, e.g. if a test case specific constraint only comprises one concrete value.

The reference mechanism is a reference language, in the following called RL, which can
be used to specify the mentioned possibilities. Within an MSC the statements of RL are
related to messages. They can be found in parenthesis near the corresponding message
name, or message arrow (cf. Fig. 12). This is no extension of the MSC language, because
the MSC standard [18] proposes to use expressions in round brackets to assign parameter
information to messages.

An RL statement consists of several parts. The parts are separated by semicolons.
Each part may consist of several subparts which are separated by commas. The structure
of an RL statement reflects the structure of a corresponding message. A message has
a hierarchical structure. A part of an RL statement represents a hierarchy level. The
subparts describe elements within a hierarchy level. Fig. 12 presents an example. The
message M in (a) has the parameters P/ and P2. PI is structured in P11 and P12. P2

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 13

msc Testbody

A A_SAP B_SAP B
] [] [] []

Information

(; Display:DisplayEDSAOUX)

Information

(; Display:DisplayEDSAOUX)

Information

(,, Display:DisplayEDSAOUX)

Information message default constraint

Message Parameter Constraint

ProtocolDiscriminator Default

CallReference Default

MessageType Default

SendingComplete Default

Display Default A (replacemeny

KeypadFacility Default

CalledPartyNumber Default v
Constraint: DisplayEDSAOUX
Element Constraint
did | ..
d_length | ...
d_info | .

Figure 13. The reference mechanism for test case specific constraints

comprises P21 and P22. The statement in (b) shows how the different elements of M can
be referred within an RL statement. The statements indicate changes to the constraints
for the corresponding message. Like this e.g. <PI> and <P2> change the constraint
<M> and <P11> and <P12> change the constraint <P1>. In general, the omission of a
part or subpart means that the corresponding constraint is not changed. Based on such an
RL statement it is possible to automate the calculation of the references within the TTCN
tables to test case specific constraints, and to generate test case specific constraints which
are based on existing constraints. We will not give further details here, but an example
shall give an impression of the reference mechanism. The details can be found in [12].

The MSC in Fig. 13 represents the test purpose of EDSAOUX. The inscription of the
Information messages (; Display:DisplayFFDSAOUX) states that the constraint for these
messages is a modification of the default constraint. The default constraint for the Dis-
play parameter shall be replaced by the test case specific constraint DisplayEFDSAOUX.
Fig. 13 only indicates the replacement schematically. The concrete ASN.1 constraints
have already been presented. The default constraints for the Information message and
the Display parameter are shown in the Fig. 8 and Fig. 9. The test case specific con-
straint DisplayFDSAOUX is shown in Fig. 11. The test case specific constraint for the
Information message which is automatically generated is given in Fig. 10.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 14

MSC editor

MSC/PR test
case specification

MSC/TTCN generator

TTCN/MP test
case description
(dynamic part)

ASN.1 or TTCN data
type and constraints
definitions

TTCN builder

executable TTCN/MP
test case

Figure 14. A set of prototype tools for test case specification and implementation

5. Summary and tool support

Within the previous sections we propose a method which automates the implementation of
test cases. The influence of informal protocol standards and user requirements is the main
problem of the current test case implementation procedure. We suppress this influence
by extending and formalizing the description of test case specifications.

The MSC language plays the central role of the method, because it is the formalism
used to describe test case specifications. The language is extended with a few constructs
to meet the specific requirements of test case specification. It is shown how data type and
default constraint definitions are related to MSCs and a comfortable reference mechanism
for test case specific constraints is presented. We use TTCN as description language for
executable test cases and generate TTCN test cases from MSC test case specifications.
The algorithms presuppose that data type and default constraint definitions are specified
in ASN.1 or TTCN.

The success of such a method depends on various factors. To improve the acceptance
by the users during the development of the method we try to be as close as possible to
existing and well established procedures. The success also depends on the availability of
tools which support the method. The choice of the standardized languages MSC, TTCN
and ASN.1 allows to use commercial tools for test case specification and test execution.
Furthermore, we developed a set of prototype tools which implement our method.

The tool set is shown schematically in Fig. 14°. The core of the tool set is a graphical
MSC editor which can be used to specify MSCs, to refer to, or define test case specific
constraints, and to combine MSCs to test case specifications. The editor transforms test
case descriptions in the graphical MSC/GR form into the textual MSC/PR form. The
MSC/PR files are the input for the MSC/TTCN generator which generates the dynamic
part of a TTCN test case in TTCN/MP form. The TTCN builder combines the output
of the MSC/TTCN generator, and the data type and constraint definitions to complete

9The tools are represented by rectangles and the interfaces between them by ellipses.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 15

MSC Editor and TTCN Generator
|"HlWS Edit Page Text Window

Instance d:Mtools\mscipreamble.sct P. 1
Condition Y

A A_GAR B_SAF B =
Loop

EI‘II:"_IJIJD ITest_F' mcessl |SUT_Fro-cess| |SUT_F‘ro-cess| ITest_F‘mcessI

Message
Optional Message Setup

Always Message [Bearer Capabilty |
Synchronization
Timer Set
Timer Reset
Timeout

Task

Comment

Setup Acknow ledge

nformaton

Preferences j

Switch to Test Case Mode Synch monization

CallProceeding Setup
----------------------- Callad Party Number

Connect

Connecticknowlzdge

H A Sy ch onization hd i
- [l -
Type: Node Text: Off Page Scale: 89%

Figure 15. The user interface of the MSC editor

TTCN test cases. The TTCN builder calculates the constraint references in the TTCN
test step tables and generates additional test case specific constraints which are defined
by our reference mechanism. All tools have been implemented on a PC in a Windows 3.1

environment. Fig. 15 presents the user interface of the MSC editor. The shown MSC is
the first part of the test case EDSAOUX.

6. Outlook

For the application of our method in an industrial environment the interface to the ref-
erence mechanism for test case specific constraints should be improved. Complicated
message constraints may lead to complex statements of the reference language RL. Fur-
thermore, without detailed knowledge of the message structure the RL statements are not
easy to read. But, an RL statement can considered to be the minimum information to
generate the references to test case specific constraints within the TTCN tables, and to
define new constraints which are based on existing ones.

However, we believe that the reference mechanism should have no influence on the test
case specification process. We already started to extend the MSC editor by a graphical
interface for message constraints. The user will be enabled to check, define and modify
the message constraints without knowledge of the underlying reference mechanism.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 16

Acknowledgements

The elaboration of this paper is funded partially by the KWF-Project No. 2555.1 "Graph-
ical Methods in the Test Process’. The authors would like to thank Dr. E. Rudolph for
proofreading and F. Bosatta, Ch. Riifenacht, Dr. R. Schonberger, S. Suter and Ch. Zehn-

der for their valuable comments and suggestions.

REFERENCES

1.

10.

11.

12.

13.
14.

15.
16.

17.

18.
19.

Alcatel Network Systems. Alcatel 8650 - Conformance Test System - GSM. Product
Information, Alcatel STR AG (Ziirich), 1993.

F. Belina, D. Hogrefe, A. Sarma. SDL with Applications from Protocol Specification.
The BCS Practitioner Series. Prentice Hall International, 1991.

ETSI SPS5. ISDN - DSS1: Abstract Test Suite for User of Data Link Layer Protocol
for General Application. Draft prI-ETS 300 313, Ref.: DE/SPS-5001, ETSI, 1993.

J. Grabowski, P. Graubmann, E. Rudolph. The Standardization of Message Sequence
Charts. Proceedings of the TEEE Software Engineering Standards Symposium 19937,
Sept. 1993.

J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Spec-
ification by MSCs. In: SDL’93 - Using Objects. North-Holland, Oct. 1993.

J. Grabowski, D. Hogrefe, I. Nussbaumer, A. Spichiger. Improving the Quality of
Test Suites for Conformance Tests by using Message Sequence Charts. Proceedings
of the "Fourth European Conference on Software Quality’, Oct. 1994.

IS 7498 (1984). OSI - Basic Reference Model. International Standard, ISO/IEC, 1984.
IS 9646 (1992). Information Technology - OSI - Conformance Testing Methodology
and Framework. International Multipart Standard, ISO/IEC, 1992.

IS 9646 Part 3 (1992). Information Technology - OSI - Conformance Testing Method-
ology and Framework - Part 3: The Tree and Tabular Combined Notation. Interna-
tional Standard 9646-3, ISO/IEC, 1992.

North American ISDN Users Forum (ACT23). LAPD Conformance Testing Abstract
Test Suite. Feb. 1990.

Q.931 - Q.940 (1989). Digital Subscriber Signalling Systen No. 1 (DSS 1), Network
Layer, User-Network Management. CCITT, 1989.

Ch. Rufenacht. Extending MSCs with Data Information in order to Specify Test
Cases. Diploma Thesis (written in German), University of Berne, Feb. 1994.
Siemens AG. Product Information K1197, K1103. Siemens AG Berlin, 1993.

S. Suter. The MSC Based Generation of the Dynamic Part of TTCN Test Cases.
Diploma Thesis (written in German), University of Berne, Jan. 1994.

TeleLOGIC Malmé AB, Box 4128, S-203 12 Malmé (Sweden). SDT 2.3, 1993.

X.208 (1989). Information Processing Systems - OSI - Specification of Abstract Syntax
Notation One (ASN.1) and Addenum 1: ASN.1 Extensions. CCITT, 1989.

X.209 (1989). Information Processing Systems - OSI - Specification of Basic Encoding
Rules for ASN.1 and Addenum 1: ASN.1 Extensions. CCITT, 1989.

7.120 (1993). Message Sequence Chart (MSC). ITU-T, Sept. 1994.

7.120 B (1995). Message Sequence Chart Algebraic Semantics. ITU-T Publ. sched.:
May 1995.

