Message Sequence Chart: Composition Techniques versus
OO-Techniques — "Tema con Variazioni” —

Ekkart Rudolph®, Peter Graubmann?, and Jens Grabowski®
“Siemens AG, ZFE T SE, Otto-Hahn-Ring 6, 81739 Miunchen, Germany
*University of Berne, Institut for Informatics , Neubriickstr. 10, 3012 Berne, Switzerland

Structural concepts for Message Sequence Charts (MSCs), i.e., composition, types, inher-
itance, and virtuality, are applied to a telecom example provided by the public switching
systems division of the Siemens AG. The example contains several variations of the pe-
ripheral parts of an initial MSC which may be combined independently. The independent
combinations of the peripheral variations are described by means of several new com-
position operators and by using object-oriented techniques (OO-techniques), i.e. types,
inheritance, and virtuality. A comparison of both techniques shows that composition oper-
ators may provide a compact, easy, but abstract description, whereas some OO-techniques
allow a graphical, intuitive, but not compact specification. Typical OO-techniques like in-
heritance and virtuality seem to be less fruitful for the description of at least the provided
example. A combination of composition operators and OO-techniques, e.g., a variant type
concept employing the alternative composition operator, may combine the advantages of
both techniques.

1. Introduction

The standardization work on MSC during the study period 1989 - 1992 has concentrated
on the elaboration and standardization of basic concepts. Only few structural concepts,
i.e., coregion and submsc, have been included in the MSC recommendation 7.120 [12]. For
the present study period, the development of structural concepts for MSCs has become
a central goal. In particular, composition and OO- techniques are in the focus of the
on-going standardization activities [6]. This is not surprising. Without such concepts the
usage of the MSC language would remain limited to the specification of few scenarios.
To develop a telecom service with MSCs means to handle a large number of MSCs.
Until now, mostly conditions have been used to reduce their number and to indicate
possible MSC combinations. Conditions, however, are not sufficient to keep the necessary
sets of MSCs manageable. Syntactic means for a compact denotation of MSCs are missing
in 7.120. Furthermore, reusability of (parts of) MSCs is not addressed in this document.
And, indeed, MSCs are often identical save for minor variations or they have large parts in
common (particularly, when during the development of telecom services country specific
adaptations have to be taken into account). The development of concepts that deal with
reusability and a more compact description of MSCs, however, pose several problems:

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 2

1. The new concepts have to provide the necessary support in a concise manner, i.e.,
only a few but powerful new concepts shall be defined.

2. Elegance and readability of MSCs must not deteriorate, i.e., all language constructs
supporting the new concepts are required to be easily understood and handled in
both textual or graphical representations.

3. An adequate semantics definition has to be provided that fits into the existing MSC
semantics.

4. The level on which the new concepts are applied has to be determined. In ITU-T
SG10 Q.9 so far the conception prevails that the required language constructs mainly
apply to MSC documents. Thus, the introduction of the new concepts additionally
requests the definition of the semantics of MSC documents.

This paper focusses on the first two points. A telecom example, provided by the public
switching systems division of the Siemens AG, is used to demonstrate and analyze the
proposed concepts. The example consists of an initial MSC which only describes behaviour
abstraction and of further MSCs which describe several variations of the peripheral parts
of the initial MSC. There is the necessity to describe the independent combination of the
peripheral variations in a comfortable and compact manner. We applied both composition
and OO-techniques in order to meet the user requirements and compared both modelling
techniques.

The paper is organized in the following manner: The fundamental concepts of this case
study are described in Section 2. In Section 3 composition techniques and OO-techniques
are applied to the telecom example. The results of this application are discussed in Section
4. Section 5 presents summary and outlook.

2. Foundations

This section introduces several composition operators and OO-principles for MSCs in an
informal manner. Only their basic ideas are sketched here, since an intuitive understand-
ing is sufficient for our analysis.

2.1. Composition techniques

Three composition operators for MSCs are suggested: Environmental merge, synchroni-
sation merge, and synchronisation condition merge. Each operator maps two MSCs into
a new MSC.

The environmental merge operator (||cn.) identifies every message sent to or received
from a gate in the environment of the first MSC (MSC1) with the message received
from, respectively sent to, the equally named gate in the environment of the second MSC
(MSC2). Figure 1 (a) presents an example. The explicit definition of gates may be
omitted for messages with unambiguous names in an MSC. The environmental merge
operator then identifies the equally named messages to, respective from, the environment
in both MSCs.

Similarly to interworking merge, the synchronisation merge (||syn) of two MSCs is their
interleaved composition with the restriction that the MSCs are forced to synchronise on a

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 3

msc MSC1 msc MSC2 msc MSC3
Instl Inst2 Instl Inst2
[[_
S1 S2 H env 52 - S1 52
gl g1 S3 S3
| | | |

(a) Example for an environmental merge

msc MSC1 msc MSC2 msc MSC3
Instl Inst2 Instl Inst2 Instl Inst2
_
s1 [syn = s
S2 S2 S2
S3 S3
| | | | | |

(b) Example for a synchronisation merge

msc MSC1 msc MSC2 msc MSC3 msc MSC4
Instl Instl Inst2 Inst2 Instl Inst2
_
st [e | P = a7
S3 S3
| |

(c¢) Example for a synchronisation condition merge

Figure 1. Composition operators for MSCs

set of communication actions. The set consists of the communication actions concerning
every pair of entities which the MSCs have in common. Figure 1 (b) presents an example.
The synchronisation merge is an adaptation of interworking merge [7] to asynchronous
communication.

Synchronisation condition merge (||syn.) means that the synchronisation is performed
with respect to connectors, i.e., distinguished synchronisation points. Connectors are
represented graphically by annotated circles. Figure 1 (c) presents an example. This
solution is closest to the original example presented in October 94 at the ITU-T SG 10
meeting [8] and also closest to conditions. It also has the greatest flexibility with respect
to composition but probably is less transparent than, e.g., |[syn-

2.2. Object orientation in MSC

0OO-techniques in MSC may help to emphasize similarities in different MSCs, facilitate the
reuse of complete MSC diagrams or parts of them, and support the structuring of complete
MSC specifications or individual diagrams. The discussions on object orientation in MSC
are related to the introduction of the concepts type, inheritance, and virtuality in the
MSC language. We mainly follow the ideas and notations in [4-6].

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 4

msc MSC3
msc MSC1 with MSCL, MSC2, virtual MSCvirt
Instl Instl Inst2
S1 a 1
S1
sty MSC1 4
| b S1
]
(a) MSC2
msc MSC2 S6
Instl Inst2 -
msc| MSCuvirt
S2 S7
S3 S8
S5 sS4 S9
| |
]]
C
(c) (b)
msc MSCinheritance
inherits MSC3 msc MSCcomplete
with redefined MSCvirt by MSCredefined ’&‘ ’&‘
S1
(d) s1
S2
S3
msc MSCredefined S5 S4
Instl Inst2 S6
— —
S7 S7
S8 S8
]]]]

(e) (f)

Figure 2. Object-oriented concepts and MSC

Each MSC can be seen as a definition of an MSC type. MSC types can be used in
other MSC types. Figure 2 (a) shows the MSC type definition MSC1. The identifiers a
and b at the frame of MSC1 are gates. Gates are used to define the connection points
when an MSC type is used in another type. For example, the MSC type MSC% in Figure
2 (b) uses the MSC type MSC1 and MSC2. The identifiers within the reference symbol
are connected to the gate definitions in (a) by name identification.

MSC3 also refers to MSC2 in (c). MSC2 exchanges messages with its environment
which are not described in MSC3. By convention the environment of the used type is
connected with the environment of the using type, i.e., in our case the messages S2, 5/,
and SH are also part of message exchange of MSCS3 with its environment.

For practical reasons sometimes it may be useful to define a new MSC type directly
inside another one. For this purpose [6] introduces inline definitions. Figure 2 (b) provides
an example. MSC3 includes the inline definition of the MSC type MSCuirt.

An MSC may use behaviour which is specified in another MSC. This can be done by
inheritance. For example, the MSC MSCinheritance in Figure 2 (d) inherits the signal
exchange specified in (b).

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 5

An MSC type can refer to virtual types. Virtual means that it is possible to adapt an
MSC to special configurations or situations by redefining virtual types. For example, the
MSC type MSC3 in Figure 2 (b) includes the inline definition of the virtual type MSCuvirt.
MSCinheritance in Figure 2 (d) inherits MSC3 and refers to the redefinition MSCredefined
of MSCuvirt which is shown in (e). This redefinition means that within MSCinheritance
the behaviour of MSCuirt is replaced by MSCredefined.

The main advantage of the MSC language, compared to other trace languages, is the
ability to describe system behaviour in a clear, graphical and intuitive way. The introduc-
tion of object oriented concepts in MSC may lead to situations where the understanding
of a simple MSC description becomes rather complicated. Figure 2 provides an exam-
ple. The behaviour described by the MSC MSCcomplete in (f) is not very complicated.
It is identical to the behaviour defined by the object-oriented MSC MSCinheritance in
(d). But MSCinheritance refers directly and indirectly to four other diagrams shown
in (a), (b), (¢) and (e). However, additional design rules might help to keep the MSCs
understandable.

3. Application to a telecom example

In this section we introduce the proposed example and apply both composition operators
and OO-techniques in order to describe the example in an adequate manner.

3.1. The EWSD example

The example was provided by the public switching systems division of the Siemens AG.
It concerns a small extract of the highly distributed EWSD switching system. Therefore
we refer to the example as FWSD example. An EWSD system consists of one central
processor and many group processors. We distinguish between peripheral message flow,
i.e., message exchange between group processors and system environment, and internal
message flow, i.e., message exchange among group processors and central processor.

For a given internal message flow the peripheral message flow shows several variations
depending on the supported signalling system. Each group processor may support ten
signalling systems. Among them are Signalling System No. 5 (CCITT Rec. Q.120-180
Blue Book), Signalling System No. 7 (CCITT Rec. Q.721-725 Blue Book), and ISUP
(CCITT Rec. Q.730, Q.741, Q.761-766 Blue Book).

In our EWSD example the internal message flow is specified by an initial MSC which is
an abstract model of the real message flow. In particular, the peripheral message flow does
not correspond to any concrete signalling system and can be considered as an abstract
representation showing typical features of the various real signalling systems. The real
signalling systems are introduced afterwards in form of peripheral message flow variants.
These are provided in form of separate MSCs and can be combined independently with
the internal message flow.

Our example refers to a behaviour of an EWSD system configuration with one cen-
tral processor CP and two group processors GP/A and GP/B. The initial MSC of the
EWSD example is shown in Figure 3. We selected the peripheral message flow variants
of the signalling systems ISDN PA, ISDN BA and ISUP for describing the independent

combination of peripheral message flow variants.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 6

msc Initial GP/A CcP GP/B
1 1 1
T1 FFAILURE*
INIT CLEAR
CLEAR T2
CLEAR ACK
CLEAR
T3 % CALL DATA
INIT CLEAR RELEASE C CLEAR ACK
CLEAR COMPLETE
CALL DATA
RELEASE C
|| || ||

Figure 3. The initial MSC

3.2. Applying composition operators

Within the EWSD development process special message flow diagrams are employed. For
this paper, only the message flow of these special diagrams is taken into account without
simplifications whereas we abstract from EWSD specific constructs.

This means for applying composition operators the original EWSD specific diagrams
are transformed into the 7.120 form and, where necessary, enhanced with gates (cf. Figure
4) and connectors (cf. Figure 6). The MSCs in Figure 6 are closest to the original EWSD
diagrams. The column instances include connections denoting the causal dependencies
between the different events [9,10].

The environmental merge of peripheral and central parts is described by using the
MSCs in the Figure 4. Since the central communication part described in the initial
MSC remains the same for all peripheral variants it is extracted from the initial MSC in
separated form (cf. Figure 4 (a)). Each variation of the peripheral part of group processor
A - corresponding to the signalling systems [ISDN PA and ISUP (cf. Figure 4 (b) and (¢))
- can be combined with each peripheral part of group processor B - corresponding to the
signalling systems ISDN PA and ISDN BA (cf. Figure 4 (d) and (e)) - whereby the central

part always remains the same. We obtain the following four descriptions:
(1) A_PA ||chy B-PA ||enw CPinit
(2) A_PA||cny B-BA ||enw CPonit

(3) AISUP ||leny B-PA ||eny CPnit

(4) AISUP ||eny B-BA ||cny CPinit

By using an additional or operator the four expressions can be combined to the single
expression:
(A_PA or ALISUP) ||eny (B_PA or B_BA) ||eny CPanit
The main idea for synchronisation merge is the same as for environmental merge. There-
fore, it is sufficient to demonstrate the merging operation for one signalling system only,
namely for ISDN PA. By using the MSCs in Figure 5 we obtain the following expression:
A_PA_syn ||syn B-PA_syn

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway

msc CP_init msc A_PA msc A_ISUP
cP GPIA GPIA

— — —

CALLDATA |, CLEAR |, CLEAR |,

RELEASEC | . CLEARACK _| . CLEARACK | .

™ %] a ™ %] a

CALLDATA |, DISCONNECT REL

RELEASEC | TONE TCREF
| | |

(a) Central processor (b) GP/A: ISDN PA (c) GP/A: ISUP
msc B_BA GP/B
msc B_PA GP/B
} T1 FFAILUREY
T1 MFAILURE*/ BTSR
RELEASE RELEASE
b1 CLEAR T2 b1 CLEAR T2
a1l CLEARACK a1l CLEARACK
RELEASE ACK RELEASE ACK
b2l CALL DATA b2l CALL DATA
CREF/T
b3l RELEASEC b3l RELEASE C
bl CALLDATA bal CALL DATA
b5l RELEASEC b5l RELEASEC
]]

(d) GP/B: ISDN PA (e) GP/B: ISDN BA

Figure 4. Behaviour of central processor CP and group processors GP/A and GP/B

msc B_PA_syn
GP/A CP GP/B
[[[
T1 FFAILURE*
RELEASE
msc A_PA_syn CLEAR T2
GP/A GP/B
1 1 CLEAR ACK
CLEAR
RELEASE ACK
CALL DATA
CLEAR ACK
T3 % RELEASE C
DISCONNECT CALL DATA
TONE RELEASE C
]] | | |

(a) ISDN PA behaviour of GP/A (b) ISDN PA behaviour of GP/B

Figure 5. MSC diagrams for modelling synchronisation merge

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 8

msc A_PA_sync GP/IA msc B_PA_sync GP/B
I*FAILURE?*/
T1
RELEASE
DISCONNECT -
TONE
b
T3 RELEASE ACK
]
(a) ISDN PA behaviour of GP/A (b) ISDN PA behaviour of GP/B
msc CP_sync GPIA cP GP/B
; CLEAR
&, CLEAR ACK
CALL DATA
RELEASE C
CALL DATA
RELEASE C
]]

(¢) System internal behaviour

Figure 6. MSCs for modelling synchronisation condition merge

In comparison with the application of the environmental merge the communication
with the central processor is integrated in the MSC describing the behaviour of GP/B
(cf. Figure 5).

The synchronisation condition merge operation also is demonstrated for ISDN PA only.
By using the MSCs in Figure 6 we obtain the following expression:

A_PA_sync ||syne B-PA_sync ||syn. CP_sync

3.3. Applying object-oriented techniques

There are two possibilities to apply object-oriented techniques, i.e., types, inheritance,
and virtuality (cf. Section 2.2), to the EWSD example. One possibility is to combine
MSC type definitions to new MSC types, each describing one trace of the EWSD system.
A second possibility is to use inheritance and virtuality. Virtual parts of an abstract MSC

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 9

msc OO_lnitial
with CP_lInit, virtual GP/A_Init, virtual GP/B_Init
GP/A CcP GP/B
1
msc GP/B_Init
T1 /*FAILURE*/
INIT CLEAR
msc GP/A_Init
CLEAR T2
bl CLEAR ACK bl
T3 % al al CLEAR
msc CP_lInit
INIT CLEAR
CALL DATA
RELEASE C b2 b2
CLEAR ACK
b3 b3
CLEAR COMPLETE
CALL DATA
RELEASE C b4 b4
b5 b5
| | |

Figure 7. An object-oriented modification of the initial MSC

type are redefined when a concrete system run of the EWSD system is specified. The
building blocks for an object-oriented modelling of the EWSD example are a modification
of the initial MSC and the alternative behaviours of the group processors.

A modification of the initial MSC (cf. Figure 3) is shown in Figure 7. Compared with
the original initial MSC the object oriented modification OO_Initial includes three inline
MSC type definitions. The MSC types GP/A_Init and GP/B_Init are declared as virtual
types, i.e., they can be redefined when the initial MSC is adapted to different system
configurations.

The parts of the initial MSC OO_Initial which are adapted to the different system
configurations concern the behaviour of the group processors GP/A and GP/B. The
possible alternatives are defined in Figure 4 (b) — (e). Compared with the MSC standard
7.120 these MSCs only include additional gate definitions, but no special object-oriented
concepts. The MSC descriptions in Figure 8 refer to these MSCs.

The object-oriented MSC descriptions of the EWSD example are based on the MSCs
in the Figures 4 (b) — (e) and 7. Their combination leads to four different behaviours.
Applying OO techniques may lead to the four MSCs shown in Figure 8 (a) — (d).

The MSCs in Figure 8 (a) and (b) are assembled from MSC types only. From a more
abstract point of view this modelling can be seen as a graphical description of the envi-
ronmental merge (cf. Sections 2.1 and 3.2); except that the gate connections between the
three MSC types are established explicitly within the diagram and not implicitly by name
identification. Furthermore, the use of an additional or operator provides the possibility
to describe all possible combinations in a graphical, simple and intuitive manner. This is
shown in Figure 8 (e).

The MSCs in Figure 8 (¢) and (d) inherit the initial MSC. By reference the two virtual

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway

GP/B

msc EWSD_run_A
with A_PA, CP_Init, B_PA
GP/A CP
I;I [
CLEAR
A_PA bl
CLEAR ACK
al
CP_lInit
CALL DATA
b2
RELEASE C
b3
CALL DATA
b4
RELEASE C
b5
| ﬁ

bl

al

b2
b3
b4

b5

B_PA

msc EWSD_run_B

with A_PA, CP_lnit, B_BA

GP/A CP GP/B
I;I [I:I
CLEAR
A_PA bl b1 B_BA
CLEAR ACK
al al

CP_Init

CALL DATA

b2 b2
RELEASE C

b3 b3
CALL DATA

b4 b4
RELEASE C

b5 b5

(a)

msc EWSD_run_C
inherits OO_|nitial

with redefined

GP/A_lnit by A_ISUP,
GP/B_Init by B_PA

()

msc EWSD_run_D
inherits OO_|nitial

with redefined

GP/A_lnit by A_ISUP,
GP/B_Init by B_BA

(d)

(b)

msc EWSD_all_runs

with A_PA, A_ISUP, CP_lInit, B_PA, B_BA

GPIA cP GP/B
I;I [I:I
CLEAR
APA 1 by B_PA
or CLEAR ACK or
A lsup al al B BA

CP_Init

CALL DATA

b2 b2
RELEASE C

b3 b3
CALL DATA

b4 b4
RELEASE C

b5 b5

(e)

Figure 8. Object oriented MSC descriptions of the EWSD example

10

MSC type definitions Init_GP/A and Init_GP/B of the initial MSC (Figure 7) are rede-
fined: Init_.GP/A by A_ISUP of Figure 4 (c), Init_.GP/B either by B_PA of Figure 4 (d)
or B_BA of Figure 4 (e).

4. Discussion

In the previous section two alternative but nevertheless related modelling techniques have
been confronted: Composition techniques and OO-techniques. In this final discussion,

advantages and disadvantages of both techniques collected as experienced during the
analysis of the EWSD example shall be summarized.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 11

4.1. Advantages and disadvantages of composition techniques

The EWSD example shows that the proposed MSC composition techniques provide a
very powerful means for combining MSCs in a compact and elegant manner. By using
additional constructors, like the ’or’ in Section 3.2, complete MSC specifications can be
described by means of only one expression.

Looking at the EWSD development process, environmental merge and synchronisation
condition merge seem to be closest to the current use of the EWSD specific diagrams, i.e.,
peripheral variations are described in a similar manner as shown in the Figures 4 and 6.

Main problem of such composition techniques is that the overview about the complete
system may easily get lost. A good compromise seems to be the synchronisation merge
(cf. Sections 2.1 and 3.2): Within synchronisation merge, all instances are included in one
MSC which are necessary to describe the message flow without splitting messages into
send- and reception events. Thus, the context remains constantly visible. Synchronisation
merge has been used within Phillips/PKI to solve the horizontal paging problem [7].

One step towards a more user friendly representation would be the development of a
graphical representation of composition operations instead of abstract textual formulas.
Several proposals have been made into this direction. Generalization of MSC overview
diagrams [11,3], the tree notation in GEODE [2,1]; and, as described in Section 3.3, the
combination of MSC types are all very promising.

4.2. Advantages and disadvantages of OO-techniques

The OO-techniques, as they are used here, have the advantage that MSCs which belong
together are integrated within a larger frame from the very beginning. Whereas pure
composition techniques may easily end up in something like a puzzle, OO-techniques
could be compared with a large painting where all parts remain integrated within the
context.

The MSC type concept, although types are not characteristic to object-orientation,
turned out to be very promising.! The use of types within other types can be viewed as
a special graphical representation of the environmental merge. In this context additional
constructors, like the or in Figure 8 (e), may allow a compact and intuitive description
of complete MSC specifications.

Characteristic OO-techniques like inheritance and virtuality seemed to be less fruitful
for the EWSD example. Using the proposed concepts for inheritance, virtuality, and
redefinition [5,6] one would get a rather large number of MSCs with redefined parts. For
each variant one needs a different description. Furthermore, MSCs as shown in Figure 8
(c) and (d) are neither graphical nor intuitive.

5. Outlook

The EWSD example clearly demonstrates that advanced structural concepts for MSCs
are necessary for a specification of modern telecom systems. The development and inves-
tigation of composition techniques and OO-techniques is a central goal of the present ITU
study period 1993 - 1996. In particular, parallel merging operations have to be developed

'We would like to mention that there is some ongoing discussion in ITU-T SG 10 Q.9 on the replacement
of the submsc construct by a more general MSC type concept.

SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 12

based on solutions proposed so far. Abstract composition formulas should be replaced by
graphical notations. Therefore we started to experiment with generalized MSC overview
diagrams. The MSC type concept seems to be very useful and should be elaborated for
integration into the revised 7.120. According to this case study, the use of MSC types
can be viewed as a graphical representation of the environmental merge. Typical OO-
techniques, i.e., inheritance and virtuality, need further studies before conclusions can be
drawn. For individual MSCs at least, these concepts seem to be less appropriate. It should
be discussed whether it is more fruitful to declare complete MSCs as virtual (instead of
sub-diagrams) and to apply inheritance to whole MSC documents or sub-documents.

Acknowledgements

The elaboration of this paper was funded partially by the KWF-Project No. 2555.1
‘Graphical Methods in the Test Process’. We would like to thank Jurgen Hennicke and
Hanspeter Ruckstuhl from the public switching systems division of the Siemens AG for
providing the EWSD example and for valuable discussions.

REFERENCES

1. V. Encontre. MSC Extensions/Restrictions. Reference Manual - GEODE Simulator,
Chapter 6, Verilog SA, Toulouse (France), 1993.

2. V. Encontre, E. Delboulbe, P. Gavaud, and A. Boussalem. Combining Services, Mes-
sage Sequence Charts and SDL: Formalism, Method and Tools. In O. Faergemand
and R. Reed, editors, SDL’91 Evolving Methods. North-Holland, 1991.

3. J. Grabowski, P. Graubmann, and E. Rudolph. Towards an SDIL-Design-Methodology
Using Sequence Chart Segments. In O. Faergemand and R. Reed, editors, SDL 91
FEvolving Methods. North-Holland, 1991.

4. O Haugen. MSC - Type Concept. ITU-T SG 10 Experts Meeting in Darmstadt
(Germany), March 1993.

5. O Haugen. MSC - Type Concept. ITU-T SG 10 Meeting in Geneva (Switzerland),
October 1993.

6. O Haugen. MSC - Structural Concepts (& Discussion). ITU-T SG 10 Rapporteurs
Meeting in Turin (Italy), April 1994.

7. S. Mauw, M. van Wijk, and T. Winter. Syntax and Semantics of Synchronous Inter-
workings. In O. Faegemand and A. Sarma, editors, SDL’93 - Using Objects, October
1993.

8. E. Rudolph. Case Study on MSC Structural Concepts. ITU-T SG 10 Meeting in
Geneva (Switzerland), October 1994.

9. E. Rudolph. Generalized Causal Ordering. ITU-T SG 10 Rapporteurs Meeting in
Turin (Italy), April 1994.

10. Swiss PTT. Weakening the time ordering along MSC instances (Proposal for discus-
sion). Delayed Contribution D.94-X/3, CCITT SG X (WP X/3) Interims Meeting in
Geneva, November 1992.

11. 7.100 T (1993). SDL Methodology Guidelines. Appendix I to Z.100. ITU-T, July
1993.

12. 7.120 (1993). Message Sequence Chart (MSC). ITU-T, September 1994.

