
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2006-44

Masterarbeit
im Studiengang ”Angewandte Informatik”

Pattern-based Smell Detection
in TTCN-3 Test Suites

Martin Bisanz

am Institut für

Informatik

Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

19. Dezember 2006

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, daß ich die vorliegende Arbeit selbständig verfaßt und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 19. Dezember 2006

Master’s thesis

Pattern-based Smell Detection
in TTCN-3 Test Suites

Martin Bisanz

December 19, 2006

Supervised by Dr. Helmut Neukirchen
Software Engineering for Distributed Systems Group

Institute for Informatics
Georg-August-University Göttingen

Abstract

TTCN-3 is a specification and implementation language for software tests. Just like any or-
dinary software, software tests can suffer from many quality problems. Software Engineering
provides means and techniques to counteract these problems and to increase the quality of
software in many respects. Refactoring is such a technique which is used to enhance the
internal structure of code and to increase its readability, maintainability and comprehen-
siveness. Code parts in need of refactoring are referred to as “code smells”. Refactorings for
TTCN-3 test suites have already been investigated. In this thesis the concept of code smells
is applied to TTCN-3. A catalog of code smells for TTCN-3 is presented, and each smell
is connected to a corresponding counter measure. In addition, a tool for automated code
smell detection is introduced together with results of applying this tool on existing TTCN-3
test suites.

Kurzbeschreibung

TTCN-3 ist eine Spezifikations- und Implementierungssprache für Softwaretests. Tests kön-
nen genau wie herkömmliche Software unter zahlreichen Qualitätsproblemen leiden. Soft-
ware Engineering stellt Mittel und Techniken zur Verfügung, die diesen Problemen entge-
genwirken und durch die die Qualität in vielerlei Hinsicht verbessert werden kann. Refac-
toring ist eine solche Technik, die zur Verbesserung der internen Struktur des Codes und
zur Steigerung von Lesbarkeit, Änderbarkeit und Verständlichkeit eingesetzt wird. Codeab-
schnitte, die ein Refactoring benötigen, werden auch als “Code Smells” bezeichnet. Refac-
torings für TTCN-3 Testsuiten wurden bereits untersucht. In dieser Arbeit wird das Konzept
der Code Smells auf TTCN-3 übertragen. Ein Code-Smell-Katalog wird präsentiert und
jeder Code Smell mit einer entsprechenden Gegenmaßnahme verknüpft. Außerdem wird ein
Softwareprogramm zum automatisierten Auffinden von Code Smells vorgestellt und Ergeb-
nisse der Anwendung des Softwareprogramms auf existierende Testsuiten gezeigt.

Contents

1 Introduction 1

2 Foundations 3
2.1 TTCN-3 . 3

2.1.1 Overview . 3
2.1.2 Language elements . 4

2.2 Eclipse Platform . 7
2.3 TPTP and Static Resource Analysis Framework 9
2.4 TRex . 11

3 Quality Assurance for Software and Tests 15
3.1 Refactoring . 15
3.2 Code Smells . 17

3.2.1 Terminology . 17
3.2.2 Finding Code Smells . 18

3.3 Related Work . 20
3.3.1 Taxonomy . 20
3.3.2 Similar Concepts . 20
3.3.3 Automated Smell Detection . 21
3.3.4 Clone Detection . 21
3.3.5 Tools . 21

4 A TTCN-3 Code Smell Catalog 23
4.1 Duplicated Code . 26

4.1.1 Duplicate Statements . 26
4.1.2 Duplicate Alt Branches . 27
4.1.3 Duplicated Code in Conditional . 28
4.1.4 Duplicate In-Line Templates . 29
4.1.5 Duplicate Template Fields . 30
4.1.6 Duplicate Component Definition . 31
4.1.7 Duplicate Local Variable/Constant/Timer 31

4.2 References . 32

i

4.2.1 Singular Template Reference . 33
4.2.2 Singular Component Variable/Constant/Timer Reference 33
4.2.3 Unused Definition . 34
4.2.4 Unused Imports . 35
4.2.5 Unrestricted Imports . 35

4.3 Parameters . 36
4.3.1 Unused Parameter . 36
4.3.2 Constant Actual Parameter Value . 37
4.3.3 Fully-Parameterized Template . 38

4.4 Complexity . 38
4.4.1 Long Statement Block . 39
4.4.2 Long Parameter List . 40
4.4.3 Complex Conditional . 41
4.4.4 Nested Conditional . 41
4.4.5 Short Template . 42

4.5 Default Anomalies . 42
4.5.1 Activation Asymmetry . 42
4.5.2 Unreachable Default . 44

4.6 Test Behavior . 45
4.6.1 Missing Verdict . 45
4.6.2 Missing Log . 46
4.6.3 Stop in Function . 47

4.7 Test Configuration . 47
4.7.1 Idle PTC . 47
4.7.2 Isolated PTC . 48

4.8 Coding Standards . 48
4.8.1 Magic Values . 49
4.8.2 Bad Naming . 50
4.8.3 Disorder . 51
4.8.4 Insufficient Grouping . 51
4.8.5 Bad Comment Rate . 53
4.8.6 Bad Documentation Comment . 53

4.9 Data Flow Anomalies . 53
4.9.1 Missing Variable Definition . 54
4.9.2 Unused Variable Definition . 54
4.9.3 Wasted Variable Definition . 55

4.10 Miscellaneous . 55
4.10.1 Name-clashing Import . 55
4.10.2 Over-specific Runs On . 56
4.10.3 Goto . 57

ii

5 Code Smell Detection for TRex 59
5.1 General Overview . 59

5.1.1 Static Structure . 61
5.1.2 Analysis Sequence . 62
5.1.3 Framework Extensions . 64

5.2 A library for analyzing ASTs . 65
5.3 Rules for Code Smell Detection . 67

5.3.1 The Magic Number Rule . 68
5.3.2 The Duplicate Alt Branches Rule . 69
5.3.3 The Unused Local Definition Rule . 71

5.4 Quick Fix Support . 72
5.5 JUnit Tests . 73

6 Code Smells in Existing Test Suites 77

7 Summary and Outlook 81
7.1 Summary . 81
7.2 Outlook . 81

7.2.1 Declarative Approaches . 82
7.2.2 Dynamic analysis . 82
7.2.3 Implementational Enhancements . 83

Abbreviations and Acronyms 87

Bibliography 89

iii

1 Introduction

Software testing is a well established approach for the investigation of software systems. It
plays an important role in quality assurance for software. Testing can be defined as the
execution of a System Under Test (SUT) in order to reveal defects. This is usually achieved
by comparing the actual behavior of the SUT to the expected behavior, which, for example,
is extracted from a specification. Often specifications for a software system are not fixed,
but evolve over time. This can necessitate changes in the tests as well.

Frequent changes together with growing size and complexity can make test suites suffer
from similar quality problems that affect any other software. If changes are performed
without thorough adaptation of the internal code structure, they can result in a decay of
code quality and – as a worst case – in unreadable and unmaintainable code. Especially
for large software systems, tests can involve huge investments. Hence, quality assurance for
tests is as important as quality assurance for the software that is tested.

The Testing and Test Control Notation Version 3 (TTCN-3) is a language for specification
and implementation of distributed test systems. It is applicable for different types of black-
box testing, and its wide acceptance has led to the development of large and often complex
test suites used in standardization and industry. The core notation [19] defines a textual
syntax similar to modern programming languages.

Refactoring [26] is an established means for improving the quality of existing code, espe-
cially in terms of readability, maintainability and reuseability. It denotes an improvement to
the internal structure of the code without changing its behavior. Refactorings for TTCN-3
have been investigated [11, 59, 61].

The term code smell (or bad smell in code) was introduced by Martin Fowler and Kent
Beck [26]. A code smell is considered a certain area in the code that indicates the need
for a refactoring. It can help localizing possibly problematic parts in the code. While code
smells for regular programming languages have been studied thoroughly, code smells in test
code have not been researched well. In this thesis the concept of code smells is applied to
TTCN-3.

Chapter 2 gives a brief introduction to groundwork needed for further understanding:
TTCN-3 as a language for test description and implementation, the Eclipse Platform and
the Static Analysis Framework from the Test & Performance Tools Platform (TPTP) as
a foundation for the implementation. Chapter 3 explains the notion of “code smell” and
delimits it from similar concepts. It discusses the advantages of automated code smell
detection and points out approaches. Similar works and tools are mentioned as well. In

1

1 Introduction

chapter 4, a catalog of 39 code smells for TTCN-3 is presented. The smells are organized
in categories and arranged according to a fixed format. An implementation for automated
code smell detection is introduced in chapter 5. It is realized as plug-in for the TTCN-3
Refactoring and Metrics Tool (TRex) and builds on the TPTP Static Analysis Framework.
Some rules for code smell detection are presented in detail. As a sample for the applicability
of the tool, code smells found in existing test suites are presented in chapter 6. Furthermore
origins of the smells are discussed. Finally, chapter 7 gives an overall conclusion and an
outlook on future prospects.

2

2 Foundations

This chapter gives a brief introduction to foundations of this thesis. First, an overview of
TTCN-3 as test specification and implementation language is given. Afterwards, the Eclipse
platform and the Test & Performance Tools Platform (TPTP) are introduced. Finally, a
glance is thrown at the TTCN-3 Refactoring and Metrics Tool (TRex) as base for the
automated smell detection.

2.1 TTCN-3

This section focuses on giving an overview and introducing those parts of TTCN-3 which are
important for the understanding of subsequent chapters. More detailed information about
TTCN-3 can be found in [19, 30, 47, 58].

2.1.1 Overview

The Testing and Test Control Notation Version 3 (TTCN-3) [19] is a language for test spe-
cification and implementation standardized by the European Telecommunications Standard
Institute (ETSI). It has its roots in functional black box testing for telecommunication
systems like GSM or DECT, but it is applicable for other domains as well, e.g. internet
protocol implementations or CORBA-based systems. TTCN-3 has its focus on system test,
but can also be used on lower levels, i.e. for integration or even unit tests.

Its predecessor, the Tree and Tabular Combined Notation (TTCN) [37], was written us-
ing a tabular notation. TTCN-3 introduces a textual representation, the TTCN-3 core
notation [19]. The syntax is similar to other programming languages. Other than the
core language there exist various presentation formats like a tabular and a graphical no-
tation [20, 21]. However, for the scope of this thesis only the core notation is taken into
account.

Usually TTCN-3 tests are black box tests based on a specification without any knowledge
of the underlying implementation. To design such a test, valid and invalid input and the
expected output are extracted from the specification. At run-time, the actual output is
compared to the expected output.

A TTCN-3 test system is connected to a System Under Test (SUT) via a Test System
Interface (TSI). The test itself consists of test components: a Main Test Component (MTC)
and any number of Parallel Test Components (PTCs). Components and TSI are connected

3

2 Foundations

TTCN-3 Test System

System Under Test (SUT)

Test System Interface (TSI)

PortPort Port Port

Main Test
Component (MTC)

Parallel Test
Component (PTC)

Parallel Test
Component (PTC)

Port

Port
Port

Port Port

Port

Figure 2.1: A test configuration

to each other via ports. Ports are modeled as infinite FIFO queue and have a direction (in,
out or inout). A test case runs on an MTC and is able to create PTCs as needed. Figure
2.1 shows a test configuration with an MTC and two PTCs.

The outcome of the test case run is captured by a test verdict. Each component has its
own local verdict. All local verdicts make up the global test case verdict. A verdict can
have one of the following values, listed with increasing priority: none, pass, inconc (for
inconclusive), fail, error. Both local verdicts and the global verdict are made up by the
setverdict operation setting the highest priority. For example, if a test case utilizes three
components and the local verdicts are pass for two components and fail for the third, the
global verdict can only be fail or error.

2.1.2 Language elements

TTCN-3 source code is organized in modules. Modules are the building blocks of all TTCN-3
test specifications. They can be parameterized, and they can import definitions from other
modules. The import mechanism allows to import single definitions, all definitions of a
certain kind (e.g. all functions) and groups of definitions. All imports have to be declared
explicitly; implicit imports are not allowed.

Figure 2.2 shows the structure of a module. It consists of an optional definitions part,
followed by an optional control part. The control part is the entry point of a module
which calls the test cases and controls their execution. The definitions part contains all

4

2.1 TTCN-3

Module Definitions

Test Behavior
(Functions, Test Cases, Altsteps)

Test Configuration
(Ports, Components)

Data Types and Test Data
(Constants, S ignatures, Templates)

Import Statements

Module Parameters

Module Control

module ExampleModule {

modulepar {
boolean EXAMPLE_PAR := true

 }

import from AnotherModule all;

type integer myInt (1, 2, 3)

type record ExampleRecordType {
integer serialNumber,

 AnotherType somethingElse
 }

const integer EXAMPLE_CONST := 42;

template ExampleRecordType ExampleTemplate := {
 serialNumber := EXAMPLE_CONST,
 somethingElse := omit
 }

type port ExamplePort message {
inout ExampleRecordType

 }

type component ExampleComponent {
timer t,
port ExamplePort p

 }

testcase exampleTestcase() runs on ExampleComponent {
 p.send(ExampleTemplate);

setverdict(pass);
 }

control {
if (EXAMPLE_PAR) {

var verdicttype myVerdict :=
execute(exampleTestcase());

 }
 }
}

Figure 2.2: Structure of a TTCN-3 module

5

2 Foundations

definitions of the module; they are global to the entire module. A module may declare
data types, constants, templates, ports, components, signatures, functions, test cases and
altsteps. TTCN-3 does not support the declaration of global variables. Module definitions
can be collected in named groups. A group of declarations is allowed wherever a single
declaration can be specified.

Types and Values

Data type definitions are based on predefined types. TTCN-3 contains a large number of
basic types like integer, float, boolean, char and string types. These basic types can be
sub-typed to restrict their values. Additionally, structured types like record, set, union,
enumerated and arrays can be constructed from other types. Special types like address,
port and component are associated with test configuration.

Test data is defined by constants and templates. Templates are a means to organize and
re-use test data. They can either be used to transmit a set of values or to test whether a
set of received values matches the template specification. In the simplest case a template
is just a concrete instance of a type with a certain value. Furthermore, templates provide a
matching mechanism and a simple form of inheritance, and templates can be parameterized.
Beside being defined globally in the module scope they can be defined locally in behavioral
entities or in-line in a communication operation within the test behavior.

Ports and components specify the structural elements of a test configuration. Ports are
used for the communication among components and the TSI. They can be either message-
based or procedure-based. Their direction can be specified as in, out or inout. Component
type definitions define the ports that are associated with a component. In addition they
can declare local variables, constants and timers. Components make up the elements for
test distribution. They are defined separately from behavior.

Behavior Specification

Test behavior is specified in functions, test cases and altsteps. These behavioral entities can
be associated with components by a runs on clause. They all may declare local variables,
constants, timers and templates. Functions can be “pure” functions, which do not have a
communication interface and normally do data manipulation of some kind, or declare a runs
on clause and contain communication operations such as send and receive statements. An
altstep is a special kind of function and is used to structure alternative behavior. A test
case is another special kind of function which must declare a component it is running on,
and is executed in the control part of a module.

Usually the test configuration is set up in a test case using certain configuration operations.
PTCs are created using the create operation. Ports of components can be connected to
other components using the connect operation and to the TSI using the map operation.

6

2.2 Eclipse Platform

Behavior on components can be started (start) and stopped (stop), and termination of
components can be checked (running) and waited for (done).

The statement blocks in functions, test cases and altsteps support basic program state-
ments like assignments, if -else constructs, for, while and do-while loops, labels and goto
statements. An extraordinary construct in TTCN-3 is the alt statement for specifying
alternative behavior.

The handling of alternative behavior is quite uncommon. Alternative behavior has to be
specified whenever a behavioral entity waits for a response from the SUT or a timeout. It
is typically defined by an alt construct with a number of alternatives which are guarded by
expressions. Alternatives can be realized as altstep which can be called explicitly from the
alt construct or activated as default beforehand. The alternatives are evaluated according
to their order of appearance. Defaults are evaluated after all other alternatives have been
tried. Furthermore, an else branch can be specified which is executed if no other branches
is taken. Listing 2.1 shows a code snipped illustrating an alt statement with five branches
of alternative behavior.

1 alt {
2 [] P1 . receive (MyMessage1) {
3 // do something . . .
4 }
5 [x > 0] P2 . receive (MyMessage2a) {}
6 [x <= 0] P2 . receive (MyMessage2b) {}
7 [] myAltstep () // c a l l o f a l t s t e p
8 [else] { // e l s e branch
9 stop

10 }
11 }

Listing 2.1: Alternative behavior

2.2 Eclipse Platform

The name Eclipse is often used as synonym for the Eclipse Software Development Kit
(SDK), which includes a leading Java Integrated Development Environment (IDE), the Java
Development Tools (JDT). Actually Eclipse is an open source community managed through
the Eclipse Foundation [13] which oversees a number of projects centering around an open
development platform called the Eclipse Platform. The JDT is only one among many
projects building on the Eclipse Platform and extending it with further functionality. Just
as well, TRex, which is introduced in section 2.4, builds on the Eclipse Platform.

The Eclipse Platform itself is a universal tool platform. It defines a set of frameworks
and common services, including a standard user interface model (called workbench) and
a portable native widget toolkit, a project model for managing resources (the workspace),
automatic resource delta management for incremental compilers and builders, language-

7

2 Foundations

Eclipse Platform

Workspace

Workbench

SWT

Language Toolkit (LTK)

JFace

Eclipse Components (Help, Search, etc.)

Platform Runtime

Figure 2.3: The Eclipse Platform [61]

independent debug infrastructure and infrastructure for distributed multi-user versioned
resource management like the Concurrent Versions System (CVS) [10].

Except for a small kernel known as the Platform Runtime, almost the whole functionality
is located in plug-ins. A plug-in is the smallest unit of Eclipse Platform functionality. It
typically consists of Java code and other resources, although plug-ins may not even include
code at all. Each plug-in has a manifest declaring its interconnections and dependencies
on other plug-ins. It may declare any number of extension points, which can be extended
by other plug-ins, and any number of extensions to one or more extension points in other
plug-ins. An extension point may have a corresponding Application Programming Interface
(API). Plug-ins providing extensions to this extension point contribute implementations for
this interface. Plug-ins belonging together can be bundled as feature.

Figure 2.3 gives an architectural overview over the Eclipse Platform. One of its core
functionalities is the workspace. It consists of one or more top-level projects, where each
project maps to a folder in an abstract file system layer (e.g. the local file system). Projects
contain files and folders which are created and manipulated by the user. Projects, files
and folders are summarized as resources. Workspace resources can be annotated by a
marker mechanism. Markers are used to record diverse annotations such as compiler errors,
bookmarks, debugger breakpoints and search hits. Plug-ins can declare custom marker
subtypes.

The Eclipse Platform User Interface (UI) is build on top of two toolkits: The Standard
Widget Toolkit (SWT) provides a common OS-independent API for widgets and graphics
which is tightly integrated with the underlying native window system; JFace builds on SWT
and simplifies common UI programming tasks. The workbench is the actual UI of the Eclipse
Platform and supplies the structure in which tools interact with the user.

8

2.3 TPTP and Static Resource Analysis Framework

Fundamental concepts of the workbench are editors, views and perspectives. Editors
provide means for opening, editing and saving objects. The Platform includes a standard
text editor for text resources; plug-ins can supply more specialized editors. Views show
information about any object the user is working on in the workbench. For example, a view
may support other views or editors by providing additional information about the currently
selected object. The Platform includes several standard views (e.g. Package Explorer, Out-
line, Problems, Console, Tasks). Plug-ins may contribute custom views. Arrangements of
views can be stored in perspectives. A workbench window can have several perspectives,
but only one can be visible at a given time. Among perspectives provided by the Platform
are those for general resource navigation, online help and team support tasks. Again, addi-
tional perspectives can be provided by plug-ins (e.g. the Java perspective provided by JDT
plug-ins).

The Platform includes several other components like search functionality or online help.
The Language Toolkit (LTK) [27] is another component included which provides a framework
for refactorings. It is exceptionally important for TRex, the TTCN-3 tool introduced in
section 2.4.

2.3 TPTP and Static Resource Analysis Framework

The Eclipse Test & Performance Tools Platform (TPTP) Project [15] is divided into four
sub-projects: TPTP Platform, Monitoring Tools, Testing Tools and Tracing and Profiling
Tools. It is a top level project of the Eclipse Foundation, just like the Eclipse Project which
cares for the Eclipse Platform, Equinox, the JDT and the Plug-In Development Environment
(PDE). TPTP provides an open platform supplying frameworks and services for building
test and performance tools.

The TPTP Platform Project is a conglomeration of subsystems as common infrastructure
for the other sub-projects. Among them is the Static Analysis Framework [31, 32, 33] for
running analysis rules against resources. It basically consists of two plug-ins, a core and a
UI plug-in. Analysis rules for Java are provided in separate plug-ins.

The sets of rules and resources for an analysis run are controlled by an analysis con-
figuration. The Static Analysis Framework adds a “Run > Analysis” menu option to the
workbench menu which behaves similar to the “Run > Run” and “Run > Debug” options
shipped with the Eclipse SDK. In fact it uses the same launch mechanism. The menu
option opens a dialog for managing and running analysis configurations. Figure 2.4 shows
an analysis configuration for the Code Review for Java, which is provided as a reference
implementation for the Static Analysis Framework.

An analysis configuration determines the range of resources on which the analysis is
performed. The available options for this range are the entire workspace, a working set
of resources or a set of projects. These options can be selected on a “Scope” tab of the

9

2 Foundations

Figure 2.4: Analysis run configuration

dialog (which is not active in figure 2.4). Additionally, the configuration includes a set of
elements for the analysis. The element set can be edited on the “Rules” tab of the dialog.
It is presented as a tree allowing selection and deselection of elements.

The topmost nodes of the tree are analysis providers. They represent the type of analysis
tools known to the Static Analysis Framework. The child nodes of providers are categories,
which are used to organize analysis elements. Categories may contain any number of rules
and other categories. Rules perform the actual work during the analysis process by checking
conditions and generating results. A rule is classified by a severity level (recommendation,
warning or error). Furthermore rules can be parameterized to make them customizable. If
a rule is selected in the configuration dialog, both severity setting and rule parameters can
be edited via the “Details” button. In addition to the rules supplied by an analysis provider
it is also possible for end users to create rules from templates. A template is an abstract
rule that has to be concretized before it can be used.

A run of an analysis configuration creates a new entry in the Analysis Results view, called
analysis history. A history is a list of all providers, categories and rules that were launched
together with a list of results produced. Figure 2.5 shows the workbench with an active
Analysis Results view containing two history elements. The Results view supports filters

10

2.4 TRex

Figure 2.5: Analysis Results view

(e.g. to disable rules without results being displayed), and some rules supply a quick-fix
feature which is a quick solution for the problem found. It can be used to modify the code
part matched by the rule. The quick-fix feature is accessible via the context menu of a
result.

2.4 TRex

The TTCN-3 Refactoring and Metrics Tool (TRex) [53] is an open-source tool for TTCN-3
written as plug-in for the Eclipse Platform. It provides IDE functionality for the TTCN-3
core notation and can be used for the assessment and restructuring of TTCN-3 test suites
by means of metrics and refactoring. It is developed and maintained by the Software
Engineering for Distributed Systems Group at the Institute for Informatics, University of
Göttingen. Major parts of it originate from Benjamin Zeiss’ master’s thesis [61], which is
also a good reference on TRex.

11

2 Foundations

TRex

Eclipse Platform

Core

Refactoring Metrics ...

Symbol Table Control Flow Graph Reference Finder Code Formatter

Pretty PrinterEditorAST

ANTLR

Call Graph Code Completion

Figure 2.6: TRex architecture

Figure 2.6 shows an architectural overview of TRex. The core plug-in provides the key
functionalities of an IDE for TTCN-3. One of them is the editor, which is capable of
syntax highlighting. The source code is parsed using a parser generated by Another Tool
for Language Recognition (ANTLR), which is a tool that generates code for lexical and
syntactical analysis. Grammatical descriptions for ANTLR are provided in a language
similar to the Extended Backus-Naur Form (EBNF).

The result of lexing and parsing a TTCN-3 source file is an Abstract Syntax Tree (AST)1,
which is a tree representation of the source code. It holds most of the input symbols and
reflects the relationship between those tokens in the structure of the tree.

Figure 2.7 shows an example of an AST as part of a screenshot of TRex. The editor on
the left hand side shows TTCN-3 source code in which a variable declaration is selected.
On the right hand side, the AST view shows the corresponding nodes in the AST (marked
red). The variable declaration is commensurate with the FunctionStatementOrDef node,
which contains a FunctionLocalInst that holds a VarInstance. The VarInstance consists of
a Type and a VarList node. The VarList has only one SingleVarInstance and contains the
Identifier of the variable. The FunctionStatementOrDef is followed by a SemiColon.

The symbol table is build on top of the AST. It contains information about symbols in the
source code, like its type or scope. The code completion makes use of this information and
suggests keywords and identifiers during the editing process. The reference finder locates
all references to a symbol. The pretty printer is a component for reconstructing TTCN-3

1In a strict sense the TRex syntax tree is not abstract as it contains elements without semantic relevance
as well. Hence it is similar to a parse tree/concrete syntax tree.

12

2.4 TRex

Figure 2.7: Abstract Syntax Tree

source code from the AST. It is used by the code formatter, which reformats code according
to customizable rules. Control and data flow analyses build graphs from the AST as basis
for corresponding views as well as for other components.

Further functionality is build on top of this core functionality, like refactorings [61] and
metrics [62]. TRex is the base for the implementation of automated code smell detection
presented in chapter 5.

13

3 Quality Assurance for Software and Tests

Like ordinary software, test suites can suffer from many quality problems. Changes to
test suites may be necessary in order to improve test coverage or to reflect changes in the
specification and the SUT. Additionally, TTCN-3 test suites are often tool-generated, which
can make their core notation representation hard to read, maintain and reuse.

If such a generated or overly complex test suite needs to be changed on core notation
level, there is a risk of changes being carried out without changing the internal structure
accordingly, especially if time is short. The result is a decay of the internal structure of the
code. In the worst case this can lead to unmaintainable or unreliable code.

3.1 Refactoring

Software Engineering provides techniques to counteract the mentioned quality problems.
Refactoring is such a technique. The concept of refactoring have been existing for several
years, but the breakthrough came as key concept of agile development processes such as
Extreme Programming (XP) [3] and with the book “Refactoring” by Martin Fowler [26].

Philipps et al. [48] describe the conceptual roots and ideas behind Refactoring. It aims at
enhancing the internal structure of code while preserving its semantics. Refactorings often
consist of small steps which are then combined to sequences like “copy a to b, then rename c,
then delete a and check d.” It is dependent on certain situations in which it can be applied.

Fowler defines refactoring as “a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing its observable behavior”
[26, p. 53]. He presents a catalog of 72 refactorings for Java. Well-known examples from this
catalog are Rename Method, Extract Method, Inline Method, Replace Temp with Query
and others. Additional refactorings have been added on the book’s web site [25].

Each refactoring is following the same fixed format:

• a name used to build a common vocabulary for developers

• a summary to outline the situation in which the refactoring is carried out in one or
two sentences

• a motivation to illustrate when and why a refactoring should be accomplished

• mechanics as step-by-step instructions about how to carry out the refactoring

• an example to illustrate how the refactoring works

15

3 Quality Assurance for Software and Tests

Zeiss [61] picks up the concept of refactoring and applies it to TTCN-3 test suites. He
presents a list of 28 refactorings from the Refactoring book which can be applied to TTCN-3
and 21 TTCN-3-specific refactorings. He subdivides them into refactorings for test behavior,
for data descriptions and for improving the overall structure of a test suite.

The motivation part gives an idea of the reasons for carrying out a refactoring in a
condensed and informal way. However, before being able to perform a refactoring the
problematic areas in the code must be located by means of suitable indicators (see section
3.2).

Listings 3.1 and 3.2 give an impression of the Extract Altstep refactoring. Listing 3.1
shows the unrefactored version. The alt construct in test case tc exampleTestCase (lines
5–17) contains three branches. The third branch (lines 13–16) is selected for an extraction.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (1 0 . 0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] t guard . timeout {
14 setverdict (f a i l) ;
15 stop ;
16 }
17 }
18 }

Listing 3.1: Extract Altstep (unrefactored)

The refactored version is shown in listing 3.2. The branch has been moved into the new
altstep a exampleAltstep (lines 16–21). The local timer instance t guard is passed into the
altstep as parameter (line 13).

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (1 0 . 0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] a exampleAltstep (t guard) ;
14 }
15 }

16

3.2 Code Smells

16 altstep a exampleAltstep (timer t) runs on ExampleComponent {
17 [] t guard . timeout {
18 setverdict (f a i l) ;
19 stop ;
20 }
21 }

Listing 3.2: Extract Altstep (refactored)

3.2 Code Smells

Before a refactoring can be performed, the relevant code parts have to be determined.
Beck and Fowler introduce the metaphor of bad smells1 for indicators that lead to starting
points for refactorings. They describe smells as “certain structures in the code that suggest
(sometimes they scream for) the possibility of refactoring” [26, p. 75].

The smells are presented in a single flat list and described in a textual, rather informal
way. They are connected to common refactorings via a table with a row for each smell. Some
examples are Duplicated Code, Long Method (containing too many statements), Large
Class (containing too much functionality), Long Parameter List and Data Clumbs
(data items appearing together regularly).

3.2.1 Terminology

As well as refactorings, the concept of code smells can be applied to TTCN-3. Before smells
can be identified in the context of TTCN-3, the meaning of the term has to be encircled.
The following statements are to narrow down the notion of code smells:

• Code smells affect the internal structure of the code. They are located on code level
rather than on architectural level.

• Code smells are code parts whose quality is considered “bad”. They are usually asso-
ciated with bad program design and bad programming practices. In many cases code
smells affect quality aspects like readability and maintainability rather than correct-
ness.

• Code smells can be used to decide when and what to refactor. Van Emden et al. [16]
state that the idea behind code smells is not necessarily to disallow any smells, but
rather to indicate beneficial refactorings.

1The full title of the chapter reads “Bad Smells in Code”. For this thesis, also the term code smell (or
just smell) is used synonymously.

17

3 Quality Assurance for Software and Tests

• As explained in section 3.1, refactoring is a behavior-preserving transformation.
Hence, defects whose elimination changes the behavior of the code are not code smells
in the strictest sense.

• A broader definition allows potential bugs as well, in contrast to bugs which can
be safely identified as such. However, the elimination of these smells might not be
behavior-preserving. (Some of the smells presented in chapter 4 require this broader
approach).

• Defects concerning violation of syntax or static semantics are not among code smells.
Therefore code smell analysis is only reasonable on code devoid of syntax errors and
violations of static semantics, i.e. code that is free from defects usually recognized by
compilers.

Most of the code smells presented in chapter 4 satisfy the above statements; however,
there are some entries whose elimination may change the behavior. For example, an Idle
PTC (4.7.1) can be fixed in two ways: On the one hand a PTC which is created but never
started can be removed behavior-preservingly. On the other hand, a start statement can
be inserted, which is not behavior-preserving but might reflect the intention.

3.2.2 Finding Code Smells

The smells descriptions presented by Fowler and Beck are intended to be utilized by devel-
opers for manual analysis. They state that when finding out when and what to refactor,
“no set of metrics rivals informed human intuition” [26, p. 75]. However, it seems feasible to
automate code smell detection to a certain degree, and there are a number of reasons why
automated smell detection is favorable [42]:

• Automated analysis is time- and cost-saving. Although it does not redundantize man-
ual code review, it certainly can help to localize problematic code parts and reduce
expenditure of time for manual reviews.

• Developers working on the same task for a period of time usually become blind to the
shortcomings of their own work and lose the ability to objectively judge the quality
of their own code. A tool that automatically analyzes the code does not have this
handicap.

• Code smells are more a matter of taste than syntax errors or functional defects. One
developer might consider a code part a smell while another might not. Once a set of
code smells rules has been agreed on, automated code smell analysis can objectively
match the code against the rules.

18

3.2 Code Smells

• Together with automated refactorings, the whole process of analyzing and improving
test suites can be automated — or at least semi-automated, leaving the confirmation
and configuration of refactorings to the test developer. As a result of this thesis a tool
for automated smell detection is presented in chapter 5.

There are different ways to locate bad smells. The most important ones other than human
intuition are the use of software metrics or pattern matching.

Metrics can be used to assess the quality of code. A metric is a measure of some property
of a piece of software. Well-know examples are Lines of Code, size metrics like Program
Volume (from the Halstead metrics [34]) and structural metrics like McCabe’s Cyclomatic
Number [44]. Metrics for TTCN-3 have been presented [56, 62].

A metric is a quantification of certain characteristics of the underlying code. Together with
boundary values, metrics can be utilized to locate problematic code parts. For example, a
maximum value of 30 could be identified for the Lines of Code of a function. If this boundary
is exceeded by a function, the presence of the smell Long Statement Block (4.4.1) is
indicated.

This thesis follows up a more pattern-based approach. Smells are described as patterns
of certain code structures. These patterns are matched against an AST as a representation
of the source code. If an instance of a pattern can be found, it indicates the presence of a
smell.

Although metrics are suitable for detecting certain smells (e.g. Unused Defini-
tion (4.2.3)), they seem to be inappropriate for finding others (e.g. Duplicate State-
ments (4.1.1)). However, the same shortcoming can often be expressed both by a pattern
and by a metric. For example, the pattern “A template is never referenced” is equivalent to
a metric “number of references to template” with a lower boundary of 1.

Automated pattern matching varies depending on the search domain (figure 3.1). The
simplest variant works on textual level without any preceding analysis, which is too basic
for the recognition of more sophisticated smells and impacted by formatting issues. A
lexeme-based search works on the token stream and is formatting-independent, but is still
not capable of finding advanced smells. The smell detection presented in chapter 5 works
mainly on the AST. Some smells require additional semantic meta-information, like symbol
table or control and data flow information.

Source code Lexer Token stream Parser AST Semantic
analysis

AST + semantic
meta-in formation

Textual search Lexeme-based
search Syntactic search Static-semantic

search

Figure 3.1: Search domains for pattern matching

19

3 Quality Assurance for Software and Tests

The approach followed by this thesis is by static analysis, which seams feasible for most of
the identified smells. Dynamic techniques rely on the runtime-behavior of the program (i.e.
the test) and are limited to finding issues in the paths that are actually executed. In contrast,
static techniques are able to examine abstractions of all possible program behaviors.

3.3 Related Work

Most of the existing work and tools about code smells and pattern matching was written
with implementation languages in mind, often Java. Nevertheless, there are some works
which present ideas and concepts valuable for smell detection in TTCN-3 source code.

3.3.1 Taxonomy

Fowler does not arrange smells in groups, but presents them in a single flat list. This is
the starting point for Mäntylä [42]. He introduces a taxonomy for Fowler’s code smells and
subdivides them into categories named Bloaters, OO-Abusers, Change Preventers, Dispens-
ables, Encapsulators, Couplers and Others. Although this categorization is not transferable
to TTCN-3, the idea of grouping smells is followed in this thesis as well.

3.3.2 Similar Concepts

Code smells are often referred to as anti-patterns [6]. An anti-pattern is a description of a
solution to a reoccurring problem. In contrast to design patterns, anti-patterns describe a
“bad” solution as an example of how not to solve a problem. The most famous anti-pattern
is probably spaghetti code, which describes a code structure that is barely comprehensible
due to an overly complex control flow.

An anti-pattern is a more general concept than a smell: Beside anti-patterns for program-
ming or design problems, there are also anti-patterns for scopes like project management,
methodology, configuration management and others. Additionally, anti-patterns have a dif-
ferent position in the error/fault/failure chain [52, pp. 7]: Code smells describe internal
manifestations of bad solutions (the “faults”) while anti-patterns focus more on the bad
solutions themselves (the “errors”).

A design defect is another code-smell-related term [45]. It describes the absence or the
bad use of design patterns. Design defects are more situated on a micro-architectural level
while code smells are more located on code level. Just as well, architecture smells refer to
the architectural level and are connected to extensive architectural refactorings [50].

20

3.3 Related Work

3.3.3 Automated Smell Detection

Most of the existing work regarding code smells and automated pattern detection is tailored
to programming languages rather than tests.

Van Emden et al. [16] propose automated code inspection for finding code smells in
Java code. They include adherence to coding standards and conformance checks in their
notion of code smells. Another important aspect of their approach is that the set of smells
examined is configurable and extensible. Smell detection is applied on a source model which
is constructed from the AST using static analysis to extract primitive properties and smell
aspects. A smell aspect is a building block of a smell which can be observed directly in the
code.

Hovemeyer et al. [36] use static analysis to find instances of bug patterns similar to the
smell patterns used in this thesis. A bug pattern is defined as code idiom that is likely to
be an error. It is originating from the use of erroneous design patterns, misunderstanding
of language semantics or simple and common mistakes. Hence, the focus lies on detecting
bugs rather than code smells.

3.3.4 Clone Detection

The detection of duplicated code (also know as clone detection) adopts an exceptional
position among smell detection techniques. Clone detection has been studied thoroughly
and emerged as field of research on its on. Bellon [4] gives a good overview and compares
different techniques to each other [1, 2, 12, 35, 41, 43]. He distinguishes between three
different types of clones: Exact clones (except for white spaces and comments), clones with
renamed identifiers and clones with further modifications.

Clone detection is not the main focus of this thesis, and the implementation presented in
chapter 5 currently uses a very basic approach for finding duplicated code which only detects
exact clones. However, a more sophisticated technique could be used instead. Especially
the Baxter method [2] seems feasible. It is based on sub-tree matching on the AST and is
able to find exact clones as well as clones with modifications.

3.3.5 Tools

There are a number of tools for automated code checking and code smell detection, again
most of them for programming languages, especially Java.

PMD [49] is an open-source tool which scans Java source code for problems like possible
bugs, dead code, suboptimal code, overcomplicated expressions and duplicated code. Rules
can be contributed either programmatically by implementing a Java interface, or declara-
tively by specifing an XPath expression [8] on the AST. PMD builds on JavaCC [39]. The
build-in clone detection, named Copy and Paste Detector, is applicable to Java, C, C++

21

3 Quality Assurance for Software and Tests

and PHP source code and uses the Karp-Rabin string matching algorithm [40]. PMD can
be integrated with Eclipse.

A similar tool is Checkstyle [7], which focusses more on conformance checking. Like TRex
it builds on ANTLR. It has a build-in duplicated code checker which detects exact clones
only and and interface to Simian [51], a comercial clone detector. Checkstyle uses the visitor
pattern to implement checks for certain types of syntax tree nodes. There exists a plug-in
for the integration with Eclipse.

FindBugs [24] looks for bugs in Java bytecode. It is realized both as command line tool
and Eclipse plug-in. As the name suggests it focuses on defects concerning correctness rather
than code smells as defined in this chapter. It is based on the concept of bug patterns, which
is defined as “code idiom that is often an error”. A bug pattern is implemented as Java class
using the visitor pattern.

Jackpot [38] is another tool for enhancing Java source code. It is integrated with the
Netbeans IDE [46]. It uses queries to explore the code, report found patterns and (option-
ally) refactor the found patterns. Its domain is therefore not only the analysis, but also the
transformation of source code. It has a simple build-in rule language which can be used to
write own queries. More sophisticated queries can be contributed by implementing a Java
class.

22

4 A TTCN-3 Code Smell Catalog

The concept of code smells can be utilized not only for implementation languages, but for
TTCN-3 as well. This chapter presents a catalog of 39 code smells for TTCN-3 which can
be used for quality assessment of test suites and localization of possibly problematic code
parts. It contains both general smells applicable to TTCN-3 and TTCN-3-specific smells.
The list is not exhaustive, however, it is the first attempt known to gather and organize
smells for TTCN-3. Most smells are intended to be detectable by static analysis, although
some of them (especially those concerning test behavior) require the aid of dynamic analysis
to be fully detectable.

A main source for the following catalog was Fowler’s refactoring book [26]. Smells from
this book were designed with the Java programming language in mind. Some of them are
not applicable for TTCN-3, to some extend because they deal with object-oriented concepts.
Others could be transferred more easily. Further sources were the “motivation” parts from
Zeiss’ TTCN-3 refactoring catalog [61, pp. 27] and rules from existing Java smell detection
tools [7, 24, 38, 49].

Each smell is listed in accordance with the following format:

• Name: The name of each smell is used consistently throughout the whole thesis in
order to build a common vocabulary for developers.

• Derived from (optional): The source(s) for this smell entry are named (if any).

• Description: A depiction of how an instance of this smell looks like is given.

• Motivation: The question why the structure described is classified a smell is met in
this part.

• Options (optional): If there are feasible variations for the smell, they are pointed out
here.

• Related action(s): Appropriate actions (usually refactorings) for the removal of this
smell are presented. All references to names of refactorings from Zeiss’ refactoring
catalog are printed in slanted type.

• Example: The smell is illustrated with the aid of a short code excerpt.

23

4 A TTCN-3 Code Smell Catalog

References to names of code smells both from the following catalog and from the Refac-
toring book are printed in bold and slanted type. Additionally, references to smells from
the catalog include the section number in parentheses.

The 39 code smells are organized in categories according to common characteristics. The
categories are certainly not the only reasonable organization for the smells. Their intention
is rather to add structure and clarity to the list. The structure is as follows:

Duplicated Code

• Duplicate Statements

• Duplicate Alt Branches

• Duplicated Code in Conditional

• Duplicate In-Line Templates

• Duplicate Template Fields

• Duplicate Component Definition

• Duplicate Local Variable/Constant/Timer

References

• Singular Template Reference

• Singular Component Variable/Constant/Timer Reference

• Unused Definition

• Unused Imports

• Unrestricted Imports

Parameters

• Unused Parameter

• Constant Actual Parameter Value

• Fully-Parameterized Template

24

Complexity

• Long Statement Block

• Long Parameter List

• Complex Conditional

• Nested Conditional

• Short Template

Default Anomalies

• Activation Asymmetry

• Unreachable Default

Test Behavior

• Missing Verdict

• Missing Log

• Stop in Function

Test Configuration

• Idle PTC

• Isolated PTC

Coding Standards

• Magic Values

• Bad Naming

• Disorder

• Insufficient Grouping

• Bad Comment Rate

• Bad Documentation Comment

25

4 A TTCN-3 Code Smell Catalog

Data Flow Anomalies

• Missing Variable Definition

• Unused Variable Definition

• Wasted Variable Definition

Miscellaneous

• Name-clashing Import

• Over-specific Runs On

• Goto

4.1 Duplicated Code

Duplicated code is considered the most frequent code smell [26, p. 76]. It is common practice
to copy and paste code blocks if similar behavior is needed. The problem with this is that
code duplication blows up code size and affects maintainability in a massive way.

Fowler focuses on duplicated statements in methods. For TTCN-3 it makes sense to
consider other kinds of duplicated code, too, in behavioral code as well as data description
and test configuration.

4.1.1 Duplicate Statements

Derived from: [26] (Duplicated Code)

Description: A duplicate sequence of statements in the statement block of one or mul-
tiple behavioral entities (functions, test cases and altsteps). Special cases like code
duplication in alt constructs (section 4.1.2) and conditionals (section 4.1.3) are listed
separately.

Motivation: Code duplication should be avoided. Especially large sequences of duplicated
statements can often be extracted into a common function.

Related action(s): Extract Function, Parameterize Function

Example: Function f sendMessages contains a code sequence (listing 4.1, lines 3–5) which
has a duplicate (lines 6–8). The sequence could be extracted into a separate (param-
eterized) function.

26

4.1 Duplicated Code

1 function f sendMessages (in f loat p durat ion) runs on ExampleComponent {
2 timer t ;
3 t . start (p durat ion) ;
4 t . timeout ;
5 pt . send ("first timeout") ;
6 t . start (p durat ion) ;
7 t . timeout ;
8 pt . send ("second timeout") ;
9 }

Listing 4.1: Duplicate Statements

4.1.2 Duplicate Alt Branches

Derived from: [61] (Motivations for Extract Altstep, Split Altstep and Replace Altstep
with Default)

Description: Different alt constructs contain duplicate branches.

Motivation: Code duplication in branches of alt constructs should be avoided just as well
as any other duplicated code. Especially common branches for error handling can
often be handled by default altsteps if extracted into an own altstep beforehand.

Related action(s): Extract Altstep to separate the duplicate branches into an own altstep.
Consider Split Altstep if the extracted altstep contains branches which are not closely
related to each other and Replace Altstep with Default if the duplicate branches are
invariably used at the end of the alt construct as default branches.

Example: In listing 4.2, both test cases contain alt constructs with three alternatives. The
last two alternatives in both alt constructs (lines 9–16 and lines 27–34)) are identical
and could be extracted into a separate altstep.

1 testcase tc exampleTestCase1 () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (1 0 . 0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] t guard . timeout {
14 setverdict (f a i l) ;
15 stop ;
16 }
17 }
18 }

27

4 A TTCN-3 Code Smell Catalog

19 testcase tc exampleTestCase2 () runs on ExampleComponent {
20 timer t guard ;
21 // . . .
22 t guard . start (1 0 . 0) ;
23 alt {
24 [] pt . receive (a MessageThree) {
25 pt . send (a MessageFour) ;
26 }
27 [] any port . receive {
28 setverdict (f a i l) ;
29 stop ;
30 }
31 [] t guard . timeout {
32 setverdict (f a i l) ;
33 stop ;
34 }
35 }
36 }

Listing 4.2: Duplicate Alt Branches

4.1.3 Duplicated Code in Conditional

Derived from: [26] (Motivations for Consolidate Conditional Expression and Consolidate
Duplicate Conditional Fragments)

Description: The duplicated code can appear in a series of conditionals (with different
conditions and the same action in each check) or in all legs of a conditional.

Motivation: Duplicated code should be avoided. Additionally, conditionals should be kept
as simple as possible.

Related action(s): Consolidate Conditional Expression, Consolidate Duplicate Condi-
tional Fragments

Example: Function f checkSomething contains identical return statements in the first
three legs of the conditional construct (listing 4.3, lines 3, 6, 9). Instead, the three
conditions could be combined into a single expression. Function f checkSomethingElse
contains duplicate send statements in different legs of the conditional construct
(lines 18, 21). These statements could be moved out of the conditional.

1 function f checkSomething (in f loat p1 , in f loat p2) return boolean {
2 i f (p1 < 0 . 0) {
3 return fa l se ;
4 }
5 i f (p2 >= 7 . 0) {
6 return fa l se ;
7 }
8 i f (p2 < p1) {

28

4.1 Duplicated Code

9 return fa l se ;
10 }
11 return true ;
12 }
13

14 function f checkSomethingElse (in f loat p1) runs on ExampleComponent {
15 var charstring r e s u l t ;
16 i f (p1 > 0) {
17 r e s u l t := "foo" ;
18 pt . send (r e s u l t) ;
19 } else {
20 r e s u l t := "bar" ;
21 pt . send (r e s u l t) ;
22 }
23 }

Listing 4.3: Duplicated Code in Conditional

4.1.4 Duplicate In-Line Templates

Derived from: [61] (Motivation for Extract Template)

Description: Two or more similar or identical in-line templates.

Motivation: To maximize maintainability, duplicate in-line templates should be extracted.
Note that extracting templates can lead to a Short Template (4.4.5). If the tem-
plates are not identical but very similar, the different fields can be parameterized
or a common base template can be introduced (see also Duplicate Template
Fields (4.1.5)).

Related action(s): Extract Template

Example: In listing 4.4, test case tc exampleTestCase contains two identical templates in
the first two send statements (lines 17, 19) and another similar template in the third
send statement (line 21).

1 module Dupl i ca te In l ineTemplate s {
2 type record ExampleRecordType {
3 boolean exampleField1 ,
4 integer exampleField2 ,
5 charstring exampleFie ld3
6 }
7

8 type port ExamplePort message {
9 out ExampleRecordType ;

10 }
11

12 type component ExampleComponent {
13 port ExamplePort pt ;
14 }

29

4 A TTCN-3 Code Smell Catalog

15 testcase tc exampleTestCase () runs on ExampleComponent {
16 // . . .
17 pt . send (ExampleRecordType :{ true , omit , "foo" }) ;
18 // . . .
19 pt . send (ExampleRecordType :{ true , omit , "foo" }) ;
20 // . . .
21 pt . send (ExampleRecordType :{ true , omit , "bar" }) ;
22 }
23 }

Listing 4.4: Duplicate In-Line Templates

4.1.5 Duplicate Template Fields

Derived from: [61] (Motivations for Replace Template with Modified Template, Parame-
terize Template and Decompose Template)

Description: The fields of two or more templates are identical or very similar.

Motivation: Two or more very similar or identical templates should be merged into one
to avoid code duplication. If similar templates differ on the same fields, they can be
parameterized on these fields. If the templates differ on varying fields, a common base
template can be extracted which can be modified by the other templates on the varying
fields. If the templates have a common record type field, they should be decomposed.

Related action(s): Replace Template with Modified Template, Parameterize Template,
Decompose Template

Example: In listing 4.5, templates t1 (lines 1–5)and t2 (lines 7–11) are identical and
could be merged without parameterization. Template t3 (lines 13–17) has a different
value for field1 (line 14) and could be merged with the other two templates into a
parameterized template.

1 template MyRecordType t1 := {
2 f i e l d 1 := "foo" ,
3 f i e l d 2 := 1 ,
4 f i e l d 3 := true
5 }
6

7 template MyRecordType t2 := {
8 f i e l d 1 := "foo" ,
9 f i e l d 2 := 1 ,

10 f i e l d 3 := true
11 }
12

13 template MyRecordType t3 := {
14 f i e l d 1 := "bar" ,
15 f i e l d 2 := 1 ,

30

4.1 Duplicated Code

16 f i e l d 3 := true
17 }

Listing 4.5: Duplicate Template Fields

4.1.6 Duplicate Component Definition

Derived from: [61] (Motivation for Extract Parent Component)

Description: Two or more components declare identical variables, constants, timers or
ports.

Motivation: If multiple components contain the same definition, it should be moved to a
parent component to avoid code duplication.

Related action(s): Extract Parent Component

Example: Components c1 and c2 both declare a timer t (listing 4.6, lines 4, 10) and a
port of type ExamplePort (lines 5, 11). These elements could be moved to a common
parent component.

1 type component c1 {
2 var integer i ;
3 const integer id := 1 ;
4 timer t ;
5 port ExamplePort p1 ;
6 }
7

8 type component c2 {
9 const integer id := 2 ;

10 timer t ;
11 port ExamplePort p2 ;
12 }

Listing 4.6: Duplicate Component Definition

4.1.7 Duplicate Local Variable/Constant/Timer

Derived from: [61] (Motivation for Move Local Variable/Constant/Timer to Component)

Description: The same local variable, constant or timer is defined in two or more functions,
test cases or altsteps running on the same component.

Motivation: If multiple functions, test cases or altsteps are running on the same component
and define an identical local variable, constant or timer, the local definition should be
moved to component scope.

31

4 A TTCN-3 Code Smell Catalog

Related action(s): Move Local Variable/Constant/Timer to Component

Example: Both tc1 and tc2 run on c and both define a local timer t (listing 4.7, lines 6, 23).
Hence t should be defined in c.

1 type component c {
2 port ExamplePort p ;
3 }
4

5 testcase tc1 () runs on c {
6 timer t ;
7 p . send ("foo1") ;
8 t . start (1 0 . 0) ;
9 alt {

10 [] p . receive ("bar1") {
11 // do something
12 }
13 [] any port . receive {
14 // e r r o r handl ing
15 }
16 [] t . timeout {
17 // e r r o r handl ing
18 }
19 }
20 }
21

22 testcase tc2 () runs on c {
23 timer t ;
24 p . send ("foo2") ;
25 t . start (2 0 . 0) ;
26 alt {
27 [] p . receive ("bar2") {
28 // do something
29 }
30 [] any port . receive {
31 // e r r o r handl ing
32 }
33 [] t . timeout {
34 // e r r o r handl ing
35 }
36 }
37 }

Listing 4.7: Duplicate Local Variable/Constant/Timer

4.2 References

The code smells from this section concern the number and quality of references to a defini-
tion. Note that only for local elements the number of references can be safely determined.
For global elements, modules out of the scope of the smell analysis may import definitions
from analyzed modules. Hence, there might exist additional references to global definitions.

32

4.2 References

4.2.1 Singular Template Reference

Derived from: [61] (Motivation for Inline Template)

Description: A template definition is referenced only once.

Motivation: If a template definition is referenced only once, it can be inlined without
duplicating code. This can improve readability if the template definition is not too
complex; in case of a very complex template a separate template definition can still
be preferable.

Related action(s): Inline Template

Example: In listing 4.8, assume the only reference to template exampleTemplate (lines
1–5) is the one in test case exampleTestCase (line 9). In this case, the template could
be inlined to reduce code length and improve readability.

1 template MyMessageType exampleTemplate := {
2 f i e l d 1 := omit ,
3 f i e l d 2 := "foo" ,
4 f i e l d 3 := true
5 }
6

7 testcase exampleTestCase () runs on ExampleComponent {
8 // . . .
9 pt . send (exampleTemplate) ;

10 // . . .
11 }

Listing 4.8: Singular Template Reference

4.2.2 Singular Component Variable/Constant/Timer Reference

Derived from: [61] (Motivation for Move Component Variable/Constant/Timer to Local
Scope)

Description: A component variable, constant or timer is referenced by one single function,
test case or altstep only, although other behavioral entities run on the component as
well.

Motivation: To increase reuse potential of components, variables, constants and timers
that are specific to a behavioral entity should not be defined in the component. How-
ever, sometimes it will make sense to leave the definition in the component even if it
is referenced only once.

Related action(s): Move Component Variable/Constant/Timer to Local Scope

33

4 A TTCN-3 Code Smell Catalog

Example: Component c is used by function f and test case tc. Only tc references timer t
(listing 4.9, line 17), hence the definition of t could be moved to tc.

1 module SingularComponentVCTReference {
2 type port ExamplePort message {
3 inout charstring ;
4 }
5

6 type component c {
7 timer t ;
8 port ExamplePort p ;
9 }

10

11 function f () runs on c {
12 p . send ("bar") ;
13 p . send ("baz") ;
14 }
15

16 testcase tc () runs on c {
17 t . start (1 0 . 0) ;
18 alt {
19 [] p . receive ("foo") {
20 p . send ("bar") ;
21 }
22 [] any port . receive {
23 // e r r o r handl ing
24 }
25 [] t . timeout {
26 // e r r o r handl ing
27 }
28 }
29 }
30 }

Listing 4.9: Singular Component Variable/Constant/Timer Reference

4.2.3 Unused Definition

Description: A definition is never referenced (also known as dead code).

Motivation: Unused code should be removed. Note that only local definitions can be
removed safely because they cannot be accessed from outside the defining unit. For
global definitions there might exist references in modules which have not been con-
sidered.

Related action(s): Remove the unused definition.

Example: Function f defines local variables j and k (listing 4.10, line 2). Only j is used
in f, hence k can be safely removed.

34

4.2 References

1 function f (in integer i) return integer {
2 var integer j := 42 , k ;
3 return i + j ;
4 }

Listing 4.10: Unused Decfinition

4.2.4 Unused Imports

Description: An import from another module is never used.

Description: Unused import statements should be removed, because they increase com-
plexity unnecessarily.

Related action(s): Remove the unused imports.

Example: In listing 4.11, module Baz imports all definitions from Foo (line 10) and Bar
(line 11). Only the import from Foo is used in Baz (line 14), hence the import from
Bar can be removed.

1 module Foo {
2 const charstring FOO CONST := "foo" ;
3 }
4

5 module Bar {
6 const charstring BAR CONST := "bar" ;
7 }
8

9 module Baz {
10 import from Foo a l l ;
11 import from Bar a l l ;
12

13 function f (in charstring s) return boolean {
14 i f (FOO CONST == s) {
15 return true ;
16 }
17 return fa l se ;
18 }
19 }

Listing 4.11: Unused Imports

4.2.5 Unrestricted Imports

Derived from: [61] (Motivation for Restrict Imports)

Description: A module imports more from another module than needed.

35

4 A TTCN-3 Code Smell Catalog

Motivation: In general, only required elements/groups of other modules should be im-
ported to clarify the dependencies between modules. On the other hand, a too de-
tailed import statement can affect readability. A good compromise seems to organize
jointly used definitions in groups and import the group.

Related action(s): Restrict Imports

Example: In listing 4.12, module Bar imports all definitions from Foo (line 18). However,
only constant FOO CONST is used in Bar (line 21), hence the import could be
restricted to importing only the constant or at least only group groupConstants.

1 module Foo {
2 group groupConstants {
3 const charstring FOO CONST := "foo" ;
4 // some other cons tant s . . .
5 }
6

7 group groupTypes {
8 // type d e f i n i t i o n s . . .
9 }

10

11 group groupComponents {
12 // component d e f i n i t i o n s . . .
13 }
14 // f u r t h e r d e f i n i o n s . . .
15 }
16

17 module Bar {
18 import from Foo a l l ;
19

20 function f (in charstring s) return boolean {
21 i f (FOO CONST == s) {
22 return true ;
23 }
24 return fa l se ;
25 }
26 }

Listing 4.12: Unrestricted Imports

4.3 Parameters

These code smells deal with anomalies concerning parameterization. In TTCN-3 templates,
functions, altsteps, test cases and signatures can be parameterized. Types and modules
support static parameterization.

4.3.1 Unused Parameter

Derived from: [26] (Motivation for Remove Parameter)

36

4.3 Parameters

Description: A parameter is never used within the declaring unit. For in-parameters,
the parameter is never read, for out-parameters never defined, for inout-parameters
never accessed at all.

Motivation: Parameterization increases complexity, hence unused parameters should be
removed (from the declaration and all references).

Related action(s): Remove Parameter

Example: Function f declares parameters i and j (listing 4.13, line 1). Only i is in use
(line 3), hence j can be removed.

1 function f (in integer i , in integer j) return integer {
2 var integer k := 1 ;
3 return i + k ;
4 }

Listing 4.13: Unused Parameter

4.3.2 Constant Actual Parameter Value

Derived from: [61] (Motivation for Inline Template Parameter)

Description: The value of an actual parameter is the same for all occurances. In contrast
to Unused Parameter (4.3.1), the parameter is in use within the declaring entity
and must not simply be removed. The declaring entity could be a template or a
behavioral entity (function, test case or altstep).

Motivation: Parameterization increases complexity, hence unneeded parameters should be
removed.

Related action(s): Inline Template Parameter1

Example: Assume template t is referenced only by function f (listing 4.14, lines 9, 11, 13).
In all references, parameter p1 has the same value (foo), so this parameter could be
inlined.

1 template myType t (charstring p1 , integer p2) := {
2 f i e l d 1 := true ,
3 f i e l d 2 := p2 ,
4 f i e l d 3 := p1
5 }
6

1The refactoring focuses on inlining template parameters. Inlining parameters of functions, test cases
and altsteps works similarly.

37

4 A TTCN-3 Code Smell Catalog

7 function f () runs on myComponent {
8 // . . .
9 p . send (templateA ("foo" , 4 2)) ;

10 // . . .
11 p . send (templateA ("foo" , 4 2)) ;
12 // . . .
13 p . send (templateA ("foo" , 4 3)) ;
14 }

Listing 4.14: Constant Actual Parameter Value

4.3.3 Fully-Parameterized Template

Derived from: [62] (Rule 5)

Description: All fields of a template are defined by formal parameters.

Motivation: A template with all fields defined by formal parameters has no information
on its own and can be replaced by in-line templates.

Related action(s): Inline Template

Example: In listing 4.15, all template fields of exampleTemplate are defined by formal
parameters (lines 8–10). Hence an in-line template could be used just as well.

1 type record MyMessageType {
2 integer f i e l d 1 ,
3 charstring f i e l d 2 ,
4 boolean f i e l d 3
5 }
6

7 template MyMessageType exampleTemplate (integer i , charstring c , boolean b) := {
8 f i e l d 1 := i ,
9 f i e l d 2 := c ,

10 f i e l d 3 := b
11 }
12

13 function f () runs on MyComponent {
14 // . . .
15 p . send (exampleTemplate (42 , "dent" , true)) ;
16 // . . .
17 }

Listing 4.15: Fully-Parameterized Template

4.4 Complexity

Code smells from this category increase complexity unnecessarily.

38

4.4 Complexity

4.4.1 Long Statement Block

Derived from: [26] (Long Method)

Description: Long statement block in function, test case or altstep.

Motivation: A long function is more difficult to understand than a short one. Although
the use of short functions (i.e. methods) is especially important for modern object-
oriented languages, short functions have a certain importance for TTCN-3 as well.
Long statement blocks in functions, test cases and altsteps should be decomposed into
short functions with meaningful names.

Related action(s): Extract Function, Parameterize Function

Example: Listing 4.16 shows a function with a long statement block (taken from [22]).
Especially the nested if construct (lines 20–34) could be simplified and branches could
be extracted from the alt construct or be replaced by default behavior. (lines 8–54).

1 function ptc CC PR MP RQ V 030 (CSeq loc CSeq s) runs on SipComponent {
2 var Request v INVITE Request ;
3 var Request v BYE Request ;
4 var Request v ACK Request ;
5 var charstring v branch := "" ;
6 initPTC (loc CSeq s) ;
7 v Defau l t := activate (defaultCCPRPTC ()) ;
8 alt {
9 [] SIPP . receive (INVITE Request r 1) −>

10 value v INVITE Request sender s e n t l a b e l {
11 TGuard . stop ;
12 setHeadersOnRece iptOfInvite (v INVITE Request) ;
13 sendPTC200OKInvite () ;
14 setverdict (pass) ;
15 repeat ;
16 }
17 [] SIPP . receive (ACK Request r 1 (v Ca l l Id)) −>
18 value v ACK Request sender s e n t l a b e l {
19 v Via := v ACK Request . msgHeader . v ia ;
20 i f (i s p r e s e n t (v Via . viaBody [0] . viaParams)) {
21 var SemicolonParam List tmp params :=
22 v Via . viaBody [0] . viaParams ;
23 i f (checkBranchPresent (tmp params , v branch)) {
24 i f (match(v branch , ValidBranch)) {
25 setverdict (pass) ;
26 } else {
27 setverdict (f a i l) ;
28 } ;
29 } else {
30 setverdict (f a i l)
31 }
32 } else {
33 setverdict (f a i l)
34 } ;

39

4 A TTCN-3 Code Smell Catalog

35 cpA . send (CM Check Done) ;
36 repeat ;
37 }
38 [] SIPP . receive (BYE Request r 1 (v Ca l l Id)) −>
39 value v BYE Request sender s e n t l a b e l {
40 setHeadersOnReceiptOfBye (v BYE Request) ;
41 send200OK () ;
42 }
43 [] cpA . receive (CM Stop) {
44 a l l timer . stop ;
45 stop ;
46 }
47 [] SIPP . receive {
48 repeat ;
49 }
50 [] TGuard . timeout {
51 setverdict (f a i l) ;
52 stop ;
53 }
54 }
55 }

Listing 4.16: Long Statement Block

4.4.2 Long Parameter List

Derived from: [26] (Long Parameter List)

Description: High number of formal parameters.

Motivation: Long parameter lists are hard to read and should be avoided. Although this
smell is more relevant for object-oriented languages (because method parameters can
be replaced by attributes within a class), a group of single parameters can be replaced
by a record type parameter. If the calling behavioral entity (function, test case or
altstep) gets a parameter by calling another function or altstep and does not need the
parameter by itself, Replace Parameter with Function can be applied.

Related action(s): Replace Parameter with Function, Introduce Record Type Parameter

Example: Listing 4.17 contains the signature of a function with six integer parameters
(line 2). Instead a set or record type could be used.

1 function f 1 (integer i1 , integer i2 , integer i3 ,
2 integer i4 , integer i5 , integer i 6) {
3 // some behavior . . .
4 }

Listing 4.17: Long Parameter List

40

4.4 Complexity

4.4.3 Complex Conditional

Derived from: [26] (Motivation for Decompose Conditional)

Description: A conditional expression is composed of many boolean conjunctions.

Motivation: A complex conditional statement is hard to understand. Often it can be
replaced by a call of a function with a meaningful name.

Related action(s): Decompose Conditional

Example: The condition of the if construct (listing 4.18, lines 3–4) could be simplified by
extracting the boolean expression into a meaningful function (e.g. isLeapYear).

1 function calculateAmount (integer year) return f loat {
2 var f loat amount ;
3 i f (((year mod 4) == 0 and not (year mod 100) == 0)
4 or (year mod 400) == 0) {
5 amount := BASE AMOUNT ∗ 366 ;
6 } else {
7 amount := BASE AMOUNT ∗ 365 ;
8 }
9 return amount ;

10 }

Listing 4.18: Complex Conditional

4.4.4 Nested Conditional

Derived from: [26] (Motivation for Replace Nested Conditional With Guard Clause)

Description: Nested conditional expression

Motivation: Use if and else leg of a conditional only if both paths are part of the normal
behavior; if one leg is an unusual condition, use a separate exit point (guard clause)
instead.

Related action(s): Replace Nested Conditional With Guard Clause

Example: Listing 4.16 from smell Long Statement Block (4.4.1) contains an example
for a nested conditional (lines 20–34) whose else branches could be replaced by guard
clauses.

41

4 A TTCN-3 Code Smell Catalog

4.4.5 Short Template

Derived from: [62] (Rule 3)

Description: A template definition is very short (in terms of characters or number of
fields).

Motivation: To maximize readability, short template definition can be inlined even if they
are referenced more than once (see Singular Template Reference (4.2.1)). Note
that inlining templates with multiple references leads to Duplicate In-Line Tem-
plates (4.1.4). Hence, this smell is important only for readability.

Related action(s): Inline Template

Example: In listing 4.19, an example is given for a rather short template definition (line 1).
Even if the template is referenced more than once, an in-line template would shorten
code length and increase readability.

1 template integer exampleTemplate := 1
2

3 testcase exampleTestCase () runs on ExampleComponent {
4 // . . .
5 pt . send (exampleTemplate) ;
6 // . . .
7 }

Listing 4.19: Short Template

4.5 Default Anomalies

The TTCN-3 default mechanism is a powerful means for handling default behavior, but
for a reader of the source code it can be difficult to determine all active defaults at a
certain position of an execution path. The smells presented in this section are detectable by
static analysis, although determination of active defaults could best be achieved by dynamic
analysis.

4.5.1 Activation Asymmetry

Description: A default activation has no matching subsequent deactivation in the same
statement block, or a deactivation has no matching previous activation.

Motivation: For improved readability it is recommended that default activation and de-
activation is done on the same “level”, i.e. at the very beginning and end of the same
statement block.

42

4.5 Default Anomalies

Options: Because defaults are deactivated at the end of a testcase run, statement blocks
in test cases can be excluded optionally.

Related action(s): Default activation or deactivation should be added if missing, and
matching default activation and deactivation should be moved to the same statement
block.

Example: Function deactivateDefault only deactivates default d (listing 4.20, line 64) with-
out any previous activation. Test case myTestcase1 activates and deactivates default
myDefaultVar in the same statement block (lines 19, 29), whereas myTestcase2 only
deactivates default myDefaultVar by itself (line 45) and uses function activateDefault
for activation (line 35). Test case myTestcase3 activates a default (line 52), but deacti-
vates it in the statement block of an if construct (line 64). Hence, function deactivate-
Default, test case myTestcase2 and test case myTestcase3 have an asymmetric default
activation.

1 altstep myAltstep (timer t) runs on MyComponent {
2 [] any port . receive {
3 setverdict (f a i l)
4 log ("unexpected message")
5 }
6 [] t . timeout {
7 setverdict (f a i l)
8 log ("timeout")
9 }

10 }
11

12 function a c t i v a t eDe f au l t (timer t) return default {
13 // no dea c t i va t i on in t h i s func t i on !
14 return activate (myAltstep (t))
15 }
16

17 testcase myTestcase1 () runs on MyComponent {
18 timer t
19 var default myDefaultVar := activate (myAltstep (t))
20 t . start (1 0 . 0)
21 alt {
22 [] p . receive (charstring : ("foo1")) {
23 p . send ("ack")
24 }
25 [] p . receive (charstring : ("bar1")) {
26 p . send ("nack")
27 }
28 }
29 deactivate (myDefaultVar)
30 }
31

32 testcase myTestcase2 () runs on MyComponent {
33 timer t
34 // a c t i v a t i o n in func t i on c a l l
35 var default myDefaultVar := ac t i v a t eDe f au l t (t)

43

4 A TTCN-3 Code Smell Catalog

36 t . start (1 0 . 0)
37 alt {
38 [] p . receive (charstring : ("foo2")) {
39 p . send ("ack")
40 }
41 [] p . receive (charstring : ("bar2")) {
42 p . send ("nack")
43 }
44 }
45 deactivate (myDefaultVar)
46 }
47

48 testcase myTestcase3 () runs on MyComponent {
49 // de−/a c t i v a t i o n in d i f f e r e n t statement b locks
50 timer t
51 var default myDefaultVar
52 myDefaultVar := activate (myAltstep (t))
53 t . start (1 0 . 0)
54

55 i f (2 > 1) {
56 alt {
57 [] p . receive (charstring : ("foo5")) {
58 p . send ("ack")
59 }
60 [] p . receive (charstring : ("bar5")) {
61 p . send ("nack")
62 }
63 }
64 deactivate (myDefaultVar)
65 }
66 }

Listing 4.20: Activation Asymmetry

4.5.2 Unreachable Default

Description: An alt statement contains an else branch while a default is active.

Motivation: The else branch of an alt statement is taken if no other branch is applicable.
If a default is active at the same time, its branches come after all branches of the
alt statement. Hence the default altstep can never be executed if an else branch is
present.

Related action(s): The intended behavior should be clarified by either deactivating the
default or moving the else branch to the default altstep.

Example: In listing 4.21, the alt construct in test case myTestcase has an active default
(line 2) and contains an else branch (line 10).

44

4.6 Test Behavior

1 testcase myTestcase () runs on MyComponent {
2 var default myDefaultVar := activate (myAltstep (t))
3 alt {
4 [] p . receive (charstring : ("foo1")) {
5 p . send ("ack")
6 }
7 [] p . receive (charstring : ("bar1")) {
8 p . send ("nack")
9 }

10 [else] {
11 setverdict (f a i l)
12 log ("unexpected behavior")
13 }
14 }
15 deactivate (myDefaultVar)
16 }

Listing 4.21: Unreachable Default

4.6 Test Behavior

The following smells concern the flow of a test. They are mostly connected with TTCN-3
specific constructs. Some of them are not smells in the strictest sense, because the can-
not necessarily be removed without changing the behavior. However, they might point to
possibly erroneous code.

4.6.1 Missing Verdict

Description: A test case does not set a verdict.

Motivation: Normally a test case should set a verdict before terminating.

Options: The setverdict statement can be considered essential at further locations, e.g.
before stop statements.

Related action(s): Insert a setverdict statement (if missing) or move it to the testcase
if the statement is part of a subfunction call.

Example: Test case exampleTestCase does not set a verdict if the timeout branch of the
alt statement is taken (listing 4.22, lines 14–16).

1 testcase exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (1 0 . 0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 t guard . stop

45

4 A TTCN-3 Code Smell Catalog

8 setverdict (pass)
9 pt . send (a MessageTwo) ;

10 }
11 [] any port . receive {
12 repeat ;
13 }
14 [] t guard . timeout {
15 stop ;
16 }
17 }
18 }

Listing 4.22: Missing Verdict

4.6.2 Missing Log

Derived from: [61] (Motivation for Add Explaining Log)

Description: setverdict is used with verdict inconc or fail, but without calling log.

Motivation: Inconclusive or unsuccessful test verdicts should be logged, because this helps
discovering the reasons for the failure. However, this smell should be classified weak
compared to other smells.

Related action(s): Add Explaining Log

Example: Test case exampleTestCase does not log the reason for the fail verdict in the
timeout branch of the alt statement (listing 4.22, line 15).

1 testcase exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (1 0 . 0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 t guard . stop
8 setverdict (pass)
9 pt . send (a MessageTwo) ;

10 }
11 [] any port . receive {
12 repeat ;
13 }
14 [] t guard . timeout {
15 setverdict (f a i l)
16 stop ;
17 }
18 }
19 }

Listing 4.23: Missing Log

46

4.7 Test Configuration

4.6.3 Stop in Function

Description: A function contains a stop statement.

Motivation: If possible, functions should not contain any stop statement, because this
can prevent the execution of postambles (e.g. code that has to be executed after each
test case). Instead, functions should use return values. However, this smell should be
classified weak compared to other smells.

Options: As a restriction, only functions without a runs on clause could be examined for
stop statements.

Related action(s): Use return value instead of stop statement.

Example: In listing 4.24, function f contains a stop statement (line 11).

1 function f () {
2 timer t := 50 ;
3 t . start ;
4 alt {
5 [] p . receive ("foo") {
6 t . stop ;
7 setverdict (pass) ;
8 }
9 [] t . timeout {

10 setverdict (inconc) ;
11 stop ;
12 }
13 }
14 }

Listing 4.24: Stop in Function

4.7 Test Configuration

These smells are related to anomalies concerning creation and connection of test components
which make up the architecture for distributed tests.

4.7.1 Idle PTC

Description: A PTC is created but never started.

Motivation: A PTC which is not started is of no use for the test case.

Related action(s): Insert a start statement or remove the PTC.

47

4 A TTCN-3 Code Smell Catalog

Example: Test case exampleTestCase creates a PTC exampleComponent (line 3) and con-
nects it to the MTC (line 5), but fails to start any behavior on the PTC.

1 testcase exampleTestCase () runs on MainComponentType system SystemType {
2 // . . .
3 var ParallelComponentType exampleComponent := ParallelComponentType . create ;
4 map(s e l f : aPort , system : aPort) ;
5 connect (s e l f : anotherPort , exampleComponent : aPort) ;
6 // no s t a r t here . . .
7 }

Listing 4.25: PTC not started

4.7.2 Isolated PTC

Description: A PTC is created and started, but neither connected to another component
nor mapped to the TSI.

Motivation: A PTC which is not connected or mapped is isolated from all other compo-
nents, especially the MTC, and is of no use for the test.

Related action(s): Insert a connect/map statement or remove the PTC.

Example: In listing 4.26, test case exampleTestCase creates a PTC exampleComponent
(line 3), but fails to connect or map its ports to other ports before it is started.

1 testcase exampleTestCase () runs on MainComponentType system SystemType {
2 // . . .
3 var ParallelComponentType exampleComponent := ParallelComponentType . create ;
4 // no map or connect statements here !
5 exampleComponent . start (exampleBehavior ())
6 exampleComponent .done
7 // . . .
8 }

Listing 4.26: PTC isolated

4.8 Coding Standards

Coding standards ensure that code is written according to given programming guidelines,
formatting rules, commenting, naming and ordering conventions. Note that to be able to
check conformance to coding standards, a set of guidelines has to be agreed on beforehand.
Nevertheless, it makes sense to treat violations of coding standards as smells — or at least
as smell-templates instantiated by concrete (project-specific) definitions.

48

4.8 Coding Standards

4.8.1 Magic Values

Derived from: [26] (Motivation for Replace Magic Number with Symbolic Constant)

Description: Magic Values are literals not defined as constant. Numeric literals are called
Magic Numbers, string literals are called Magic Strings.

Motivation: The use of Magic Values should be avoided. Instead, constants should be
used with a meaningful name. This can improve readability and make the code easier
to understand. Additionally maintainability is improved, because if the value changes,
there will only be one point of change.

Options: There are a number of cases in which Magic Values could be excluded from being
considered a code smell:

• Certain values (e.g. 0 and 1 for numbers) could be excluded from being recognized
as smell.

• Certain code areas could be excluded, e.g. literals in user-defined types or tem-
plate fields or the initialization and increment statements of for-loops.

• Literals could be allowed in variable initialization (e.g. var integer i := 42)
and disallowed in variable assignments (i := 42).

• Literals could be considered a code smell only if they appear in the code more
than once.

• Strings with a length below a threshold value could be excluded.

Related action(s): Replace Magic Number with Symbolic Constant. Note that values
which are specific to the test environment should be stored in a module parameter
rather than a module constant (consider Parameterize Module).

Example: In listing 4.27 (taken from [22]), test case SIP CC PR TR SE TI 004 uses some
Magic Numbers for the definition of a local variable (lines 19, 21, 24) that is used in
calls to repeatRespInTime. By the use of well-named constants, the meaning of these
numbers could be made clearer.

1 testcase SIP CC PR TR SE TI 004 (inout CSeq loc CSeq s , CSeq l o c CSeq ptc s)
2 runs on SipComponent system S i p I n t e r f a c e s {
3 var SipComponent v ptc ;
4 var Response v Response ;
5 var f loat v de lay ;
6 v Defau l t := activate (defaultCCPR ()) ;
7 v ptc := SipComponent . create ;
8 i n i tCon f i g 1 (mtc , v ptc , system) ;
9 initMTCphase1 (loc CSeq s) ;

10 s e tHeader sPtc Inv i t e (loc CSeq s) ;

49

4 A TTCN-3 Code Smell Catalog

11 v ptc . start (ptc Wait Check Invi te Completed State (l o c CSeq ptc s)) ;
12 initMTCphase2 () ;
13 SIPP . send (INVITE Request s 2 (v RequestUri , v Cal l Id , loc CSeq s , v From ,
14 v To , v Via)) to s e n t l a b e l ;
15 v CSeq := loc CSeq s ;
16 await ingFirstAnyFinalResp (v Response , l oc CSeq s) ;
17 setHeadersOnReceiptOfResponse (loc CSeq s , v Response) ;
18 // F i r s t Repet i t i on
19 repeatRespInTime (v Response , loc CSeq s , PX T1 ∗ 1 . 5) ;
20 // Second Repet i t i on
21 v de lay := minValue (2 . 0 ∗ PX T1 , PX T2) ∗ 1 . 5 ;
22 repeatRespInTime (v Response , loc CSeq s , v de lay) ;
23 // Third r e p e t i t i o n
24 v de lay := minValue (4 . 0 ∗ PX T1 , PX T2) ∗ 1 . 1 ;
25 repeatRespInTime (v Response , loc CSeq s , v de lay) ;
26 sendACK(loc CSeq s) ;
27 synchroniseCheckDone () ;
28 wait end ptc (v ptc) ;
29 } // end t e s t c a s e SIP CC PR TR SE TI 004

Listing 4.27: Magic Values

4.8.2 Bad Naming

Derived from: [18]

Description: An identifier does not conform to a given naming convention. Before this
smell can be detected, the naming conventions have to be agreed on. Proposed naming
conventions for TTCN-3 can be found on the official TTCN-3 home page [18].

Motivation: Naming Conventions can make code more readable and comprehensible.

Related action(s): Rename

Example: Function calculateSomething (listing 4.28, line 1) does not conform to the ETSI
naming conventions [18]; function f calculateSomethingElse (line 5) start with “f ” and
does conform to the conventions.

1 function ca l cu lateSometh ing () {
2 // . . .
3 }
4

5 function f c a l cu l a t eSometh ingE l s e () {
6 // . . .
7 }

Listing 4.28: Bad Naming

50

4.8 Coding Standards

4.8.3 Disorder

Description: The sequence of elements within a module does not conform to a given order.
A preferred ordering could be:

• imports

• module parameters

• data types

• port types

• component types

• templates

• functions

• altsteps

• test cases

• control part

Motivation: Consistent ordering can improve readability.

Related action(s): Reorganize Fragments

Example: In listing 4.29, function f is declared atop (line 1), followed by a type and a tem-
plate definition lines 5, 9). If the above ordering was valid, the function declarations
would be in the wrong order.

1 function f () {
2 // . . .
3 }
4

5 type record exampleRecordType {
6 // . . .
7 }
8

9 template exampleRecordType t := {
10 // . . .
11 }

Listing 4.29: Disorder

4.8.4 Insufficient Grouping

Derived from: [61] (Motivations for Group Fragments)

Description: A module or group contains too many elements.

51

4 A TTCN-3 Code Smell Catalog

Motivation: Especially for large modules, groups should be used to add logical structure
to the module and enhance readability. If a group reaches a critical size, it can be
structured further by subgroups.

Options: A maximum allowable number of elements per module and per group could be
specified. Additionally, a group for each kind of element (message types, port types,
components, templates, functions, altsteps, test cases) could be demanded.

Related action(s): Group Fragments

Example: In listing 4.30, there are at least 11 module definitions. If the maximum number
of elements for this module is exceeded, it makes sense to group the type and template
definitions.

1 module Unsuf f i c i entGroup ing {
2 type record myRecordType1 { // . . .
3 }
4

5 type record myRecordType2 { // . . .
6 }
7

8 type record myRecordType3 { // . . .
9 }

10

11 type record myRecordType4 { // . . .
12 }
13

14 type record myRecordType5 { // . . .
15 }
16

17 template myRecordType1 myTemplate1 := { // . . .
18 }
19

20 template myRecordType1 myTemplate2 := { // . . .
21 }
22

23 template myRecordType1 myTemplate3 := { // . . .
24 }
25

26 template myRecordType1 myTemplate4 := { // . . .
27 }
28

29 template myRecordType1 myTemplate5 := { // . . .
30 }
31

32 function f 1 () { // . . .
33 }
34

35 // more d e c l a r a t i o n s here . . .
36 }

Listing 4.30: Insufficient Grouping

52

4.9 Data Flow Anomalies

4.8.5 Bad Comment Rate

Description: The comment rate (number of comments per line) is too high or too low.

Motivation: One the one hand, a low comment rate could be considered a smell, because
the code might not be easy to understand. On the other hand, a too high comment
rate could indicate a high code complexity and therefore be considered a smell, too.

Related action(s): If missing, a comment should be added. If comment rate is too high,
the code readability should be improved (e.g. by using Rename, Extract Function and
others).

Example: The example from Long Statement Block (4.4.1), shown in listing 4.16 does
not contain any comments, although the code is not quite self-explanatory.

4.8.6 Bad Documentation Comment

Description: A documentation comment does not conform to its format.

Motivation: Documentation comments like T3Doc [17] need to conform to certain format-
ting rules and appear at certain positions in the source code.

Related action(s): Modify the documentation comment to conform to its format.

Example: Listing 4.31 shows a bad documentation comment (lines 1–5). The identifier of
the parameter is misspelled and does not correspond to the formal parameter declared
by the function.

1 /∗∗
2 ∗ This func t i on does something .
3 ∗ @param imParam
4 ∗ a very important parameter
5 ∗/
6 function exampleFunction (integer inParam) {
7 // . . .
8 }

Listing 4.31: Bad Documentation Comment

4.9 Data Flow Anomalies

Data flow anomalies are located on the edge between bugs and code smells. They deal with
definition and usage of variables of a behavioral entity. Such variables can be defined (D),
read (R) and undefined (U). There is not necessarily a behavior-preserving refactoring to
remove a data flow anomaly. For example, a DD data flow anomaly (i.e. a variable that

53

4 A TTCN-3 Code Smell Catalog

is defined and defined again without being read in the meantime) can be removed without
changing the behavior simply by removing the first definition. On the other hand, the
smell might indicate that a read access is missing and therefor might require a change in
the behavior. Nevertheless this section has been included in the catalog for the sake of
completeness.

The smells Unused Definition (4.2.3), if referring to local variables, and Unused Pa-
rameter (4.3.1) can be interpreted as data flow anomalies as well.

4.9.1 Missing Variable Definition

Derived from: [52, p. 88]

Description: A variable or out parameter is read before its value has been defined. (This
smell is also known as UR data flow anomaly.)

Motivation: Access to undefined variables might result in unpredictable behavior.

Related action(s): Make sure that the variable gets a value before it is used or remove
the usage of the variable.

Example: In listing 4.32, function f has two parameters, i and j, and two local variables, k
and l. Both out-parameter j and variable l are undefined in the assignment expression
at the end of f (line 3).

1 function f (in integer i , out integer j) {
2 var integer k := 1 , l ;
3 j := i + j + k + l ;
4 }

Listing 4.32: Missing Variable Definition

4.9.2 Unused Variable Definition

Derived from: [52, p. 88]

Description: A defined variable or in parameter is not read before it becomes undefined.
(This smell is also known as DU data flow anomaly.)

Motivation: An assignment which is not used later on only increases code complexity
unnecessarily.

Related action(s): Remove the assignment or insert a statement which makes use of the
variable.

54

4.10 Miscellaneous

Example: In listing 4.33, function f has two parameters, i and j, and a local variable k.
Both i and k are defined (lines 1, 2) but never read.

1 function f (in integer i , out integer j) {
2 var integer k := 1 ;
3 j := 1 ;
4 }

Listing 4.33: Unused Variable Definition

4.9.3 Wasted Variable Definition

Derived from: [52, p. 88]

Description: A variable is defined and defined again before it is read. (This smell is also
known as DD data flow anomaly.)

Motivation: An assignment which is not used later on only increases code complexity
unnecessarily.

Related action(s): Remove the first assignment or insert a statement which makes use of
the variable after the first assignment.

Example: In listing 4.34, a value is assigned to local variable k (line 2). Before k is read,
another value from parameter i is assigned to k (line 3).

1 function f (in integer i , out integer j) {
2 var integer k := 1 ;
3 k := i ;
4 j := k ;
5 }

Listing 4.34: Wasted Variable Definition

4.10 Miscellaneous

This category contains smells which simply do not fit into any other category.

4.10.1 Name-clashing Import

Derived from: [61] (Motivation for Prefix Imported Declarations)

Description: An imported element causes a name clash with a declaration in the importing
module or another imported element.

55

4 A TTCN-3 Code Smell Catalog

Motivation: To avoid name clashes, references to imported declarations should be prefixed.

Related action(s): Prefix Imported Declarations

Example: In listing 4.35, module Bar imports a constant MY CONST from a module Foo
(line 6) and declares a constant with the same name (line 8). Function f has a reference
to MY CONST (line 11). This reference should be clarified to either Bar.MY CONST
(which would be behavior-preserving) or to Foo.MY CONST.

1 module Foo {
2 const charstring MY CONST := "foo" ;
3 }
4

5 module Bar {
6 import from Foo a l l ;
7

8 const charstring MY CONST := "bar" ;
9

10 function f (in charstring s) return boolean {
11 i f (MY CONST == s) {
12 return true ;
13 }
14 return fa l se ;
15 }
16 }

Listing 4.35: Name-clashing Import

4.10.2 Over-specific Runs On

Derived from: [61] (Motivation for Generalize Runs On)

Description: A behavioral entity (function, test case or altstep) is declared to run on
a component, but uses only elements of this component’s super-component or no
elements of the component at all.

Motivation: To increase reuse potential and decrease complexity, behavioral entities
should be kept as universal as possible. They should only run on components whose
elements they make use of.

Related action(s): Generalize Runs On

Example: Component ExtendedComponentType extends another component Base-
ComponentType (listing 4.36, line 5). Function f runs on ExtendedComponentType
(line 10), but uses only port pOut (line 12) which is declared in BaseComponentType
(line 2). Hence, f should be generalized to running on BaseComponentType.

56

4.10 Miscellaneous

1 type component BaseComponentType {
2 port OutPort pOut ;
3 }
4

5 type component ExtendedComponentType extends BaseComponentType {
6 port InPort pIn ;
7 timer t ;
8 }
9

10 function f (charstring aMessage) runs on ExtendedComponentType {
11 i f (checkSomething ()) {
12 pOut . sent (aMessage) ;
13 }
14 }

Listing 4.36: Over-specific Runs On

4.10.3 Goto

Description: A goto statement is used.

Motivation: The use of goto statements is inadvisable and should be avoided.

Related action(s): Change the structure of the code in a way that gotos are superfluous
and remove them. (Note that this transformation can be complex and can vary from
case to case.)

Example: Function f contains two goto statements, one of them jumping backwards to
label L1 (line 6), the other one jumping forwards to label L2 (line 10). The first
statement could be replaced by a while loop, the second statement could be replaced
by an if construct with inverted condition (listing 4.37).

1 function f (integer i) runs on ExampleComponent {
2 var integer MyVar := i ;
3 label L1 ;
4 MyVar := 2 ∗ MyVar ;
5 i f (MyVar < 2000) {
6 goto L1 ;
7 }
8 MyVar2 := f2 (MyVar) ;
9 i f (MyVar2 > MyVar) {

10 goto L2 ;
11 }
12 p . send (MyVar) ;
13 p . receive −> value MyVar2 ;
14 label L2 ;
15 }

Listing 4.37: Goto

57

5 Code Smell Detection for TRex

As discussed in section 3.2.2, automated code smell detection has many advantages. An
automated detection for a subset of smells presented in chapter 4 has been implemented as
plug-in for TRex. It builds on the TPTP Static Analysis Framework and implements the
code smell detections as analysis rules. With this automation it is possible to detect code
smells in TTCN-3 code, display the code parts in a TTCN-3 editor and – if a quick-fix is
supplied for the rule – remove the code smell by means of refactoring.

This chapter describes the key features of the code smell detection for TRex. It gives a
general overview of how the analysis works and describes a library of methods used by the
smell detection rules. Additionally, some of the smell detection rules are explained in detail.
Finally, the quick-fix functionality and tests are explained.

5.1 General Overview

As plug-in for TRex, the smell detection has the same requirements (Eclipse version 3.2 or
greater, Java SE version 5 or greater) plus the dependency on the Static Analysis Framework.
It was developed and tested with TPTP version 4.2.0. The Eclipse Modeling Framework
(EMF) [14] is specified as prerequisite for TPTP, but is not required by the Static Analysis
Framework plug-ins.

Figure 5.1 shows the architecture of the code smell detection for TRex. Like other parts
of TRex it builds on core functionality provided by the core plug-in, especially the AST and
the symbol table. In addition it extends the TPTP Static Analysis Framework by adding
an analysis provider and rules for code smell detection.

Code smell detection for TRex consists of 3 plug-ins:

• The de.ugoe.cs.swe.trex.patterndetection.core plug-in bundles the actual analysis. It
includes general infrastructure like the analysis provider and a rule class for each smell.
Classes from this plug-in are separated into two packages:

– Package de.ugoe.cs.swe.trex.patterndetection contains classes which extend the
Static Analysis Framework and provides a framework for the actual smell
detection, which is done by rules.

59

5 Code Smell Detection for TRex

TRex

Eclipse Platform

Core:
AST, Symbol Table, Reference Finder, ...

Code Smell Detection Refactoring

TPTP
Static

Analysis
Framework

Metrics ...

ANTLR

Figure 5.1: Architecture of the smell detection for TRex

– Package de.ugoe.cs.swe.trex.patterndetection.rules contains the actual rules to-
gether with an abstract base class for the rules and a class with static helper
methods.

• The de.ugoe.cs.swe.trex.patterndetection.ui plug-in provides contributions to the UI
like support for annotating and displaying code smells in the editor and quick-fix
support. Its classes are divided into two packages:

– Package de.ugoe.cs.swe.trex.patterndetection.ui contains an annotation provider
which is responsible for the appearance of markers generated for each detected
smell.

– Package de.ugoe.cs.swe.trex.patterndetection.ui.quickfix contains some quick-fix
implementations together with an abstract base class.

• The de.ugoe.cs.swe.trex.patterndetection.test plug-in provides JUnit plug-in tests for
the smell detection rules. Classes belong to the following packages:

– Package de.ugoe.cs.swe.trex.patterndetection.tests contains a test project class
and a JUnit test suite class.

– Package de.ugoe.cs.swe.trex.patterndetection.rules.tests contains JUnit test cases
for all smell detection rules.

60

5.1 General Overview

+getId()
+setId()
+getPluginId()
+setPluginId()
+addDetailProvider ()
+getDetailProvider()
+getIconName()
+setIconName()
+getLabel ()
+setLabel()
+getViewer()
+getOwner()
+setOwner()
+getOwnedElements ()
+addOwnedElement ()
+addOwnedElements ()
+addHistoryResultSet()
+removeHistoryResultSet()
+getHistoryResults()
+getProviderManager ()
+getProvider()
+getConfiguration ()
+preAnalyze()
+getElementType()
+setElementType()
+exportXML()
+getHelpId()
+setHelpId()

«Interface»
IAnalysisElement

+analyze()
+getResources()
+setProperty()
+getProperty ()
+removeProperty ()
+addTemplate ()
+getRuleTemplate()
+getProgressMonitor ()
+setProgressMonitor ()

«Interface»
IAnalysisProvider

+analyze()
+getViewer()
+isCustom()
+setCustom()

«Interface»
IAnalysisCategory

+analyze()
+getQuickFixIterator ()
+hasQuickFixes()
+getQuickFixId()
+setQuickFixId()
+addParameter ()
+addParameters ()
+getParameter ()
+getParameterCount ()
+getVisibleVariableCount ()
+getParameterList ()
+getLabelWithVariables ()
+isCustom()
+setCustom()

«Interface»
IAnalysisRule

+getHistoryId()
+setHistoryId()
+getRuleSpecificResult()
+setRuleSpecificResult()
+getLabelWithVariables ()

«Interface»
IAnalysisResult

Figure 5.2: Static Analysis Framework interface hierarchy

5.1.1 Static Structure

Figure 5.2 shows the hierarchy of interfaces for elements that participate in the analysis
process. IAnalysisElement is the base interface for all analysis elements. It defines cha-
racteristics that all elements share, for example the ability to own other analysis elements.
IAnalysisProvider is the interface for providers. Providers own one or more categories, which
implement IAnalysisCategory. IAnalysisRule defines the interface for rules which perform
the actual analysis work. IAnalysisResult is the interface for analysis results. For all inter-
faces there exist abstract classes which can be used as base classes for own implementations;
for IAnalysisCategory a default implementation is provided.

The static structure of the code smell detection core plug-in is illustrated in figure 5.3.
Class PatternDetectionProvider implements the IAnalysisProvider interface by extending
AbstractAnalysisProvider, which is included in the Static Analysis Framework as abstract
base class for analysis providers. PatternDetectionResource is a wrapper for TTCN-3 files.

61

5 Code Smell Detection for TRex

-MARKER_RECOMMENDATION
-MARKER_WARNING
-MARKER_SEVERE

PatternDetectionConstants

+getFile()
+getModules ()
+getRootNode()
+getTypedNodeList ()
+getTypedNodeListIgnore ()

-file
-rootNode

PatternDetectionResource

+dispose()
+getLabel ()

-HISTORY_ATTRIBUTE
-INVALID_MARKER
-LINE_SEP
-QUICKFIX_ATTRIBUTE
-RULE_ATTRIBUTE
-TYPE_ATTRIBUTE
-lineNumber
-startPorsition
-lengthSelection
-marker
-node
-resource
-resourceName

PatternDetectionResult
IAnalysisResult

PatternDetectionResult

+analyze()
-RESOURCE_PROPERTY

PatternDetectionProvider
IAnalysisProvider

PatternDetectionProvider

+generateResult ()
+generateResult ()
#parseIntegerParameterValue ()
#parseStringParameterValue ()
#parseStringArrayParameterValue ()
#isStringInArray()

rules::AbstractPatternDetectionRule
IAnalysisRule

rules::AbstractPatternDetectionRule

Figure 5.3: Static structure of the smell detection

It simplifies access to the corresponding AST and provides a method for extracting all
nodes of a given type (e.g. all template definitions). PatternDetectionResult implements
IAnalysisResult by extending AbstractAnalysisResult. An instance of this class is created
each time a rule detects a smell. It is connected to the resource in which the smell was
detected. The result stores all information about the smell instance, like offset and line
number in the corresponding file, label (for the results view) and the affected AST node.
Additionally it manages the creation and removal of markers in the corresponding resource.
PatternDetectionConstants contains identifiers for different marker types. AbstractPattern-
DetectionRule is included in the sub-package rules as base class for concrete rules. Rule
implementations are explained in detail in section 5.3.

5.1.2 Analysis Sequence

Internally the Static Analysis Framework controlles the execution of analyses by an Analysis-
ProviderManager class that manages all analysis providers in the system. When an analysis

62

5.1 General Overview

:PatternDetectionProvider

analyze(IProgressMonitor , AnalysisHistory)

:PatternDetectionResource

:IAnalysisCategory :IAnalysisRule:IAnalysisCategory

[is category]

[else]

loop [for each owned element]

alt

loop [for each file]

loop [for each owned element]

create

analyze

analyze

analyze

getResources ()

Figure 5.4: Sequence diagram for the smell detection

run is performed, a new analysis history instance is created. The provider manager starts
an asynchronous job for each enabled provider and calls its analyze method. Each provider
typically calls the analyze method of any of its enabled categories. In turn a category
typically invokes the analyze method of any of its enabled rules. Rules then do some work
and generate results. Results are not directly associated with a rule, but are stored in the
analysis history.

Figure 5.4 shows the sequence for a call to the analyze method of the smell detection
provider. The analysis history is passed in as parameter. The provider retrieves a list of
workspace resources (i.e. TTCN-3 files) which are to be analyzed and iterates over this list.
For each file a PatternDetectionResource instance is created and the analyze method for each
active category owned by the provider is called. The code smell detection uses the default
implementation for categories, which simply calls analyze on all active categories and rules

63

5 Code Smell Detection for TRex

owned by this category. Normally a rule then fetches the current PatternDetectionResource
from the provider and does some sort of analysis on it.

5.1.3 Framework Extensions

Contributions made to the Static Analysis Framework (e.g. providers, categories and rules)
are made public via extensions defined in the plugin.xml file of one of the smell detection
plug-ins. Listing 5.1 shows a snippet from the file that defines the extension point for the
provider. It specifies the provider class which implements the IAnalysisProvider interface,
a unique identifier for the provider, a label that is used for the UI and the identifier of a
viewer which is invoked when a result of this provider is double-clicked.

1 <extens i on po int="org.eclipse.tptp.platform.analysis.core.analysisProvider">
2 <ana l y s i sP rov i d e r
3 c l a s s="de.ugoe.cs.swe.trex.patterndetection.PatternDetectionProvider"

4 id="de.ugoe.cs.swe.trex.patterndetection.provider"

5 l a b e l="TTCN -3 Code Review Provider"

6 viewer="de.ugoe.cs.swe.trex.patterndetection.ui.PatternDetectionViewer"/>
7 </ extens i on>

Listing 5.1: Provider extension

Categories are specified in a similar way. Listing 5.2 shows a shortened extract from
the plugin.xml file. Each top-level category is connected to the provider by a provider
attribute, sub-categories are connected to other categories (not shown in the listing). Again
an identifier and a label are specified. The DefaultAnalysisCategory class used within the
code smell detection as implementation for categories is a default implementation provided
by the Static Analysis Framework.

1 <extens i on po int="org.eclipse.tptp.platform.analysis.core.analysisCategory">
2 <ana lys i sCategory
3 c l a s s="org.eclipse.tptp.platform.analysis.core.category.DefaultAnalysisCategory"

4 id="de.ugoe.cs.swe.trex.patterndetection.category.duplicatedCode"

5 l a b e l="Duplicated Code"

6 prov ide r="de.ugoe.cs.swe.trex.patterndetection.provider"/>
7 <ana lys i sCategory
8 c l a s s="org.eclipse.tptp.platform.analysis.core.category.DefaultAnalysisCategory"

9 id="de.ugoe.cs.swe.trex.patterndetection.category.references"

10 l a b e l="References"

11 prov ide r="de.ugoe.cs.swe.trex.patterndetection.provider"/>
12 < !−− a l l o ther c a t e g o r i e s de f ined here s im i l a r l y −−>
13 </ extens i on>

Listing 5.2: Category extensions

Rules are defined alike. Listing 5.3 shows another shortened excerpt. Each rule shown
is specified by the category it belongs to, the class that implements the IAnalysisRule
interface, a unique identifier, a label used for the UI and a severity level. Rule parameters
may be specified in a ruleParameter element. Additionally, each rule may provide a quick-

64

5.2 A library for analyzing ASTs

fix identifier. Quick-fixes for this rule extend a separate extension point and refer to this
identifier (not shown in the listing).

1 <extens i on
2 point="org.eclipse.tptp.platform.analysis.core.analysisRule">
3 <ana ly s i sRu l e
4 category="de.ugoe.cs.swe.trex.patterndetection.category.magicValue"

5 c l a s s="de.ugoe.cs.swe.trex.patterndetection.rules.MagicNumberRule"

6 id="de.ugoe.cs.swe.trex.patterndetection.rules.MagicNumberRule"

7 l a b e l="Magic Number"

8 s e v e r i t y="1">
9 <ruleParameter

10 l a b e l="Exclude (comma -separated):"

11 name="de.ugoe.cs.swe.trex.patterndetection.rules.MagicNumberRule.exclude"

12 s t y l e="text"

13 type="string"

14 value="0,1"/>
15 </ ana ly s i sRu l e>
16 <ana ly s i sRu l e
17 category="de.ugoe.cs.swe.trex.patterndetection.category.singularReference"

18 c l a s s="de.ugoe.cs.swe.trex.patterndetection.rules.SingularTemplateReferenceRule"

19 id="de.ugoe.cs.swe.trex.patterndetection.rules.SingularTemplateReferenceRule"

20 l a b e l="Singular Template Reference"

21 s e v e r i t y="0">
22 <qu i c k f i x
23 id="de.ugoe.cs.swe.trex.patterndetection.rules.SingularTemplateReferenceRule.

quickfix"/>
24 </ ana ly s i sRu l e>
25 < !−− a l l o ther r u l e s de f ined here s im i l a r l y −−>

Listing 5.3: Rule extensions

5.2 A library for analyzing ASTs

All rules investigate AST nodes in order to find a smell instance. Class PatternDetection-
Resource offers methods to access the root node of the AST of a file and to obtain all nodes
of a given type. In addition, there are a number of methods which are used by the rules
while processing the AST. These methods partially belong to the AST class provided by
ANTLR, to ASTUtil, a helper class from the TRex core plug-in and to a Util class included
in the smell detection core plug-in. Together they form a library for examining the AST.

The TRex AST is a tree representation of the syntactic structure of a TTCN-3 file. Figure
5.5 shows a schematic view of such a tree. Logically each node can have multiple children
(shown as light-grey arrows in the figure); physically the tree is realized as binary tree (black
arrows). The root node of the tree represents the TTCN-3 file. A node can be connected
to another node as child or sibling. The child axis can be navigated in both directions,
the sibling axis only in forward direction. Each node is of a specific type and has a text
attribute. Furthermore, nodes contain their start and end position as offset from the top of
the file. This is why the class for nodes in the TRex AST is named LocationAST.

65

5 Code Smell Detection for TRex

child

sibling sibling

child

sibling

child

child
child

sibling

child

Figure 5.5: Structure of the TRex AST

The library contains methods for basic navigation in the AST along the child and sibling
axes:

• getFirstChild returns the first, getNthChild the nth node along the child axis.

• getParent returns the first, getNthParent the nth node backwards along the child axis.

• getNextSibling returns the first node along the sibling axis.

• getDescendantNode descents the child axis until a leaf node (i.e. a node without chil-
dren and siblings) is reached and returns this node.

The following methods are used for finding nodes of a given type:

• findChild returns the first node of a given type along the child axis.

• resolveParentsUntilType returns the first node of a given type, but navigates back-
wards along the child axis.

• findSibling returns the first node of a given type along the sibling axis.

• findFirstDescendant starts from a given node and traverses the subtree (first child
axis, then sibling axis). It returns the first node of a given type.

• findTypeNodes starts from a given node and traverses the subtree, returning all nodes
of a given type.

66

5.3 Rules for Code Smell Detection

• findTypeNodesIgnore starts from a given node and traverses the subtree, returning all
nodes of a given type. If a node of a given ignore-type is found, this node and all its
children are ignored.

These methods are used for comparing nodes, subtrees and lists of subtrees:

• equals compares single nodes to each other. Two nodes are equal if they are of the
same type and contain the same text. (Two LocationAST nodes are equal if they
additionally have the same start and end position.)

• equalsTree and equalsTreePartial compare (sub)trees to each other using the equals
method. equalsTree returns true if the two trees are equal, equalsTreePartial returns
true if one tree is equal to a subtree of the second tree.

• equalsList and equalsListPartial does the same for lists of trees.

• findAll walks the tree looking for all exact subtree matches and returns them.

• compareTo compares the text of two nodes to each other.

Other than these basic methods there is a huge number of more specific methods for
navigating to a target node from a source node (like finding the template body from a
template definition) or finding a set of nodes from a source node (like finding all parameter
definitions from a template definition).

The smell detection rules are implemented using the library methods summarized in
this section. Another approach for investigating ANTLR generated ASTs is by the use
of tree walkers. A tree walker is implemented by a tree grammar, which is basically a tree
specification enriched with actions. These actions are executed on tree traversal. Other parts
of TRex use the tree waker approach, e.g. the pretty printer, the symbol table generation
and the control and data flow analyses. However, a tree grammar for each smell detection
rule would be overly intricate. Most rules only work on small fragments of the AST anyway,
and some are simple enough to be implemented in a few lines of Java code. Additionally,
changes in the AST structure created by the parser would result in extensive changes in all of
the tree walkers. Another popular alternative for processing trees is the visitor pattern [29].
Yet it is not easily applicable for the TRex ASTs, because all nodes of the tree are of the
same type (i.e. Java class) while the syntactic type of nodes is stored as integer attribute.

5.3 Rules for Code Smell Detection

Rules are the “workhorses” of the smell detection. They perform the analysis on the AST
and generate results if an instance of a smell is found. A total number of 11 smell detection
rules for TTCN-3 has been implemented, 5 of them reusing code developed out of the scope
of this thesis as analysis for template-related issues [62]. Their class names are as follows:

67

5 Code Smell Detection for TRex

• ActivationAsymmetryRule detects instances of Activation Asymmetry (4.5.1).
Test cases can optionally be excluded from the analysis.

• ConstantActualTemplateParameterRule1 finds template parameter instances of Con-
stant Actual Parameter Value (4.3.2).

• DuplicateAltBranchesRule searches for Duplicate Alt Branches (4.1.2).

• FullyParameterizedTemplateRule1 detects instances of Fully-Parameterized Tem-
plate (4.3.3).

• MagicNumberRule finds numeric Magic Values (4.8.1). It can be parameterized by
a list of values which are to be excluded.

• MagicStringRule searches for Magic Values (4.8.1) of any string type.

• ShortTemplateRule1 detects instances of Short Template (4.4.5). A boundary value
for the length of the template (in characters) can be specified.

• SingularComponentVCTReferenceRule traces instances of Singular Component
Variable/Constant/Timer Reference (4.2.2).

• SingularTemplateReferenceRule1 finds instances of Singular Template Refer-
ence (4.2.1).

• UnusedLocalDefinitionRule detects instances of Unused Definition (4.2.3) for local
variable, constant, timer and template definitions.

• UnusedTemplateDefinitionRule1 finds all global template instances of Unused Defi-
nition (4.2.3).

Below, three of the rules are explained more detailled. They were chosen to work as
differently as possible and should give a good impression of how the smell detection is
realized.

5.3.1 The Magic Number Rule

The Magic Number rule is part of the implementation for the smell Magic Values (4.8.1),
together with a Magic String rule. It searches for numeric literals used outside of constant
definitions. Values can be excluded from the search by a rule parameter. By default, 0 and
1 are ignored.

1This rule utilizes code not developed as part of this thesis.

68

5.3 Rules for Code Smell Detection

Listing 5.4 shows the rule class. It extends AbstractPatternDetectionRule which defines
some attributes and methods common to all rules. The Magic Number rule obtains the
PatternDetectionResource instance from the provider (lines 11–13). Values that are not to
be detected as Magic Numbers are parsed from a string parameter that is made available
by the Static Analysis Framework (line 14). The rule then obtains a list of all AST nodes
that represent numbers, i.e. integer and float values (line 15). For each of these nodes the
value is determined and compared to the exclude values (line 20). If the value is different,
the rule checks whether the number is part of a constant definition (lines 24–25). If not, a
result is generated which marks the number as Magic Number (line 29). For this purpose,
the affected node is passed into the result.

1 public class MagicNumberRule extends AbstractPatternDetect ionRule {
2

3 private stat ic f ina l St r ing PARAMETER EXCLUDE =
4 "de.ugoe.cs.swe.trex.patterndetection.rules.MagicNumberRule.exclude" ;
5

6 private f ina l int [] NODE TYPES = new int [] {
7 TTCN3LexerTokenTypes . IntegerValue ,
8 TTCN3LexerTokenTypes . FloatValue } ;
9

10 public void ana lyze (Ana ly s i sH i s to ry h i s t o r y) {
11 PatternDetect ionResource r e s ou r c e = (PatternDetect ionResource) getProv ider ()
12 . getProperty (h i s t o r y . g e tH i s to ry Id () ,
13 PatternDetect ionProv ider .RESOURCE PROPERTY) ;
14 St r ing [] exc lude = parseStr ingArrayParameterValue (PARAMETER EXCLUDE) ;
15 List<LocationAST> l i s t = re sou r c e . getTypedNodeList (NODE TYPES) ;
16 for (LocationAST node : l i s t) {
17 // ignore exc luded va lue s
18 LocationAST valueNode = node . g e tF i r s tCh i l d () ;
19 St r ing value = valueNode . getText () ;
20 i f (i sS t r i ng InAr ray (value , exc lude)) {
21 continue ;
22 }
23 // ignore const d e f i n i t i o n s
24 i f (LocationAST . reso lveParentsUnt i lType (node ,
25 TTCN3LexerTokenTypes . ConstDef) != null) {
26 continue ;
27 }
28 // not a const d e f i n i t i o n ? repor t sme l l !
29 genera teResu l t (re source , h i s t o r y . g e tH i s to ry Id () , node) ;
30 }
31 }
32 }

Listing 5.4: Magic Number rule

5.3.2 The Duplicate Alt Branches Rule

Detection of the smell Duplicate Alt Branches (4.1.2) is implemented by a Duplicate
Alt Branches rule. It uses a simple subtree comparison algorithm between branches of all

69

5 Code Smell Detection for TRex

alternative behavior constructs. More sophisticated approaches (like the ones presented in
section 3.3.4) could be used instead. Furthermore the current implementation only detects
duplicates within the same file. However, it would be possible to extend the search on all
files of the project or the whole workspace.

A branch in an alternative behavior construct consists of three parts: the guard expres-
sion in square brackets, the guard operation (e.g. a timeout or receive statement) and a
statement block in curly braces. Together they form a guard statement. For duplication
only guard operation and statement block are considered, because they can be extracted
into a common altstep, and the invocation of this altstep can still be guarded.

The rule is presented in listing 5.5. It obtains all guard statements from the AST (lines
11–12). A list with possible clones is filled with all guard statements, and an empty list
with all clones found is prepared (lines 13–16). For each guard statement it is first checked
whether the statement has already been identified as clone (line 20). If not, the list of all
possible clones is investigated for clones of this guard statement (line 24). The findClones
method checks for duplicates of guard operation and statement block (lines 37–49). Each
duplicate found is added to the list of duplicates and excluded from further analysis (line 27).
If there was at least one duplicate, a result is generated and the first branch from the set of
duplicates is marked (lines 29–32).

1 public class Dupl icateAltBranchesRule extends AbstractPatternDetect ionRule {
2

3 private f ina l int [] NODE TYPES = new int [] {
4 TTCN3LexerTokenTypes . GuardStatement
5 } ;
6

7 public void ana lyze (Ana ly s i sH i s to ry h i s t o r y) {
8 PatternDetect ionResource r e s ou r c e = (PatternDetect ionResource) getProv ider ()
9 . getProperty (h i s t o r y . g e tH i s to ry Id () ,

10 PatternDetect ionProv ider .RESOURCE PROPERTY) ;
11 List<LocationAST> guardStatements = re sou r c e
12 . getTypedNodeList (NODE TYPES) ;
13 List<LocationAST> foundClones = new ArrayList<LocationAST >() ;
14 List<LocationAST> po s s i b l eC l one s = new ArrayList<LocationAST >() ;
15 // s t a r t with a l l guard s ta tements
16 po s s i b l eC l one s . addAll (guardStatements) ;
17 for (LocationAST guardStatement : guardStatements) {
18 po s s i b l eC l one s . remove (guardStatement) ;
19 // ignore guard s ta tements t ha t have a l ready been i d e n t i f i e d as c l ones
20 i f (foundClones . conta in s (guardStatement))
21 continue ;
22 // nav iga te to guard operat ion
23 LocationAST guardOp = guardStatement . g e tF i r s tCh i l d () . g e tNextS ib l ing () ;
24 List<LocationAST> c l one s = f indClones (guardOp , po s s i b l eC l one s) ;
25 i f (! c l on e s . isEmpty ()) {
26 // found c lones ? add them to the l i s t !
27 foundClones . addAll (c l on e s) ;
28 // repor t sme l l !
29 genera teResu l t (re source , h i s t o r y . g e tH i s to ry Id () ,
30 guardStatement , guardOp . getLine () , guardOp
31 . g e tO f f s e t () , guardStatement

70

5.3 Rules for Code Smell Detection

32 . getEndOffset ()) ;
33 }
34 }
35 }
36

37 private List<LocationAST> f i ndClones (LocationAST guardOp ,
38 List<LocationAST> po s s i b l eC l one s) {
39 List<LocationAST> c l one s = new ArrayList<LocationAST >() ;
40 for (LocationAST guardStatement : po s s i b l eC l one s) {
41 LocationAST possibleClonedGuardOp = guardStatement
42 . g e tF i r s tCh i l d () . g e tNextS ib l ing () ;
43 i f (possibleClonedGuardOp . getType () == TTCN3LexerTokenTypes . GuardOp) {
44 i f (guardOp . e qua l sL i s t (possibleClonedGuardOp))
45 c l on e s . add (guardStatement) ;
46 }
47 }
48 return c l one s ;
49 }
50 }

Listing 5.5: Duplicate Alt Branches rule

5.3.3 The Unused Local Definition Rule

The Unused Local Definition rule detects local Unused Definition (4.2.3) instances. A
local definition which is not used can be safely removed, because it cannot be referenced from
outside the declaring unit. In contrast, a global definition can have no known references, but
be in use by a module which is not included in the analysis. The Unused Local Definition
rule is connected to a quick-fix, which simply removes the local definition.

In listing 5.6 the rule class is shown. For each local variable, constant, timer and template
definition the identifier node is determined (lines 14–15). If there are no references to this
identifier, a result is generated (lines 18–22). The isUnreferenced method (line 18) makes
use of the reference finder provided by the TRex core plug-in.

1 public class UnusedLoca lDef in i t ionRule extends AbstractPatternDetect ionRule {
2

3 private f ina l int [] NODE TYPES = new int [] {
4 TTCN3LexerTokenTypes . FunctionLocalDef ,
5 TTCN3LexerTokenTypes . Funct ionLoca l Ins t } ;
6

7 public void ana lyze (Ana ly s i sH i s to ry h i s t o r y) {
8 PatternDetect ionResource r e s ou r c e = (PatternDetect ionResource) getProv ider ()
9 . getProperty (h i s t o r y . g e tH i s to ry Id () ,

10 PatternDetect ionProv ider .RESOURCE PROPERTY) ;
11 List<LocationAST> l i s t = re sou r c e . getTypedNodeList (NODE TYPES) ;
12 for (LocationAST node : l i s t) {
13 // f ind IDENTIFIER(s) o f t h i s v a r i a b l e / constant / timer/ template
14 List<LocationAST> i d e n t i f i e r s = Ut i l
15 . f i nd Iden t i f i e r sFromLoca lDe fOr In s t (node) ;
16 for (LocationAST i d e n t i f i e r : i d e n t i f i e r s) {
17 // f ind a l l r e f e r ence s
18 i f (Ut i l . i sUnre f e r enced (i d e n t i f i e r)) {

71

5 Code Smell Detection for TRex

19 // no re f e r ence s found? repor t sme l l !
20 genera teResu l t (re source , h i s t o r y
21 . g e tH i s to ry Id () , i d e n t i f i e r) ;
22 }
23 }
24 }
25 }
26 }

Listing 5.6: Unused Local Definition rule

5.4 Quick Fix Support

Some of the rules are connected to a corresponding quick-fix. The quick-fixes are part of
the code smell detection UI plug-in, because they build on other UI components like the
editor or refactoring wizards.

Figure 5.6 shows the classes and interfaces that make up the static structure of the quick-
fixes. The abstract base class AbstractPatternDetectionQuickFix implements the quickfix
method of interface IAnalysisQuickFix. It makes sure that affected resources can be edited
and cares for removal of fixed results from the analysis history and for re-execution of
analysis on modified resources. The actual quick-fix is delegated to the protected method
fixPatternDetectionResult which is implemented by sub-classes.

The rules currently supporting the quick-fix feature are SingularTemplateReference-
Rule, UnusedLocalDefinitionRule and UnusedTemplateDefinitionRule. Both UnusedLocal-
DefinitionQuickFix and UnusedTemplateDefinitionQuickFix currently simply remove the
unused definition.

SingularTemplateDefinitionQuickFix makes use of an existing refactoring implementation,
the Inline Template refactoring. Listing 5.7 shows the quick-fix class. The template defini-
tion node is retrieved from the result and passed into a new refactoring processor instance
(lines 6–7). The processor is used to create a refactoring (lines 8–9) and a refactoring wizard

de.ugoe.cs.swe.trex.patterndection .ui.quickfix

+quickfix()
#fixPatternDetectionResult()
#getEditor()
-doQuickfix()
-validateEdit()
-removeResults()
-removeResultsWithFilePath()

-TEXT_CHANGE
-TEXT_CHANGE_UNDO
-EMPTY_MONITOR

AbstractPatternDetectionQuickFix

#fixPatternDetectionResult()

SingularTemplateReferenceQuickFix

#fixPatternDetectionResult()
UnusedLocalDefinitionQuickFix

#fixPatternDetectionResult()

UnusedTemplateDefinitionQuickFix
+getId()
+setId()
+getLabel ()
+setLabel()
+setInitializationData()

-id
-label

AbstractAnalysisQuickFIx

+quickfix()

«interface»
IAnalysisQuickfix

+setInitializationData()

«interface»
IExecutableExtension

Figure 5.6: Static structure of the quick-fix feature

72

5.5 JUnit Tests

(lines 10–13). The wizard is started (lines 14–16) and presents the suggested refactoring to
the user.

1 public class SingularTemplateReferenceQuickFix extends
2 AbstractPatternDetect ionQuickFix {
3

4 protected void f i xPat t e rnDet e c t i onResu l t (Patte rnDetect ionResu l t r e su l t ,
5 I F i l e f i l e) throws Exception {
6 TTCN3InlineTemplateProcessor p ro c e s s o r =
7 new TTCN3InlineTemplateProcessor (r e s u l t . getNode ()) ;
8 TTCN3InlineTemplateRefactoring r e f a c t o r i n g =
9 new TTCN3InlineTemplateRefactoring (p ro c e s s o r) ;

10 TTCN3InlineTemplateRefactoringWizard wizard =
11 new TTCN3InlineTemplateRefactoringWizard (
12 r e f a c t o r i n g ,
13 Refactor ingWizard .WIZARD BASED USER INTERFACE) ;
14 RefactoringWizardOpenOperation openOperation =
15 new RefactoringWizardOpenOperation (wizard) ;
16 openOperation . run (Display . getCurrent () . g e tAc t i v eShe l l () , "") ;
17 }
18 }

Listing 5.7: Singular Template Reference quick-fix

5.5 JUnit Tests

For all of the rules implemented there exist JUnit tests [28]. They reside in a separate tests
plug-in. Like other TRex tests, the tests are run in another Eclipse instance that is usually
started from the instance which is used to develop TRex by selecting“Run As...” and“JUnit
Plug-In Test”.

The test instance workspace is created from a resource directory that is included in the
test plug-in. It contains a set of TTCN-3 files which are analyzed by the rule that is tested.
Additionally the plug-in contains a launch folder with a launch configuration for each smell
rule.

A launch configuration is a data structure created by the Eclipse Platform launch mecha-
nism each time a launch is performed. Because the Static Analysis Framework uses the
launch mechanism, a launch is created each time an analysis run is performed. Launches
are stored in files in a metadata subfolder of the workspace folder. The tests make use of
these launch configuration files. For each rule the corresponding test simply uses a configu-
ration that launches an analysis in which only the rule that is about to be tested is selected.
The launch file is copied to the test instance workspace from where it can be loaded and
executed.

Figure 5.7 shows the main classes involved in the testing. A concrete test case creates a
PatternDetectionTestProject. It is a subclass of TTCN3TestProject and therefore inherits
its functionality to setup the test instance workspace. When created by the test case, it
copies the relevant launch configuration and TTCN-3 files to the test instance workspace

73

5 Code Smell Detection for TRex

de.ugoe.cs.swe.trex

+prepareProject ()
+launchAnalysis()
+assertMarkerCount ()
+assertMarker()
+assertMarker()
-copyLaunchFile()
-analyzeWorkspace()
-buildSelectionList ()
-buildChildren ()
-getMarkersForFile ()

-LAUNCH_FILE
-LAUNCH_SUBFOLDER
-PLUGIN_ID
-sourceLaunchFile
-targetLaunchFile

patterndetection .tests::PatternDetectionTestProject

#getPluginDir ()
+dispose()
+prepareProject ()
#loadSourceFiles ()
#loadTargetFiles ()
#analyzeFiles()
#metricsFiles()
-createWorkspace()
-fillWorkspace()

-resourcePath
#project
#root
#projectName
#files
#analyzerFactory
#sourceFileMap
#targetFileMap

tests::TTCN3TestProject

#tearDown()
+test001_IgnoreTestcases ()
+test002_IncludeTestcases()

-testProject

patterndetection.rules.tests::ActivationAsymmetryTest

#tearDown()
+test001_UnusedTemplate ()

-testProject

patterndetection.rules.tests::UnusedTemplateDefinitionTest

more concrete test cases...

junit.framework ::Testcase

Figure 5.7: Static structure of the tests

and invokes parser and analyzer for creation of AST and symbol table. Afterwards the code
smell detection is started by launching the copied analysis configuration. The test case then
usually asserts the number of markers generated by the rule and their type and position in
the documents.

Analysis results are checked by markers that have been generated by the rule. The smell
detection core plug-in declares three different types of markers for the three different severity
levels recommendation, warning and error. The tests are able to check the type of a marker
as well as its position in the document.

Listing 5.8 shows the assertMarker method of PatternDetectionTestProject. It checks for
the presence of a marker in the given line number of the specified file. Optionally the type
and a message of the marker can be specified as well. First of all, an array of markers is
retrieved from the file (line 3). For each marker the line number is compared to the given
line number, and if they are equal and no type is specified, the method returns without
failing (lines 11–16). Only if a type is specified, it is compared to the type of the marker,
and if they are equal and no message is specified, the method returns (lines 17–21). Again,
if a message is specified, it is compared to the marker’s message, and the method returns
if they are equal (lines 22–25). If all markers have been checked and the method did not
return, no appropriate marker could be found, and the assertion fails (lines 30–32).

1 public void assertMarker (S t r ing markerFi le , int lineNumber , S t r ing type ,
2 St r ing message) throws Exception {
3 IMarker [] markers = getMarkersForFi le (markerFi le) ;
4 for (int i = 0 ; i < markers . l ength ; i++) {
5 I n t eg e r attr ibuteLineNumber = (In t eg e r) markers [i]
6 . g e tAt t r ibute (IMarker .LINE NUMBER) ;
7 St r ing attr ibuteType = markers [i] . getType () ;
8 St r ing at t r ibuteMessage = (St r ing) markers [i]
9 . g e tAt t r ibute (IMarker .MESSAGE) ;

74

5.5 JUnit Tests

10 // check l i n e number
11 i f (lineNumber == attr ibuteLineNumber . intValue ()) {
12 // cor r ec t l i n e number !
13 i f (type == null) {
14 // ignore type and message
15 return ;
16 }
17 i f (type . equa l s (attr ibuteType)) {
18 i f (message == null) {
19 // ignore message
20 return ;
21 }
22 i f (message . equa l s (at t r ibuteMessage)) {
23 // cor r ec t message !
24 return ;
25 }
26 }
27 }
28 }
29 // no marker found
30 Assert . f a i l ("There is no marker in file " + markerFi le
31 + ", line " + lineNumber + ", of type " + type
32 + ", with message ’" + message + "’.")) ;
33 }

Listing 5.8: Marker assertion

75

6 Code Smells in Existing Test Suites

As an indication for their relevance, some of the smell detection implementations presented
in chapter 5 have been applied to existing test suites, namely a test suite for the Session
Initiation Protocol (SIP) protocol [22] and a preliminary version of a test suite for the
Internet Protocol Version 6 (IPv6) protocol [23]. Both test suites are published by the
ETSI and may serve as reference for TTCN-3 tools.

The following smell detections have been run on the test suites:

• Magic Values (4.8.1): Only numeric literals (Magic Numbers) have been included,
values 0 and 1 excluded. (See section 5.3.1 for details about this rule.)

• Activation Asymmetry (4.5.1): This rule has been applied both with and without
consideration of test cases.

• Duplicate Alt Branches (4.1.2): Only duplicates in the same file have been con-
sidered. (See section 5.3.2 for details about this rule.)

• Singular Component Variable/Constant/Timer Reference (4.2.2): References
in all analyzed files have been included.

• Unused Definition (4.2.3): Only local definitions have been considered. (See section
5.3.3 for details about this rule.)

The upper part of table 6.1 shows some size metrics for the SIP and IPv6 test suites in or-
der to give a notion of their size. The lower part lists the number of smells found in the test
suite. Especially numeric Magic Values (4.8.1) and instances of Activation Asymme-
try (4.5.1) appear in great quantities. A fair number of Duplicate Alt Branches (4.1.2)
and instances of Unused Definition (4.2.3) in local scope are found, too. In contrast,
Singular Component Variable/Constant/Timer Reference (4.2.2) seems to be of
little importance for these test suites.

In the remainder of this chapter, smells found in the SIP are investigated further. Results
for the IPv6 test suite seem to have similar origins as the ones for the SIP test suites.

The high number of Magic Numbers results mainly from a frequent usage of numeric
literals in expressions regarding timer settings. Further Magic Numbers are part of template
definitions. Figure 6.1 shows examples for Magic Numbers defining timer values in the SIP
test main module. Without further documentation the meaning of these values is not

77

6 Code Smells in Existing Test Suites

SIP IPv6
Lines of code 42397 46163
Number of control parts 1 3
Number of functions 785 643
Number of test cases 528 295
Number of altsteps 10 11
Number of components 2 10
Magic Numbers (0,1 excluded) 543 368
Activation Asymmetries (test cases included) 602 801
Activation Asymmetries (test cases excluded) 73 317
Duplicate Alt Branches 119 48
Singular Component Variable/Constant/Timer References 2 15
Unused Local Definition 50 156

Table 6.1: Code Smells in existing test suites

comprehensible. The use of constants with meaningful names could improve readability
significantly. Hence, Magic Values (4.8.1) seem to be relevant.

The high number of Activation Asymmetry in the SIP test suite is caused by the fact that
in many test cases a default is activated but not deactived. With termination of a test case
all active defaults are deactivated anyway, so obviously the explicit deactivation is regarded
to be superfluous. If test cases are excluded from the analysis, there still remains number
of functions that activate defaults previous to an alternative behavior construct and miss
deactivating it. Figure 6.2 shows an example of such a function. Determination of active
defaults is made difficult by this kind of default handling. However, the smell Activation
Asymmetry (4.5.1) remains partly a matter of taste.

Most of the Duplicate Alt Branches are duplicates of only a few specific branches. These
branches handle timeout and unexpected communication behavior and are perfect candi-
dates for default altsteps. Figure 6.3 shows an example. The branch handles the reception
of unexpected messages. It could be perfectly extracted into an own altstep and activated
as default behavior. Hence, Duplicate Alt Branches (4.1.2) seem to be meaningful for
the SIP test suite.

There is also a remarkably great number of Unused Local Definitions in the SIP test suite.
Figure 6.4 shows an unused variable which is declared locally and never used. Maybe these
definitions originate from changes made during the evolution of the test suites. However,
local instances of Unused Definition (4.2.3) only increase code size unnecessarily and are
certainly relevant.

Altogether, the application of the smell detection to existing reference test suites shows
that the identified code smells have a relevance for real-life test suites.

78

Figure 6.1: Magic Numbers in the SIP test suite

Figure 6.2: Activation Asymmetries in the SIP test suite

79

6 Code Smells in Existing Test Suites

Figure 6.3: Duplicate Alt Branches in the SIP test suite

Figure 6.4: Unused Local Definitions in the SIP test suite

80

7 Summary and Outlook

This chapter summarizes the previous chapters. Furthermore, possible future prospects are
discussed.

7.1 Summary

Just like any other piece of software, tests written in TTCN-3 can suffer from serious qua-
lity problems. Refactoring is a means to improve the quality by enhancing the internal
structure without changing the observable behavior. Code parts in need of refactoring are
characterized by the metaphor of code smells. Although smells can be located by human
intuition, the use of automated techniques is preferable. Automated smell detection can be
realized either by defining threshold values for metrics or by pattern matching. Together
with automated refactoring, automated smell detection allows a semi-automated process for
improving test suites.

Motivated by refactorings for TTCN-3 and by well-known code smells for Java, a catalog
of 39 code smells for TTCN-3 has been compiled. It contains both general and TTCN-3
specific code smells. For better clearness the smells are organized in categories. Each smell
is presented with a name, a description, a motivation, related refactorings and an example.
The catalog can be used for both manual inspection and as groundwork for automated smell
detection.

Based on the TRex tool and thus on the Eclipse Platform, a tool for code smell detection
has been developed. It uses static analysis to match smell patterns on the AST in order to
find code smell instances. Smell detections are implemented as analysis rules for the TPTP
Static Analysis Framework. A total number of 11 analysis rules have been implemented,
three of them connected to a quick-fix. Furthermore, unit tests for all smell detection rules
have been written. As an indication for its relevance, the code smell detection has been
applied to existing TTCN-3 test suites.

7.2 Outlook

There are some issues remaining which could not be covered by the scope of this thesis.
These issues are summarized by the following subsections.

81

7 Summary and Outlook

7.2.1 Declarative Approaches

The current implementation relies on rules written in Java. The description of the smell that
is detected by a rule is implied in the code. Hence the rule class can be seen as imperative
description of the smell it detects. Further smells can be supported by providing further
rules. However, it would be desirable to allow some kind of declarative smell description.
This would ease adding new smells.

Some of the tools introduced in section 3.3.5 offer declarative techniques. For example,
PMD [49] uses XPath [8] for the specification of some of its rules. XPath is a language for
addressing parts of an XML document. XML documents can thereby be seen as a tree-based
structure – the Document Object Model (DOM), the abstract data type defined for XML
documents, is basically a tree.

If a syntax tree can be transformed into an XML document, XPath can be used to
navigate through this document and select sets of nodes. Predicates in square brackets
constrict the selection. For example, Magic Values (4.8.1) of type integer correspond to
the following XPath expression, which selects all integer values which are not part of a
constant definition (a similar expression could be used for other types):

//IntegerValue[not(./ancestor::ConstDef)]

While XPath is suitable for simple selection of nodes, it falls short for more complex
smells. For example, there is no straightforward construct to match sub tree clones (which
is needed for all smells regarding duplicated code). For these cases XQuery [5] could be used
instead. XQuery is a full-grown query language using a SQL-style syntax which includes
XPath as a subset. To use XPath or XQuery for examining syntax trees an engine for the
languages has to be integrated into TRex, and the AST has to be transformed to a DOM.
For the latter purpose, Widemann et al. [60] present an interesting approach for the creation
of a DOM from an ANTLR-generated AST.

Of course there are many other approaches than XPath for matching patterns in syntax
trees [9, 38, 54, 55, 57]. Many of them do not only support pattern matching, but also offer
transformation mechanisms.

7.2.2 Dynamic analysis

The smells collected for the catalog presented in chapter 4 were collected with static analysis
in mind. Accordingly, the smell detection tool introduced in chapter 5 is based on static
analysis. Dynamic techniques could possibly enhance the detection of some smells and allow
the expansion on “dynamic smells”. For example, default activation and deactivation could
be analyzed dynamically.

82

7.2 Outlook

7.2.3 Implementational Enhancements

In its current form, the smell detection analyzes each source file in isolation. For some
smells (like Duplicated Code) it would be preferrable to consider all files of a project or
of the whole workspace. This could be achieved by linking each PatternDetectionResource
with all other resources in the same project or workspace.

Furthermore a connection between the TRex metrics plug-in and the code smell detection
could be established. This would offer the possibility to use metrics values as part of
smell detection rules. For example, an Unused Definition (4.2.3) detection could be
implemented by retrieving all definition whose number of references is zero.

Finally the tests could be enhanced by using mock objects which are connected to rules
that are to be tested. By this approach the test would interact directly with the rule instead
of using the launch framework, and result generation could be controlled firsthand instead
of using the marker mechanism.

83

Acknowledgments

First of all I would like to thank Dr. Helmut Neukirchen for his guidance and excellent
supervision of this thesis. Further thanks go to Prof. Dr. Jens Grabowski and Benjamin
Zeiss for their ideas and advice. I would also like to thank Patrick Schiel for proof-reading
and Robert Burdick for keeping me from rusting in. Finally I would like to thank my fiancée
for her thorough encouragement, and my parents for their unrestricted support throughout
all years of study.

85

Abbreviations and Acronyms

ANTLR Another Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

CORBA Common Object Request Broker Architecture

CVS Concurrent Versions System

DECT Digital Enhanced Cordless Telecommunications

DOM Document Object Model

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

ETSI European Telecommunications Standard Institute

GSM Global System for Mobile Communications

IDE Integrated Development Environment

IPv6 Internet Protocol Version 6

JDT Java Development Tools

LTK Language Toolkit

MTC Main Test Component

OS Operating System

PDE Plug-In Development Environment

PTC Parallel Test Component

SDK Software Development Kit

87

Abbreviations and Acronyms

SIP Session Initiation Protocol

SUT System Under Test

SWT Standard Widget Toolkit

TPTP Test & Performance Tools Platform

TRex TTCN-3 Refactoring and Metrics Tool

TSI Test System Interface

TTCN Tree and Tabular Combined Notation

TTCN-3 Testing and Test Control Notation Version 3

UI User Interface

XML Extensible Markup Language

XP Extreme Programming

88

Bibliography

[1] B. S. Baker. Parameterized duplication in strings: Algorithms and an application to
software maintenance. SIAM J. Comput., 26(5):1343–1362, 1997.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM ’98: Proceedings of the 1998 International Conference
on Software Maintenance, pages 368–377. IEEE Computer Society, 1998.

[3] K. Beck. Extreme Programming Explained. Addison Wesley, 2000.

[4] S. Bellon. Vergleich von Techniken zur Erkennung duplizierten Quellcodes. Diploma
thesis, University of Stuttgart, Institute for Software Technology, Germany, 2004.

[5] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.
XQuery 1.0: An XML Query Language. W3C Proposed Recommendation, http:
//www.w3.org/TR/xquery, 2006.

[6] W. J. Brown, R. C. Malveau, I. Hays W. McCormick, and T. J. Mowbray. AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons, Inc., New York, NY, USA, 1998.

[7] Checkstyle. http://checkstyle.sourceforge.net.

[8] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, http://www.w3.org/TR/xpath, 1999.

[9] J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Programming Language
Version 10.4, 2005.

[10] CVS — Concurrent Versions System. http://www.nongnu.org/cvs.

[11] T. Deiß. Refactoring and Converting a TTCN-2 Test Suite. Presentation at the
TTCN-3 User Conference 2005, June 6-8, 2005, Sophia-Antipolis, France, May 2005.

[12] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detec-
ting duplicated code. In ICSM ’99: Proceedings of the 1999 International Conference
on Software Maintenance, pages 109–118. IEEE Computer Society, sep 1999.

89

http://www.w3.org/TR/xquery
http://www.w3.org/TR/xquery
http://checkstyle.sourceforge.net
http://www.w3.org/TR/xpath
http://www.nongnu.org/cvs

Bibliography

[13] Eclipse Foundation. Eclipse. http://www.eclipse.org.

[14] Eclipse Foundation. Eclipse Modelling Framework. http://www.eclipse.org/emf.

[15] Eclipse Foundation. Eclipse Test & Performance Tools Platform Project (TPTP).
http://www.eclipse.org/tptp.

[16] E. V. Emden and L. Moonen. Java quality assurance by detecting code smells. In
WCRE ’02: Proceedings of the Ninth Working Conference on Reverse Engineering
(WCRE’02), page 97, Washington, DC, USA, 2002. IEEE Computer Society.

[17] ETSI. ETSI Standard (ES) 201 873-10 V3.2.1 (to appear): TTCN-3 Documentation
Comment Specification. European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis, France.

[18] ETSI. TTCN-3 naming conventions. http://www.ttcn-3.org/NamingConventions.
htm.

[19] ETSI. ETSI Standard (ES) 201 873-1 V3.1.1 (2005-06): The Testing and Test Con-
trol Notation version 3; Part 1: TTCN-3 Core Language. European Telecommunica-
tions Standards Institute (ETSI), Sophia-Antipolis, France, also published as ITU-T
Recommendation Z.140, 2005.

[20] ETSI. ETSI Standard (ES) 201 873-2 V3.1.1 (2005-06): The Testing and Test Con-
trol Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT). Euro-
pean Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France, also
published as ITU-T Recommendation Z.141, 2005.

[21] ETSI. ETSI Standard (ES) 201 873-3 V3.1.1 (2005-06): The Tree and Tabular
Combined Notation version 3; Part 3: Graphical Presentation Format for TTCN-3
(GFT). European Telecommunications Standards Institute (ETSI), Sophia-Antipolis,
France, also published as ITU-T Recommendation Z.142, 2005.

[22] ETSI. Technical Specification TS 102 027-3 V3.2.1 (2005-07): SIP ATS & PIXIT;
Part 3: Abstract Test Suite (ATS) and partial Protocol Implementation eXtra In-
formation for Testing (PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France, 2005.

[23] ETSI. Technical Specification TS 102 516 V1.1.1 (2006-04): IPv6 Core Protocol;
Conformance Abstract Test Suite (ATS) and partial Protocol Implementation eXtra
Information for Testing (PIXIT) proforma. European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France, 2006.

[24] FindBugs. http://findbugs.sourceforge.net.

90

http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipse.org/tptp
http://www.ttcn-3.org/NamingConventions.htm
http://www.ttcn-3.org/NamingConventions.htm
http://findbugs.sourceforge.net

Bibliography

[25] M. Fowler. Refactoring Home Page. http://www.refactoring.com.

[26] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[27] L. Frenzel. Neutral im Sinne der Qualität. Eclipse Magazin, 5, 2005.

[28] E. Gamma and K. Beck. JUnit. http://junit.sourceforge.net.

[29] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements of
Reusable Object-Oriented Software. Addison-Wesley, Massachusetts, 2000.

[30] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C. Willcock.
An Introduction into the Testing and Test Control Notation (TTCN-3). Computer
Networks, Volume 42, Issue 3, pages 375–403, June 2003.

[31] S. Gutz and O. Marquez. TPTP Static Analysis Tutorial Part 1 – A Consistent
Analysis Interface. http://www.eclipse.org/tptp/home/documents/process/
development/static_analysis/TPTP_static_analysis_tutorial_part1.html,
2005.

[32] S. Gutz and O. Marquez. TPTP Static Analysis Tutorial Part 2 – Enhancing
Java Code Review. http://www.eclipse.org/tptp/home/documents/process/
development/static_analysis/TPTP_static_analysis_tutorial_part2.html,
2006.

[33] S. Gutz and O. Marquez. TPTP Static Analysis Tutorial Part 3 – Integrating
Your Own Analysis. http://www.eclipse.org/tptp/home/documents/process/
development/static_analysis/TPTP_static_analysis_tutorial_part3.html,
2006.

[34] M. H. Halstead. Elements of Software Science. Elsevier, New York, 1977.

[35] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On software maintenance
process improvement based on code clone analysis. In PROFES ’02: Proceedings of
the 4th International Conference on Product Focused Software Process Improvement,
pages 185–197, London, UK, 2002. Springer.

[36] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
2004.

[37] ISO/IEC. International standard ISO/IEC 9646-3:1998: Information Technology –
Open Systems Interconnection – Conformance testing methodology and framework –
Part 3: The Tree and Tabular Combined Notation (TTCN). International Organiza-
tion for Standardization/International Electrotechnical Commission, 1998.

91

http://www.refactoring.com
http://junit.sourceforge.net
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part1.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part1.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part2.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part2.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part3.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part3.html

Bibliography

[38] The Jackpot Project. http://jackpot.netbeans.org.

[39] JavaCC Project. https://javacc.dev.java.net.

[40] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

[41] J. Krinke. Identifying similar code with program dependence graphs. In WCRE ’01:
Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE’01),
page 301, Washington, DC, USA, 2001. IEEE Computer Society.

[42] M. Mäntylä. Bad smells in software - a taxonomy and an empirical study. Master’s
thesis, Helsinki University of Technology, 2003.

[43] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In ICSM ’96: Proceedings of the
1996 International Conference on Software Maintenance, page 244, Washington, DC,
USA, 1996. IEEE Computer Society.

[44] T. McCabe. A Complexity Measure. IEEE Transactions of Software Engineering,
2(4):308–320, 1976.

[45] N. Moha and Y.-G. Gueheneuc. On the Automatic Detection and Correction of De-
sign Defects. In S. Demeyer, K. Mens, R. Wuyts, and S. Ducasse, editors, proceedings
of the 6th ECOOP Workshop on Object-Oriented Reengineering, July 2005.

[46] Netbeans. http://www.netbeans.org.

[47] H. Neukirchen. Languages, Tools and Patterns for the Specification of Distributed
Real-Time Tests. PhD thesis, Georg-August-Universität Göttingen, 2004.

[48] J. Philipps and B. Rumpe. Roots of Refactoring. In K. Baclavski and H. Kilov,
editors, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa Bay, Florida,
USA, October 15, 2001. Northeastern University, 2001.

[49] PMD. http://pmd.sourceforge.net.

[50] S. Roock and M. Lippert. Refactorings in grossen Softwareprojekten. Komplexe Re-
strukturierungen erfolgreich durchführen. dpunkt.verlag, Heidelberg, 2004.

[51] Simian – Similarity Analyser. http://www.redhillconsulting.com.au/products/
simian/index.html.

[52] A. Spillner and T. Linz. Basiswissen Softwaretest. dpunkt.verlag, Heildelberg, 2004.

92

http://jackpot.netbeans.org
https://javacc.dev.java.net
http://www.netbeans.org
http://pmd.sourceforge.net
http://www.redhillconsulting.com.au/products/simian/index.html
http://www.redhillconsulting.com.au/products/simian/index.html

Bibliography

[53] TRex – the TTCN-3 Refactoring and Metrics Tool. http://www.trex.informatik.
uni-goettingen.de.

[54] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The asf+sdf meta-environment: A component-based language develop-
ment environment. In CC ’01: Proceedings of the 10th International Conference on
Compiler Construction, pages 365–370, London, UK, 2001. Springer.

[55] P. van Eijk, A. Belinfante, H. Eertink, and H. Alblas. The term processor generator
kimwitu. In TACAS ’97: Proceedings of the Third International Workshop on Tools
and Algorithms for Construction and Analysis of Systems, pages 96–111, London,
UK, 1997. Springer.

[56] D. E. Vega and I. Schieferdecker. Towards Quality of TTCN-3 Tests. In Proceed-
ings of SAM’06: Fifth Workshop on System Analysis and Modelling (formerly SDL
and MSC Workshop), May 31st-June 2nd 2006, University of Kaiserslautern, Kaiser-
slautern, Germany, 2006.

[57] E. Visser. Program transformation with stratego/xt. rules, strategies, tools, and sys-
tems in stratego/xt 0.9. Technical Report UU-CS-2004-011, Institute of Information
and Computing Sciences, Utrecht University, 2004.

[58] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz. An Introduction to
TTCN-3. John Wiley & Sons, Ltd, 2005.

[59] A. Wu-Hen-Chang, D. L. Viet, G. Batori, R. Gecse, and G. Csopaki. High-Level Re-
structuring of TTCN-3 Test Data. In J. Grabowski and B. Nielsen, editors, Formal
Approaches to Software Testing: 4th International Workshop, FATES 2004, Linz,
Austria, September 21, 2004, Revised Selected Papers, volume 3395 of Lecture Notes
in Computer Science (LNCS), pages 180–194. Springer, 2005.

[60] B. T. y Widemann, M. Lepper, and J. Wieland. Automatic construction of XML-
based tools seen as meta-programming. Automated Software Engineering, 10(1):23–
38, 2003.

[61] B. Zeiss. A Refactoring Tool for TTCN-3. Master’s thesis, Institute for Informatics,
ZFI-BM-2006-05, ISSN 1612-6793, Center for Informatics, University of Göttingen,
Mar. 2006.

[62] B. Zeiss, H. Neukirchen, J. Grabowski, D. Evans, and P. Baker. Refactoring and
Metrics for TTCN-3 Test Suites. In System Analysis and Modeling: Language Pro-
files. 5th International Workshop, SAM 2006, Kaiserslautern, Germany, May 31 -

93

http://www.trex.informatik.uni-goettingen.de
http://www.trex.informatik.uni-goettingen.de

Bibliography

June 2, 2006, Revised Selected Papers. Lecture Notes in Computer Science (LNCS)
4320. DOI: 10.1007/11951148 10, pages 148–165. Springer, Dec. 2006.

All URLs have been verified on December 18, 2006.

94

http://www.springer.de/comp/lncs
http://dx.doi.org/10.1007/11951148{_}10

	1 Introduction
	2 Foundations
	2.1 TTCN-3
	2.1.1 Overview
	2.1.2 Language elements

	2.2 Eclipse Platform
	2.3 TPTP and Static Resource Analysis Framework
	2.4 TRex

	3 Quality Assurance for Software and Tests
	3.1 Refactoring
	3.2 Code Smells
	3.2.1 Terminology
	3.2.2 Finding Code Smells

	3.3 Related Work
	3.3.1 Taxonomy
	3.3.2 Similar Concepts
	3.3.3 Automated Smell Detection
	3.3.4 Clone Detection
	3.3.5 Tools

	4 A TTCN-3 Code Smell Catalog
	4.1 Duplicated Code
	4.1.1 Duplicate Statements
	4.1.2 Duplicate Alt Branches
	4.1.3 Duplicated Code in Conditional
	4.1.4 Duplicate In-Line Templates
	4.1.5 Duplicate Template Fields
	4.1.6 Duplicate Component Definition
	4.1.7 Duplicate Local Variable/Constant/Timer

	4.2 References
	4.2.1 Singular Template Reference
	4.2.2 Singular Component Variable/Constant/Timer Reference
	4.2.3 Unused Definition
	4.2.4 Unused Imports
	4.2.5 Unrestricted Imports

	4.3 Parameters
	4.3.1 Unused Parameter
	4.3.2 Constant Actual Parameter Value
	4.3.3 Fully-Parameterized Template

	4.4 Complexity
	4.4.1 Long Statement Block
	4.4.2 Long Parameter List
	4.4.3 Complex Conditional
	4.4.4 Nested Conditional
	4.4.5 Short Template

	4.5 Default Anomalies
	4.5.1 Activation Asymmetry
	4.5.2 Unreachable Default

	4.6 Test Behavior
	4.6.1 Missing Verdict
	4.6.2 Missing Log
	4.6.3 Stop in Function

	4.7 Test Configuration
	4.7.1 Idle PTC
	4.7.2 Isolated PTC

	4.8 Coding Standards
	4.8.1 Magic Values
	4.8.2 Bad Naming
	4.8.3 Disorder
	4.8.4 Insufficient Grouping
	4.8.5 Bad Comment Rate
	4.8.6 Bad Documentation Comment

	4.9 Data Flow Anomalies
	4.9.1 Missing Variable Definition
	4.9.2 Unused Variable Definition
	4.9.3 Wasted Variable Definition

	4.10 Miscellaneous
	4.10.1 Name-clashing Import
	4.10.2 Over-specific Runs On
	4.10.3 Goto

	5 Code Smell Detection for TRex
	5.1 General Overview
	5.1.1 Static Structure
	5.1.2 Analysis Sequence
	5.1.3 Framework Extensions

	5.2 A library for analyzing ASTs
	5.3 Rules for Code Smell Detection
	5.3.1 The Magic Number Rule
	5.3.2 The Duplicate Alt Branches Rule
	5.3.3 The Unused Local Definition Rule

	5.4 Quick Fix Support
	5.5 JUnit Tests

	6 Code Smells in Existing Test Suites
	7 Summary and Outlook
	7.1 Summary
	7.2 Outlook
	7.2.1 Declarative Approaches
	7.2.2 Dynamic analysis
	7.2.3 Implementational Enhancements

	Abbreviations and Acronyms
	Bibliography

