
The Standardization of Message Sequence ChartsJens Grabowski Peter Graubmann, Ekkart RudolphUniversit�at Bern Siemens AG M�unchen, ZFE BT SEL�anggassstrasse 51 Otto-Hahn-Ring 6CH-3012 Bern D-W8000 M�unchen 83AbstractIn this paper the most relevant issues of the standard-ization of the Message Sequence Chart (MSC) lan-guage within the CCITT Study Group X are discussed.The history of the new MSC recommendation Z.120 issketched. Di�erent types of diagrams which are closelyrelated to MSCs are compared, since they build the ba-sis for the MSC language. We distinguish these dia-grams from the standardized MSC language by usingthe term Sequence Charts (SCs). Subsequently, theMSC language is introduced and several approachestowards a forthcoming formal MSC semantics are pre-sented.1 IntroductionSequence Charts (SCs) are a widespread means forthe graphical visualization of selected system runs(traces) within communication systems. They can beviewed as a special trace language, which mainly con-centrates on sending and consumption of messages bysynchronously or asynchronously communicating pro-cesses. Obviously, main advantage of an SC is itsclear graphical layout (e.g. �g. 1, 2), which immedi-ately gives an intuitive understanding of the describedsystem behaviour. SCs have been used successfully inindustry and standardization bodies.In industry, SCs are used mainly as a requirementlanguage to de�ne crucial system traces and as a testcase description language. Beyond that, SCs withadditional concepts, in particular those enhanced bySDL language elements [7] or SC composition mecha-nisms [8], o�er methods for developing SDL speci�ca-tions, which serve as the basis for an implementation.Several working groups within standardization bod-ies (e.g. CCITT, ISO/IEC) have de�ned their ownvariants of SCs, e.g. arrow diagrams, information
ow diagrams, or time sequence diagrams. They are

applied in standard de�nitions (e.g. parts of ISDN[15, 14]) or used to illustrate standards speci�ed byformal description techniques like SDL, Estelle, or LO-TOS [1]. The various sorts of SCs mainly di�er withrespect to syntax and terminology. There are only mi-nor semantic di�erences [18] and hence, a standardiza-tion is feasible.Since there is a need to provide a more formal basisfor SCs and to harmonize their use within industryand standardization bodies, the CCITT Study GroupX (CCITT SG X) developed the Message SequenceChart (MSC) recommendation Z.120 [21] from 1989 {1992. It is based on the family of non standardizedSC types, but also includes some additional featureslike submsc and coregion.2 The history of the MSC languageWithin the SDL user guidelines of 1988 [20] only ashort section has been devoted to SCs as one of theauxiliary diagrams, though SCs may very well playan important role. This was pointed out at the SDLForum 1989 in Lisbon within the paper "Putting Ex-tended Sequence Charts to Practice" [7]. The termi-nology Extended Sequence Charts (ESC) was used forSCs enhanced by SDL symbols and a few further con-structs. ESCs were presented as a means for step-wise re�nement and enrichment of SCs from which �-nally SDL speci�cations may be derived. Beyond that,the role of SCs within the entire software developmentprocess, from requirement speci�cation until test casespeci�cation, was pointed out.Due to the great interest SCs found at this SDLForum, their standardization in graphical and textualrepresentation within the CCITT was suggested. Thestandardization was approved at the CCITT meet-ing in Helsinki, June 1990, and the new language wascalledMessage Sequence Chart (MSC). It was decidedthere to �rst concentrate on the basic language con-



structs of MSC, i.e. on message 
ow diagrams with-out further extensions, and in particular to work outa clear semantics for them. One of the reasons forthis restriction, especially to refrain from adding SDLsymbols to MSCs, was to avoid too much overlap withSDL [19]. In Helsinki it was not yet decided to preparea separate recommendation for MSCs. The standard-ization activities for MSCs were intended to be partof the new "SDL Methodology Guidelines" [1], whichwere aiming at a guideline for the e�ective use of SDL.Soon after, however, it was recognised that the stan-dardization of MSCs would go beyond the SDL guide-lines and it was also felt that MSCs should not berelated only to SDL.Though it was not the intention to develop a fourthformal description technique, in addition to SDL, LO-TOS, and ESTELLE, the MSC language was looked atas another speci�cation language which may be usedin combination with further languages for system de-velopment. Consequently, at the next CCITT meetingin Geneva, Feb. 1991, MSCs were chosen to becomea separate recommendation. At this Geneva meetingalso the inclusion of further language constructs goingbeyond pure MSCs was agreed upon.These concepts were elaborated until the CCITTmeeting in Recife, Dec. 1991. The language constructswere adjusted to cover the needs of other CCITTrecommendations employing Message-, Signal-, orInformation-Flow Diagrams. Particularly recommen-dation Q.65: "Stage 2 of the method for the charac-terisation of services supported by an ISDN" [14] wasinvolved. Q.65 is fundamental for other recommenda-tions in this area. At the CCITT meeting in Recifealso the form of the draft MSC recommendation wasmodi�ed to get in accordance with the SDL recom-mendation [19].At the closing session of the CCITT study period1989 { 1992 in Geneva, May 1992, the new MSC rec-ommendation Z.120 was approved [21]. The work onMSCs in the current CCITT study period 1993 { 1996started at a CCITT SG X interims meeting in Geneva,Nov. 1992. During this meeting the discussion focusedon di�erent approaches towards a formal MSC seman-tics (cf. section 5) and on the �rst feedback by MSCusers.3 Comparison of di�erent SC variantsWithin this chapter di�erent types of SCs whichserved as precursor for MSCs are compared. Theinvestigated SCs are Extended Sequence Charts [7],Time Sequence Diagrams according to [11], Arrow

Diagrams according to [15], Information Flow Dia-grams [14], Sequence Charts according to [3], Mes-sage Flow Diagrams [4], Synchronous Interworkings[13] and Siemens-SCs [16]. At the end of this chaptersimilarities and di�erences of the investigated SC vari-ants are summarized in tabular form. It was the aim ofthe MSC standardization that MSC should cover themost common language concepts of various SC vari-ants. Hence MSCs are included into this summary inorder to show to which extend this has been achieved.3.1 The most common SC constructsAll sorts of SCs show the information 
ow betweeninstances (e.g. blocks, services, or processes) for spe-ci�c system runs. They abstract from the internalentity structure by concentrating on the relevant in-formation, namely the instances and the exchangedinformation. Just by looking at the di�erent diagrams(e.g. �g. 1, 2) we �nd some SC constructs which arequite similar for all sorts of SCs. These constructs areinstances which exchange information, messages (orsignals) which describe the information exchange andtime representation.Instances commonly are represented by verticalaxes or columns which often are characterized byattached descriptions, e.g. type, or instance names.Messages usually are denoted by horizontal arrows.Sender and receiver of a message are indicated by ori-gin and head of the message arrow respectively. Theexchanged information is characterized by additionalarrow inscriptions concerning message name, parame-ter names, or parameter values.Within SCs no global time is assumed. Every in-stance axis has its own time scale and time is runningfrom top to bottom. Di�erent axes may be relatedby communication events, e.g. sending, reception, orconsumption of a message. The rules of the time re-lation between the communication events are deter-mined by the communication mechanism. By that,one can distinguish between asynchronous and syn-chronous communication. Asynchronous communica-tion means that a message must be sent before it canbe received and be received before it can be consumed.Synchronous communication describes a simultaneoussending and consumption of a message.3.2 Extended Sequence ChartsExtended Sequence Charts (ESCs) are described with-in [7]. The authors de�ne three sorts of ESCs, namelythe standard form, the state form and the state inputform, which provide a four step method to develop
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(c) ESC state input formFigure 1: Extended Sequence ChartsSDL speci�cations. The method is based on the step-wise enrichment of ESCs with SDL symbols. Eachstep concentrates on a speci�c aspect of SDL. The�rst three steps are re
ected by the three ESC forms.All variants of ESCs include the language elementsinstance, environment, and message. Instances andenvironments are represented by vertical axes. Theycommunicate via messages which are described bysolid arrows. Di�erent entities in the system environ-ment can be characterized by di�erent environmentaxes. They are distinguished from instance axes byshowing di�erent head symbols. For all sorts of ESCsit is assumed that the events along an instance axis aretotally ordered. Contrary to that, along an environ-ment axis no time ordering is assumed. Furthermore,due to SDL, for all ESCs an underlying asynchronouscommunication mechanism is supposed.ESC standard form. The ESC standard form de-scribes the pure message 
ow between the instances of
a system and the system environment. The standardform (�g. 1 (a)) includes all aforementioned languageconstructs and additionally the dialog. A dialog is rep-resented by a bi-directional arrow and is meant to bean abbreviation for a message with a correspondingreply message.ESC state form. By enriching the standard formwith SDL symbols the ESC state form (�g. 1 (b)) isgained which is meant to be a re�nement of the stan-dard form. All symbols of the standard form are con-tained in the state form apart from the dialog whichon this stage of design should be resolved by messages.Beyond that the state form includes the SDL symbolsstate, start, task, comment, stop, ESC decision-resultand ESC create. The latter two are SDL symbolsspeci�cally adjusted to the needs of ESCs.ESC state input form. The ESC state input formtakes the asynchronous communicationmechanismvia



FIFO bu�ers of SDL into account. Therefore, it allowsto specify sending, reception and consumption of mes-sages as separate events. Within the state input formthe set of symbols used in the state form is extendedby an SDL input (�g. 1 (c)). The input is used in ad-dition to the message symbol to distinguish betweenreception (i.e. queue entry) and consumption of a mes-sage. This distinction allows the description of specialSDL situations like crossing or overtaking of messages.3.3 Time Sequence DiagramsTime Sequence Diagrams (TSDs) according to [11] areused for describing OSI services (�g. 2). They illus-trate how sequences of interactions between serviceusers and a service provider are related in time. Ev-ery service user has its own local view on the serviceprovider. The local views are represented by verti-cal axes. The exchange of so-called service primitives(SPs) is denoted by horizontal arrows which touch thelocal views. A reference number may be associatedwith SPs. In this case, identical reference numbersare associated with related SPs. Where additional in-formation is needed, it can be presented by means ofnotes associated with the related SP.The communication events are totally time orderedalong each local view. Relations between events ondi�erent axes can be expressed by diagonal dashedlines (�g. 2 (a)), or in simple cases by solid lines (�g. 2(b)). In addition a wavy line may be used to expressunrelated events. At top of a local view may be afurther description (e.g. a circle above the axis) withan identi�cation for reference purposes. Where useful,a TSD indicates a relationship existing among localviews by means of lines joining the circles representingthese local views.3.4 Arrow DiagramsArrow Diagrams (ADs) or Time Sequence Diagramsaccording to CCITT recommendation Q.699 [15] areused to describe the interworking between the digi-tal subscriber signalling system layer 3 protocol andthe signalling system no. 7 ISDN user part. The ba-sic model for an interworking entity (IE) consists ofthree subentities, namely an incoming signalling sys-tem (ISS), a call control (CC) and an outgoing sig-nalling system (OSS). ISS and OSS are representedby vertical axes, whereas a CC is denoted by a col-umn. It is assumed that the events along the axesand the columns are totally ordered. ISS, OSS andCC communicate via so-called primitives which arerepresented by dotted arrows. Arrows with a waved

line, if present, represent tones or announcements sentinband.Within a CC column the following possibilities existto indicate the relationship between incoming and out-going primitives. A solid line denotes unconditionallyrelated primitives, a dotted line describes a relationwhich is only valid within the described context and awaved line denotes unrelated primitives. Furthermore,a collection of CC actions and functions performed ontransmission or reception of a signalling message areformulated by means of special symbols (which can befound in [15]).IEs may communicate with other IEs by means ofso-called signalling messages. Signalling messages arerepresented by solid arrows and can only be exchangedbetween the ISS and OSS entities of di�erent IEs.Fig. 3 shows an arrow diagram containing a completeIE and part of a second IE. An AD may include morethan one complete IE.3.5 Information Flow DiagramsInformation Flow Diagrams (IFDs) [14] are usedwithin stage 2 of the overall method for derivingswitching and signalling recommendations for ISDNservices. They are closely related to TSDs (cf. section3.3). An IFD (�g. 4) shows the information exchangeof functional entities (FEs) which are represented bycolumns. At the top of an IFD each FE is representedby a circle which includes a type information. Sincein general more than one instance of one FE type canbe instantiated, an instance identi�cation (e.g. FE1 in�g. 4) is associated to each circle. Relations betweenFEs (e.g. ri in �g. 4) are indicated by solid lines.Within the IFD de�nition messages exchanged be-tween FEs (called information 
ows) and messages ex-changed between a FE and a user (called user inputsand user outputs) are distinguished, even though thesame symbols are used. Here, we refer to all thesemessage exchanges as messages. Messages are shownas arrows. A descriptive name (e.g. ESTABLISH X)is written in capitals above the arrow and a label(e.g. req.ind) is written below in lowercase characters.If necessary the content of a message (i.e. value of amessage parameter) can be shown in lowercase lettersenclosed in brackets, following the message name.Reception and emission of messages are shown byhorizontal lines across the relevant FE columns. Theabsence of a line indicates the lack of reception or emis-sion. A reference number (e.g. 100-106 in �g. 4) isassigned to each reception and emission in the overallsequence at which they are shown. The most signi�-cant FE actions can be shown within the FE column.
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Figure 3: Arrow DiagramFor these actions the following holds. Actions shownbelow a line representing a message reception are de-pendent upon that reception (i.e. they cannot be car-ried out beforehand). Actions shown above a line rep-resenting a message emission must be completed priorto the emission. For an actions shown immediatelybelow a line representing a message emission no con-straint on the relative ordering of emission and actionis intended.3.6 Sequence Charts for EWSDSequence Charts according to [3] (EWSD-SCs) areemployed at the Siemens AG (Germany) for the spe-ci�c needs of the EWSD (Elektronisches W�ahlsystemDigital) system development. EWSD-SCs show thecommunication links between entities like blocks, pro-cesses, services, and environments. Entities are rep-resented by columns. Horizontal arrows denote com-munication links. Therefore, a list of messages maybe associated with an arrow. Messages denotingphysical signals are represented with additional stars
(e.g. ***dial tone***>). Furthermore, EWSD-SCso�er facilities to express logical relations like OR andAND between messages (�g. 5). Additionally, globalinitial and �nal system states by means of conditionscan be speci�ed. Also there exist a possibility to pa-rameterize messages and conditions. Special symbolsmay be used to express time delay or time supervision.3.7 Message Flow DiagramsMessage Flow Diagrams (MFDs) are the user interfaceof the CARA system [4] for developing protocol spec-i�cations. A MFD shows the message 
ow betweenprotocol entities (PEs) which are represented by ver-tical lines. Messages are represented by arrows. Theyare sent and received at ports which are owned by PEs.Messages are transmitted via so-called links. A linkmay represent any communication media like lowerprotocol levels or speci�c physical media. A MFDassumes asynchronous communication which meansthat along a PE axis communication events (head andorigin of message arrows) are totally ordered and a
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actions between functional blocks. For IWs a graph-ical and a textual representation is de�ned (�g. 6).Within the graphical form, functional blocks are rep-resented by vertical lines and messages are representedby horizontal arrows. Communication between twofunctional blocks is meant to be synchronous. IWscan be parameterized. A parameter of an IW standsfor message names, process names, or message param-eter names. IWs do not include symbols which may beused to describe further actions of a functional block.For IWs a formal semantics de�nition exists which isexplained in section 5.3.3.9 Siemens-SCAt an CCITT SG X meeting in Geneva, Nov. 92, theSiemens AG (Germany) presented another SC variantwhich we name Siemens-SC [16]. Within Siemens-SCscommunicating entities are represented by verticalaxes. They o�er facilities for describing synchronousand asynchronous communication by means of dashedand solid arrows. Furthermore, there exist symbols torepresent actions, timer sets, time-outs and conditions(symbols to denote system states). Siemens-SCs havea textual and a graphical representation (�g. 7). Theyare used to describe the normal behaviour and excludespecial situations like message overtaking, process cre-ation, or process termination.
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Example for Demonstration Purposes TITLE: "Example for Demonstration Purposes"SYN: OP1 = HARDWARE FAULT EVENTSYN: OP2 = CONFIGURE UNITSYN: OP3 = DATABASE ACCESSSYN: OP5 = PROGRESSSYN: OP6 = DIAGNOSTIC REPORTOBJ: ENVL Unit 1 Unit 2 Unit 3COMMENT: "Global state is: IDLE"MSG: OP1 ENVL Unit 2MSG: OP2 Unit 2 Unit 1RPC: OP3 Unit 2 Unit 3ACTION: Unit 1 "Subroutine"MSG: OP4 Unit 1 Unit 2MSG: OP5 Unit 2 ENVLCOMMENT: "Global state is: IDLE"Figure 7: Graphical and textual representation of a Siemens-SC3.10 SummaryWithin this section the similarities and di�erencesbetween the examined SC variants are summarized.The comparison is arranged in the tables 1 { 3, eachof which considers a speci�c aspect. Although theMSC language is introduced not until the subsequentchapter, we include respective information here. Thisshows that MSC covers most of the similar conceptsand o�ers therefore a broad and more formal basis.However, the MSC language de�nition is not yet to-tally elaborated. Some language constructs are un-der discussion, or in preparation. They are mentionedwithin the tables.4 The MSC languageWithin this chapter the MSC language is introduced.First the meaning of MSCs is explained by relatingthem to SDL speci�cations, MSC/PR and MSC/GRare described, the basic and afterwards the structurallanguage constructs are introduced. Finally, we de-scribe the so-called composition rules for MSCs sincethey are useful to combine several MSCs in order tocome up with more complete MSC speci�cations.

4.1 The meaning of MSCsMSCs show the message 
ow between entities likeblocks, services, or processes. We explain the mean-ing of an MSC by relating it to SDL process diagrams[2, 19]. Let us consider the MSC in �g. 9 which de-scribes a selected trace piece of the connection set-upin the Inres service speci�cation [10]. It could equallybe represented using SDL process diagrams with cer-tain additions and modi�cations (�g. 8, dashed sym-bols stand for not followed branches, bold-lined ar-rows indicate the message 
ow). The diagram in �g. 8contains at least the same information as the MSCin �g. 9. Within the MSC an Initiator-user sends aconnection request (ICONreq) to the Initiator. TheInitiator transmits the request (ICON) to the Respon-der entity which afterwards indicates the connectionrequest (ICONind) to its user.However, the MSC in �g. 9 obviously is much moretransparent than �g. 8, since it concentrates on therelevant information, namely the instances (Initiator,Responder) and the messages involved in the selectedtrace piece (ICONreq, ICON, ICONind). Beyond that,what is even more important, the relation of MSCsto an SDL speci�cation may be rather sophisticated.The MSC instances very often represent collections of(SDL) processes on a higher level of abstraction such



SC representation symbols concerning representation ofgraphical textual SDL entity timer local nonlocalactions states statesESC standard form X XESC state form X X SDL task SDL timer SDL stateESC state input form X X SDL task SDL timer SDL stateTime Sequence Diagrams XArrow Diagrams X XInformation Flow Diagrams X X XEWSD-SCs X X X XMessage Flow Diagrams XSynchronous Interworkings X XSiemens-SC X X X X X XMessage Sequence Charts X X X X X XTable 1: Diagram representation, symbols at entity axes and state representationcommunication synchronization formal basisasynchr. synchr. semantics combining diagramsESC standard form XESC state form XESC state input form XTime Sequence Diagrams X XArrow Diagrams X XInformation Flow Diagrams XEWSD-SCs XMessage Flow Diagrams X rule system set union of rulesSynchronous Interworkings X process algebra merging, sequencingSiemens-SC X XMessage Sequence Charts X (in prep.) (in preparation) (in preparation) composition rulesTable 2: Communication, synchronization and formal basisarchitectural information external other SC speci�c characteristics(e.g. communication links) notesESC standard form dialog symbolESC state formESC state input formTime Sequence Diagrams at the top of the diagram X di�erent diagrams for two- andmulti-party comunicationArrow Diagrams X symbols denoting functions performed ontransmission or reception of messagesInformation Flow Diagrams at the top of the diagram XEWSD-SCs within the diagram relations between messages (e.g. AND, OR)Message Flow Diagrams - black hole (spec. of message loss)- data handlingSynchronous InterworkingsSiemens-SC abbreviations for long namesMessage Sequence Charts coregion (cf. section 4.3)Table 3: Architectural information, external notes and other SC speci�c characteristics



as blocks, thus re
ecting the stepwise development of aspeci�cation according to re�nement strategies. Gen-erally, the relation between an MSC and an SDL spec-i�cation can be characterised in the following way (forACT cf. [9]):"Each sequentialization of an MSC describes a tracefrom one equivalence class of nodes to another equiva-lence class of nodes of an Asynchronous Communica-tion Tree (ACT) presenting the behaviour of an SDLspeci�cation."In any case the correspondence between �g. 8 and�g. 9 may serve to give a good intuitive idea aboutthe meaning of an MSC. It also demonstrates that anMSC describing one possible scenario can be lookedat as an SDL skeleton [1, 7].4.2 MSC/PR and MSC/GRAnalogous to the SDL recommendation [19] the newMSC recommendation includes two syntactical forms,MSC/PR as a pure textual and MSC/GR as a graph-ical representation. An MSC in MSC/GR represen-tation can be transformed easily into a correspondingMSC/PR representation. The other way round thesame problems arise as in SDL since MSC/PR (andSDL/PR) include no graphical information like height,width, or alignment of symbols and text. An exam-ple of the MSC/GR and the corresponding MSC/PRrepresentation is shown in �g. 9.4.3 Basic language elementsThe basic language of MSCs includes all constructswhich are necessary in order to specify the pure mes-sage 
ow. For MSCs these language constructs are in-stance, message, action, set!reset (time supervision),set!time-out (timer expiration), stop, create and con-dition.Instance, message and system environment.The most basic language constructs of MSCs are in-stances, e.g. entities of SDL systems, blocks, processes,or services, and messages describing the communica-tion events. In the graphical representation instancesare shown by vertical lines or alternatively by columns(�g. 9 (a)). Within the instance heading an entityname, e.g. process type, may be speci�ed in additionto the instance name. The message 
ow is presentedby horizontal arrows with a possible bend to admitmessage overtaking or crossing (e.g. �g. 10 (a)). Thehead of the message arrow denotes the message con-sumption, the opposite end the message sending. Inaddition to the message name, message parameters

in parentheses may be assigned to a message. Alongeach instance axis (column) a total ordering of the de-scribed communication events is assumed. Events ofdi�erent instances are ordered only via messages, sincea message must be sent before it is consumed.Within an MSC the system environment is repre-sented by the frame symbol which forms the bound-ary of an MSC diagram (e.g. �g. 9, 10). Contraryto instances, no ordering of communication events isassumed.Actions and timer constructs. Within an MSCit is possible to indicate actions and timer handling.An action is represented by a rectangle containing ar-bitrary text. The timer handling contains two con-structs: the setting of a timer and a subsequent time-out (timer expiration) or the setting of a timer anda subsequent timer reset (time supervision). The set-ting of a timer is represented by a small rectangle,whereas time-out and reset are described by specialtimer arrows. A timer arrow starts at a correspond-ing set symbol (rectangle) and ends below at the sameinstance. A textual timer description (e.g. name andduration) may be associated with the arrows. To eachset a corresponding time-out or reset has to be spec-i�ed and vice versa. Action and timer constructs areshown within �g. 10.Instance stop and instance creation. Creationand termination of instances within communicationsystems are quite common events. This is due to thefact that most communication systems are dynamicsystems where instances appear and disappear dur-ing system lifetime. Consequently, a system designerneeds features to describe such events. The corre-sponding MSC language elements are shown in �g. 10(b). The create symbol is a dashed arrow which maybe associated with textual parameters. A create arroworiginates from a father instance and points at the in-stance head of the child instance. The termination ofan instance graphically is represented by a cross (stopsymbol) at the end of the instance axis.Conditions. A condition either describes a globalsystem state referring to all instances contained inthe MSC (global condition) or a state referring to asubset of instances (nonglobal condition). Conditionscan be used to emphasise important states withinan MSC or for the composition and decompositionof MSCs (cf. section 4.5). In the MSC/GR repre-sentation global and nonglobal conditions are repre-sented by hexagons covering the involved instances.
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MSCs or to re�ne MSCs. Therefore, the current MSCrecommendation o�ers the coregion and the submsc.Coregion. Along an MSC instance message eventsare totally ordered. This may be not appropriate forinstances referring to a higher level than SDL pro-cesses. Therefore, a coregion is introduced. A coregiondenotes a piece of an MSC instance where the spec-i�ed communication events are not ordered. Withinone coregion only sending (origins of message arrows)or only consumption events (arrow heads) may bespeci�ed. An example containing coregions is givenin �g. 11 (a).Submsc. An MSC instance can be re�ned by an-other MSC, which then is called submsc. A submscis attached to the re�ned instance by means of thekeyword decomposed. The submsc represents a de-composition of this instance without a�ecting its ob-servable behaviour. The messages addressed to andcoming from the exterior of the submsc are charac-terised by the messages connected with the submsc
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condition Condition. The second equation (2) denotesthat MSC2 starts with the initial condition Conditionwhich is followed by the MSC section MSC2'. Equa-tion (3) denotes the composition of MSC1 and MSC2(using the asterisk symbol for composition). The com-posed MSC can be written in form of a starting MSCsection MSC1', an intermediate condition Conditionand a subsequent MSC section MSC2.Composition by means of nonglobal conditions.Two MSCs MSC1 and MSC2 can be composed bymeans of nonglobal conditions if for each instance (I)which both MSCs have in common MSC1 ends witha nonglobal condition and MSC2 begins with a corre-sponding nonglobal condition. In addition each non-global condition of MSC2 must have a correspondingnonglobal condition in MSC1. If I(MSCi) (i=1,2) de-notes the restriction of an MSCi to the events of in-stance I, this can be written symbolically:(1) I(MSC1) = I(MSC1)' Condition(2) I(MSC2) = Condition I(MSC2)'(3) I(MSC1) * I(MSC2) = I(MSC1)' Condition I(MSC2)'An example is given in �g. 12. The MSC Connec-tion failure (f) is a composition of the MSCs Re-sponse failure (c) and Request failure (d) via the localcondition Disconnected. The MSC Response failurecontains two instances Initiator and Responder. TheMSC Request failure contains only one instance Initia-tor to which the initial local condition Disconnected isattached. The composition of MSC Response failurewith MSC Request failure only refers to the instanceInitiator, i.e. MSC Response failure is continued alonginstance Initiator by MSC Request failure. This alsoshows the usefulness of nonglobal conditions which



makes a composition with respect to a subset of theinstances involved in the MSCs possible. Finally, itshould be noted that conditions with identical namesare discriminated by the listed instances to which theyare attached.4.5.3 Decomposition of MSCsCorresponding to the MSC-composition, MSCs can bedecomposed due to intermediate conditions.Decomposition by means of global conditions.An intermediate condition de�nes a possible MSC de-composition by splitting an MSC MSC1 at the inter-mediate condition Condition into MSC2 and MSC3,the intermediate condition being converted into a �-nal condition for MSC2 and an initial condition forMSC3:(1) MSC1 = MSC2' Condition MSC3'(2) MSC2 = MSC2' Condition(3) MSC3 = Condition MSC3'Decomposition by means of nonglobal condi-tions. A subset of intermediate nonglobal conditionsallows a decomposition of an MSC MSC1 into MSC2and MSC3 if all nonglobal conditions of this subsetrefer to di�erent instances and no message is cut intopieces by means of the decomposition, i.e. both mes-sage input and the corresponding output belong toeither MSC2 or MSC3:(1) I(MSC1) = I(MSC2)' Condition I(MSC3)'(2) I(MSC2) = I(MSC2)' Condition(3) I(MSC3) = Condition I(MSC3)'E.g. in �g. 12 the MSC Connection failure (f) canbe decomposed into the MSCs Response failure (c)and Request failure (d) at the local condition Discon-nected.5 Towards a formal MSC semanticsWithin this section three approaches towards a for-mal MSC semantics are sketched. All three havebeen brie
y presented at an CCITT SG X meeting,Nov. 1992 in Geneva. They can be considered thestarting points from which the MSC semantics discus-sion within CCITT SG X will proceed. The approachdiscussed �rst (section 5.1) uses an interleaving modeland is based on �nite automata [6, 12]. The secondapproach (section 5.2) adopted a full partial order rep-resentation for system traces and is based on Petri net

theory [5]. The third approach (section 5.3) again ap-plies an interleaving model and is based on processalgebra [13].5.1 An automaton semantics for MSCsFormally, a single MSC can be interpreted as a graphwith two sorts of edges. The nodes represent com-munication events, e.g. message sending and messageconsumption. The edges denote the next-event andthe signal relation. The next-event relation describesthe order of the communication events along the in-stance axis. The signal relation represents the orderbetween sending and consumption of a message. Thisgraph is called a next-event/signal (ne/sig) graph. Thene/sig graph of an MSC can be interpreted as a globalstate transition graph (GSTG), containing all possibleglobal states speci�ed by the MSC. The GSTG cor-responds to an automaton without explicitly de�nedend states. The automaton which de�nes the MSCsemantics must accept all event traces which are con-sistent with the partial order of the communicationevents within the MSC.De�ning end states for an automaton arising froman isolated MSC is rather trivial. But by meansof MSC composition rules (cf. section 4.5), a set ofMSCs (with conditions) may describe potentially non-terminating sequences. In this case, the whole set ofMSCs is translated into a single ne/sig graph, whichmay contain event loops and nondeterministic choices.To �nd proper end states a termination criterion from!-automata theory, due to B�uchi [17], is used. Un-fortunately there is no unique suitable end-state setthat turns a GSTG into a B�uchi automaton. Instead,various possible end-state sets correspond to livenessproperties of MSCs. Examples of such sets are givenin [6] and [12]. The main advantage of the sketchedsemantics approach and the hereupon based MSC se-mantics is its 
exibility. According to the chosen set ofend states it is possible to analyse MSCs under variouspoints of view.5.2 A Petri Net based MSC semanticsA second approach towards a formal MSC semanticsis based on Petri net theory [5]. As the idea of partialordering of signalling and instance events was one ofthe leading principles during the de�nition of MSCs,occurrence nets - which are the Petri net way of pre-senting partial orderings - seem to be particularly wellsuited for a basis of MSC semantics.A MSC is de�ned to describe one particular sys-tem trace of a communication system. For this trace
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semantics is used to process, analyse, and combineIWs. Within an IW a message interaction betweentwo entities can be split into two di�erent events: theoutput and the input of the message. But contrary toMSCs, within IWs communication is meant to be syn-chronous. A formal semantics for IWs is de�ned withthe use of the algebraic concurrency theory BPA (Ba-sic Process Algebra). To that end BPA is extended bytwo operators: IW merging and IW sequencing. Theclass of IWs consists of all processes de�nable overthese two operators. The IW sequencing denotes avertical concatenation of two IWs. In case where theIWs have all entities in common, the IW sequencingcorresponds to a real sequentialization in time. Eventsbelonging to entities, not common to both IWs, willbe unordered by the IW sequencing. The IW mergingof two IWs is their interleaved composition with therestriction that the IWs are forced to synchronise on aset of communication actions. This set consists of thecommunication actions concerning every pair of enti-ties which the IWs have in common. It is obvious thatnot all IWs are merge consistent. An IW is a processwhich can be constructed only from atomic actionsand applications of the sequence and the merge oper-ators. Thus, the two IW operators provide a means tobuild up IWs from basic actions, in particular messageevents.6 OutlookThe MSC activities during the 1989 { 1992 study pe-riod have concentrated on the elaboration of the syn-tax and informal semantics for basic MSCs. Experi-ence with other languages (e.g. SDL) has shown thatlanguage maintenance, tool support and determiningthe relationship between di�erent languages are signif-
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