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Abstract

In this paper the most relevant issues of the standard-
ization of the Message Sequence Chart (MSC) lan-
guage within the CCITT Study Group X are discussed.
The history of the new MSC recommendation Z.120 is
sketched. Different types of diagrams which are closely
related to MSCs are compared, since they build the ba-
sis for the MSC language. We distinguish these dia-
grams from the standardized MSC' language by using
the term Sequence Charts (SCs). Subsequently, the
MSC' language s introduced and several approaches
towards a forthcoming formal MSC semantics are pre-
sented.

1 Introduction

Sequence Charts (SCs) are a widespread means for
the graphical visualization of selected system runs
(traces) within communication systems. They can be
viewed as a special trace language, which mainly con-
centrates on sending and consumption of messages by
synchronously or asynchronously communicating pro-
cesses. Obviously, main advantage of an SC is its
clear graphical layout (e.g. fig. 1, 2), which immedi-
ately gives an intuitive understanding of the described
system behaviour. SCs have been used successfully in
industry and standardization bodies.

In industry, SCs are used mainly as a requirement
language to define crucial system traces and as a test
case description language. Beyond that, SCs with
additional concepts, in particular those enhanced by
SDL language elements [7] or SC composition mecha-
nisms [8], offer methods for developing SDL specifica-
tions, which serve as the basis for an implementation.

Several working groups within standardization bod-
ies (e.g. CCITT, ISO/IEC) have defined their own
variants of SCs, e.g. arrow diagrams, information
flow diagrams, or time sequence diagrams. They are
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applied in standard definitions (e.g. parts of ISDN
[15, 14]) or used to illustrate standards specified by
formal description techniques like SDL, Estelle, or LO-
TOS [1]. The various sorts of SCs mainly differ with
respect to syntax and terminology. There are only mi-
nor semantic differences [18] and hence, a standardiza-
tion is feasible.

Since there is a need to provide a more formal basis
for SCs and to harmonize their use within industry
and standardization bodies, the CCITT Study Group
X (CCITT SG X) developed the Message Sequence
Chart (MSC) recommendation Z.120 [21] from 1989 —
1992. Tt is based on the family of non standardized
SC types, but also includes some additional features
like submsc and coregion.

2 The history of the MSC language

Within the SDL user guidelines of 1988 [20] only a
short section has been devoted to SCs as one of the
auxiliary diagrams, though SCs may very well play
an important role. This was pointed out at the SDL
Forum 1989 in Lisbon within the paper ”Putting Ez-
tended Sequence Charts to Practice” [7]. The termi-
nology FExtended Sequence Charts (ESC) was used for
SCs enhanced by SDL symbols and a few further con-
structs. ESCs were presented as a means for step-
wise refinement and enrichment of SCs from which fi-
nally SDL specifications may be derived. Beyond that,
the role of SCs within the entire software development
process, from requirement specification until test case
specification, was pointed out.

Due to the great interest SCs found at this SDL
Forum, their standardization in graphical and textual
representation within the CCITT was suggested. The
standardization was approved at the CCITT meet-
ing in Helsinki, June 1990, and the new language was
called Message Sequence Chart (MSC). It was decided
there to first concentrate on the basic language con-



structs of MSC, i.e. on message flow diagrams with-
out further extensions, and in particular to work out
a clear semantics for them. One of the reasons for
this restriction, especially to refrain from adding SDL
symbols to MSCs, was to avoid too much overlap with
SDL [19]. In Helsinki it was not yet decided to prepare
a separate recommendation for MSCs. The standard-
ization activities for MSCs were intended to be part
of the new "SDL Methodology Guidelines” [1], which
were aiming at a guideline for the effective use of SDL.
Soon after, however, it was recognised that the stan-
dardization of MSCs would go beyond the SDL guide-
lines and it was also felt that MSCs should not be
related only to SDL.

Though i1t was not the intention to develop a fourth
formal description technique, in addition to SDL, LO-
TOS, and ESTELLE, the MSC language was looked at
as another specification language which may be used
in combination with further languages for system de-
velopment. Consequently, at the next CCITT meeting
in Geneva, Feb. 1991, MSCs were chosen to become
a separate recommendation. At this Geneva meeting
also the inclusion of further language constructs going
beyond pure MSCs was agreed upon.

These concepts were elaborated until the CCITT
meeting in Recife, Dec. 1991. The language constructs
were adjusted to cover the needs of other CCITT
recommendations employing Message-, Signal-, or
Information-Flow Diagrams. Particularly recommen-
dation Q.65: "Stage 2 of the method for the charac-
terisation of services supported by an ISDN” [14] was
involved. Q.65 is fundamental for other recommenda-
tions in this area. At the CCITT meeting in Recife
also the form of the draft MSC recommendation was
modified to get in accordance with the SDL recom-
mendation [19].

At the closing session of the CCITT study period
1989 — 1992 in Geneva, May 1992, the new MSC rec-
ommendation Z.120 was approved [21]. The work on
MSCs in the current CCITT study period 1993 — 1996
started at a CCITT SG X interims meeting in Geneva,
Nov. 1992. During this meeting the discussion focused
on different approaches towards a formal MSC seman-
tics (cf. section 5) and on the first feedback by MSC

users.

3 Comparison of different SC variants

Within this chapter different types of SCs which
served as precursor for MSCs are compared. The
investigated SCs are Extended Sequence Charts [7],
Time Sequence Diagrams according to [11], Arrow

Diagrams according to [15], Information Flow Dia-
grams [14], Sequence Charts according to [3], Mes-
sage Flow Diagrams [4], Synchronous Interworkings
[13] and Siemens-SCs [16]. At the end of this chapter
similarities and differences of the investigated SC vari-
ants are summarized in tabular form. It was the aim of
the MSC standardization that MSC should cover the
most common language concepts of various SC vari-
ants. Hence MSCs are included into this summary in
order to show to which extend this has been achieved.

3.1 The most common SC constructs

All sorts of SCs show the information flow between
instances (e.g. blocks, services, or processes) for spe-
cific system runs. They abstract from the internal
entity structure by concentrating on the relevant in-
formation, namely the instances and the exchanged
information. Just by looking at the different diagrams
(e.g. fig. 1, 2) we find some SC constructs which are
quite similar for all sorts of SCs. These constructs are
instances which exchange information, messages (or
signals) which describe the information exchange and
time representation.

Instances commonly are represented by vertical
axes or columns which often are characterized by
attached descriptions, e.g. type, or instance names.
Messages usually are denoted by horizontal arrows.
Sender and receiver of a message are indicated by ori-
gin and head of the message arrow respectively. The
exchanged information is characterized by additional
arrow inscriptions concerning message name, parame-
ter names, or parameter values.

Within SCs no global time is assumed. Every in-
stance axis has its own time scale and time is running
from top to bottom. Different axes may be related
by communication events, e.g. sending, reception, or
consumption of a message. The rules of the time re-
lation between the communication events are deter-
mined by the communication mechanism. By that,
one can distinguish between asynchronous and syn-
chronous communication. Asynchronous communica-
tion means that a message must be sent before it can
be received and be received before it can be consumed.
Synchronous communication describes a simultaneous
sending and consumption of a message.

3.2 Extended Sequence Charts

Extended Sequence Charts (ESCs) are described with-
in [7]. The authors define three sorts of ESCs, namely
the standard form, the state form and the state input
form, which provide a four step method to develop
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Figure 1: Extended Sequence Charts

SDL specifications. The method is based on the step-
wise enrichment of ESCs with SDL symbols. Each
step concentrates on a specific aspect of SDL. The
first three steps are reflected by the three ESC forms.
All variants of ESCs include the language elements
mstance, environment, and message. Instances and
environments are represented by vertical axes. They
communicate via messages which are described by
solid arrows. Different entities in the system environ-
ment can be characterized by different environment
axes. They are distinguished from instance axes by
showing different head symbols. For all sorts of ESCs
it is assumed that the events along an instance axis are
totally ordered. Contrary to that, along an environ-
ment axis no time ordering is assumed. Furthermore,
due to SDL, for all ESCs an underlying asynchronous
communication mechanism is supposed.

ESC standard form. The ESC standard form de-
scribes the pure message flow between the instances of

a system and the system environment. The standard
form (fig. 1 (a)) includes all aforementioned language
constructs and additionally the dialog. A dialog is rep-
resented by a bi-directional arrow and is meant to be
an abbreviation for a message with a corresponding
reply message.

ESC state form. By enriching the standard form
with SDL symbols the ESC state form (fig. 1 (b)) is
gained which is meant to be a refinement of the stan-
dard form. All symbols of the standard form are con-
tained in the state form apart from the dialog which
on this stage of design should be resolved by messages.
Beyond that the state form includes the SDL symbols
state, start, task, comment, stop, ESC decision-result
and ESC create. The latter two are SDL symbols
specifically adjusted to the needs of ESCs.

ESC state input form. The ESC state input form
takes the asynchronous communication mechanism via



FIFO buffers of SDL into account. Therefore, it allows
to specify sending, reception and consumption of mes-
sages as separate events. Within the state input form
the set of symbols used in the state form is extended
by an SDL input (fig. 1 (c)). The input is used in ad-
dition to the message symbol to distinguish between
reception (i.e. queue entry) and consumption of a mes-
sage. This distinction allows the description of special
SDL situations like crossing or overtaking of messages.

3.3 Time Sequence Diagrams

Time Sequence Diagrams (TSDs) according to [11] are
used for describing OSI services (fig. 2). They illus-
trate how sequences of interactions between service
users and a service provider are related in time. Ev-
ery service user has its own local view on the service
provider. The local views are represented by verti-
cal axes. The exchange of so-called service primitives
(SPs) is denoted by horizontal arrows which touch the
local views. A reference number may be associated
with SPs. In this case, identical reference numbers
are associated with related SPs. Where additional in-
formation is needed, it can be presented by means of
notes associated with the related SP.

The communication events are totally time ordered
along each local view. Relations between events on
different axes can be expressed by diagonal dashed
lines (fig. 2 (a)), or in simple cases by solid lines (fig. 2
(b)). In addition a wavy line may be used to express
unrelated events. At top of a local view may be a
further description (e.g. a circle above the axis) with
an identification for reference purposes. Where useful,
a TSD indicates a relationship existing among local
views by means of lines joining the circles representing
these local views.

3.4 Arrow Diagrams

Arrow Diagrams (ADs) or Time Sequence Diagrams
according to CCITT recommendation Q.699 [15] are
used to describe the interworking between the digi-
tal subscriber signalling system layer 3 protocol and
the signalling system no. 7 ISDN user part. The ba-
sic model for an interworking entity (IE) consists of
three subentities, namely an incoming signalling sys-
tem (ISS), a call control (CC) and an outgoing sig-
nalling system (OSS). ISS and OSS are represented
by vertical axes, whereas a CC is denoted by a col-
umn. It is assumed that the events along the axes
and the columns are totally ordered. ISS, OSS and
CC communicate via so-called primitives which are
represented by dotted arrows. Arrows with a waved

line, if present, represent tones or announcements sent
inband.

Within a CC column the following possibilities exist
to indicate the relationship between incoming and out-
going primitives. A solid line denotes unconditionally
related primitives, a dotted line describes a relation
which is only valid within the described context and a
waved line denotes unrelated primitives. Furthermore,
a collection of CC actions and functions performed on
transmission or reception of a signalling message are
formulated by means of special symbols (which can be
found in [15]).

IEs may communicate with other IEs by means of
so-called signalling messages. Signalling messages are
represented by solid arrows and can only be exchanged
between the ISS and OSS entities of different IEs.
Fig. 3 shows an arrow diagram containing a complete
IE and part of a second IE. An AD may include more
than one complete IE.

3.5 Information Flow Diagrams

Information Flow Diagrams (IFDs) [14] are used
within stage 2 of the overall method for deriving
switching and signalling recommendations for ISDN
services. They are closely related to TSDs (cf. section
3.3). An IFD (fig. 4) shows the information exchange
of functional entities (FEs) which are represented by
columns. At the top of an IFD each FE is represented
by a circle which includes a type information. Since
in general more than one instance of one FE type can
be instantiated, an instance identification (e.g. FE1 in
fig. 4) is associated to each circle. Relations between
FEs (e.g. r; in fig. 4) are indicated by solid lines.
Within the IFD definition messages exchanged be-
tween FEs (called information flows) and messages ex-
changed between a FE and a user (called user inputs
and user outputs) are distinguished, even though the
same symbols are used. Here, we refer to all these
message exchanges as messages. Messages are shown
as arrows. A descriptive name (e.g. ESTABLISH X)
1s written in capitals above the arrow and a label
(e.g. req.ind) is written below in lowercase characters.
If necessary the content of a message (i.e. value of a
message parameter) can be shown in lowercase letters
enclosed in brackets, following the message name.
Reception and emission of messages are shown by
horizontal lines across the relevant FE columns. The
absence of a line indicates the lack of reception or emis-
sion. A reference number (e.g. 100-106 in fig. 4) is
assigned to each reception and emission in the overall
sequence at which they are shown. The most signifi-
cant FE actions can be shown within the FE column.
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For these actions the following holds. Actions shown
below a line representing a message reception are de-
pendent upon that reception (i.e. they cannot be car-
ried out beforehand). Actions shown above a line rep-
resenting a message emission must be completed prior
to the emission. For an actions shown immediately
below a line representing a message emission no con-
straint on the relative ordering of emission and action
is intended.

3.6 Sequence Charts for EWSD

Sequence Charts according to [3] (EWSD-SCs) are
employed at the Siemens AG (Germany) for the spe-
cific needs of the EWSD (Elektronisches Wahlsystem
Digital) system development. EWSD-SCs show the
communication links between entities like blocks, pro-
cesses, services, and environments. Entities are rep-
resented by columns. Horizontal arrows denote com-
munication links. Therefore, a list of messages may
be associated with an arrow. Messages denoting
physical signals are represented with additional stars

(e.g. ¥***DIAL TONE***>). Furthermore, EWSD-SCs
offer facilities to express logical relations like OR and
AND between messages (fig. 5). Additionally, global
initial and final system states by means of conditions
can be specified. Also there exist a possibility to pa-
rameterize messages and conditions. Special symbols
may be used to express time delay or time supervision.

3.7 Message Flow Diagrams

Message Flow Diagrams (MFDs) are the user interface
of the CARA system [4] for developing protocol spec-
ifications. A MFD shows the message flow between
protocol entities (PEs) which are represented by ver-
tical lines. Messages are represented by arrows. They
are sent and received at ports which are owned by PEs.
Messages are transmitted via so-called links. A link
may represent any communication media like lower
protocol levels or specific physical media. A MFD
assumes asynchronous communication which means
that along a PE axis communication events (head and
origin of message arrows) are totally ordered and a
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message must be sent before it can be received. The
MFD language includes a special symbol, the so-called
black hole, to specify the loss of a message. Contrary
to all other mentioned SC variants, MFDs include a
data concept. It is possible to use and to declare data
within a MFD and to define rules for the processing of
data. MFDs are a part of the CARA system. CARA
1s based on the model of communicating rule systems
(CRS) and assumes that the behaviour of a protocol
can be expressed by a set of MFDs. Therefore, MFDs
are transformed into rules which are interpreted and
analysed like Prolog programs. During the process
of protocol specification the CARA system analyses
MFD inputs and tries to apply rules which are in the
already developed CRS database. If this is not possi-
ble a new rule is created or the user is asked for help.
The result of this stepwise protocol development is a
complete CRS which represents the protocol specifi-
cation. Based on CRS a formal semantics for MFDs
is defined. It is given by the formalism used to map
the graphical MFD language into a CRS and the in-
terpreter of the CRS within the CARA system.

3.8 Synchronous Interworkings

Synchronous Interworkings (IWs) [13] are used in the
requirement phase of the development process at PKI
Niirnberg (Germany) for describing the message inter-

actions between functional blocks. For IWs a graph-
ical and a textual representation is defined (fig. 6).
Within the graphical form, functional blocks are rep-
resented by vertical lines and messages are represented
by horizontal arrows. Communication between two
functional blocks is meant to be synchronous. IWs
can be parameterized. A parameter of an IW stands
for message names, process names, or message param-
eter names. IWs do not include symbols which may be
used to describe further actions of a functional block.
For IWs a formal semantics definition exists which is
explained in section 5.3.

3.9 Siemens-SC

At an CCITT SG X meeting in Geneva, Nov. 92, the
Siemens AG (Germany) presented another SC variant
which we name Siemens-SC [16]. Within Siemens-SCs
communicating entities are represented by vertical
axes. They offer facilities for describing synchronous
and asynchronous communication by means of dashed
and solid arrows. Furthermore, there exist symbols to
represent actions, timer sets, time-outs and conditions
(symbols to denote system states). Siemens-SCs have
a textual and a graphical representation (fig. 7). They
are used to describe the normal behaviour and exclude
special situations like message overtaking, process cre-
ation, or process termination.
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3.10 Summary

Within this section the similarities and differences
between the examined SC variants are summarized.
The comparison is arranged in the tables 1 — 3, each
of which considers a specific aspect. Although the
MSC language is introduced not until the subsequent
chapter, we include respective information here. This
shows that MSC covers most of the similar concepts
and offers therefore a broad and more formal basis.
However, the MSC language definition is not yet to-
tally elaborated. Some language constructs are un-
der discussion, or in preparation. They are mentioned
within the tables.

4 The MSC language

Within this chapter the MSC language is introduced.
First the meaning of MSCs is explained by relating
them to SDL specifications, MSC/PR and MSC/GR
are described, the basic and afterwards the structural
language constructs are introduced. Finally, we de-
scribe the so-called composition rules for MSCs since
they are useful to combine several MSCs in order to
come up with more complete MSC specifications.

4.1 The meaning of MSCs

MSCs show the message flow between entities like
blocks, services, or processes. We explain the mean-
ing of an MSC by relating it to SDL process diagrams
[2, 19]. Let us consider the MSC in fig. 9 which de-
scribes a selected trace piece of the connection set-up
in the Inres service specification [10]. Tt could equally
be represented using SDL process diagrams with cer-
tain additions and modifications (fig. 8, dashed sym-
bols stand for not followed branches, bold-lined ar-
rows indicate the message flow). The diagram in fig. 8
contains at least the same information as the MSC
in fig. 9. Within the MSC an Initiator-user sends a
connection request (ICONreq) to the Initiator. The
Initiator transmits the request (TCON) to the Respon-
der entity which afterwards indicates the connection
request (ICONind) to its user.

However, the MSC 1n fig. 9 obviously is much more
transparent than fig. 8, since it concentrates on the
relevant information, namely the instances (Initiator,
Responder) and the messages involved in the selected
trace piece (ICONreq, ICON, ICONind). Beyond that,
what is even more important, the relation of MSCs
to an SDL specification may be rather sophisticated.
The MSC instances very often represent collections of
(SDL) processes on a higher level of abstraction such



SC representation symbols concerning representation of
graphical | textual || SDL entity timer local nonlocal
actions states states
ESC standard form X X
ESC state form X X SDL task | SDL timer || SDL state
ESC state input form X X SDL task | SDL timer || SDL state
Time Sequence Diagrams X
Arrow Diagrams X X
Information Flow Diagrams X X X
EWSD-SCs X X X X
Message Flow Diagrams X
Synchronous Interworkings X X
Siemens-SC X X X X X X
Message Sequence Charts X X X X X X

Table 1: Diagram representation, symbols at entity axes and state representation

communication synchronization formal basis

asynchr. | synchr. semantics | combining diagrams
ESC standard form X
ESC state form X
ESC state input form X
Time Sequence Diagrams X X
Arrow Diagrams X X
Information Flow Diagrams X
EWSD-SCs X
Message Flow Diagrams X rule system set union of rules
Synchronous Interworkings X process algebra | merging, sequencing
Siemens-5C X X
Message Sequence Charts X (in prep.) (in preparation) (in preparation) composition rules

Table 2: Communication, synchronization

and formal basis

architectural information external || other SC specific characteristics
(e.g. communication links) notes
ESC standard form dialog symbol
ESC state form
ESC state input form
Time Sequence Diagrams at the top of the diagram X different diagrams for two- and
multi-party comunication
Arrow Diagrams X symbols denoting functions performed on
transmission or reception of messages
Information Flow Diagrams || at the top of the diagram X

EWSD-SCs

within the diagram

relations between messages (e.g. AND, OR)

Message Flow Diagrams

- data handling

- black hole (spec. of message loss)

Synchronous Interworkings

Siemens-SC

abbreviations for long names

Message Sequence Charts

coregion (cf. section 4.3)

Table 3: Architectural information, external notes and other SC specific characteristics




as blocks, thus reflecting the stepwise development of a
specification according to refinement strategies. Gen-
erally, the relation between an MSC and an SDL spec-
ification can be characterised in the following way (for
ACT cf. [9]):

"Bach sequentialization of an MSC describes a trace
from one equivalence class of nodes to another equiva-
lence class of nodes of an Asynchronous Communica-
tion Tree (ACT) presenting the behaviour of an SDL
specification.”

In any case the correspondence between fig. 8 and
fig. 9 may serve to give a good intuitive idea about
the meaning of an MSC. It also demonstrates that an
MSC describing one possible scenario can be looked
at as an SDL skeleton [1, 7].

4.2 MSC/PR and MSC/GR

Analogous to the SDL recommendation [19] the new
MSC recommendation includes two syntactical forms,
MSC/PR as a pure textual and MSC/GR as a graph-
ical representation. An MSC in MSC/GR represen-
tation can be transformed easily into a corresponding
MSC/PR representation. The other way round the
same problems arise as in SDL since MSC/PR (and
SDL/PR) include no graphical information like height,
width, or alignment of symbols and text. An exam-
ple of the MSC/GR and the corresponding MSC/PR

representation is shown in fig. 9.
4.3 Basic language elements

The basic language of MSCs includes all constructs
which are necessary in order to specify the pure mes-
sage flow. For MSCs these language constructs are in-
stance, message, action, set—reset (time supervision),
set—time-out (timer expiration), stop, create and con-
dition.

Instance, message and system environment.
The most basic language constructs of MSCs are in-
stances, e.g. entities of SDL systems, blocks, processes,
or services, and messages describing the communica-
tion events. In the graphical representation instances
are shown by vertical lines or alternatively by columns
(fig. 9 (a)). Within the instance heading an entity
name, e.g. process type, may be specified in addition
to the instance name. The message flow is presented
by horizontal arrows with a possible bend to admit
message overtaking or crossing (e.g. fig. 10 (a)). The
head of the message arrow denotes the message con-
sumption, the opposite end the message sending. In
addition to the message name, message parameters

in parentheses may be assigned to a message. Along
each instance axis (column) a total ordering of the de-
scribed communication events is assumed. FEvents of
different instances are ordered only via messages, since
a message must be sent before it is consumed.

Within an MSC the system environment is repre-
sented by the frame symbol which forms the bound-
ary of an MSC diagram (e.g. fig. 9, 10). Contrary
to instances, no ordering of communication events is
assumed.

Actions and timer constructs. Within an MSC
it is possible to indicate actions and timer handling.
An action is represented by a rectangle containing ar-
bitrary text. The timer handling contains two con-
structs: the setting of a timer and a subsequent time-
out (timer expiration) or the setting of a timer and
a subsequent timer reset (time supervision). The set-
ting of a timer is represented by a small rectangle,
whereas time-out and reset are described by special
timer arrows. A timer arrow starts at a correspond-
ing set symbol (rectangle) and ends below at the same
instance. A textual timer description (e.g. name and
duration) may be associated with the arrows. To each
set a corresponding time-out or reset has to be spec-
ified and vice versa. Action and timer constructs are
shown within fig. 10.

Instance stop and instance creation. Creation
and termination of instances within communication
systems are quite common events. This is due to the
fact that most communication systems are dynamic
systems where instances appear and disappear dur-
ing system lifetime. Consequently, a system designer
needs features to describe such events. The corre-
sponding MSC language elements are shown in fig. 10
(b). The create symbol is a dashed arrow which may
be associated with textual parameters. A create arrow
originates from a father instance and points at the in-
stance head of the child instance. The termination of
an instance graphically is represented by a cross (stop
symbol) at the end of the instance axis.

Conditions. A condition either describes a global
system state referring to all instances contained in
the MSC (global condition) or a state referring to a
subset of instances (nonglobal condition). Conditions
can be used to emphasise important states within
an MSC or for the composition and decomposition
of MSCs (cf. section 4.5). In the MSC/GR repre-
sentation global and nonglobal conditions are repre-
sented by hexagons covering the involved instances.
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msc Partial_Connection_Set-up

Initiator: Responder:
process ISAP- process ISAP-
Manager-Ini Manager-Resp
ICONreq
ICON .
ICONind
|

msc Partial_Connection_Set-up;
inst Initiator, Responder;
instance Initiator: process ISAP-Manager-Ini;
in [CONreq from env;
out ICON to Responder;
endinstance;
instance Responder: process ISAP-Manager-Resp;
in ICON from Initiator;
out ICONind to env;
endinstance;
endmsc;

Figure 9: MSC in MSC/PR and in the corresponding MSC/GR representation

In fig. 10 (c) the instance Medium_service is not cov-
ered by the condition Disconnected and therefore, it is
not involved in the state to which the condition refers.
In the MSC/PR representation conditions are in-
troduced at two different places: on the level of MSCs
in form of global conditions and on the level of in-
stances referring to an arbitrary set of instances. In
the second case the condition may be local, i.e. at-
tached to just one instance. If the condition refers
to several instances then the keyword shared together
with an instance list denotes the set of instances to
which the condition is attached. By means of the key-
words shared all, also in the second case a condition
referring to all instances may be defined. However, for
a clear structuring of an MSC in MSC/PR representa-
tion, the global condition syntax form may preferably
at least at the beginning and at the end of an MSC.

4.4 Structural language elements

The structural language elements of MSCs include all
constructs which can be used to specify more general

MSCs or to refine MSCs. Therefore, the current MSC
recommendation offers the coregion and the submsc.

Coregion. Along an MSC instance message events
are totally ordered. This may be not appropriate for
instances referring to a higher level than SDL pro-
cesses. Therefore, a coregion is introduced. A coregion
denotes a piece of an MSC instance where the spec-
ified communication events are not ordered. Within
one coregion only sending (origins of message arrows)
or only consumption events (arrow heads) may be
specified. An example containing coregions is given

in fig. 11 (a).

Submsc. An MSC instance can be refined by an-
other MSC, which then is called submsc. A submsc
is attached to the refined instance by means of the
keyword decomposed. The submsc represents a de-
composition of this instance without affecting its ob-
servable behaviour. The messages addressed to and
coming from the exterior of the submsc are charac-
terised by the messages connected with the submsc
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Figure 10: MSCs with basic language constructs

border (frame symbol). Their connection with the ex-
ternal instances is provided by the messages sent and
consumed by the corresponding decomposed instance,
using message name identification. It must be possi-
ble to map the external behaviour of the submsc to
the messages of the decomposed instance. The order-
ing of message events specified along the decomposed
instance must be preserved in the submsc.

Actions and conditions within a submsc may be
looked at as a refinement of actions and conditions in
the decomposed instance. Contrary to messages, how-
ever, no formal mapping to the decomposed instance
is assumed, 1.e. the refinement of actions and condi-
tions need not obey formal rules. In fig. 11 (b) the
refinement of the instance Inres_service (fig. 11 (a)) is
shown.

4.5 Composition and decomposition rules

Since one MSC only describes a partial system be-
haviour, it is advantageous to have a number of simple
MSCs that can be combined in different ways. To de-
termine possible combinations the already introduced
(global and nonglobal) conditions can be used employ-
ing certain composition and decomposition rules. The
presented rules are not yet part of [21] but it is in-
tended to include them in the future. Presently they
are part of the SDL methodology guidelines [1].

4.5.1 The meaning of composition and de-

composition of MSCs

MSCs can be composed by name identification of fi-
nal and initial (global or nonglobal) conditions. The
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Figure 11: MSCs with structural language elements

other way round, MSCs can be decomposed at in-
termediate (global or nonglobal) conditions. Initial
conditions denote the starting states, final conditions
represent end states, and intermediate conditions de-
scribe arbitrary states within MSCs. The terms ini-
tial, intermediate and final conditions are only used in
order to simplify this description, they are not intro-
duced within the MSC recommendation. An example
of an MSC composition by means of global conditions
is shown in fig. 12. The MSC Complete_system_run (e)
is a composition of the MSCs Connection_set_up (a)
and Data_transfer/connection_release (b). Composi-
tion and decomposition of MSCs obey the subsequent
rules for global and nonglobal conditions, whereby
global conditions refer to all instances involved in the
MSC whereas nonglobal conditions are attached to a
subset of instances.

4.5.2 Composition of MSCs

The composition of MSCs is defined by means of global
and nonglobal conditions.

Composition by means of global conditions.
Two MSCs MSC! and MSC2 can be composed if
both MSCs contain the same set of instances and if
the initial condition of MSC2 corresponds to the final
condition of MSC1! according to name identification
(cf. fig. 12). The final condition of MSC! and the ini-
tial condition of MSC2 become an intermediate con-
dition within the composed MSC. Symbolically:

(1) MSC1 = MSC1’ Condition
(2) MSC2 = Condition MSC2’
(3) MSC1 * MSC2 = MSC1’ Condition MSC2’

Equation (1) shall denote that MSC! can be writ-
ten as an MSC section MSC1’ and a subsequent final

condition Condition. The second equation (2) denotes
that MSC2 starts with the initial condition Condition
which is followed by the MSC section MSC2’. Equa-
tion (3) denotes the composition of MSC! and MSC?2
(using the asterisk symbol for composition). The com-
posed MSC can be written in form of a starting MSC
section MSC1’, an intermediate condition Condition
and a subsequent MSC section MSC2.

Composition by means of nonglobal conditions.
Two MSCs MSCI and MSC2 can be composed by
means of nonglobal conditions if for each instance (I)
which both MSCs have in common MSC! ends with
a nonglobal condition and MSC2 begins with a corre-
sponding nonglobal condition. In addition each non-
global condition of MSC2 must have a corresponding
nonglobal condition in MSC1. If I(MSCi) (i=1,2) de-
notes the restriction of an MSC7 to the events of in-
stance I, this can be written symbolically:

(1) I(MSC1) = [(MSC1)’ Condition

(2) I(MSC2) = Condition I(MSC2)’

(3) I(MSCI)* I(MSC2) = I(MSC1)’ Condition 1(MSC2)

An example is given in fig. 12. The MSC Connec-
tion_failure (f) is a composition of the MSCs Re-
sponse_failure (c) and Request_failure (d) via the local
condition Disconnected. The MSC Response_failure
contains two instances Initiator and Responder. The
MSC Request_failure contains only one instance Initia-
tor to which the initial local condition Disconnected is
attached. The composition of MSC Response_failure
with MSC Request_failure only refers to the instance
Initiator, 1.e. MSC Response_failure is continued along
instance Initiator by MSC Request_failure. This also
shows the usefulness of nonglobal conditions which



makes a composition with respect to a subset of the
instances involved in the MSCs possible. Finally, it
should be noted that conditions with identical names
are discriminated by the listed instances to which they
are attached.

4.5.3 Decomposition of MSCs

Corresponding to the MSC-composition, MSCs can be
decomposed due to intermediate conditions.

Decomposition by means of global conditions.
An intermediate condition defines a possible MSC de-
composition by splitting an MSC MSC! at the inter-
mediate condition Condition into MSC2 and MSC3,
the intermediate condition being converted into a fi-
nal condition for MSC2 and an initial condition for

MSCS:

(1) MSC1 = MSC2’ Condition MSC3’
(2) MSC2 = MSC2’ Condition
(3) MSC3 = Condition MSC3’

Decomposition by means of nonglobal condi-
tions. A subset of intermediate nonglobal conditions
allows a decomposition of an MSC MSC1 into MSC2
and MSC3 if all nonglobal conditions of this subset
refer to different instances and no message is cut into
pieces by means of the decomposition, i.e. both mes-
sage input and the corresponding output belong to
either MSC2 or MSCS3:

(1) I(MSC1) = [(MSC2) Condition I(MSC3)’

(2) I(MSC2) = [(MSC2)’ Condition

(3) I(MSC3) = Condition I(MSC3)’

E.g. in fig. 12 the MSC Connection_failure (f) can
be decomposed into the MSCs Response_failure (c)

and Request_failure (d) at the local condition Discon-
nected.

5 Towards a formal MSC semantics

Within this section three approaches towards a for-
mal MSC semantics are sketched. All three have
been briefly presented at an CCITT SG X meeting,
Nov. 1992 in Geneva. They can be considered the
starting points from which the MSC semantics discus-
sion within CCITT SG X will proceed. The approach
discussed first (section 5.1) uses an interleaving model
and is based on finite automata [6, 12]. The second
approach (section 5.2) adopted a full partial order rep-
resentation for system traces and is based on Petri net

theory [5]. The third approach (section 5.3) again ap-
plies an interleaving model and is based on process

algebra [13].
5.1 An automaton semantics for MSCs

Formally, a single MSC can be interpreted as a graph
with two sorts of edges. The nodes represent com-
munication events, e.g. message sending and message
consumption. The edges denote the next-event and
the signal relation. The next-event relation describes
the order of the communication events along the in-
stance axis. The signal relation represents the order
between sending and consumption of a message. This
graph is called a next-event/signal (ne/sig) graph. The
ne/sig graph of an MSC can be interpreted as a global
state transition graph (GSTG), containing all possible
global states specified by the MSC. The GSTG cor-
responds to an automaton without explicitly defined
end states. The automaton which defines the MSC
semantics must accept all event traces which are con-
sistent with the partial order of the communication
events within the MSC.

Defining end states for an automaton arising from
an isolated MSC is rather trivial. But by means
of MSC composition rules (cf. section 4.5), a set of
MSCs (with conditions) may describe potentially non-
terminating sequences. In this case, the whole set of
MSCs is translated into a single ne/sig graph, which
may contain event loops and nondeterministic choices.
To find proper end states a termination criterion from
w-automata theory, due to Biichi [17], is used. Un-
fortunately there is no unique suitable end-state set
that turns a GSTG into a Buchi automaton. Instead,
various possible end-state sets correspond to liveness
properties of MSCs. Examples of such sets are given
in [6] and [12]. The main advantage of the sketched
semantics approach and the hereupon based MSC se-
mantics is its flexibility. According to the chosen set of
end states 1t is possible to analyse MSCs under various
points of view.

5.2 A Petri Net based MSC semantics

A second approach towards a formal MSC semantics
is based on Petri net theory [5]. As the idea of partial
ordering of signalling and instance events was one of
the leading principles during the definition of MSCs,
occurrence nets - which are the Petri net way of pre-
senting partial orderings - seem to be particularly well
suited for a basis of MSC semantics.

A MSC is defined to describe one particular sys-
tem trace of a communication system. For this trace
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Figure 13: MSC and the corresponding occurrence net representation

a semantics definition shall be provided by means of
a (labelled) occurrence net (also called causal net).
Occurrence nets immediately reflect the partial order-
ing of events and therefore suitably describe individual
traces within a distributed system. They also are very
well suited to handle the composition and decomposi-
tion of MSCs, because local and global conditions map
onto special sets of occurrence net elements which in
their turn describe reachable system states. For fur-
ther analysis, the rich mathematical theory behind oc-
currence nets, which was elaborated within Petri net
theory, can be employed. Thus, occurrence nets pro-
vide an elegant but also rather intuitively intelligible
way for the due MSC semantics definition. There is
a simple and quite intuitive mapping of MSCs onto
occurrence nets (cf. fig. 13).

Each instance axis of an MSC is mapped straight
away by converting the instance events one by one into
elementary labelled Petri net constructs. Equally la-
belled net elements are identified during this construc-
tion process. As next step, the Petri Net constructs
representing the instance axes are glued together via
equally labelled places resembling the messages in the
MSC. During this construction process the labelling of
the net elements takes over a considerable amount of
information which ensures the correct identification of
corresponding net elements. A list of the elementary
net constructs that are used for the transformation of
MSC language elements is given in [5]. A detailed de-
scription of the necessary labelling, its generation from
the MSC syntax and the definition of the construction
process is also to be found there.

5.3 A process algebra semantics for MSCs

As mentioned in section 3.8 for Synchronous Inter-
workings (TWs) a formal semantics is defined [13]. The

semantics 1s used to process, analyse, and combine
IWs. Within an IW a message interaction between
two entities can be split into two different events: the
output and the input of the message. But contrary to
MSCs, within IWs communication is meant to be syn-
chronous. A formal semantics for IWs is defined with
the use of the algebraic concurrency theory BPA (Ba-
sic Process Algebra). To that end BPA is extended by
two operators: IW merging and IW sequencing. The
class of IWs consists of all processes definable over
these two operators. The IW sequencing denotes a
vertical concatenation of two IWs. In case where the
IWs have all entities in common, the IW sequencing
corresponds to a real sequentialization in time. Events
belonging to entities, not common to both TWs, will
be unordered by the IW sequencing. The IW merging
of two IWs 18 their interleaved composition with the
restriction that the IWs are forced to synchronise on a
set of communication actions. This set consists of the
communication actions concerning every pair of enti-
ties which the IWs have in common. It is obvious that
not all IWs are merge consistent. An IW is a process
which can be constructed only from atomic actions
and applications of the sequence and the merge oper-
ators. Thus, the two IW operators provide a means to
build up IWs from basic actions, in particular message
events.

6 Outlook

The MSC activities during the 1989 — 1992 study pe-
riod have concentrated on the elaboration of the syn-
tax and informal semantics for basic MSCs. Experi-
ence with other languages (e.g. SDL) has shown that
language maintenance, tool support and determining
the relationship between different languages are signif-



icantly enhanced by the availability of a formal seman-
tics. Therefore, additional work will be necessary for
an elaboration of a formal MSC semantics that in par-
ticular will help to establish a formal relationship be-
tween MSCs and SDL. Consequently, MSC activities
during the study period 1993 — 1996 will concentrate
on a formal semantics definition, resulting in a revision
of [21]. Enhancements, however; will not be included
before 1996. One major step towards an formal de-
scription technique can be seen in the inclusion of for-
mal data description. Further possible enhancements
of MSCs refer to concepts for abstraction, structuring,
composition and object oriented modelling.
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