
Tutorial on Message Sequence Charts (MSC'96)Ekkart Rudolpha, Jens Grabowskib, and Peter GraubmanncaTechnical University of Munich, Institute for Informatics, Arcisstrasse 21, D-80290M�unchen, Germany, eMail: rudolphe@informatik.tu-muenchen.debInstitute for Telematics, University of L�ubeck, Ratzeburger Allee 160, D-23538L�ubeck, Germany, eMail: jens@itm.mu-luebeck.decSiemens AG, ZFE T SE, Otto-Hahn-Ring 6, D-81739 M�unchen, Germany, eMail:gr@zfe.siemens.de AbstractMSC is a trace language which in its graphical form admits a particularlyintuitive representation of system runs in distributed systems while focusingon the message interchange between communicating entities and their envi-ronment. For the �rst time the MSC recommendation Z.120 (MSC'92) wasapproved at the ITU meeting Geneva 1992. A new revised MSC recommen-dation Z.120 (MSC'96) was approved at the closing session of the last studyperiod in April 1996.Whereas in MSC'92 main emphasis was put on the elaboration of basicconcepts and a corresponding formal semantics, in the new MSC version -MSC'96 - structural language constructs, essentially composition and objectoriented concepts, play a dominant role. With these new concepts, the powerof MSC is enhanced considerably in order to overcome the traditional re-striction to the speci�cation of only a few selected system runs. Within thetutorial, the use of MSC is demonstrated by means of the ISDN supplementaryservice 'Completion of Calls to Busy Subscriber (CCBS)'.1 IntroductionMessage Sequence Chart (MSC) has matured within a very short period of time to aconsiderably powerful and expressive language. Before the approval of the �rst MSCrecommendation Z.120 in 1992, MSC was used merely as an informal, illustrativelanguage, e.g., in form of auxiliary diagrams within the SDL community [10]. In themeantime, MSC has advanced to a formal and descriptive language, i.e., a formaldescription technique (FDT). The edition of the �rst MSC recommendation in 1992[22] has increased use and popularity of the MSC language beyond the expectation1



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 2of most people. Main reason for this success was that for the �rst time a systematictool support became possible for MSC due to its standardisation. Nevertheless,the language constructs de�ned in MSC'92 [7, 20] appeared to be not su�cient todescribe comprehensively even parts of an information system. MSC therefore wasconsidered fruitful only in combination with other languages, dominantly SDL andTTCN (e.g., [9]).During the last ITU study period (1993 - 1996) the MSC language obtained agreat impulse by the development of a corresponding formal semantics based onprocess algebra [17, 18, 24]. Though the idea of combining MSC with compositionmechanisms from process algebra goes back to the early days of MSC standardisation[21] and was carried forward within the GEODE tool [5], a satisfactory formulationwas found only recently after the development of the formal MSC semantics. In somerespects MSC'96 [23] now looks like a graphical representation of process algebrawhereas MSC'92 was inuenced very much by ideas coming from Petri Nets with itscomposition mechanisms based on conditions [8, 11]. A closer look shows that thecondition based composition mechanisms from MSC'92 have not been dropped butincorporated into process algebra based techniques in MSC'96. Surprisingly afterall, no other language construct in MSC'96 has been discussed more extensivelythan the role of conditions. Even the �rst Internet meeting in the history of ITUand a major part of a conference in Russia (St. Petersburg) have been dedicated tothis subject.Thus eventually, MSC'96 has become a powerful synthesis of concepts takenfrom process algebra, Petri Nets and, beyond that, from object oriented modelling.Recently, also the object oriented community has shown increasing interest in theMSC standard as a means for the formalisation of Use Cases. This is now evenunder discussion within the "Uni�ed Method for Object Oriented Development"[3]. Due to the new language concepts within MSC'96 - generalised ordering, inlineexpression, reference, High Level MSC (HMSC) - the range of applicability of MSChas increased considerably. The speci�cation of Use Cases [14], i.e., of main scenariostogether with all accompanying side cases, is one of the most promising candidatesfor the application of MSC'96 [2, 16]. This way, the traditional restriction of MSC tothe speci�cation of only few selected scenarios, which was considered as the majorshortcoming of MSC'96, can be overcome. The treatment of the CCBS examplewhich has been chosen for this tutorial is carried through in this spirit.2 Short description of the CCBS exampleAn Integrated Services Digital Network (ISDN) (e.g., [15]) is a fully digital networkthat provides a large variety of data and telecommunications services. In its simplestform, an ISDN is merely an enhancement to the telephone local loop that will allowboth voice and data to be carried over the same twisted pair. Supplementary servicesprovide additional capabilities to ISDN users, so they may exert greater control overhow the network handles their transmission paths. E.g., call forwarding, call waiting



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 3are a few of the capabilities that are meant to be supplementary ISDN services.For our purpose, the explanation of the MSC language, we selected anothersupplementary service, namely 'Completion of Calls to Busy Subscriber' (CCBS).For its description we rely on the European Telecommunication Standard (ETS)No. 300 359-1 [6].The CCBS service enables user A, encountering a busy destination B, to havea call completed without having to make a new call attempt when destination Bbecomes not busy. When user A requests the CCBS service, the network will monitorfor destination B becoming not busy. When this happens then the network will waita short period of time in order to allow the resources to be re-used by B originatinga new call. If this is not the case within a given time frame, then the network willautomatically recall user A. After user A accepts the CCBS recall, the network willautomatically generate a CCBS call to destination B.3 Speci�cation of the CCBS example3.1 HMSC `CCBS SERVICE'The High-level MSC (HMSC) `CCBS SERVICE' (Figure 1) provides the speci�ca-tion of the CCBS on the top level. The HMSC `CCBS SERVICE' starts in thecondition `CCBS Idle'. The CCBS request from User A (reference `REQUEST') iseither accepted and the CCBS activation (reference `ACTIVATION') is processed orit is rejected (reference `REJECT') and the HMSC returns to the initial `CCBS Idle'state. After a successful request the system arrives in the state `CCBS Activated'.The subsequent reference `MONITORING' refers itself to an HMSC which speci�esthe monitoring of user B and user A. When both user A and user B are found tobe not busy the recall is started by sending a recall indication to user A and thesystem reaches the state `CCBS Free'. If user A accepts the recall then the CCBSservice is completed (reference `INVOCATION') and the system changes into state`CCBS Init'. If user A does not reply in time to the recall the CCBS service is can-celed (reference `CANCEL') and the system returns to the initial `CCBS Idle' state.In case the CCBS recall is successfully completed the resources can be released (ref-erence `RELEASE'). The CCBS supplementary service may be disrupted by user Ain all intermediate states (reference `DEACTIVATION') causing the system to returninto the initial `CCBS Idle' state.The HMSC `CCBS SERVICE' shows already a good part of the main languageconstructs de�ned for use in an HMSC. HMSCs provide a means to graphicallyde�ne how a set of MSCs can be combined. An HMSC is a directed graph whereeach node is either:� a start symbol :Note: There is exactly one start symbol in each HMSC.� an end symbol :



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 4� an MSC reference:� a condition:� a connection point :� a parallel frame:The use of a parallel frame will be discussed in Section 4.1.
CCBS_Free

ACTIVATION

REJECTDEACTIVATION REQUEST

CCBS_Activated

CCBS_Idle

CCBS_Requested

MONITORING CANCEL

INVOCATION

CCBS_Init

RELEASE

msc CCBS_SERVICE

Figure 1The HMSC `CCBS SERVICE' starts with the start symbol graphically representedby a downward pointing triangle. It is connected by an HMSC line-symbol with the



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 5condition `CCBS Idle'. All conditions on the HMSC level are considered to be global.They may be seen as indicating global system states. At the same time, they can beused to guard the composition of MSCs described by HMSCs. Whereas in MSC'92the composition was based completely on the merging of �nal and initial conditions,in MSC'96 the composition of MSCs is de�ned by means of HMSCs. The conditionsin MSC'96 play a restrictive role de�ned by a set of static semantics rules in Z.120.To illustrate these rules, let us consider the MSC reference `REQUEST' which fol-lows the condition `CCBS Idle'. Each MSC reference points to another MSC whichde�nes the meaning of the reference, i.e., the reference construct in the HMSC canbe seen as a placeholder for an MSC diagram. Thus, the reference `REQUEST'refers to the MSC `REQUEST' which can be found in Section 3.2. This MSC startswith the initial condition `CCBS Idle'. The static semantics rules for MSC'96 nowstate that a HMSC-condition immediately preceding a MSC reference has to agreewith the (global) initial condition of the MSC reference (if present) according toname identi�cation. The restrictive role of conditions in MSC'96 leaves su�cientfreedom to the system designer since the speci�cation of initial and �nal conditionsin MSC references, but also the speci�cation of HMSC conditions preceding or fol-lowing a MSC reference, is optional. This way, the HMSC composition mechanismo�ers great exibility but also supports composition in the spirit of MSC'92 (exceptthat MSC'96 composition rules ignore non-global conditions, i.e., conditions whichrefer to a true subset of the instances contained in the MSC). The exible use ofconditions in MSC'96 is demonstrated within HMSC `MONITORING'. In HMSC`CCBS SERVICE' a special generalisation of MSC'92 conditions is used: conditionsmay contain a name-list. The static rules governing the composition of MSCs nowstate that the name-list attached to an HMSC condition must be a subset of thename-list of the adjacent initial or �nal condition of an MSC reference. E.g., thereference `DEACTIVATION' refers to an MSC (de�ned in Section 3.6.4) with thecondition name list `CCBS Requested', `CCBS Activated', `CCBS Free' thus allowinga composition at several places of the HMSC. The connection points (cf. the branch-ing point after the condition `CCBS Requested' as an example) are introduced merelyfor convenience in order to improve the layout. They have no semantical meaning.The HMSC `CCBS SERVICE' does not contain any end symbol since it is cyclic.Contrary to plain MSCs (see Figure 2), instances and messages are not shownwithin an HMSC. This way, HMSCs can focus completely on the composition as-pects. A more intuitive (non-standard) name for HMSCs is road map which gives avery good characterisation how HMSCs are used in practice.HMSCs, like normal road maps, may easily become quite complex if no furtherstructuring mechanism is employed. Fortunately, HMSCs are hierarchical in thesense that a reference in an MSC may again refer to an HMSC. Within the reference`MONITORING' this re�nement mechanism is employed. This demonstrates thatMSC'96 in general supports top down design nicely (apart from a few shortcomingsdiscussed below).



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 6
CCBS_Requested

msc REQUEST

User_A Network_A Network_B

Request_ReqInd

check queue
and service
subscription

Request
FACILITY

(Request_Inv)

check
compatability

CCBS_Idle

Figure 2msc REQUEST;inst User A, Network A, Network B;User A: instance;Network A: instance;Network B: instance;all: condition CCBS Idle;User A: in Request from env;out FACILITY (Request Inv);Network A: in FACILITY (Request Inv);out Request ReqInd;Network B: in Request ReqInd;action check queue and service subscription;action check compatibility;all: condition CCBS Requested;User A: endinstance;Network A: endinstance;Network B: endinstance;endmsc;Figure 3 : MSC/PR representation of Figure 23.2 MSC `REQUEST'When the network encounters a busy destination B it retains the call informationfor the CCBS supplementary service for a certain period. During this time, user Acan activate the CCBS supplementary service. The request for the CCBS service isdescribed in Figure 2.MSC `REQUEST' is an example for a basic MSC containing only language con-



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 7
msc

User_A Network_A Network_B

CCBS_Requested

REJECT

Reject

CCBS_Not_Activated (Reject)

FACILITY

CCBS_IdleFigure 4structs which have been already included in MSC'92, namely environment (framearound the diagram), instance (vertical line with horizontal bars on top and bot-tom), message (arrow), action (rectangle) and condition (hexagon) [20].Both conditions `CCBS Idle' and `CCBS Requested' are global : they refer to allinstances contained in the MSC. In MSC'96 global is always interpreted on the levelof the MSC document since the composition rules (HMSC static semantics rules)do not discern the instances. Thus, all of them are attached to the global condition.This di�ers from the composition rules stated in MSC'92 where conditions are alwaysdiscriminated by the set of instances to which they are attached.In case of MSC `REQUEST' also the textual representation MSC/PR has beenprovided whereby the event oriented form which is new in MSC'96 has been em-ployed. The MSC/PR contained in MSC'92 lists message sending and receivingevents in association with an instance (instance oriented form). During the lastITU study period, a better readable notation was requested, in particular in caseswhere MSC/PR is not only used internally by tools, but also edited by humans. Ac-cordingly, a new event oriented textual representation was elaborated where eventsare listed in form of a possible execution trace and not ordered with respect toinstances. The event oriented textual syntax is closer to the graphical grammarthan the instance oriented textual syntax. This has the advantage that details ofthe graphical representation are expressible more easily. In MSC'96, both the in-stance oriented and the event oriented syntax form are combined within one textualrepresentation.3.3 MSC `REJECT'The CCBS request may be rejected in case no compatible terminal exists at destina-tion B. Another reason for a rejection is if the maximum number of requests againstdestination B already is queued. The rejection procedure is shown in Figure 4.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 8
queue
add to

msc ACTIVATION

User_A Network_A Network_B

CCBS_Requested

CCBS_Activated
FACILITY

(Request_RR)

Request_RespConf

T-CCBS2 duration shall
be between 15
and 45 minutes

CCBS_ActivatedFigure 53.4 MSC `ACTIVATION'Figure 5 describes the acceptance of the CCBS service request. In this case thenetwork registers the CCBS request (add request to queue) and the user is informedthat the request was successful and the CCBS service now is activated. Furthermorethe CCBS service duration timer T-CCBS2 is started.MSC `ACTIVATION' contains the setting of a timer T-CCBS2. The new timersymbols are considerably more intuitive than the graphical symbols used in MSC'92.Contrary to MSC'92, the individual timer constructs of MSC'96, i.e., timer set, timerreset, and timeout, may be split between di�erent MSCs.The setting of a timer is represented graphically by an hour glass symbol con-nected with the instance axis by a (bended) line symbol (see Figure 5). The timerreset is represented by a cross symbol (�), again connected with the instance axisby a line symbol (cf. Figure 10). Time-out is described by a (bended) arrow whichis connected to the hour glass symbol (see Figure 8 and 12).3.5 HMSC `Monitoring'The reference `MONITORING' in Figure 1 again refers to an HMSC which is shown inFigure 6. The HMSC starts with the condition `CCBS Activated'. The status checkof user B (reference `CHECK STATUS B') leads either to the result that B is free(reference `REPLY B FREE') or that B is busy (reference `REPLY B BUSY'). If B isbusy the HMSC `MONITORING' returns to the initial condition `CCBS Activated'and the `CHECK STATUS B' procedure is repeated. After a successful status reply(reference `REPLY B FREE'), the network repeats the status check for user B after acertain time interval (supervised by the destination B idle guard timer). This wait-ing period enables user B to initiate a call before any CCBS request is processed.Subsequently, the system gets into state `CCBS Await Status', which means waiting



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 9

User_A_Free

CCBS_Free

recallREPLY_A_FREE

CHECK_STATUS_B

CCBS_ActivatedUser_B_Busy

msc MONITORING

SUSPENSION
monitoring
of user A

REPLY_B_BUSY

CCBS_Await_Status

REPLY_B_FREE

Status_Check_A

User_A_Busy

REPLY_A_BUSYREPLY_B_STILL_FREE

Figure 6for another status reply from user B. In case, after expiration of the guard timerthis second status request �nds user B busy again (reference `REPLY B BUSY'), theHMSC monitoring starts again from the beginning. However, if this second statusrequest recognises B as free again (reference `REPLY B STILL FREE') the monitor-ing of user A is started and the system gets into the state `Status Check A'. If user Ais found to be free (reference `REPLY A FREE') the CCBS recall of user A is initi-ated. Accordingly, the system state changes into `CCBS Free' which means waitingfor a reply from user A. In case of user A being busy (reference `REPLY A BUSY')the CCBS recall is suspended until user A is found to be free again (reference `SUS-PENSION') and the HMSC `MONITORING' starts anew from the beginning.The HMSC `MONITORING' contains an end symbol (triangle). Note, that theHMSC contains adjacent conditions, namely `User B Busy' and `CCBS Activated',and, `User A Free' and `CCBS Free'. Such adjacent conditions may be introduced



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 10to provide some additional information about the system state, e.g., if user B is inthe state `User B Busy' the HMSC returns to the initial condition `CCBS Activated'.We have also some cases where the composition is not guarded by conditions, sinceMSC `CHECK STATUS B' has no �nal and `REPLY B BUSY' no initial condition.Also do references `REPLY B FREE' and `REPLY B STILL FREE' not contain initialconditions. In MSC'92 such a composition was not allowed which forced users toemploy conditions in a very strict manner.The present MSC'96 supports the delayed choice outside of MSC referencesin HMSCs. Alternatives de�ned within a referenced MSC cannot be continueddi�erently outside of the reference. Consequently, the MSC has to be split atthe point where the decision is made. This refers particularly to the status re-quest procedure for the users B and A in the MSCs `CHECK STATUS B' and `RE-PLY B STILL FREE'. In both cases the split has to be made after sending the statusrequest message. Accordingly, we have to distinguish between busy and free asstatus replies. This explains the modelling in HMSC `MONITORING' where `RE-PLY B FREE', `REPLY B BUSY', `REPLY A FREE' and `REPLY A BUSY' appearas references to separate MSCs, i.e., they refer to Figure 8, 11, 10, and 12 respec-tively. In practice, exception handling becomes quite clumsy if all decisions have tobe made outside of the references. In general, it leads to fairly small MSC piecesoften containing one or two messages only. Therefore, this de�ciency should beremoved as soon as possible by an appropriate composition mechanism.3.5.1 MSCs referred to by HMSC `MONITORING'HMSC `MONITORING' (Figure 6) provides an overall view of the monitoring pro-cedure for the users A and B. It refers to the concrete message exchange de�nedin the Figures 7, 8, 9, 10, 11, 12, and 13. These MSCs are now presented in moredetail.User B is monitored until it is not busy. As speci�ed in MSC `CHECK STATUS B'(Figure 7), that means a status request is sent by network B to a status requestprocess. Within the subsequent �nal state `CCBS Await Status', network B is waitingfor a status reply.If user B turns out to be free the network B starts the destination B idle guardtimer T-CCBS4. This timer enables destination B to initiate a new call before thepending CCBS request is processed.The corresponding MSC `REPLY B FREE' (Figure 8) contains a local condition`User B Free' attached to instance `Network B' only. This condition is used to indicatea local state. In addition, this MSC contains a timer expiration construct for T-CCBS4, i.e, a combination of timer setting and time-out (the latter is representedby an arrow pointing to the instance).When the destination B guard timer T-CCBS4 expires and B is still not busy,network A is informed (cf. MSC `REPLY B STILL FREE', Figure 9). Subsequently,user A is monitored by sending a status request to user A. The status check timerT-CCBS1 is set supervising the maximum response time for user A. MSC `RE-



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 11
basic call

reserve
B-channel

from

to status
request
process

CCBS_Activated

CHECK_STATUS_Bmsc

Network_B

Start_CCBS_Processing

(Request)

STATUSFigure 7
REPLY_B_FREEmsc

Network_B

T-CCBS4

CCBS_Await_Status

(request)

STATUSto status
request process

(confirm_free)

STATUS

User_B_Free

from status
request process

Figure 8PLY B STILL FREE' shows the example of an intermediate (i.e., neither initial nor�nal) condition: `User B Free' which is non-global but also non-local, i.e., attachedto more than one instance.If user A is found not busy (cf. MSC `REPLY A FREE', Figure 10) user A isrecalled with an indication that it is a CCBS recall. At the same time the CCBSrecall timer TCCBS-3 is started. MSC `REPLY A FREE' shows a timer reset forthe status check timer T-CSSB1 which is graphically represented by a cross symbolconnected to the instance by a line symbol.If the destination guard timerT-CCBS4 (which was set in MSC `REPLY B FREE')expires and user B is found busy again (cf. MSC `REPLY B BUSY', Figure 11), pro-cessing of the destination B-CCBS stops. The network monitors again destinationB, i.e., the monitoring procedure continues with MSC `CHECK STATUS B'.If user A is found busy at the time of a recall then it is noti�ed and the CCBSrequest is suspended. The corresponding MSC `REPLY A BUSY' is shown in Fig. 12.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 12
User_A Network_A Network_B

Remote_User_Free
FACILITY

(StatusRequest_Inv)

msc REPLY_B_STILL_FREE

T-CCBS1

(confirm_free)

STATUSfrom status
request process

Status_Check_A

User_B_FreeFigure 9
User_A Network_A

FACILITY

(StatusRequest_free)

Status_Check_A

msc REPLY_A_FREE

User_A_Free

Remote_User_Free

FACILITY

(RemoteUserFree)

T-CCBS3

T-CCBS1Figure 10
B-channel
reservation

Release

msc REPLY_B_BUSY

Network_B

STATUS

(confirm_busy)

from status
request process

User_B_BusyFigure 11



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 13
reservation

alt T-CCBS1

in queue
request

B-channel

suspend

release

Network_A Network_B

T-CCBS1

Suspend

(StatusRequest_busy)

FACILITY

(BFree_Inv)

FACILITY

User_A

msc REPLY_A_BUSY

User_A_Busy

Check_Status_A

Figure 12The MSC contains an inline operator expression referring to alternative composition.Graphically, the inline expression is described by a rectangle with dashed horizontallines as separators. The operator keyword is placed in the left upper corner.Inline operator expressions in MSC'96 allow the �ve operator keywords alt, par,loop, opt, exc which denote alternative composition, parallel composition, itera-tion, optional region and exception, respectively. MSC references may contain cor-responding textual operator expressions which in addition include the sequentialoperator using the keyword seq.As shown in MSC `SUSPENSION' (Figure 13), user A being found busy, is mon-itored until it becomes free. Then, user A's CCBS request shall become not sus-pended and the monitoring procedure shall start again.MSC `SUSPENSION' shows a nested inline expression. The alternative inlineexpression is embedded in an inline expression containing a loop operator. The loopoperator denotes iteration whereby the range may be speci�ed in parentheses. InMSC `SUSPENSION', the range <0,inf> denotes that the loop will be executed a�nite, but unbound number of times, zero times execution included.3.5.2 Alternative modellings of MSC `REPLY A BUSY'The MSCs `REPLY A BUSY', `REPLY A BUSY ALT1' and `REPLY A BUSY ALT2'(Figures 12, 14, 15) describe alternatives for modelling the special situation whereuser A is busy. All three contain an inline operator expression referring to alternativecomposition.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 14
T-CCBS1

(StatusRequest_busy)

alt

FACILITY

T-CCBS1loop<0,inf>

FACILITY

(StatusRequest_Inv)

(StatusRequest_free)

FACILITY

msc SUSPENSION

T-CCBS1

T-CCBS1

T-CCBS1

Network_A Network_BUser_A

B-channel_released

(StatusRequest_Inv)

FACILITY

CCBS_Activated

User_A_Busy

RESUME_ReqIndFigure 13
reservation
B-channel

alt

in queue

T-CCBS1

request
suspend

release

Network_A Network_BUser_A

Status_Check_A

g1(StatusRequest_busy)

FACILITY

g1

msc REPLY_A_BUSY_ALT1

(BFree_Inv)

FACILITY
Suspend_ReqInv

User_A_Busy

FACILITY

(StatusRequest_busy)

FACILITY T-CCBS1

Figure 14



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 15
B-channel
release

request

reservation

suspend

alt

in queue

Network_A Network_BUser_A

Status_Check_A

(StatusRequest_busy)

FACILITY

g1 (StatusRequest_busy)

FACILITY T-CCBS1

T-CCBS1

msc REPLY_A_BUSY_ALT2

(BFree_Inv)

FACILITY
Suspend

User_A_BusyFigure 15In Figure 14 and 15 messages may enter an inline expression via gates. E.g., inMSC `REPLY A BUSY ALT1' the message `FACILITY(StatusRequest busy)' is enter-ing the inline expression via gate `g1'.Gates are used to de�ne connection points for messages and order relations withrespect to the interior and exterior of MSC references and inline expressions. Gateson inline expressions are merely transit points on the frame of the inline expression.If the gate is not continued outside the frame, the following implicit rules apply:1. If there are other gates with the same name of the same inline expression, thecontinuation given for one of the gates holds for all.2. If there are no other gates with the same name and no continuation exists, animplicit continuation to the next enclosing frame (either MSC frame or inlineexpression frame) is assumed.A message gate name can be de�ned explicitly by a name associated with the gateon the frame or implicitly by the direction of the message through the gate and themessage name.The three MSCs describe slightly di�erent situations: in all three cases eitherthe timer T-CCBS1 waiting for an answer from user A expires (alternative 1) or thestatus busy-message `FACILITY(StatusRequest busy)' arrives (alternative 2).In MSC `REPLY A BUSY ALT1' the status busy-message is lost in case of the�rst alternative (graphically represented by a black hole). A lost message in this casemay also mean that it is discarded after the timer has expired. A more appropriate



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 16
CCBS_Init

msc INVOCATION

User_A Network_A Network_B

CCBS_Free

Recall
SETUP

(Call_Inv)

Call

(Call_Inv)

T-CCBS3Figure 16representation would be to attach the black hole to the instance which is not allowed,however, in the present MSC'96.In MSC `REPLY A BUSY ALT2' the status busy-message is sent in both cases butif the �rst alternative, i.e., the expiring of the timer holds, the message cannot enterthe inline expression since there is no corresponding gate. This kind of modelling isnot excluded in MSC'96 but should be used with care. The static semantics rulesin Z.120 are likely to be changed to rule out those situations.In MSC `REPLY A BUSY' the status busy-message is neither sent nor consumedin case of alternative 1. Note, that in this case the inline expression is attached totwo instances `User A' and `Network A'.3.6 MSCs `INVOCATION', `RELEASE', `CANCEL', and`DEACTIVATION'Let us return to the CCBS example. The HMSC `MONITORING' describes part ofthe overall CCBS service behaviour speci�ed in the HMSC `CCBS SERVICE' (Fig-ure 1). We already explained the HMSC `MONITORING', the MSCs `REQUEST',`REJECT', and `ACTIVATION' which all are referred to in `CCBS SERVICE'. Inthis section we describe the remaining MSCs, namely `INVOCATION', `RELEASE',`CANCEL', and `DEACTIVATION'.3.6.1 MSC `INVOCATION'If user A accepts the recall before the CCBS recall timer expires (cf. MSC `INVO-CATION', Figure 16) the network initiates the CCBS call to destination B.3.6.2 MSC `RELEASE'If the CCBS queue has been processed then processing is complete, the resourcesreserved for the CCBS supplementary service can be released (Figure 17), and the



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 17
queue
request from

release

Release_CCBS_ID

reservation

remove

B-channel

msc RELEASE

User_A Network_A Network_B

CCBS_Init

CCBS_Idle

CANCEL_ReqInd

Figure 17CCBS service returns into its initial state `CCBS Idle' (see also Figure 1).Within MSC `RELEASE', an MSC reference `RELEASE CCBS ID' is speci�ed.The corresponding MSC is shown in Figure 18. The MSC `RELEASE CCBS ID'contains an inline expression with an opt operator. opt is an unary operator withone operand only. The opt operator denotes an alternative where the second operandis the empty MSC. In case of MSC `RELEASE CCBS ID' the sending of the message`CANCEL ReqInd' is depending on a deactivation caused by user A. This is mod-elled in this tutorial by means of an optional region with a comment which strictlyspeaking demands a guard, instead. However, since guards need formal data de�ni-tions and therefore have not been included in MSC'96 we have chosen this kind ofmodelling.3.6.3 MSC `CANCEL'If user A rejects the CCBS recall or the T-CSBS3 recall timer expires then theCCBS is deactivated. This is shown in Figure 19. The employment of the reference`RELEASE CCBS ID' is an example for the reuse of MSCs by means of this languageconstruct.3.6.4 MSC `DEACTIVATION'In most situations (cf. Figure 1) the user can deactivate the CCBS service by sendinga deactivation request. Upon successful deactivation, the corresponding CCBS re-quest is discarded and user A is informed that the deactivation was successful. Thecorresponding MSC `DEACTIVATION' is shown in Figure 20. Within this MSC, theMSC `RELEASE CCBS ID' is referred to once again.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 18
deactivation 
is caused by
user A

option valid if

release
CCBS
reference

RELEASE_CCBS_IDmsc

reference
CCBS

CCBS_Deactivation_Requested

T-CCBS3

T-CCBS2

release

User_A Network_A

FACILITY

(Deactivate_RR)

opt

CANCEL_ReqIndFigure 18
FACILITY

T-CCBS3

(Deactivate_RR)

Release_CCBS_ID

msc CANCEL

User_A Network_A Network_B

CCBS_Free

alt

Deactivate_request
FACILITY

(Deactivate_Inv)

Deactivate_confirm

CANCEL_ReqInd

CCBS_IdleFigure 19



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 19
Release_CCBS_ID

msc DEACTIVATION

User_A Network_A Network_B

FACILITY

CCBS_Requested, CCBS_Activated, CCBS_Free

CCBS_Idle

(Deactivate_Inv)

Deactivate_Conf

Deactivate_Req

remove from

B-channel

queue,
release

CANCEL_ReqIndFigure 204 Further constructs of the MSC languageThe CCBS speci�cation in Section 3 is guided by the European TelecommunicationStandard 300 359-1 [6]. Therefore, our example speci�cation is restricted to theCCBS speci�c events. We stuck to this example in order to obtain an MSC speci�-cation transparent and compact enough for a tutorial presentation. In addition, thisspeci�cation suits quite well to illustrate one of the intentions of MSC'96, namelyto provide a complete speci�cation of certain system features. How far this goal hasbeen reached will be discussed in the conclusion.However, this CCBS example is not su�cient to explain all existing MSC lan-guage constructs. In this section, the remaining ones are described. The MSCexamples, given here, and the corresponding descriptions again refer to the CCBSservice but this time, they do not display standardised behaviour.4.1 HMSC `TIME SUPERVISION'The idle guard timer (T-CSBS4) enables network B to initiate a call before anyCCBS request is processed. In the HMSC `TIME SUPERVISION' (Figure 21), aconnection setup of user B is speci�ed in parallel with the time supervision andstatus check by Network B.The HMSC `TIME SUPERVISION' contains a parallel frame embodying twosmall HMSC pieces which according to the semantics of this construct are exe-cuted in parallel (free merge). The small HMSC pieces refer to the MSCs `TIMER'and `CONNECTION SETUP' provided in Figure 22 and Figure 23.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 20
CONNECTION_SETUP TIMER

msc TIME_SUPERVISION

Figure 21
TIMER

T-CCBS4

User_B_Free

msc

Network_B User_B

CCBS_Idle

Deactivate_Conf

Deactivate_ReqFigure 22
User_B

off_hook

msc CONNECTION_SETUP

answer

ack

digit

connection

seizure_intFigure 23



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 21
BUSY_AGAINmsc

Network_B User_B

T-CCBS4

off_hookUser_B_Free

answer

ack

digit

seizure_int

connection

status_request

status_busyFigure 244.2 MSC `BUSY AGAIN'If a connection setup procedure has been initiated before the status request is per-formed by Network B then the result is `status busy'. MSC `BUSY AGAIN' (Figure24) provides an example for the modelling by means of generalised orderings graphi-cally represented by means of connections between the message events. In this case,the connections are represented by line symbols with a staircase like shape. Theconnections are contained within a coregion in an instance in column form. Thefollowing partial ordering `<' is de�ned within MSC `BUSY AGAIN':in o� hook < in digit < out seizure int < in ack < in answer < out connectionin o� hook < in status request < out status busyGoing beyond MSC'96, a double vertical line taken over from object oriented Mes-sage Trace Diagrams (OMSC) [3, 4] shall denote a protected region which must notbe interleaved by other events.4.3 MSC `BUSY AFTER FREE'User B is not prevented from starting a setup after it has been found not busy(cf. MSC `BUSY AFTER FREE', Figure 25). If destination B is again busy whenthe network attempts to make the CCBS call, then a special procedure has to bestarted which has been left out in the HMSC `CCBS SERVICE' (Figure 1).4.4 MSC `ABSTRACTION'On an early stage of requirement speci�cation one often abstracts from the internalmessage exchange while specifying the external behaviour only. On this level ofabstraction, synchronisation constructs are demanded similarly to Time SequenceDiagrams [13] which impose a time ordering between events attached to di�erent



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 22
Network_B User_B

User_B_Free

msc BUSY_AFTER_FREE

T-CCBS4

status_request

status_free

digit

off_hook

connection

answer

ack

seizure_intFigure 25
CCBS_Init

msc ABSTRACTION

CCBS_user CCBS_destination

CCBS_Free

CCBS_recall CCBS_callFigure 26instances.1 This kind of generalised ordering in MSC'96 is de�ned by means ofconnections graphically represented by a line symbol with an arrow symbol in itsmiddle. Thus, in MSC `ABSTRACTION' (Figure 26) de�nes the ordering:in CCBS recall < out CCBS call5 Conclusion and outlookThe modelling of the CCBS example by means of MSC'96 demonstrates the greatsuitability of the new language constructs for this purpose. In particular, HMSCshave shown to provide an overview about the functionality of such a protocol in aconvincingly intuitive and transparent manner. This is quite important in practicebecause in SDL such a representation obviously is missing. Similarly to 'plain'1Time Sequence Diagrams are frequently used for the speci�cation of OSI services.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 23MSCs, HMSCs may supplement SDL speci�cations in many respects. Another veryattractive feature of HMSCs is their hierarchical structuring, i.e., the possibilityto re�ne HMSCs by other HMSCs which has been demonstrated within the CCBSexample by the HMSC `MONITORING' (Figure 6).An obvious de�ciency of HMSCs in MSC'96 is the lack of an appropriate ex-ception handling within references. A choice made within a reference is not visibleoutside of the reference. As a consequence, all choices have to be made outside andthat may lead to the de�nition of many small MSC(- pieces). Obviously one needsa means for guarding alternatives. There was already a proposal to use conditionsagain for guarding choices. For some reasons, this idea was not accepted withinMSC'96. Certainly, formal data descriptions and corresponding parametrisation ofreferences will be requested for this purpose during the next study period.On the level of plain MSCs, inline operator expressions and MSC referenceshave proven to provide an excellent means for a compact representation and forreusability. The inclusion of quite general gate concepts for inline expressions andreferences has contributed considerably to the power and expressiveness of MSC'96[12].The same concepts, however, may lead to the speci�cation which are ratherdi�cult to interpret. They may even contain deadlocks. This is a new situation,compared with MSC'92, where only deadlock-free MSCs could be speci�ed. Cer-tainly, the further elaboration of a corresponding formal semantics will promote theclari�cation of these language parts considerably. Nevertheless, in particular thegate concept combined with operator expressions and generalised ordering relationswill remain a research topic for the next ITU- study period. In a sense, the inclusionof such far reaching concepts into the new standard may appear quite courageous.However, one has to keep in mind that standardisation is a highly interactive proce-dure which continuously needs feedback from users and tool makers. It also dependsstrongly on the e�ort provided by some few experts who again are depending on thesupport by their home organisations. This obviously implies that new parts of thelanguage are not always completely settled, but still remain under development.Whilst in MSC'96 very advanced concepts have been included which certainlyneed further elaboration, some important concepts have been left out because theyseemed to be not su�ciently mature. The most prominent of these missing conceptsare - apart from the above mentioned exception handling concepts - interruption anddisruption operators and parallel composition concepts for HMSCs which includesynchronisation mechanisms [19].This wish list, of course, can be extended. The inclusion of formal data conceptshas been mentioned already. A special language construct for the speci�cationof synchronous communication mechanisms has still not been provided. In thecontext of object oriented modelling such a construct, essentially describing a remoteprocedure call presents the central communication mechanism.2 There is of course agreat demand for the inclusion of non-functional properties in MSC, most urgently2However, a number of variants comes to mind immediately.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 24for performance evaluations [1]. All of these open items have been included inthe working program for the next ITU- study period. An addendum to MSC'96is planned for 1998 before the edition of the next MSC recommendation in 2000(MSC'2000).Compared with the extremely short time in which MSC'96 actually was pro-duced, the result appears altogether to be surprisingly convincing and stable. Theremoval of de�ciencies [16] but also the development of further language concepts likethe incorporation of formal data concepts within MSC needs an intense input fromusers, tool makers and academic researchers. In this respect, the FORTE/PSTV'96conference is the �rst opportunity to spread themessage ofMessage Sequence Charts(MSC'96) to a broader community.References[1] R. Alur, G.J. Holzmann, D. Peled. An Analyzer for Message Sequence Charts. In:Proceedings of the 2nd International Workshop on Tools and Algorithms for theConstruction and Analysis of Systems (TACAS95), Passau, March 1996.[2] M. Andersson, J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.Master Thesis, Lund Institute of Technology, 1995.[3] G. Booch, J. Rumbaugh. Uni�ed Method for Object-Oriented Development. Rational,1996.[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of Pat-terns. John Wiley & Sons, Chichester, 1996.[5] V. Encontre, E. Delboule, P. Gavaud, P. Leblanc, A. Boussalem. Combining Ser-vices, Message Sequence Charts And SDL: Formalism, Method and Tools. In: SDL'91Evolving Methods (O. Faergemand and R. Reed, editors). North-Holland, 1991.[6] ETS 300 359-1. Integrated Services Digital Network (ISDN); Completion of Calls toBusy Subscriber (CCBS) supplementary service; Digital Subscriber Signalling SystemNo. one (DSS1) protocol; Part 1: Protocol speci�cation. European Telecommunica-tions Standards Institute (ETSI), Sophia Antipolis, France, Nov. 1995.[7] J. Grabowski, P. Graubmann, E. Rudolph. The Standardization of Message SequenceCharts. In: Proceedings of the IEEE Software Engineering Standards Symposium1993. Sept. 1993.[8] J. Grabowski, P. Graubmann, and E. Rudolph. Towards an SDL-Design-MethodologyUsing Sequence Chart Segments. In: SDL'91 Evolving Methods (O. Faergemand andR. Reed, editors). North-Holland, 1991.[9] J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speci�-cation by MSCs. In: SDL'93 - Using Objects (O. Faergemand and A. Sarma, editors).North-Holland, Oct. 1993.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 25[10] J. Grabowski, E. Rudolph. Putting Extended Sequence Charts to Practice. In: SDL'89- The Language at Work (O. Faergemand and M. M. Marques, editors). North-Holland, Oct. 1989.[11] P. Graubmann, E. Rudolph, J. Grabowski. Towards a Petri Net Based SemanticsDe�nition for Message Sequence Charts. In: SDL'93 - Using Objects (O. Faergemandand A. Sarma, editors). North-Holland, Oct. 1993.[12] O. Haugen. Using MSC-92 e�ectively. In: SDL'95 - Proceedings of the 7.th SDLForum in Oslo, Norway (R. Braek and A. Sarma, editors). North-Holland, Sep. 1995.[13] ISO/IEC JTC 1/SC 21. Information Technology - OSI Service Conventions. RevisedText of CD 10731, ISO/IEC JTC 1/SC21 N 6341, January 1991.[14] I. Jacobson. Object-Oriented Software Engineering { A Use Case Driven Approach.Addison-Wesley, 1992.[15] G.C. Kessler. ISDN (second edition). McGraw-Hill Inc., New York, 1993.[16] S. Loidl. Interpretation und Werkzeugunterst�utzung von Message Sequence Charts(MSC'96) (in German). Diploma thesis (in preparation), Technical University ofMunich (Germany), November 1996.[17] S. Mauw, M.A. Reniers. An algebraic semantics of Basic Message Sequence Charts.Computer Journal No. 37, 1994.[18] S. Mauw. The formalization of Message Sequence Charts In: Computer Networksand ISDN Systems - SDL and MSC (Guest editor: O. Haugen). Volume 28 (1996),Number 12, June 1996.[19] E. Rudolph, P. Graubmann, J Grabowski. Message Sequence Chart: CompositionTechniques versus OO-Techniques - 'Tema con Variazioni'. In: SDL'95 - Proceedingsof the 7.th SDL Forum in Oslo, Norway (R. Braek and A. Sarma, editors). North-Holland, Sep. 1995.[20] E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts. In:Computer Networks and ISDN Systems - SDL and MSC (Guest editor: O. Haugen).Volume 28 (1996), Number 12, June 1996.[21] Z.100 I (1993). SDL Methodology Guidelines. Appendix I to Z.100. ITU-T, Geneva,July 1993.[22] Z.120 (1993). Message Sequence Chart (MSC). ITU-T, Geneva, Sep. 1994.[23] Z.120 (1996). Message Sequence Chart (MSC). ITU-T, Geneva, April. 1996.[24] Z.120 B (1995).Message Sequence Chart Algebraic Semantics. ITU-T, Geneva, 1995.


