
SDL and MSC Based Test Case Generation {An Overall View of the SAMSTAG MethodJens Grabowski
IAM-94-005May 1994

AbstractThis technical report summarizes the results of the research and development project'Conformance Testing { A Tool for the Generation of Test Cases'.1 Within this projectwe developed a method for the automatic generation of test cases based on formal speci�-cations and formally de�ned test purposes. The method is called SaMsTaG. It is imple-mented in the SaMsTaG tool. Most of the work has already been published in conferenceproceedings [13, 30], technical reports [12, 14, 15] and project reports [11, 5, 6, 7, 8, 9, 10].For detailed information these publications should be consulted.The report starts with a short introduction (Section 1). Then the standardized confor-mance testing procedure [22], in the following abbreviated by CTMF/FMCT, is comparedwith other test case generation methods (Section 2). Afterwards, the SaMsTaG method(Sections 4, 5) and the SaMsTaG tool are introduced (Section 6). In the last section theformal aspects of CTMF/FMCT, other test case generation methods and the SaMsTaGmethod are summarized (Section 7). This summary provides a possibility for a completeformal explanation of the entire conformance testing procedure.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols;D.2.5 [Software Engineering:] Testing and DebuggingGeneral Terms: Validation, Test Case Generation, Test Case Speci�cation1The project was funded by Swiss PTT under the contract no. 233/257.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 11 IntroductionFor approximately 10 years the ISO/IEC and the ITU-TS2 have been working on meth-ods for protocol conformance testing. A result of these investigations is the interna-tional ISO/IEC standard 96463 'OSI Conformance Testing Methodology and Framework'(CTMF) [22]. CTMF consists of seven parts. It includes general concepts for confor-mance testing, several test methods, the 'Tree and Tabular Combined Notation' (TTCN)[24] as description language for test cases, and information concerning test realization,requirements on test laboratories, protocol pro�le test speci�cation, and implementationconformance statements. CTMF also seems to be a good basis for industrial protocol test-ing. The growing availability of commercial tools which support and automate severalparts of standardized conformance testing procedure emphasizes the broad acceptanceand increasing dissemination of CTMF.In parallel with the development of CTMF, ISO/IEC and ITU-TS developed theformal description techniques SDL, Estelle, LOTOS [16] and MSC [26]. The applicationof these languages in protocol standards should support implementation, validation andconformance testing of communication protocols. For this reason the joint project 'FormalMethods in Conformance Testing' (FMCT) [18, 23] of ISO/IEC and ITU-TS formalizesCTMF, i.e. adapts and extends CTMF to meet the speci�c needs of conformance testingfor formally speci�ed protocols.This chapter also deals with the conformance testing of formally described protocols.Therefore CTMF and FMCT can not be treated independently from each other. We referto the work of both, i.e. to [22] and [23], by means of the abbreviation CTMF/FMCT.The use of formal methods in protocol speci�cation also resulted in scienti�c researchin the area of conformance testing. A result of this work was the development of severalmethods for the automatic generation of test cases. In the following we refer to thesemethods with the term scienti�c methods. A discussion of such methods for example canbe found in [19] or [27].All scienti�c methods try to prove a relation, the so-called conformance relation, be-tween a speci�cation and an implementation by means of a test. The test case generationis determined by the speci�cation and the used conformance relation. The scienti�c meth-ods have to deal with three main problems. The �rst problem concerns the conformancerelation. Most of the used conformance relations can be used only for protocol speci�-cations which can be described by �nite automata. In practice, this restriction is hardlyever met. The second problem concerns the complexity of real protocols. Even if theconformance relation can be checked, often the number of necessary tests is so large thatthey are not manageable within an industrial environment. The third problem concernsthe relation to CTMF/FMCT. Most concepts and procedures of the scienti�c methodscan not be related directly to the terms and procedures de�ned in CTMF/FMCT.However, there exists a possibility to bring CTMF/FMCT and the scienti�c methodscloser together. For this, the results of the research project 'Conformance Testing - A Toolfor the Generation of Test Cases' may play an important role. The project was closely2In March 1993 the CCITT became the 'Telecommunications Standards Sector of the InternationalTelecommunication Union' (ITU-TS).3ITU-TS issues CTMF as recommendation X.290.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 2aligned with CTMF/FMCT. A main goal of the project was to formalize an importantstep of the standardized procedure for conformance testing and to automate it by meansof a prototype tool. The selected step concerns the generation of abstract test cases basedon a formal protocol speci�cation and a set of test purposes. Since in CTMF/FMCT theterm test purpose is not de�ned formally, we formalized it and developed a method forthe automatic generation of test cases. The method is called SaMsTaG (Sdl And MscbaSed Test cAse Generation) method and is implemented in the SaMsTaG tool.2 CTMF/FMCT and scienti�c methodsThis section starts with a description of the conformance testing procedure according toCTMF/FMCT. Then, the scienti�c methods are explained and afterwards, the similaritiesand di�erences of both procedures are summarized.2.1 Conformance testing according to CTMF/FMCTFigure 1 presents the CTMF/FMCT conformance testing procedure to derive a confor-mance statement by means of a test which is based on a protocol speci�cation and aprotocol implementation.4 The rectangles denote actions and the ellipses describe the in-puts and outputs of the actions. Dashed rectangles and ellipses represent actions, inputs,and outputs which are described informally in CTMF/FMCT. Letters and numbers serveas references for the following description.The goal of conformance testing is to prove that a protocol implementation (a) hasthe behavior which is described in a protocol speci�cation (b). The implementation is notveri�ed directly against the speci�cation, but tested with a set of test cases, a so-calledtest suite.For deriving a test suite from a protocol speci�cation a set of test purposes (c) hasto be de�ned. A test purpose is an informal description of a behavior or a propertywhich shall proven by the conformance test. Based on the test purposes and the protocolspeci�cation an abstract test suite is developed. An abstract test suite consists of abstracttest cases. In CTMF/FMCT the de�nition of the test purposes (1), the test purposesitself (c) and the speci�cation of the abstract test suite (2) are described only informally.In practice the actions (1) and (2) are performed manually by experts.An abstract test case describes the required exchange of protocol data units (PDUs)and service primitives (SPs) independent from the protocol implementation and test re-alization. In order to transform an abstract test suite (d) into a executable test suite (e),all PDUs and SPs have to be converted into bit combinations which can be interpretedby the test equipment, i.e. test processes or test devices.During the conformance test (4) the implementation is stimulated by inputs and theresulting outputs are observed. The inputs and outputs are described within the individual4CTMF/FMCT de�nes a very comprehensive and complex procedure. Therefore Figure 1 cannotdescribe all aspects of the entire conformance testing procedure. E.g. the inuences of PICS and PIXITare not considered.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 3
protocol

implementation
(a)

test purpose
definition

(1)

protocol
specification

(b)

test purposes
(c)

test case
specification

(2)

abstract
test suite

(d)

test case
implementation

(3)

conformance
statement

(g)

executable
test suite

(e)

conformance test

(4)

test log
(f)

test evaluation
(5)Figure 1: The conformance testing procedure according to CTMF/FMCTtest cases. According to the shown behavior one of three possible test verdicts is assignedto each test case. The whole test campaign is recorded in a test log (f).The evaluation of the test (5) and the following conformance statement are describedonly informally in CTMF/FMCT. One reason for this is that, besides the test log, ageneral conformance statement also should consider further technical and non technicalaspects, e.g. the reputation of the manufacturer.Only the actions (3) and (4) in Figure 1 can be automated. Currently, the actions(1), (2) and (5) are described informally. Therefore, they can not be automated. Theinput for the de�nition of the test purposes (1) is a protocol speci�cation. We assumethat it is written in a standardized formal description technique, i.e. LOTOS, Estelle, orSDL. Although the behavior of the protocol is unambiguously described by the protocolspeci�cation, action (1) can not be automated, because the central term test purposeand its relation to the protocol speci�cation still is an open question. Since the set of

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 4
protocol

specification
(b)

test case
generat ion

(2)

conformance
statement

(g)

test log
(f)

test
evaluation

(5)

assumptions
about the

implementat ion

(i)

defini tion of a
coverage cri terion

(6)

con forma nce
re lati on

(h)

cove rage
cri terion

(j)

test sui te
(d)

Figure 2: The general procedure of test case generation with scienti�c methodstest purposes is the prerequisite for the speci�cation of the abstract test suite (2), thisaction also can not be automated. For the manual speci�cation of the abstract testcases the standardized test case description language TTCN [24] can be used. Action (3)can be performed automatically by means of commercial TTCN editors, compilers andinterpreters (e.g. [33]). Also the technical equipment for the automatic execution of theconformance tests is commercially available.2.2 Test case generation with scienti�c methodsMethods for test case generation which are developed in a scienti�c environment, in thefollowing called scienti�c methods, generate test cases from a formal speci�cation in orderto prove a conformance relation between speci�cation and implementation.In the following we explain the general procedure of scienti�c methods by means of twoexamples and Figure 2. Example A refers to methods which are discussed by Holzmannin [19]. They can be used to generate test cases for �nite automata. In example B wediscuss a method which can be applied to generate test cases for LOTOS speci�cations.It is described by Brinksma in [3]. The letters and numbers in the following text serve asreferences to the rectangles and ellipses in Figure 2.In general, all scienti�c methods start with the de�nition of a conformance relation(h). This relation states something about the relation between the traces of the protocolspeci�cation and the protocol implementation. The validity of the relation should beveri�ed by the conformance test.Unfortunately, there exist conformance relations which can not be proven for arbitrary

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 5speci�cations and implementations. For example, within �nite time a behavioral equiva-lence can only be checked for speci�cations and implementation which can be describedby �nite and deterministic automata. This means that the conformance relation restrictsthe set of testable speci�cations and implementations.For conformance testing the protocol speci�cation (b) is given and it can be checkeddirectly whether the speci�cation is testable for the chosen conformance relation (h). Ingeneral, the implementation is given as black box, i.e. conformance testing is black boxtesting and it it can not be checked if the implementation is testable or not. Therefore,one has to make assumptions about the implementation (i). Thus, the validity of theconformance statement (g) depends on the validity of the assumptions.Approach A. The scienti�c methods which are discussed by Holzmann attempt toprove a behavioral equivalence between speci�cation and implementation. It is as-sumed that the time available for testing is �nite. To prove behavioral equivalencespeci�cation and implementation have to behave like �nite, strongly connected anddeterministic automata. In conformance testing the implementation is given asblack box. Therefore it can not be proven that the implementation behaves likethe required automaton. We only can make assumptions about the behavior of theimplementation (cf. Figure 2 (i)).Approach B. Brinksma has worked on testing behavioral equivalence in the realmof labeled transition systems, i.e. in�nite automata.5 His theory can handle labeledtransition systems, because he does not assume that the time for testing is �nite.Based on the conformance relation (h) and the assumptions (i) a coverage criterion (j)is determined. This criterion de�nes how the speci�cation should be covered by the testcases. For example, a coverage criterion may require that all state transitions have to beperformed for at least once. Based on the coverage criterion and the protocol speci�cationthe test cases (d) are generated. The scienti�c methods have no notion about the termtest purpose which is a central concept of CTMF/FMCT (cf. (c) in Figure 1).Approach A. To test the behavioral equivalence of two �nite automata all statetransitions have to be checked. But, it is not necessary to develop an individual testcase for each state transition. By means of a so-called transition tour only one bigtest case is generated. This test case checks all state transitions at once.Approach B. The approach of Brinksma also tests the entire behavior of the speci�-cation, i.e. all state transitions. But, instead of producing test cases, he generates aso-called canonical tester. A canonical tester is a labeled transition system which de-scribes the environment of the speci�cation. It can be considered to be the inversionof the speci�cation.The conformance test itself is not treated by the scienti�cmethods. But, it is assumed thatthere exist a test log (f) which, together with the assumptions (i) and the conformancerelation (h), can be used for the evaluation of the whole test (5). The result of theevaluation is a conformance statement (g) which states whether the conformance relationis proven or not.5Brinksma uses LOTOS [21] as speci�cation language.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 6Approach A. The conformance relation is proven if the test case which is generated bythe transition tour has been executed successfully. As stated earlier, the validity ofthis statement can only be guaranteed if the assumptions about the implementationare valid.Approach B. For test execution the canonical tester is connected with the implemen-tation which should be tested. The result is a closed system, i.e. all communicationis system internal. If the system does not terminate, nothing can be said aboutthe validity of the conformance relation. If the system ends with an allowed trace,i.e. a trace where canonical tester and speci�cation end, the test is successful. Ifall allowed traces can be tested, the validity of the conformance relation is proven.The conformance relation does not hold when the system presents a trace that isnot allowed.2.3 A comparative summaryBy starting with the test case development and ending with the conformance statementCTMF/FMCT covers the whole conformance testing procedure. But, the individual stepsare de�ned with a di�erent degree of formality. As a consequence, they also di�er in thepossibility to be automated.The whole test execution (cf. Figure 1) which starts with the abstract test suite (d)and ends up with the test log (f) has already been automated. Therefore, it is su�-ciently formally de�ned. In contrast to this, the terms test purpose (c), conformancestatement (g) and the actions test purpose de�nition (1), test case speci�cation (2) andtest evaluation (5) are described only informally. This is problematic for several reasons.The development of the abstract test suite is based on two informal steps which,in most cases, are performed manually by protocol experts. The goal of the expert isto produce a test suite which checks all functions of the protocol. How close this goalis reached heavily depends on the de�nition of the test purposes (1). Without formalcriteria it is di�cult to judge the set of test purposes.For the test case speci�cation (2) the protocol expert interprets the test purposes andtransforms his interpretation into corresponding test cases. The test cases are written in atest case description language. The interpretation of test purposes and transformation intotest cases are non trivial tasks, and therefore a test suite may include misinterpretationsand errors. These problems may inuence the evaluation of the whole conformance test(5). The concluding conformance statement may become very vague without any criterionwhich judges the quality of the test suite.The scienti�c methods in [3] and [19] (cf. Figure 2) formalize the test case generation(2) and the test evaluation (5). This is done by means of a conformance relation whichde�nes the goal of the test. The conformance relation determines a coverage criterion(j). Based on the coverage criterion and the protocol speci�cation a test suite can begenerated automatically. The test is evaluated (5) by checking whether all generated testcases have been performed successfully. In this case the conformance relation is proven,i.e. the goal of the test is reached.The main problems of the scienti�c methods are the conformance relation and thecomplexity of real systems. There exist conformance relations which are not provable for

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 7arbitrary speci�cations and implementations. Therefore, a conformance relation restrictsthe set of testable speci�cations and implementations. Most conformance relations can notbe proven for real protocols. Even if a conformance relation is theoretically testable, thenumber of necessary test runs often is so big that in practice they can not be performed.Within the scienti�cmethods the conformance relation and the corresponding coveragecriterion determine the quality of the test suite. But, because of the mentioned problemsthe scienti�c methods can rarely be used for conformance testing. As a consequence,other criteria for the judgement of test suites and test logs have to be found. In industrialpractice the test purposes play an important role.A manufacturer has to prove that his product ful�lls the requirements of a customer.For this, it might be necessary to give test cases and test logs to the customer. He canmake a critical test review and then judge whether the requirements are ful�lled or not.But, such a test review only is possible if the purpose of each test case is known. Onthe other side, the test purposes may also be helpful for the manufacturer. Test purposesmay help to locate implementation errors, if a test case fails.3 Fundamental notionsFor the explanation of the SaMsTaG method, the test case generation with the SaM-sTaG method and the SaMsTaG tool we need to introduce some fundamental notions.Most of them are taken from the CTMF/FMCT work [22] and from the ITU-TS recom-mendations Z.100 [25] and Z.120 [26]. Only the terms trace and observable are new. Weneed them to simplify the description in the following sections.3.1 SDLThe 'Speci�cation and Description Language' (SDL) is a standardized speci�cation lan-guage for the behavior description of distributed systems. An SDL speci�cation describesa set of extended �nite state machines, so-called processes, which communicate asyn-chronously by means of messages. The entire behavior of an SDL speci�cation can bedescribed formally by a labeled transition system, i.e. by an in�nite automaton. Thestates of the labeled transition system are de�ned by the global system states of the SDLspeci�cation. Such a global system state comprises the local states of the SDL processes,the variable values, and the not processed messages. The state transitions of the labeledtransition system are de�ned by the state transitions of the SDL processes. In the fol-lowing we do not need speci�c SDL features. We assume that the behavior of an SDLspeci�cation is given by a labeled transition system.3.2 MSCAlso the 'Message Sequence Chart' (MSC) language is a standardized language. MSC isa graphical trace language which admits a particularly intuitive representation of system

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 8runs in distributed systems. Formally, an MSC6 de�nes a set of partially ordered messagesend and message receive actions. The behavior which is represented by an MSC can bedescribed by a �nite automaton. The automaton accepts all sequences of send and receiveactions which are consistent with the partial order in the MSC. More detailed informationcan be found in [31].3.3 IUT, SUT, tester and test architectureIUT is an abbreviation for 'Implementation Under Test'. It denotes a protocol implemen-tation which should be tested.In CTMF/FMCT it is assumed that the interface of an IUT to the next lower layeris not freely accessible. Therefore, this interface has to be controlled and observed viathe service of the next lower layer, i.e. via other implementations. CTMF/FMCT usesthe term system under test (SUT) to denote an IUT and the implementations which arenecessary to interface the IUT.7During the conformance test the SUT is driven and controlled by testers. A testermight be a software process, a test device, or a person which stimulates and observes theSUT manually.A test architecture consists of the SUT and the test environment, i.e. all testers.CTMF/FMCT describes di�erent test architectures for conformance tests. They mainlydi�er in the possibilities to access and control the IUT.An example may clarify the di�erent notions. Figure 3 presents a test architecturefor the Inres protocol [17]. The IUT is the Initiator. The lower interface of the Initiatorhas to be tested via the Medium service. Therefore, the SUT consists of the Initiator andMedium service. The testers are the upper tester UT and the lower LT.For the SaMsTaG tool it is required that a whole test architecture is described byan SDL speci�cation. This o�ers the exibility to generate test cases for di�erent testarchitectures.3.4 Trace and ObservableThe behavior description of a speci�cation (e.g. given in form of an SDL speci�cation or anMSC) may include observable, and not observable (system internal) actions. Therefore,we distinguish between a trace and the observable of a trace. A trace is a sequence ofarbitrary actions of a speci�cation. Related to SDL, a trace may include arbitrary SDLactions, e.g. input, output, task, decision, set, or reset. In the following we use MSCs forthe clear description of SDL traces. But, it should be noted that, because of its partialorder representation, an MSC may describe a whole set of traces and observables.The observable of a trace is the sequence of observable actions of a trace. An observablerelevant for conformance testing may for example only include the actions of the testers.Figure 5 presents a trace of an SDL speci�cation in form of an MSC and a corresponding6In general, the term MSC is used for a diagram written in the MSC language and the language itself.Where necessary, we distinguish between both by using the terms MSC language and MSC diagram.7For the test it is assumed that the implementations which are necessary to interface the IUT workcorrectly, i.e they do not inuence the course of the test.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 9observable. The observable only includes the actions of LT and UT. It should be notedthat there exists no unique relation between an observable and a trace. Di�erent tracesmay have the same observable.3.5 Test caseA test case consists of preamble, test body and postamble. Each part describes certainactions of the test processes (or devices). The preamble should drive the IUT from itsinitial state8 into a state from which the test body can be performed. The test bodyde�nes the actions which should be executed in order to reach the test purpose, and thepostamble drives the IUT back into its initial state. Furthermore, a complete test caseshould consider unforeseen responses of the IUT.We de�ne a test case as a set of observables. The observables describe action sequencesof the testers. Each observable leads to a unique test verdict.3.6 Test verdictsThe possible test verdicts are pass, inconclusive and fail. Pass is given if the test purposeis reached and if the test run ends in the initial state of the tested protocol.9 A fail isassigned if a response of the IUT is not allowed by the speci�cation. Inconclusive is givenif neither a pass nor a fail can be assigned3.7 TTCNThe 'Tree and Tabular Combined Notation' (TTCN) is a standardized test case descriptionlanguage [24] which should be used for the speci�cation of abstract test suites. The Figures8 and 9 present examples for TTCN descriptions.In a TTCN table the observables of a test case are described by means of a tree notation(cf. column 'Behaviour Description' in Figure 8). The tree structure is determined bythe order and the indentation of the speci�ed actions. In general, the same indentationdenotes a branching, i.e. alternative actions (e.g. lines Nr. 8 and Nr. 13), and the nextlarger indentation describes a subsequent action (e.g. lines Nr. 1 and Nr. 2).Actions are characterized by the involved instance (i.e. LT and UT), by its kind (i.e. ' !'denotes a send action, '?' describes a receive action) and by the message which has tobe send or received. An example may clarify the notation. The statement 'UT!ICONreq'describes the sending of ICONreq to the IUT via the UT. TTCN allows to specify actionswith arbitrary messages by using the OTHERWISE statement (e.g. UT?OTHERWISE inFigure 9).Test verdicts are de�ned within a verdict column of a TTCN table. The verdict columnof Figure 8 only includes pass and inconclusive verdicts. In this example fail behavior isspeci�ed by a default behavior description which is shown in Figure 9. Such defaults have8CTMF/FMCT requires a stable testing state as the start and end state of the test case. This statemight be an initial or and idle state.9CTMF/FMCT allows several alternatives for the assignment of a pass verdict. Another possibility isto give a pass if the test purpose is reached, although the test run does not lead back to the initial state.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 10to be referenced in the test case header (cf. Default in Figure 8). TTCN o�ers much morefacilities like Constraints, Labels, or Timer which are not relevant for the understandingof this chapter. A tutorial on TTCN can be found in [28].4 The theory of the SAMSTAG methodIn the previous sections it is shown why the scienti�c methods in [3] and [19] onlypartially can explain the standardized CTMF/FMCT conformance testing procedure[22, 23]. Especially, scienti�c methods have no notion of test purposes which are cen-tral for CTMF/FMCT. Contrary to the scienti�c methods, during the development of theSaMsTaG method we were guided by the CTMF/FMCT work. As a consequence, weformalized the term test purpose.The SaMsTaG method is developed within the research and development project`Conformance Testing a Tool for the Generation of Test Cases' which is funded by theSwiss PTT. The goal of this project is the development of a method and a tool whichallows to generate TTCN test cases [24] based on protocol speci�cations written in SDL[1, 25] and Message Sequence Charts (MSCs) [4, 26]. It is assumed that the allowedbehavior of the protocol which should be tested is de�ned by an SDL speci�cation andthat the purpose of a test case is given by an MSC. The SaMsTaG method can berelated to the general CTMF/FMCT procedure of conformance testing (cf. Section 2.1).In Figure 1 the test case speci�cation, i.e. Action (2), is formalized.SaMsTaG is an abbreviation of 'Sdl And Msc baSed Test cAse Generation'. Theabbreviation reects the original project goal. But, we generalized the method in such away, that it also can be used for protocols and test purposes which are not given by SDLspeci�cations and MSCs.The SaMsTaG method formalizes test purposes and de�nes the relation between testpurposes, protocol speci�cations and test cases. Furthermore, it includes the algorithmsfor the test case generation. In this section we explain the meaning of test purposes anddescribe the relation. The algorithms are described in the next section.4.1 A property oriented view on testingSpeci�cations and implementations can be looked at as generators for traces. They de�ne�nite or even in�nite sets of traces and observables. We de�ne a set of traces to be aproperty. An implementation has the property of a speci�cation if its set of traces is asubset of the trace set of the speci�cation.There exist several classes of properties. Manna and Pnueli [29] distinguish betweenguarantee properties, safety properties and four higher classes of properties. Informallysaid, a guarantee property states that in each of its traces something good happens.10 Incontrast to this, a safety property states that in each of its traces never something badhappens. The higher properties state that in each trace always something good happens,or that from a certain point of time something good continuously happens.10Therefore a guarantee property also can be interpreted as a reachability criterion.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 11The objective of testing means to compare the traces of an implementation and aspeci�cation. By this we try to �nd out something about the relation of the two sets oftraces. In principle, we make statements about the properties of the speci�cation whichare shared or are not shared with the implementation. We call the classes of propertiesfor which we can make these statements testable properties.In [32] we only identi�ed guarantee and safety properties to be testable properties.Informally said, a safety property is testable because during the test an implementationis able to show something bad. In this case it is proven that the implementation doesnot have the safety property. A guarantee property is testable because during the testan implementation is able to show the good thing. In this case the guarantee property isvalidated. Higher properties can neither be validated nor be violated. A �nite test cannot check whether something good happens arbitrarily often.4.2 Safety and guarantee properties in conformance testingSafety and guarantee properties can also be found in the conformance testing procedureaccording to CTMF/FMCT. The allowed system behavior is de�ned by a speci�cation.Therefore the speci�cation can be interpreted as a safety property.11 In contrast to thisa test purpose de�nes something which during the test should be observed. Thus, a testpurpose can be interpreted as a guarantee property.A test case is determined by a safety property, i.e. a system speci�cation, and aguarantee property, i.e. a test purpose. The test verdicts pass, fail , and inconclusivefollow directly from the combination of statements which during the test can be madeabout the two properties.� pass is assigned to an observable which proves uniquely the guarantee property andwhich does not violate the safety property.� inconclusive is assigned to an observable which does not prove the guarantee prop-erty, but also does not violate the safety property.� fail is assigned to an observable which violates the safety property, regardlesswhether the guarantee property is proven or not.124.3 The representation of safety and guarantee propertiesFor the automatic generation of test cases a formal representation of safety and guaranteeproperties is needed. Possible formalisms for example are Petri nets, automata models, ortemporal logic formulas. For the SaMsTaG method we choose an automaton model.1311In general, a speci�cation also may describe other properties. If temporal logic formulas are used asspeci�cation language, it is for example possible to specify liveness properties. For conformance testingwe are only interested in the fact that a speci�cation can be interpreted as guarantee property.12The fail cases include the situation where the guarantee property is proven and the safety propertyis violated, although the situation should never appear. It makes no sense to design a test purpose whichis not allowed by the speci�cation.13A short discussion about the advantages and disadvantages of the di�erent models can be found in[12].

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 12
UT

Initiator

LT

Medium serviceFigure 3: Test architecture for the Initiator entity of the Inres protocolThe SaMsTaG method assumes that a safety property is given by a labeled transitionsystem, i.e. by an in�nite automaton. The labeled transition system accepts all traceswhich do not violate the safety property. This approach is general enough to handle safetyproperties which are speci�ed with a standardized formal description technique, i.e. LO-TOS, Estelle, or SDL [16]. A guarantee property is represented by a �nite automaton.The automaton accepts all traces which validate the property. Examples for formalismswhich can be used to specify guarantee properties are the MSC language and temporallogic formulas [34].5 Test case generation by SAMSTAGIn general, the automatic generation of test cases is based on the simulation of a testarchitecture. The simulation is driven by the test purpose and the test case de�nition(cf. Section 3.5). The observables which build the basis for the test case description aregained by recording the actions of the testers. In this section we describe the test casegeneration with the SaMsTaG method by means of a small example. The example isbased on the Inres protocol [17].Figure 3 presents a test architecture. We assume that it is given in form of an SDLspeci�cation. The Initiator entity of the Inres protocol should be tested. The test purposeis the MSC in Figure 4. It describes a special situation of the connection establishmentphase.The Initiator receives a connection request ICONreq from the upper tester UT andthen sends a CR to a remote entity which in our case is simulated by the lower testerLT.14 Afterwards, it waits for a connection con�rmation CC. If after a certain time limitno CC is received, the Initiator is able to retransmit the CR for three times. In our casethe lower tester LT answers after the observation of the third CR. The Initiator indicatesthe reception of the CC by sending an ICONind to the upper tester UT.A test case consists of a �nite set of observables. One of three test verdicts is as-signed to each observable. Therefore we distinguish between pass, fail and inconclusiveobservables. The algorithms for the test case generation are based on the calculation of14The lower interface of the Initiator entity has to be controlled via the Medium service. The protocoldata units CR, CC, DT, or DRmust be sent and received as parameters of the service primitivesMDATreqand MDATind. The Medium service transmits the protocol data units transparently and has no inuenceon the behavior of the Initiator. Therefore in the following we abstract from the service primitivesMDATreq and MDATind.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 13
ICONreq

MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)
MDATind(CC)ICONconf

Medium LTUT Initiator

msc test_purpose

Figure 4: Connection establishment after the reception of the CRthese observables. The observables are generated in four steps which are reected in thearchitecture of the SaMsTaG tool (cf. Figure 11).1. In a �rst step so-called possible pass observables are calculated. A possible passobservable is the observable of a trace for which the following two conditions hold:(a) The trace starts and ends in the initial state of the SDL system.(b) The trace includes the signal exchange which is speci�ed in the MSC.The calculation of a possible pass observable starts with the search of a preamblewhich drives the SDL system into a state from which the signal exchange of theMSC can be observed. The preamble of our example is empty (cf. Figure 4). TheMSC starts in the initial state. After the observation of the test purpose, i.e. thesignal exchange of the MSC, the tested system has to be driven back into its initialstate. A possible postamble is a normal disconnection (c.f. Figure 5). The lowertester LT initiates the disconnection by sending a disconnection request DR. Onreceipt of the CR the Initiator indicates the disconnection by sending an IDISindto the upper tester UT. The observable of the described trace is a possible passobservable.In general, no unique relation exists between a trace and an observable. Di�erenttraces may have the same observable. The observable in Figure 6 (b) is identicalwith the observable in Figure 5 (b) with the except of the �nal event MDATind(CR).The SDL semantics allow no assumptions about the time which we have to waitfor a possible MDATind(CR) after the reception of the IDISind. Therefore theobservation of the IDISind does not guarantee the carrying out of the test purpose.If after the reception of the IDISind a fourth MDATind(CR) is observed, the testverdict inconclusive has to be assigned (cf. Figure 6).2. In a second step the uniqueness of the obtained possible pass observables is proven,i.e. for each possible pass observable it is checked whether all traces which have thepossible pass observable as observable ful�ll the conditions (a) and (b) on page 13.In this case we call an observable unique, or unique pass observable. In general, there

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 14
ICONreq

MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)
MDATind(CC)ICONconf

Medium LTUT Initiator

msc possible_postamble

MDATreq(DR)
MDATind(DR)IDISind (a) MSC

UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

LT!MDATreq(DR)

UT?IDISind(b) Possible pass observableFigure 5: MSC of Figure 4 with possible postamble and a corresponding observable
ICONreq

MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)
ICONconf

Medium LTUT Initiator

msc undesired_system_run

MDATreq(DR)MDATind(DR)
IDISind

MDATreq(CR) MDATind(CR)(a) MSC
UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

LT!MDATreq(DR)

UT?IDISind

LT?MDATind(CR) INCONCLUSIVE(b) An observable of (a)Figure 6: Undesired system runmay exist several unique pass observables for one test purpose. For the test case wechoose a subset of the shortest unique pass observables as pass observables.15For our example Figure 7 (a) presents the trace which has a unique pass observable.Instead of a normal disconnection the upper tester UT initiates a data transfer bysending a data request IDATreq. After receiving the IDATreq the Initiator transmits15We like to state clearly that we de�ne three sorts of pass observables. The possible pass observableswhich are described in step 1, the unique pass observables which are de�ned in this paragraph and passobservables of the test case. The pass observables of a test case are the unique pass observables whichcan be found in the test case description.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 15
ICONreq

MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)
MDATind(CC)ICONconf

Medium LTUT Initiator

msc unique_postamble

IDATreq
MDATreq(DT)

MDATreq(DT)

MDATreq(DT)

MDATind(DT)

MDATind(DT)

MDATind(DT)

MDATreq(DT)
MDATind(DT)

IDISind (a) MSC
UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

UT!IDATreq

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

UT?IDISind PASS(b) Unique pass observableFigure 7: MSC of Figure 4 with unique postamblea DT to the lower tester LT and waits for an acknowledgement. The lower tester LTdoes not answer and, therefore the DT is retransmitted three times. Afterwards, theInitiator indicates the failed data transmission by sending a IDISind to the uppertester UT and returns to its initial state.We choose the observable of the described trace as the pass observable of the testcase which should be generated (cf. Figure 7 (b)). From this the TTCN test caseshown in Figure 8 follows. The pass observable can be found in the lines 1 to 12.3. In a third step the inconclusive observables are calculated. An inconclusive ob-servable has a common pre�x with a pass observable, but it ends with an allowedresponse of the IUT from which one can conclude that the required pass observableis not performed. The inconclusive observables of our example can be found withinthe TTCN description in Figure 8.4. In the fourth and last step the fail observables are de�ned. They need not to becalculated, because it is assumed that the allowed behavior is described by an SDLspeci�cation. Hence, every deviation from the SDL speci�cation is wrong. In TTCNthis can be easily de�ned by means of a default behavior description. The defaultof our example is shown in Figure 9.In the previous two sections the whole SaMsTaG method has been introduced. Anoverall view of the SaMsTaG method is shown in Figure 10. Further information can befound in [12], [13], [32] and [31].

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 16
Test Case Dynamic Behaviour

Test Case Name : Test_Case_Example

Group :

Purpose : Connection establishment
after the third retransmission of a Connection Request

Default : Unexpected_Events

Comments :

Nr Label Behaviour
Description Constraints Ref Verdict Comments

1 UT!ICONreq

2 LT?MDATind(CR)

3 LT?MDATind(CR)

4 LT?MDATind(CR)

5 LT!MDATind(CC)

6 UT?ICONconf

7 UT!IDATreq

8 LT?MDATind(DT)

9 LT?MDATind(DT)

10 LT?MDATind(DT)

11 LT?MDATind(DT)

12 UT?IDISind PASS

13 LT?MDATind(CR) INCON

14 LT?MDATind(CR) INCON

Detailed Comments : Figure 8: A TTCN test case
Default Dynamic Behaviour

Default Name : Unexpected_Events

Group :

Objective : Handle unexpected events

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 UT?OTHERWISE FAIL

2 LT?OTHERWISE FAIL

Detailed
Comments :Figure 9: TTCN default behavior for the test case in Figure 86 The SAMSTAG toolThe SaMsTaG tool realizes the SaMsTaG method for speci�cations written in SDLand test purposes de�ned by MSCs. The tool architecture is shown in Figure 11. TheSaMsTaG tool consists of an MSC simulation tool, an SDL simulation tool and a testcase generator. The front- and backends are commercial SDL, MSC and TTCN editors.The MSC simulation tool consists of an MSC transformer and an MSC interpreter.The MSC transformer transforms the MSC input into an internal data structure which,during test case generation, is interpreted by the MSC interpreter.For reasons of performance, the SDL simulation tool is implemented in a di�erentway. It consists of an SDL transformer which transforms an SDL speci�cation into anexecutable C++ program, the SDL simulator. The SDL simulator behaves like the spec-

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 17
test case definition

algorithms for the test case generation
includes:

parallel simulation of a labeled transition
system and a finite automaton

a)

b) generation of the test case description

test case generation with the
SAMSTAG method

includes:
definition of the relation between test
purpose, test case and system specification

a)

b) assignment of test verdicts

test case description
(e.g. TTCN)

system specification
given as

labeled transition system
(e.g. SDL, LOTOS, Este l le)

test purpose specification
given as finite automaton

(e.g. MSC, temporal logic formulas)

Figure 10: The SaMsTaG methodi�cation.The test case generator controls the MSC interpreter and the SDL simulator. Duringtest case generation it calculates the possible pass observables, the unique pass observ-ables and the inconclusive observables. Finally, the test case generator de�nes the failobservables and stores the TTCN description of the generated test case as ASCII �le.6.1 The calculation of the possible pass observablesThe computation of the possible pass observables is a typical search problem. The testcase generator has to �nd SDL traces which include the events speci�ed by the MSC andwhich lead the SDL system from its initial state back to its initial state. The observableof such a trace is a possible pass observable. Unfortunately, we can not ensure that we�nd possible pass observables, because this problem is equivalent to the halting problemof Turing machines [2] which is not decidable [20]. One only can search and hope to �ndthe required observables. We search by simulating the SDL description and the MSC inparallel.There exist several search methods like depth and breadth search. Breadth search cannot applied because it is impossible to store all reached states of the SDL system16. Also16A state of an SDL system includes the control states of the processes, the contents of the queues andthe values of the variables.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 18

TTCN backend

SAM STAG tool

SDL simulator

SDL simulation
tool

SDL transformer

SDL frontend

MSC interpreter

MSC simulation
tool

MSC transformer

MSC frontend

test case generator

calculation of the possible pass observables

calculation of the unique pass observables

calculation of the inconclusive observables

definition of the fail observables and
generation of the TTCN test case descriptionFigure 11: The architecture of the SaMsTaG tooldepth search is not usable since we can not guarantee termination. As a consequence weuse a k-bounded depth search which evaluates all possible traces of length k. If no tracewith the required properties is found, the search can be repeated with a higher bound kor stopped without results.6.2 The calculation of the unique pass observablesAlso the unique pass observables are calculated by simulation. For each possible passobservable the traces which have the possible pass observable as observable are generated.Then, it is checked whether all of them ful�ll the conditions (a) and (b) on page 13. Ingeneral, there may exist many unique pass observables. In this case we select a subset ofthe shortest unique pass observables to be the pass observables of the generated test case.Similar to the possible pass observables the existence of unique pass observables can notbe guaranteed. There may exist possible, but no unique pass observables.6.3 The calculation of the inconclusive observablesFor the chosen unique pass observables the corresponding inconclusive observables haveto be generated. Therefore the SDL description is simulated according to the traces of the

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 19pass observables. An inconclusive observable ends in a response of the IUT from whichone can conclude that the required pass observable is not performed.6.4 Fail observables and generation of the TTCN descriptionFinally, the pass and inconclusive observables are transformed into the TTCN notationand the fail cases are added by means of a TTCN default behavior description. The resultof the test case generation is an ASCII �le which includes the TTCN description of thegenerated test case.7 Summary and outlookIn the previous sections the SaMsTaG method and the SaMsTaG method have beenintroduced. The SaMsTaG method makes it possible to generate abstract test cases forconformance tests based on a formal speci�cation and a set of test purposes. For thisthe SaMsTaG method formalizes the term test purpose which is an important conceptin CTMF/FMCT. Furthermore, in Section 2 the CTMF/FMCT conformance testingprocedure is discussed and compared with other methods for test case generation.All described approaches formalize di�erent steps of the entire conformance testingprocedure. Figure 12 presents an overall view of the parts which are formalized by thedi�erent approaches. The approaches may intersect in several aspects, but for the sake ofclearness we omitted all overlaps.Figure 12 also shows, that the theoretical foundation for the test purpose de�nition(1) has not been worked out. But, we believe that it is possible to formalize this step bymeans of the coverage criteria which already are used in the scienti�c methods.However, for the application of a complete formal model for conformance testing topractice further investigations might be necessary. Particularly, the concepts coveragecriterion (j) and conformance relation (h) have to be generalized and adopted to practicalneeds.AcknowledgementsThe elaboration of this report was funded by the KWF-Project No. 2555.1 'GraphicalMethods in the Test Process'. The author would like to thank Beat Br�andle, DieterHogrefe, and Roger Sch�onberger for supporting this work, Jan Kroon and Ekkart Rudolphfor proofreading, and Matthias G�unter, Peter Gurtner, Robert Nahm, Kurt Neuenschwan-der, Andreas Spichiger, and Daniel Toggweiler for valuable comments and suggestions.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 20
(a)

(c)

(d)

protocol
implementat ion

(b) (i)(h)protocol
specif icat ion

conformance
relation

assumptions
about the

implementation

defin i t i on of a
c ov erage cr i te r ion

(6)

c ov er ag e
c ri te r ion

(j)

test purpose
definit ion

(1)

test case
generation

(2)

test purposes

abstract
test suite

test case
implementation

(3)

(e)

(f)

executable
test suite

con formance tes t

(4)

(g)

test log

test
evaluation

(5)

conformance
statement

SAMSTAGCTMF/FMCT theoretical methods

Figure 12: A complete formal description of the conformance testing procedure

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 21References[1] F. Belina, D. Hogrefe, and A. Sarma. SDL with Applications from Protocol Speci�-cation. The BCS Practitioner Series, Series editor: R. Welland. Carl Hanser Verlagand Prentice Hall International, 1991.[2] D. Brand and P. Za�ropulo. On communicating �nite state machines. Journal of theAssociation for Computing Machinery, 30(2), April 1983.[3] E. Brinksma. A Theory for the Derivation of Tests. In Proceedings of the IFIP WG 6.1Eighth International Symposium on Protocol Speci�cation, Testing and Veri�cation.Elsevier Science Publishers B.V., June 1988.[4] J. Grabowski, P. Graubmann, and E. Rudolph. The Standardization of MessageSequence Charts. In Proceedings of the IEEE Software Engineering Standards Sym-posium 1993, September 1993.[5] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - A Tool for the Generationof Test Cases. Second Interim Report of the F & E Project, Contract No. 233/257,Funded by Swiss PTT, June 1993.[6] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - Ein Werkzeug zur Gener-ierung von Testf�allen. Eine Zusammenfassung der Projektergebnisse und ein Projek-tausblick. Project Report of the F & E Project, Contract No. 233/257, Funded bySwiss PTT, September 1993.[7] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - Ein Werkzeug zur Gener-ierung von Testf�allen. Abschlussbericht Teil 1: Eine Zusammenfassung der Projek-tergebnisse. Final Report of the F & E Project, Contract No. 233/257, Funded bySwiss PTT, November 1993.[8] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - Ein Werkzeug zur Gener-ierung von Testf�allen. Abschlussbericht Teil 2: Die SAMSTAG Methode. Final Re-port of the F & E Project, Contract No. 233/257, Funded by Swiss PTT, November1993.[9] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - Ein Werkzeug zur Gener-ierung von Testf�allen. Abschlussbericht Teil 3: Das SAMSTAG Werkzeug. FinalReport of the F & E Project, Contract No. 233/257, Funded by Swiss PTT, Novem-ber 1993.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 22[10] J. Grabowski, M. G�unter, P. Gurtner, D. Hogrefe, R. Nahm, K. Neuenschwander,A. Spichiger, and D. Toggweiler. Conformance Testing - Ein Werkzeug zur Gener-ierung von Testf�allen. Abschlussbericht Teil 4: Eine Fallstudie zu Q.921. Final Reportof the F & E Project, Contract No. 233/257, Funded by Swiss PTT, November 1993.[11] J. Grabowski, D. Hogrefe, P. Ladkin, S. Leue, and R. Nahm. Conformance Testing -A Tool for the Generation of Test Cases. First Interim Report of the F & E Project,Contract No. 233/257, Funded by Swiss PTT, May 1992.[12] J. Grabowski, D. Hogrefe, and R. Nahm. A Method for the Generation of Test CasesBased on SDL and MSCs. Technical Report IAM-93-010, Universit�at Bern, Institutf�ur Informatik, April 1993.[13] J. Grabowski, D. Hogrefe, and R. Nahm. Test Case Generation with Test PurposeSpeci�cation by MSCs. In O. Faergemand and A. Sarma, editors, SDL'93 - UsingObjects. North-Holland, October 1993.[14] J. Grabowski, D. Hogrefe, R. Nahm, and A. Spichiger. Relating Test Purposesto Formal Speci�cations: Towards a Theoretical Foundation of Practical Testing.Technical Report IAM-93-014, Universit�at Bern, Institut f�ur Informatik, June 1993.[15] J. Grabowski, R. Nahm, A. Spichiger, and D. Hogrefe. Die SAMSTAG Methode undihre Rolle im OSI Konformit�atstesten. Technical Report IAM-93-024, Universit�atBern, Institut f�ur Informatik, October 1993.[16] D. Hogrefe. Estelle, LOTOS und SDL - Standard Spezi�kationssprachen f�ur verteilteSysteme. Springer Verlag, 1989.[17] D. Hogrefe. OSI Formal Speci�cation Case Study: The Inres Protocol and Service(revised). Technical Report IAM-91-012, Universit�at Bern, Institut f�ur Informatik,May 1991, Update May 1992.[18] D. Hogrefe. On the Development of a Standard for Conformance Testing based onFormal Speci�cations. Computer Standards & Interfaces 14, 1992.[19] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-national, Inc., 1991.[20] J. E. Hopcroft and J. D. Ullmann. Introduction to Automata Theory, Languages,and Computation. Addison-Wesley Publishing Company, 1979.[21] ISO, E. Brinksma (ed.). Information Processing Systems - Open Systems Intercon-nection - LOTOS - A Formal Description Technique Based on the Temporal Orderingof Observable Behaviour. International Standard 8807, ISO, Geneva, 1988.[22] ISO/IEC JTC 1/SC 21 N. Information Technology - Open Systems Interconnec-tion - Conformance Testing Methodology and Framework. International MultipartStandard 9646, ISO/IEC, 1992.

University of Berne, Institute for Informatics, Technical report no. IAM-94-005 23[23] ISO/IEC JTC 1/SC 21/WG 1. Open Systems Interconnection - Data Managementand Open Distributed Processing - Working Draft on Fomal Methods in ConformanceTesting. Technical report, ISO/IEC, July 1993.[24] ISO/IEC JTC 1/SC21. Information Technology - Open Systems Interconnection -Conformance Testing Methodology and Framework - Part 3: The Tree and TabularCombined Notation. International Standard 9646-3, ISO/IEC, 1992.[25] ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.100:Functional Speci�cation and Description Language (SDL) (formerly CCITT Recom-mendation Z.100). ITU, Geneva, June 1992.[26] ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.120:Message Sequence Chart (MSC). ITU, Geneva, June 1992.[27] L. Kahn. State of Research in the Area of Formal Test Speci�cation Methods. DraftTechnical Report ATM - 1006 - 1, ETSI TC ATM, 1991.[28] J. Kroon and A.Wiles. A Tutorial on TTCN. In Proceedings of the 11th InternationalIFIP WG 6.1 Symposium on Protocol, Speci�cation, Testing and Veri�cation, 1991.[29] Z. Manna and A. Pnueli. A Hierarchy of Temporal Properties. In Proceedings of the9th Annual ACM Symposium on Principles of Distributed Computing. ACM Press,1990. 1990 ACM-0-89791-404-X/90/0008/3777.[30] R. Nahm. Semantics of Simple SDL. In H. K�onig, editor, GI/ITG Fachgespr�ach:'Formale Beschreibungstechniken f�ur verteilte Systeme' in Magdeburg (Germany),volume 8 of FOKUS-Band. K.G. Saur-Verlag, 1993.[31] R. Nahm. Conformance Testing Based on Formal Description Techniques and Mes-sage Sequence Charts. PhD thesis, University of Berne, Institute for Informatics andApplied Mathematics, February 1994.[32] R. Nahm, J. Grabowski, and D. Hogrefe. Test Case Generation for Temporal Prop-erties. Technical Report IAM-93-013, Universit�at Bern, Institut f�ur Informatik, June1993.[33] Swedish Telecom, S-123 86 Farsta. ITEX-DE version 2.0, 1992.[34] P. Wolper. On the Relations of Programs and Computations to Models of TemporalLogic. In Proceedings Temporal Logic in Speci�cation, Lecture Notes in ComputerScience 398, 1989.

