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Abstract

Context: In software testing, there are several concepts that were established over the
years, including unit and integration testing. These concepts are defined in standards and
used in software testing certifications, which underline their importance for research and
industry. However, these concepts are decades old. Nowadays, we do not have any evidence
that these concepts still apply for modern software systems.

Objective: The purpose of this thesis is to evaluate, if the differences between unit and
integration testing are still valid nowadays. To this aim, we analyze defined differences
between these test levels to provide evidence, if these are still current in modern software.

Method: We performed quantitative and qualitative analysis on differences between unit
and integration tests. The quantitative analysis was performed via a case study including
27 Java and Python projects with more than 49000 tests. During this analysis we classified
tests into unit and integration tests according to the definitions of the Institute of Electrical
and Electronics Engineers (IEEE) and International Software Testing Qualification Board
(ISTQB) and calculated several metrics for those tests. We then used these metrics to assess
three differences between these levels. For the qualitative analysis we searched for relevant
research literature, developer comments, and further information regarding differences be-
tween unit and integration tests. The found resources are evaluated to gain an understanding
of the research and industrial perspective on the differences, i.e., if they are existent and to
which magnitude.

Results: We found that more integration than unit tests are present in most projects, when
classified according to the definitions of the IEEE and ISTQB. However, the exact numbers
differ between these definitions. Based on the developer classification of tests, there is no
significant difference in the number of unit and integration tests. Our quantitative analysis
highlights that diverse defined differences are no longer existent. We found, that the defect
types that are detected by both test types, do not differ from each other and that there are
no significant differences in their execution time. However, we confirmed that unit tests
are better able to pinpoint the source of a defect. Our qualitative analysis of research and
industrial perspective shows, that both test types are executed automatically, that their test
objectives mostly differ from each other, and that practitioners experienced that integration
tests are more costly than unit tests.

Conclusions: Our results suggest that the current definitions of unit and integration tests
are outdated and need to be reconsidered as most of the differences are vanishing. One
reason for this could be technological advancements in the area of software testing and
software engineering. However, this needs to be further investigated.





Zusammenfassung

Kontext: Im Gebiet des Softwaretestens wurden über die Jahre verschiedene Konzepte,
wie Unit- und Integrationstests, etabliert. Diese Konzepte wurden in Standards definiert
und werden auch heutzutage noch in Softwaretesten Zertifikaten benutzt. Dies unterstreicht
ihre Wichtigkeit für die Industrie und Forschung. Allerdings sind diese Konzepte schon
Jahrzehnte alt. Aktuell existiert keine Evidenz, ob diese Konzepte noch immer für moderne
Software Systeme zutreffen.

Ziel: Das Ziel dieser Arbeit ist die Evaluation, ob die Unterschiede zwischen Unit- und
Integrationstests, wie sie in der Standardliteratur beschrieben werden, noch immer zutref-
fen. Dazu analysieren wir die Unterschiede zwischen diesen beiden Testarten.

Methode: Wir benutzen qualitative und quantitative Methoden in dieser Arbeit. Die
quantitative Analyse umfasst die Ausführung einer Fallstudie mit 27 Java und Python Pro-
jekten, welche insgesamt mehr als 49000 Tests beinhalten. Innerhalb dieser Analyse klas-
sifizieren wir alle Tests in Unit- bzw. Integrationstests mittels der Definitionen der Institute
of Electrical and Electronics Engineers (IEEE) und International Software Testing Quali-
fication Board (ISTQB). Zudem berechnen wir mehrere Metriken für diese Tests, um die
Unterschiede zu quantifizieren. Für die qualitative Analyse haben wir relevante Literatur,
Entwicklerkommentare, und weitere Informationen die sich mit den Unterschieden zwi-
schen Unit- und Integrationstests befassen, analysiert.

Ergebnisse: Unsere Ergebnisse zeigen, dass mehr Integrations- als Unittests in aktuel-
len Projekten vorhanden sind, wenn wir die Tests nach den Definitionen des IEEE und
des ISTQB klassifizieren. Die exakte Anzahl hängt von der Definition ab. Wenn wir die
Tests so klassifizieren wie ihre Entwickler, sind nicht mehr Integrations- als Unitttests vor-
handen. Die quantitative Analyse hat gezeigt, dass die meisten in der Literatur genannten
Unterschiede zwischen beiden Testarten für moderne Software nicht mehr zutreffen. Unsere
Ergebnisse zeigen, dass Unit- und Integrationstests dieselben Arten von Fehlern entdecken
und dass es keine Unterschiede in ihrer Ausführungszeit gibt. Allerdings konnten wir bestä-
tigen, dass Unittests besser zur Lokalisierung von Fehlern geeignet sind. Unsere qualitative
Analyse hat gezeigt, dass beide Testarten automatisch ausgeführt werden, ihr Testziel sich
voneinander unterscheidet und das Entwickler Integrationstests als teurer wahrnehmen.

Schlussfolgerung: Unsere Ergebnisse zeigen, dass viele Unterschiede zwischen Unit-
und Integrationstests nicht mehr vorhanden sind. Dies suggeriert, dass die derzeit geltenden
Definitionen von Unit- und Integrationstests nicht für moderne Software Systeme zutreffen.
Ein Grund hierfür könnte die Evolution der Softwareentwicklung sein, welche durch die
Verbesserung und Entwicklung von Softwaretesten-Werkzeugen vorangetrieben wird.
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1. Introduction

Nowadays, software testing gets more and more important through the huge number of
different software systems and their direct impact on our lives [1]. The research area of
software testing is growing due to the increasing complexity of software systems, includ-
ing the development and advancement of dedicated software testing conferences like the
International Conference on Software Testing, Verification, and Validation (ICST) [2] or
the International Symposium on Software Testing and Analysis (ISSTA) [3]. Most recently,
the area of evidence-based software testing [4, 5] gets attention, empowered through the
availability of data from open-source software projects [6, 7]. One challenge of evidence-
based software testing is the creation of a body of evidence for important aspects in software
testing [8]. Unfortunately, most of the techniques and theories that are present in the stan-
dard literature [9, 1, 10, 11, 12, 13, 14, 15] and taught at universities rely on anecdotes, are
inconsistent [16], or not based on empirical evidence [8].

Within this thesis we provide evidence for a topic, which is highly important in research
and practice: the separation of tests on different test levels and their differences. That test
levels are an important concept is highlighted by the large number of publications that are
focused on these topics, as well as their incorporation within several development models
like, e.g., the V-model [9] or the Waterfall model [17]. Hereby, unit testing is one of the
most advanced areas within the research on software test levels. There exist work on the
generation of tests [18, 19, 20], minimization of test cases [21], or the detection of test
refactorings on the unit level [22, 23]. However, some research is done in the field of
integration testing, too. For example, on the automation of integration testing [24], test
case prioritization [25], or how to profit from unit tests for integration testing [26]. The
definitions of unit and integration tests, e.g., by the Institute of Electrical and Electronics
Engineers (IEEE) [27] or International Software Testing Qualification Board (ISTQB) [28],
are used in software testing certifications.

Another aspect that highlights the high interest in this topic, is a current proposal that
is made within the development community [29]. Instead of testing all parts of a software
system on unit level with some integration tests, as described in the software testing standard
literature [9, 1, 10, 11], the proposal states that only some unit tests should be created (for the
most difficult parts) while most software parts should be tested via integration tests instead.
The reasons for this shift of the software testing paradigm are manifold. Developers state
that the creation of unit tests is not really worth the effort compared to their effectiveness,
as mocks need to be created and/or the design of the software needs to be adapted so that
unit tests are applicable [30, 31]. Furthermore, developers argue that integration tests are
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more realistic than unit tests, as they test scenarios instead of units, and therefore provide
more confidence in the software system [32, 33, 29]. However, the problem that currently
exists is best summarized by one of the developers that is engaged in the discussion: “We
don’t have empirical evidence showing that this is actually true, unfortunately.” [32]. Hence,
evidence is missing that could help us to assess if this kind of proposal is problematic or
if it improves the software testing process. Therefore, within this thesis, we focus on the
differences between unit and integration tests and bridge the mentioned gap by providing
evidence to assess if the differences are still valid in modern software development contexts.
This could also give us hints if the use of the decades old definitions of unit and integration
tests still fit to separate between those test types.

1.1. Scope of the Thesis

In this thesis, we present an study on unit and integration tests that illuminates two aspects:
the distribution of unit and integration tests in open-source projects and the differences
between these test levels. Furthermore, to widen our scope and improve the external validity
of our results, we perform our study based on two different definitions of unit and integration
tests: the definitions of the IEEE and ISTQB.

To steer our research, we investigate and answer several Research Questions (RQs) for
each of these aspects in this thesis. The differences between unit and integration tests
are analyzed quantitatively and qualitatively using data collected from the repositories of
several open-source projects, as well as publications and other textual resources.

Distribution of Unit and Integration Tests
At first, we need to be able to detect unit and integration tests and assess if and how they are
developed and used. Furthermore, we provide empirical evidence on the distribution of unit
and integration tests to evaluate if the proposed software testing paradigm shift explained
above (i.e., more integration than unit tests) is already visible in practice. Hence, we define
the following RQ:

• RQ 1: What is the distribution of unit and integration tests in open-source projects?

This question leads to the following more detailed sub questions, focusing on different
aspects of the distribution of unit and integration tests in open-source projects:

• RQ 1.1: To what extend is the trend of developing more integration than unit tests
visible in open-source projects?

• RQ 1.2: How are unit and integration tests distributed, if we reuse the developer
classification of tests?

• RQ 1.3: To what extend are developers classifying unit and integration tests accord-
ing to the definitions?



3 1.1. Scope of the Thesis

Identifier Difference Source Analysis Type
D1 Lower execution time of unit tests [10] Quantitative
D2 Unit tests detect different defects

than integration tests
[9, 1, 11, 12, 13] Quantitative

D3 Unit tests directly pinpoint the
source of the problem

[9, 10] Quantitative

D4 The execution of unit tests is easily
automatable

[11, 14, 15] Qualitative

D5 Unit and integration tests have dif-
ferent test objectives

[9, 1, 10, 11, 12, 13] Qualitative

D6 Unit tests cost less than integration
tests

[13] Qualitative

Table 1.1.: Differences between unit and integration tests as stated in the standard literature,
together with their source.

In RQ 1.1 we evaluate whether there are more integration than unit tests in open-source
projects using the definitions of the IEEE and ISTQB, while in RQ 1.2 we assess the number
of unit and integration tests according to the developers classification. Then, in RQ 1.3, we
compare the results of RQ 1.1 and RQ 1.2 with each other. We want to assess, if developers
are classifying unit and integration tests according to the definitions.

Differences between Unit and Integration Tests
In the second part of our research, we evaluate the differences between unit and integration
tests. Therefore, we investigate the following RQ:

• RQ 2: What are the differences between unit and integration tests?

To compile a list of differences between unit and integration tests, we assessed software
engineering and software testing text books used for teaching and education [9, 1, 10, 11,
12, 13, 14, 15].

Table 1.1 highlights our collected differences, together with their source. Overall, we
identified six differences from the standard literature. However, not all of them can be
analyzed quantitatively due to missing data, e.g., there is no cost data for open-source
projects available that track the money spend for the design, development, and execution
of tests. Therefore, we use a mixture of quantitative and qualitative analysis techniques to
assess these differences. As noted in Table 1.1, differences D1-D3 are analyzed quantita-
tively. Hereby, we assess these differences by collecting and mining data from open-source
projects and analyze this data statistically to assess the differences. D4-D6 are evaluated
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based on a qualitative analysis. Within this analysis, we searched for relevant research liter-
ature, developer comments, and further internet resources regarding these differences. The
found resources are evaluated to gain an understanding of the research and industrial per-
spective on the differences, i.e., if these differences are existent and to which extent. We
do not only focus on research literature, but include developer comments and the current
industrial landscape, e.g., companies that provide services, current frameworks, or libraries,
to analyze these differences. The difference regarding the test objective (D5) is rather clear,
as unit and integration tests have different objectives by definition. However, some literature
(e.g., [9]) state, that unit tests are used to test the robustness, efficiency, and maintainability
of a software (in contrast to an integration test).

Based on the differences between unit and integration tests, highlighted in Table 1.1, we
defined several sub-RQs for RQ 2. These RQs are listed below:

• RQ 2.1: What are the differences between unit and integration tests in open-source
projects in terms of their execution time? (D1)

• RQ 2.2: What are the differences between unit and integration tests in open-source
projects in terms of their effectiveness? (D2)

• RQ 2.3: What are the differences between unit and integration tests in open-source
projects in terms of their defect-locality? (D3)

• RQ 2.4: What are the differences between unit and integration tests in terms of their
execution automation? (D4)

• RQ 2.5: What are the differences between unit and integration tests in terms of their
test objective? (D5)

• RQ 2.6: What are the differences between unit and integration tests in terms of their
costs? (D6)

RQs 2.1-2.3 are focused on open-source projects, as we perform our quantitative analysis
using data mined from those projects. Unfortunately, industrial data was not available.
RQs 2.4-2.6 are analyzed qualitatively. Hence, we are not focused on open-source projects
alone, but evaluate the current research literature and other internet resources regardless of
the studied projects.

1.2. Goals and Contributions

This thesis advances the state of the art and the body of knowledge in the fields of software
testing and evidence-based software testing through the following contributions:

• An approach to classify software tests into unit and integration tests (Section 4.2.4).
This novel approach is using coverage data of tests to classify software test cases
into unit and integration tests. Our approach supports the classification based on the
definitions of the IEEE and ISTQB, as well as the classification based on naming
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conventions, i.e., the developer classification. This classification approach is the cor-
nerstone for our quantitative analysis.

• An approach and implementation to extract the defect-locality of software tests
(Section 4.2.8). This approach is using artificial defects, integrates them into the
program, and assesses the depth of the call stack that was generated till the defect was
detected by a test. It makes use of the Java instrumentation Application Programming
Interface (API) [34] and is therefore applicable to all Java programs that support this
API. This approach is used within our quantitative analysis to compare the defect-
locality of unit and integration tests to assess whether a unit test can directly pinpoint
the source of a defect.

• A quantitative analysis of the distribution of unit and integration tests in open-
source projects (Section 5). This is the result of RQ 1. Hence, the analysis com-
prises of an analysis of the number of unit and integration tests in current open-source
projects, an analysis of the developer classification of tests, as well as an analysis of
the overlap between the developer classification and classification by definition of
unit and integration tests. The results of this analysis are essential for our research
and are used for the subsequent RQs.

• A quantitative analysis of the differences between unit and integration tests, which
is done via a case study (Section 6). We collected different data from open-source
projects and analyzed them statistically with respect to the execution time, test ef-
fectiveness, and defect-locality. Hence, within this analysis we assess the differences
between unit and integration tests empirically. The results of this analysis are part of
the answer to RQ 2.

• A qualitative analysis of the differences between unit and integration tests, which is
done by assessing relevant literature and textual resources (Section 7). We analyzed
them to gather facts regarding the execution automation, test objective, and costs
of unit and integration tests. The results of this analysis form the second part of our
answer to RQ 2.

• To facilitate further insights and the replication of our study, we provide our frame-
work for the mining of data from software repositories and our framework for
the analysis of software tests (Section 4.2.10), and a data set based on the data used
within our case study (Section 4.1). This includes the test classification, their execu-
tion time, effectiveness and defect-locality, as well as additional metrics like the cov-
ered production lines of code or covered test lines of code. The mining framework
includes several plug-ins for the collection of data from different software reposito-
ries. Furthermore, it is a scalable framework that is able to process and store large
amounts of different types of data due to its use of big data technologies. This frame-
work is used to collect the necessary meta-data about projects, which are used in our
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analysis of the distribution and differences of unit and integration tests. The frame-
work for the analysis of software tests is developed as a standalone framework, but
it can cooperate with our data mining framework mentioned above. It includes four
different steps from loading the data to storing results. The framework is used to
collect the necessary metrics (e.g., defect detection capabilities) for our case study.
In addition, this framework can enable other researchers to contribute to the body of
knowledge of evidence-based software testing.

1.3. Impact

The results of this dissertation and further research that has been performed to enable this
work have been published in one scientific journal article and three peer-reviewed inter-
national conference proceedings. Furthermore, the author of this thesis has contributed to
one book chapter. One of the authors conference publications was awarded with an "ACM
SIGSOFT Distinguished Paper Award" (see below).

Journal Articles

• F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski. “Addressing problems
with replicability and validity of repository mining studies through a smart data plat-
form” in Empirical Software Engineering, vol. 23, no. 2, Springer, 2018. Available:
https://doi.org/10.1007/s10664-017-9537-x.

Own contributions
I am the lead author of this publication. I performed most of the work for this publica-
tion including the technical implementations, except the model-based transformation
and extraction framework that I reused from Dr. P. Makedonski for the first version of
SmartSHARK and the effort prediction implementation from Dr. S. Herbold. Further-
more, I have developed the new version of SmartSHARK and have done the experi-
ments performed with it. The analysis of current problems within case studies with
respect to the external validity and the experience reports regarding the feasibility of
our developed platform was done together with Dr. S. Herbold.

Conferences

• F. Trautsch. “Reflecting the Adoption of Software Testing Research in Open-Source
Projects” in Proceedings of the 10th International Conference on Software Testing,
Verification and Validation (ICST 2017), IEEE, 2017, PhD Symposium. Available:
https://doi.org/10.1109/ICST.2017.77.

Own contributions
I am the single author of this publication and performed all work myself.

https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1109/ICST.2017.77
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• F. Trautsch and J. Grabowski. “Are there any Unit Tests? An Empirical Study on
Unit Testing in Open Source Python Projects” in Proceedings of the 10th Inter-
national Conference on Software Testing, Verification and Validation (ICST 2017),
IEEE, 2017. Available: https://doi.org/10.1109/ICST.2017.26.

Own contributions
I am the lead author of this publication. All main contributions, implementations, and
case studies have been done by myself.

• F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski. “Addressing Problems
with External Validity of Repository Mining Studies Through a Smart Data Platform”
in Proceedings of the 13th International Conference on Mining Software Repositories
(MSR 2016), ACM, 2016. Available: http://doi.acm.org/10.1145/2901739.
2901753. Awarded with an ACM SIGSOFT Distinguished Paper Award.

Own contributions
I am the lead author of the publication. I performed most of the work for this publica-
tion, including the technical implementations, except the model-based transformation
and extraction framework that I reused from Dr. P. Makedonski for the described ver-
sion of SmartSHARK and the effort prediction implementation from Dr. S. Herbold.
Furthermore, Dr. S. Herbold contributed to the analysis of current problems within
case studies with respect to the external validity and the discussion of these problems.

Book Chapter

• S. Herbold, F. Trautsch, P. Harms, V. Herbold, and J. Grabowski. “Experiences With
Replicable Experiments and Replication Kits for Software Engineering Research” in
Advances in Computers, vol. 113, Elsevier, 2019. Available: https://doi.org/

10.1016/bs.adcom.2018.10.003.

Own contributions
I contributed to this book chapter by an experience report on the analysis of test type
characteristics.

Moreover, the author of this dissertation supervised and co-supervised two student projects
and two master theses.

Student Projects

• A. Amirfallah. “Literature Survey on Developer Social Networks”, Student Project,
Institute of Computer Science, University of Goettingen. 2017.

• B. Ledel. “Topic Modeling Literature Survey and Word Clouds”, Student Project,
Institute of Computer Science, University of Goettingen. 2017.

https://doi.org/10.1109/ICST.2017.26
http://doi.acm.org/10.1145/2901739.2901753
http://doi.acm.org/10.1145/2901739.2901753
https://doi.org/10.1016/bs.adcom.2018.10.003
https://doi.org/10.1016/bs.adcom.2018.10.003
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Master Theses

• A. Khajeh. “Heuristics and machine learning for merging developer identities across
multiple software repositories”, Master Thesis, Institute of Computer Science, Uni-
versity of Goettingen. 2018.

• L. Ul Khair. “Change Classification Techniques for Commits using Static Code Anal-
ysis and Issue Tracking Data”, Master Thesis, Institute of Computer Science, Univer-
sity of Goettingen. 2018.

1.4. Structure of the Thesis

This thesis covers several aspects related to the RQs stated above. It is structured as follows.

Chapter 2 summarizes the foundations, which are necessary for understanding the rest
of this thesis. It includes foundations regarding software testing (Section 2.1), mutation
testing (Section 2.2), as well as statistical hypothesis testing (Section 2.3)

Chapter 3 presents related work to the scientific topics to which the author contributed
during his studies and puts our work into a broader research context. This chapter includes
the related work to the topics of test level classification (Section 3.1), test effectiveness
assessment (Section 3.2), defect classification (Section 3.3), defect-locality (Section 3.4),
distribution of unit and integration tests (Section 3.5), and works that analyze differences
between unit and integration tests (Section 3.6). In addition, a small summary of the related
work together with the research delta is given within this chapter (Section 3.7).

Chapter 4 describes our research methodology. Within this chapter, we give a short
overview of our methodology (Section 4.1), present the data collection processes for our
case study (Section 4.2) and give remarks for the analysis of the data (Section 4.3).

Chapter 5 presents the results of the analysis of the distribution of unit and integration
tests in open-source projects. It includes the description of the mined data set (Section 5.1),
together with the description of the analysis procedure and the results for RQ 1.1 (Sec-
tion 5.2.1), RQ 1.2 (Section 5.3.1), and RQ 1.3 (Section 5.4.1).

Chapter 6 presents the results of the quantitative analysis of the differences between
unit and integration tests. It includes the used data set description, performed analysis
procedure, and the results for RQ 2.1 (Section 6.1), RQ 2.2 (Section 6.2), and RQ 2.3
(Section 6.3).
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Chapter 7 presents the results for the qualitative analysis of the differences between unit
and integration tests. It includes the analysis of the research and practical view on the
topics of test execution automation (Section 7.1), test objective (Section 7.2), and test costs
(Section 7.3), including the results for RQ 2.4 (Section 7.1.3), RQ 2.5 (Section 7.2.4), and
RQ 2.6 (Section 7.3.3).

Chapter 8 presents the discussion of the results from the qualitative and quantitative
analysis. We discuss the effects of our results and their implications out of two different
perspectives. First, from the perspective of academia and education (Section 8.1) and
second, from a practical perspective (Section 8.2). Moreover, we present threats to the
validity of our analysis together with our validation procedures (Section 8.3).

Chapter 9 concludes this thesis with a short summary and an outlook on future work.





2. Foundations

This chapter introduces the foundations of this thesis consisting of different terminology
and basic concepts. Section 2.1 presents the concept of software testing together with its
related terms. Section 2.2 introduces the concept of mutation testing. In Section 2.3, we
present the concept of statistical hypothesis testing together with several tests used within
this thesis.

2.1. Software Testing

Software testing is an important aspect for the quality assurance of software. Nowadays,
the fundamentals, ideas, and techniques of software testing are essential knowledge for
software developers [1]. Sommerville defines software testing as follows [11].

Definition 2.1 (Software Testing). Testing is intended to show that a program does what it
is intended to do and to discover program defects before it is put into use.

The testing of software can be done on different test levels (Section 2.1.2) and at any time
during the software development. Basically, the testing is done by executing a program with
artificial data and checking the results of test runs for errors or other anomalies [11]. This
testing process has two different goals [11]:

1. demonstrate that the software meets its requirements.

2. discover situations in which the software behaves incorrect, undesirable, or does not
conform to its specification.

The first goal is connected to validation testing, which asserts whether a system performs
correctly. The second goal is related to defect testing, which tries to expose defects in the
software. However, there is no definite boundary between these two approaches [11].

Another important aspect of software testing is often neglected. Software testing cannot
show that the software does not contain any defect: there is always the possibility a test
exists that discovers further problems within the software. Dijkstra et al. [35] summarize
this as follows: “Program testing can be used to show the presence of bugs, but never to
show their absence!”.

Software testing is part of the software verification and validation (V&V) process. Within
the validation it is asserted if the right product is built, while in the verification it is checked
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if the product is built right [36]. The whole V&V process is concerned with evaluating that
the developed software meets its requirements and is started as soon as these are available.
This process is performed to establish confidence in the built software system [11].

The V&V techniques can be separated into static and dynamic techniques. Static tech-
niques do not need to execute the software for its validation and verification. System re-
quirements, design models, program source code, or test cases itself are typical examples
of development artifacts that are validated via static techniques. Two common examples of
such techniques are inspections and reviews. On the other hand, dynamic techniques like
white-box or black-box testing techniques, must execute the software to verify it [9].

2.1.1. Fundamentals

The IEEE standard ISO/IEC/IEEE 24765-2010 [27] defines the most important vocabulary
for the software engineering world. In the following, we present the definitions based on this
standard, as well as definitions used by the ISTQB [28], which is a not-for-profit association
that provides certification of competences in software testing.

Definition 2.2 (Error). 1. a human action that produces an incorrect result, such as software
containing a fault. [...]. [27]

Definition 2.3 (Fault). 1. a manifestation of an error in software. [...]. [27]

Definition 2.4 (Failure). [...] 2. an event in which a system or system component does not
perform a required function within specified limits. [27]

The interconnection between these terms is as follows. A fault (synonym: bug, defect) is
a manifestation of an error in a software and may cause a failure. Failures are the observ-
able impact of faults and can be found via software tests responsible for testing a specific
software system, the System Under Test (SUT).

Definition 2.5 (Test). 1. an activity in which a system or component is executed under
specified conditions, the results are observed or recorded, and an evaluation is made of
some aspect of the system or component [...] 3. a set of one or more test cases and proce-
dures. [27]

The different tests for a software are organized within test cases. The IEEE defines test
cases as follows.

Definition 2.6 (Test Case). 1. a set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program path or to
verify compliance with a specific requirement. [...]. [27]

Test cases are further organized in test suites. However, the IEEE does not define the
term test suite, but includes it into their definition of a test (see above). Hence, we use the
definition of the ISTQB, which is as follows.
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Definition 2.7 (Test Suite). A set of test cases or test procedures to be executed in a specific
test cycle. [28]

Definition 2.6 states that the expected result must be defined within a test case. This
expected result is determined by the test oracle.

Definition 2.8 (Test Oracle). A source to determine expected results to compare with the
actual result of the SUT. [28]

The actual result of the execution of a test case against the SUT is compared to the
expected result. The test verdict associated with this test case is then calculated. The most
prominent used verdicts are pass and fail. Pass is assigned if the actual result and the
expected one are equal to each other. Fail is assigned if there is a deviation. If the SUT
crashes during the execution of a test case the verdict fail is assigned.

Another important concept in the field of software testing is test coverage. Test coverage
measures the completeness of a test suite. Test coverage is defined by the IEEE as follows.

Definition 2.9 (Test Coverage). 1. the degree to which a given test or set of tests addresses
all specified requirements for a given system or component. [...] [27]

There are several test coverage metrics like statement coverage, branch coverage, or Mod-
ified Condition/Decision Coverage (MC/DC) coverage. Furthermore, other coverage met-
rics like requirements coverage or function coverage can be defined [9]. The concrete metric
used depends on the SUT, as well as the testing process.

Nowadays, “the testing process usually involves a mixture of manual and automated test-
ing” [11]. In manual testing, a tester generates some test data with which the program is
run. She then compares the results to the expected ones and note down deviations. Au-
tomated testing runs test cases automatically against the SUT. The comparison of actual
and expected results are done via assertions. An assertion is a boolean expression which
evaluates to false, if the actual and expected results do not match. If this is the case, the test
detected a deviation from the expected result and the verdict fail is assigned [11].

2.1.2. Test Level

Testing can be done on several test levels. At each level, tests are based on different software
artifacts, e.g., requirements and specifications, design artifacts, or the source code. Each test
level accompanies a distinct software development activity [1].

This is visualized in Figure 2.1 showing the general V-Model [37]. It highlights the
different test levels and their connection to the development artifacts and their software de-
velopment activity. Hereby, the constructive activities highlight the typical software devel-
opment process. At first, the requirements of the software need to be defined and afterwards
the functional system design is created. Then the technical system design and component
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Figure 2.1.: V-Model. Figure adopted from [9].

specification is created before the software can be implemented. At each step of the con-
structive activities the output of the former phase is verified before the implementation and
integration takes place.

The integration and testing activities highlight the different tests that should accompany
the constructive activities. Unit tests assess the developed software with respect to its de-
tailed design, as this is the output of the component specification phase. Moreover, in-
tegration tests validate the software with respect to its subsystem design. The subsystem
design is the output of the technical system design phase. System tests validate the software
with respect to its architectural design, which is the output of the functional system design
phase. Finally, acceptance tests assess the software with respect to its requirements, which
are collected in the requirements definition phase [1].

There are different definitions for the mentioned test levels. Within this section, we
present the definitions of the ISTQB and IEEE and highlight their differences for each
definition. Both of them are relevant in practice, research, and within this thesis. However,
we only describe the first three test levels, i.e., unit test, integration test, and system test, as
the acceptance test is not relevant to answer the RQs investigated in this thesis.

A unit is a software artifact that is used as a basis to separate the different test levels from
each other. The IEEE and ISTQB define a unit as follows.

Definition 2.10 (IEEE Unit). 1. a separately testable element specified in the design of a
computer software component. 2. a logically separable part of a computer program. 3. a
software component that is not subdivided into other components. [...]. [27]

Definition 2.11 (ISTQB Unit). A minimal software item that can be tested in isolation. [28]

As the term "minimal software item" is not further defined, we reuse the definition used
in the literature [38, 39]: a minimal software item is the smallest compileable unit (i.e., the
smallest software item that can work independently). The IEEE definition of a unit is more
elaborated, but they are similar to each other and describe the same concept.
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Definition 2.12 (IEEE Unit Test). [...] 3. test of individual hardware or software units or
groups of related units. [27]

Definition 2.13 (ISTQB Unit Test). The testing of individual software components. [28]

For the ISTQB a unit test only considers a single unit1. This is in contrast to the IEEE,
which state that a unit test is testing “groups of related units” [27]. Hence, the IEEE defini-
tion allows the testing of multiple related units.

Definition 2.14 (IEEE Integration Test). 1. the progressive linking and testing of programs
or modules in order to ensure their proper functioning in the complete system. [27]

Definition 2.15 (ISTQB Integration Test). Testing performed to expose defects in the inter-
faces and in the interactions between integrated components or systems. [28]

Here, the definitions of the IEEE and ISTQB are similar. Both describe the linking of
different units with the goal to expose interface defects or defects within the interaction
between units.

Definition 2.16 (IEEE System Testing). 1. testing conducted on a complete, integrated
system to evaluate the system’s compliance with its specified requirements. [27]

Definition 2.17 (ISTQB System Test). Testing an integrated system to verify that it meets
specified requirements. [28]

Both definitions describe the same concept. System testing is conducted on the whole
integrated system to verify if the requirements of the software system are met.

2.2. Mutation Testing

Mutation testing is a technique that is frequently used nowadays [40]. In the following, we
summarize the fundamentals of mutation testing (Section 2.2.1) and describe the mutation
testing process (Section 2.2.2).

2.2.1. Fundamentals

There are several definitions that are important in order to understand the essence of mu-
tation testing. In the following, we introduce these definitions based on the description by
Papadakis et al. [40].

Definition 2.18 (Mutation Analysis). Mutation analysis refers to the process of automat-
ically mutating the program syntax with the aim of producing semantic program variants,
i.e., generating artificial defects. [40]

1Unit is a synonym to component.
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Mutation analysis is used within the process of mutation testing to quantify the strength
of a test suite [40]. During mutation testing, several artificial defects are integrated into the
program code, which are also called mutants.

Definition 2.19 (Mutant). Semantic program variant with defects. [40]

However, not all mutants that are created can also be used within the mutation testing
process. Mutants that are syntactically illegal, e.g. not compileable mutants, are called
stillborn mutants [40] and can not be used.

In a testing context, the mutants must be detected by distinguishing the behavior of the
program with the integrated mutant from the original program. If the test is successful in
this, the mutant is called killed or detected and live otherwise.

However, there can be different conditions to kill a mutant. Typically, all program outputs
are observed for each test run. Hence, everything that the program outputs or asserts is
tracked. Using this information we can differentiate between weakly, firm, and strongly
killed mutants.

Definition 2.20 (Weakly Killed Mutant). A mutant is said to be killed weakly, if the program
state immediately after the execution of the mutant differs from the one that corresponds to
the original program. [40]

Definition 2.21 (Firm Killed Mutant). A mutant is said to be killed firm, if the program
state comparison at a later point after the execution of the mutant differs from the one that
corresponds to the original program. [40]

Definition 2.22 (Strongly Killed Mutant). A mutant is strongly killed if the original program
and the mutant exhibit some observable difference in their outputs. [40]

For the weak and firm mutation, the program state has to be changed by the mutant to
be killed by a test. However, the output does not necessarily need to be affected by this
program state change. This is required by strong mutations. Hence, it is expected that weak
and firm mutations are less effective than strong mutations as their program state change
does not affect the output of the program. Nevertheless, research showed that there is no
formal subsumption relation between these three variants [1].

Definition 2.23 (Mutant Operators). Syntactic transformation rules to alter the syntax of
the program. [40]

Mutants are generated by applying mutation operators. There exist a large number of
mutation operators that were created by researchers. Offutt et al. [41] proposed the five-
operator set, which is considered as a minimum standard for mutation testing, including
operators like the arithmetic mutation operator. While the definition of mutation operators
is easy, the definition of useful operators is hard, as they do not only need to be defined but
also validated by research studies [40].
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However, the selection of mutation operators is a complex task [40]. Researchers often
select only a subset of them, because not all of them are applicable to all programs and pro-
gramming languages. Another reason is that mutation testing is computationally expensive.
Hence, its scalability is limited [40].

Definition 2.24 (Mutation Score / Mutation Coverage). Mutation score or mutation cover-
age is the number of mutants that are killed by the program’s test cases divided by the total
number of mutants. [40]

Overall, the mutation score or mutation coverage highlights how adequate the tests are in
testing the program. Therefore, it can be seen as an adequacy metric [1]. Such adequacy
criteria define the objectives that we want to reach through testing. According to Papadakis
et al. the usage of mutation testing as such a test criterion has three advantages: “to point
out the elements that should be exercised when designing tests, to provide criteria for termi-
nating testing (when coverage is attained), and to quantify test suite thoroughness (establish
confidence).” [40]. However, using mutation scores as adequacy measure assumes that all
generated mutants are of equal value. Nevertheless, recent research showed that this is not
the case [42].

Definition 2.25 (Equivalent Mutant). An equivalent mutant forms a functionally equivalent
version of the original program. [40]

Definition 2.26 (Redundant Mutants). Redundant mutants are killed whenever other mu-
tants are killed. [40]

Definition 2.27 (Duplicate Mutants). Duplicate mutants are mutants that are equivalent
between them but not with the original program. [40]

Definition 2.28 (Subsumed Mutants / Joint Mutants). Subsumed mutants (or joint mutants)
are mutants that are jointly killed when other mutants are killed. [40]

Duplicate and subsumed mutants are subcategories that belong to the class of redundant
mutants. The problem with redundant mutants is that they do not contribute to the test
process. Hence, eliminating these mutants only improves the mutation score, but not the
selection or generation of test cases. Therefore, the mutation score (Definition 2.24) is
inflated and cannot easily be interpreted. Unfortunately, the identification of equivalent and
redundant mutants is an undecidable problem [1, 43].

2.2.2. Process

This section presents the different steps of the mutation testing process, as defined by Pa-
padakis et al. [40]. Figure 2.2 pictures a detailed view of this process. The figure presents
steps that can be automated in normal boxes, while steps that are inherently manual with
boxes that have double lines (i.e., define threshold, P(T) correct, and fix p). Furthermore,
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Figure 2.2.: Modern mutation testing process. Boxes with double lines represent steps
where human intervention is mandatory. Figure adopted from [40].

the circles highlight the different steps within the process, which we reference to in our
explanation below.

1. Select Mutants: We have a test program P as input on which we want to apply muta-
tion testing. Therefore, the first step is the selection of mutants. Hence, we select the
mutation operators that we want to apply to the program. There exist a lot of different
mutation operators, which target different programming languages [44, 45, 46, 47],
application types (e.g., Android apps [48, 49] or spreadsheets [50]), types of de-
fects [51, 52, 53], programming elements [54, 55], or others [56, 57]. In addition,
the selection of mutants comprises not only of the selection of the mutation opera-
tors, but also the selection of mutant reduction strategies, as the number of potential
mutants can be enormous. Hence, the selection of a representative subset of mu-
tants is an important step. Prominent techniques include the random selection of
mutants [58, 59, 60] and the mutant selection based on their type [46, 61, 62, 63].

2. Create Mutants: After the mutants are selected we instantiate them by creating ex-
ecutable programs. The most straight forward way is the creation of a source file for
each mutant. However, the costs for creating mutants this way can be high. Research
showed, that it takes approximately 3 seconds to compile a single mutant [43]. Hence,
different techniques were developed to tackle this problem, e.g., meta-mutation (or
mutant schemata) [64, 65] in which all mutants are encoded in a single file, byte-
code manipulation [66, 67] in which the bytecode is directly manipulated instead of
compiling each single mutant, or the use of interpreted systems [68, 69].
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3. Remove Equivalent / Redundant Mutants: After the mutants are created, problem-
atic mutants, i.e., equivalent and redundant mutants, need to be removed. However,
this is a well-known undecidable problem [70]. Different heuristics were developed
by researchers to tackle this problem, e.g., heuristics that rely on compiler optimiza-
tion techniques [43, 71] or on data-flow patterns [72, 73].

4. Generate Test Inputs T: After we have formed our set of mutants we need to gen-
erate our test suite against which the mutants should run. This can be done manually
or automatically. After the test suite is executed against our set of mutants we deter-
mine the mutation score. The test cases of the test suite should be designed in a way
that they “reach the mutant, cause an infection on the program state, [and] manifest
the infection to the program output” [40]. There exist three different categories of
approaches that tackle this problem. First, constraint-bases test generation [68, 74],
in which the problem of killing mutants is converted to constraints which need to
be satisfied [40]. Second, search-based test generation [75, 76], in which a fitness
function is designed that captures the conditions mentioned above to generate test
cases. Third, concolic/dynamic symbolic execution [65, 76], which “approximate the
symbolic constraints based on the actual program execution.” [40].

5. Execute Mutants: After the mutants and tests are selected, the mutants get executed.
This is the most expensive part of mutation testing [40]. Here, each selected test case
is executed against each selected mutant, which can be very time-consuming. There-
fore, several approaches were published that address this problem. Overall, if one is
interested in the mutation score only, the mutants just need to be executed till some
test case kills the mutant. Other approaches try to use this fact by proposing tech-
niques that prioritize such test cases [77] or use a fastest test case first approach [78].

6. Compute Mutation Score: After we have determined, how many mutants were
killed and lived through the execution of our test suite, we can assess how well the
test suite fit by calculating the mutation score. However, the program output needs to
be observed to determine which mutants were killed. Therefore, different definitions
of a program output can be used (e.g., return values, global variables, thrown errors)
to define different killing conditions. The observation is usually done by the test
driver, which reports if a test case failed on the mutants during its execution. As men-
tioned above, equivalent mutants can inflate the mutation score. Hence, researchers
developed approaches to approximate the mutation score [79, 80, 81, 82].

7. Reduce/Prioritize Test Cases: After the mutation score is calculated, we know how
well our test suite performed on the selected mutations. Therefore, we can exclude
inefficient test cases from the test suite or prioritize test cases that were most effective.
There are several approaches that perform a mutation-based test suite reduction, e.g.,



2. Foundations 20

using a greedy algorithm [83]. The test case prioritization can be done, e.g., based on
the number of killed mutants [84, 85] or the distribution of them [84].

8. Check if Threshold reached: All steps from 4 to 7 can be repeated until a mutation
score is reached which fits the defined threshold. However, this threshold must be
set manually. Few research exists that give a concrete answer to the question how
the threshold should be chosen. However, recent studies showed that only a high
mutation score correlates with the defect detection capabilities of tests [86, 87].

9. Check results of the test suite execution T on program P: If we have reached
our defined threshold, we need to assess if the results of the test executions were as
expected. Therefore, the tester needs to assert the test executions, e.g., by equipping
the tests with test oracles. This way, actual defects can be found. While some research
exists that try to automate this step (partially) like [75], this step needs to be carried
out (mostly) manually.

10. Fix P: If defects were found in the program due to the mutation testing, the develop-
ers need to fix the program P and repeat the whole mutation testing process till the
mutation score threshold is reached again and no defects were found anymore. How-
ever, determining the code that is responsible for a defect and the subsequent fixing of
the defect must be done (mostly) manually. There are approaches that try to help the
developer in localizing the defect, e.g., by the Metallaxis method [88, 89, 90] which
is based on the idea “that mutants killed mostly by failing tests have a connection
(interaction) with the program defects that caused the program failures” [40]. More-
over, several approaches were developed that support program fixing activities, e.g.,
by using generated mutations as patch candidates [91, 92].

2.3. Statistical Hypothesis Testing

Statistical hypothesis tests are used frequently in the field of empirical software engineering.
In Section 2.3.1, we explain the fundamentals of statistical hypothesis testing, including the
most important definitions. Afterwards, in Section 2.3.2, we highlight the typical process
of hypothesis testing. In addition, we describe the concept of decision errors (Section 2.3.3)
and one-tailed and two-tailed tests (Section 2.3.4). In Section 2.3.5, we explain concrete
statistical hypothesis tests that are used in this thesis. Afterwards, in Section 2.3.6, we
describe the effect size together with one concrete realization. Finally, in Section 2.3.7, we
explain the multiple comparison problem together with one possible solution, which is the
Bonferroni correction.
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2.3.1. Fundamentals

Two concepts that are important to understand statistical hypothesis tests are the concept of
a population and a sample. Both of these concepts are defined below.

Definition 2.29 (Population). The population is the total set of observations that can be
made. [93]

Definition 2.30 (Sample). A sample is one or more observations drawn from the popula-
tion. [93]

Statistical hypothesis tests are part of the area of inferential statistics, which belong to the
area of statistics [94]. The goal of inferential statistics is to calculate different parameters
of the sample (e.g., mean or variance) and infer these parameters for the whole population
from the calculated ones [94]. For most questions, the collection of data for the whole
population is impossible or too costly. For example, if we want to evaluate the mean of the
weight of people living in Germany, we would need to collect data from over 80 million
people, which would cost time and money [94]. However, inferential statistics shows that it
is possible to estimate parameters like the mean for a whole population based on a sufficient
large sample.

Definition 2.31 (Statistical Hypothesis). A statistical hypothesis is an assumption about a
population parameter. [93]

Definition 2.32 (Hypothesis Testing). Hypothesis testing refers to the formal procedures
used by statisticians to accept or reject statistical hypotheses. [93]

Therefore, we generate a statistical hypothesis regarding a parameter of a population
based on our sample and test this hypothesis via statistical hypothesis testing. The result
shows whether the stated statistical hypothesis is to be accepted or rejected. There exist two
different types of statistical hypothesis, which are defined below.

Definition 2.33 (Null Hypothesis). The null hypothesis, denoted by H0, is usually the hy-
pothesis that sample observations result purely from chance. [93]

Definition 2.34 (Alternative Hypothesis). The alternative hypothesis, denoted by H1 or Ha,
is the hypothesis that sample observations are influenced by some non-random cause. [93]

To illuminate these two types of hypothesis we give a short example. Consider that we
want to determine the fairness of a coin. Our null hypothesis could be that half of the
coin flips would result in Heads and the other half in Tails, as this would be the “normal”
outcome for a fair coin. Our alternative hypothesis in this case is that both (the number of
Heads and Tails) are different. Suppose that we flipped the coin 100 times (our sample) and
these coin flips resulted in 80 Heads and 20 Tails. Based on our sample we would conclude
that the coin is probably not fair, because there is a difference between the number of Heads
and Tails [93].
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2.3.2. Process

Hypothesis testing is performed to decide, whether we should reject or fail to reject the
null hypothesis2. The basic hypothesis testing process consists of four steps, which are
explained below [96].

1. State the hypotheses: We need to formulate the problem at hand in terms of hypothe-
ses. This involves the creation of a null and an alternative hypothesis. They must be
mutually exclusive. Neave [97] states that the researcher should first concentrate on
the alternative hypothesis, because this hypothesis is more important practically.

2. Formulate an analysis plan: The analysis plan should specify two elements: the sig-
nificance level (often abbreviated with α) and the test method. Usually, significance
levels equal to 0.001, 0.01, 0.05, or 0.10 are chosen [94]. However, recent research
suggests to use a significance level of 0.005 [98]. The test method includes a test
statistic (e.g., mean score, z-score, t statistic, chi-square) and a sampling distribution.
The test statistic is computed from the sample data. The sampling distribution is the
probability distribution of a statistic from all possible samples of size n drawn from
a given population [93]. If the test statistic and its sampling distribution is given, we
can assess the probability of the test statistic. If this probability is lower than the
chosen α , we reject the null hypothesis [93].

3. Analyze sample data: As a next step, we use our collected sample data to perform
the computations described in the analysis plan. Hence, we compute the test statistic,
potentially including the standard deviation or standard error of the statistic. Addi-
tionally, we calculate the p-value which “is the probability of observing a sample
statistic as extreme as the test statistic, assuming the null hypothesis is true.” [93].

4. Interpret the results: Finally, we interpret our results. Typically, we compare the
calculated p-value to our chosen significance level α . If the p-value is smaller than
our significance level, we reject the null hypothesis and fail to reject it otherwise.

2.3.3. Decision Errors

If we perform a hypothesis test two different types of errors could occur: Type I errors (also
called α-error) and Type II errors (also called β -error). Both of them are explained below.

• Type I error: Type I errors occur, if we reject the null hypothesis when it is true. The
probability of committing such an error is also called significance level and should be
chosen when an analysis plan is formulated (see above) [94].

2Statisticians believe that if we would state that we accept the null hypothesis this would imply that the null
hypothesis is true, which is a fallacy. Therefore, they propose to state that we “fail to reject” the null
hypothesis as this implies that the data basis is not sufficiently persuasive to chose the alternative hypothesis
over the null hypothesis. [95]



23 2.3. Statistical Hypothesis Testing

• Type II error: Type II errors occur, if we fail to reject the null hypothesis when it
is false. The probability of not committing such an error is called the power of the
test [94].

2.3.4. One-Tailed and Two-Tailed Tests

Statistical hypothesis can be directed and undirected. Undirected hypothesis state that there
is a connection (or difference) between two characteristics, but do not state the direction of
the connection (or difference).

One example for an undirected hypothesis would be: “The educational background dif-
fers on the gender”. A directed hypothesis include a direction in which a connection is
assumed. One example for such a hypothesis would be: ”Women have a higher educational
background than men” [94]. Directed hypothesis are tested via one-tailed statistical tests,
while undirected hypothesis are tested via two-tailed tests.

Definition 2.35 (One-Tailed Test). A test of a statistical hypothesis, where the region of
rejection is on only one side of the sampling distribution, is called a one-tailed test. [93]

Definition 2.36 (Two-Tailed Test). A test of a statistical hypothesis, where the region of
rejection is on both sides of the sampling distribution, is called a two-tailed test. [93]

2.3.5. Concrete Statistical Hypothesis Tests

Within this section several concrete statistical hypothesis tests are explained. Shapiro-Wilk,
which is a test for normality is described in Section 2.3.5.1. Afterwards, in Section 2.3.5.2
the Brown-Forsythe test is explained, which tests for equal variances between two pop-
ulations. In Section 2.3.5.3 the t-test is explained. Finally, the Mann-Whitney-U test is
described in Section 2.3.5.4.

Within these sections, we also explain how the different test statistics are calculated. A
test statistic is a random variable, which is calculated from the sample data. Basically, the
test statistic compares our sample data with what is expected under the null hypothesis of
the specific statistical test. For a normality test like the Shapiro-Wilk test this means, that
the test statistic gives a measure of the degree of agreement between the sample data and the
hypothesis that the population from which this sample data is drawn from follows a normal
distribution. When the degree of agreement is low, the test statistic becomes large (or small,
depending on the alternative hypothesis). This results in a small p-value, which will then
lead to the rejection of the null hypothesis [99].

2.3.5.1. Shapiro-Wilk Test

The Shapiro-Wilk test [100] was first published by Samuel Shapiro and Martin Wilk in
1965. It is a statistical hypothesis test, which tests if the population from which a sample
was drawn follows a normal distribution.
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The H0 hypothesis is that the population follows a normal distribution, while the H1 states
the opposite. Hence, if the p-value is below the chosen significance level the H0 must be
rejected. Therefore, we can state that the population does not follow a normal distribution.
Otherwise, if the p-value is above the chosen significance level and we fail to reject H0 we
can state that the population follows a normal distribution [100].

The Shapiro-Wilk Test has several requirements that need to be fulfilled to be applied:

1. the observations of the sample must be independent of each other,

2. the sample must be between 3 and 5000 observations,

3. the underlying random variable of the observations must inherit a metric scale.

However, in contrast to other tests for normality, like the Kolmogorov-Smirnov-Test [101]
or the Chi-Square-Test [102], the Shapiro-Wilk test is efficient especially for samples with
a sample size < 50 [100].

The test statistic is defined as follows

W =
(∑n

i=1 aix(i))2

∑
n
i=1(xi− x̄)2 , (2.3.1)

where

• x(i) is the ith smallest number in the sample;

• x̄ = (x1 + ...+ xn)/n is the sample mean;

• the constants ai are given by

(a1, ...,an) =
mTV−1

(mTV−1V−1m)1/2 , (2.3.2)

where
m = (m1, ...,mn)

T (2.3.3)

and m1, ...,mn are the “expected values [...] of the standard normal order statis-
tics” [100].

The test statistic has two different parts. The estimator in the numerator of the W-statistic
((∑n

i=1 aix(i))2) calculates how the variance of a sample has to be when drawn from a pop-
ulation that follows a normal distribution. Another estimator in the denominator of the
W-statistic (∑n

i=1(xi− x̄)2) calculates the variance of the sample. These two parts are then
compared against each other to assess if both estimators come to the same result. The closer
both estimations are to each other the more likely it is that the population of the sample fol-
lows a normal distribution.
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2.3.5.2. Brown-Forsythe Test

The Brown-Forsythe test was first published by Morton Brown and Alan Forsythe in
1974 [103]. It is similar to the Levene test [104] with the difference that instead of as-
sessing the means of the different samples to test if two (or more) populations possess equal
variances (homoscedasticity) the Brown-Forsythe test uses the median.

The H0 hypothesis of the Brown-Forsythe test states that all population variances are
equal (i.e., H0 : σ2

1 = σ2
2 = ... = σ2

k ). The H1 states that at least one pair of variances are
different (i.e., H1 : σ2

i 6= σ2
j for at least one pair i, j with i 6= j). Hence, if the p-value of the

Brown-Forsythe test is below the chosen significance level, we can reject H0. Hence, the
different populations do not have equal variances (heteroscedasticity). Otherwise, we fail
to reject H0, which means that all populations are homoscedastic.

The test statistic is defined as follows

F =
(N− k)
(k−1)

∑
k
i=1 Ni(Zi.−Z..)

2

∑
k
i=1 ∑

Ni
j=1(Zi j−Zi.)2

, (2.3.4)

where

• k is the number of different samples to which the observations belong,

• Ni is the number of observations in the ith sample,

• N is the total number of observations in all groups,

• Yi j is the value of the measured variable for the jth observation from the ith sample,

• Zi j = |Yi j− Ỹi.|,Ỹi. is the median of the ith sample,

• Zi. =
1
Ni

∑
Ni
j=1 Zi j is the mean of the Zi j for sample i,

• Z.. =
1
N ∑

k
i=1 ∑

Ni
j=1 Zi j is the mean of all Zi j.

There exist some critic on this tests and especially on the original Levene test, as the
means of the different samples could be biased. The Brown-Forsythe test eases this threat
by using the median instead of the mean. While Olejnik and Algina [105] showed that
the Brown-Forsythe test is very precise, even if the distribution of the populations are not
normal distributed. However, Glass and Hopkins [106] raised critic on the Levene and
Brown-Forsythe tests. They state that both of these tests have a “fatal flaw” which is the
assumption that the deviations from the mean (or median) of the different samples have an
effect on the homoscedasticity.
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2.3.5.3. T-Test

The t-test is a statistical hypothesis test that was first developed by Student [107] in 1908. It
is used to determine, if the means of two populations are equal or different. It can be used
to evaluate if two data sets are significantly different from each other [107].

The t-test has several shapes. The t-test can have one or two samples. The one-sample
t-test evaluates whether the mean of a single population is equal to an unknown mean. The
two-sample t-test can be applied to independent (or unpaired) samples, as well as paired
samples. The independent samples t-test compares the means of two populations, while the
paired samples t-test compares the means from the same population, but at different times.
However, within this thesis we only make use of the two-sample t-test using independent
samples with equal sample sizes. Therefore, only this t-test is explained within this section.

The t-test has several assumptions that must be fulfilled before it can be applied. These
assumptions are listed below.

• Each of the two populations that are compared follow a normal distribution. This can
be tested, e.g., via the Shapiro-Wilk test (Section 2.3.5.1).

• The two populations that are compared should have the same variance. This can be
tested, e.g., via the Brown-Forsythe test (Section 2.3.5.2). If this assumption is not
met by the data, a variant of the t-test, i.e. the Welch t-test [108], can be used.

• Both samples should be independent from each other.

Basically, the t-test evaluates if the means of the two populations from which the two
samples are drawn are different. For this, it is using the means of both samples. Therefore,
the H0 for this kind of t-test is that both population means are equal (i.e., H0 : µ1 = µ2),
while the H1 states the opposite (i.e., H1 : µ1 6= µ2). However, the t-test also has a one-sided
version, in which the H0 is that the mean of the first population is greater than or equal (or
less than or equal) than the second mean (i.e., H0 : µ1 >= µ2 or H0 : µ1 <= µ2) while the
H1 states that the mean of the first population is smaller (or greater) than the mean of the
first population (i.e., H1 : µ1 < µ2 or H1 : µ1 > µ2). If the p-value of the t-test is below
the chosen significance level, we can reject H0. Hence, the mean of both populations are
different.

The t-statistic for independent samples with equal sample size is calculated as follows:

t =
X̄1− X̄2

sp

√
2
n

(2.3.5)

where

• X̄1 and X̄2 are the means of the two samples,
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• sp =

√
s2

X1
+s2

X2
2 , which is the weighted standard deviation and s2

X1
and s2

X2
are the vari-

ances of the two samples,

• n is the number of observations in each sample.

For the Welch t-test, the t-statistic is calculated differently. The denominator is not based
on the weighted standard deviation in this case. Hence, the t-statistic for the Welch t-test is
calculated as follows.

t =
X̄1− X̄2√

s2
1
n +

s2
2
n

(2.3.6)

where

• X̄1 and X̄2 are the means of the two samples,

• s2
1 and s2

2 are the sample standard deviations,

• n is the number of observations in each sample.

2.3.5.4. Mann-Whitney-U Test

The Mann-Whitney-U test (or Mann-Whitney-Wilcoxon, Wilcoxon-Mann-Whitney test, U-
test, or Wilcoxon rank-sum test) is a non-parametric test that was developed by Mann and
Whitney [109] and Wilcoxon [110]. This test is used to determine if two distributions are
based on the same distribution.

The Mann-Whitney-U test makes several assumptions that must be checked before it can
be applied. These assumptions are listed below.

1. All observations from both samples are independent from each other.

2. It is possible to order the observations (i.e., for every two observations, it is defined
which of the two is greater).

3. The underlying populations from which both samples are drawn must be homoscedas-
tic. This can be tested, e.g., with the Brown-Forsythe test (Section 2.3.5.2).

In a first step, all observations from both samples are combined, ordered by value, and
assigned ranks to reflect their position in a list. If there is a tie in this list (i.e., two ob-
servations have the same value), an average of their rank values is taken. After the list is
complete and all ranks have been assigned, the U statistic is computed for both samples as
follows [109].

U1 = n1n2 +
n1(n1 +1)

2
−R1,U2 = n1n2 +

n2(n2 +1)
2

−R2, (2.3.7)

where
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• n1 is the number of observations in the first sample,

• n2 is the number of observations in the second sample,

• R1 is the sum of ranks for the observations of the first sample,

• R2 is the sum of ranks for the observations of the second sample.

The resulting U-statistic is the minimum of U1 and U2. The Mann-Whitney-U test can be
one or two-sided. For the two-sided version, the H0 states that there is no difference between
the ranks of both samples, while the H1 states the opposite (i.e., there is a difference between
the ranks of both samples). In the one-sided version the H0 states that the ranks of first
sample are greater than or equal (or less than or equal) than the ones of the second sample,
while the H1 hypothesis states the opposite (i.e., the ranks of the first sample are less (or
greater) than the ranks of the second sample). The H0 hypothesis will be rejected, if the
p-value is below the critical significance level [109].

In contrast to the t-test (Section 2.3.5.3) the Mann-Whitney-U does not need the assump-
tion that both populations from which the samples are drawn are normally distributed, as
it is a non-parametric test. This allows us to check for statistically significant differences
between two populations, even if they do not follow a normal distribution.

2.3.6. Effect Size and Cohen’s d

The effect size is a metric that is used to evaluate the strength of a statistical claim and “is
the difference between the true value and the value specified by [the] null hypothesis” [111].
It has an influence on the power of the test, which is the probability of not committing a
Type II error (or β -error) [111]. Cohen’s d is a formula to calculate the effect size of a
statistical hypothesis test. It was first published by Cohen in 1977 [112].

Cohen’s d calculates the difference between two means and divide it by the standard
deviation of the data. The formulas and explanations are shown below [112].

d =
x̄1− x̄2

s
, (2.3.8)

where

• x̄1 is the mean of the first sample,

• x̄2 is the mean of the second sample,

• s =
√

(n1−1)s2
1+(n2−1)s2

2
n1+n2−2 , where

– n1 is the number of observations in the first sample,

– n2 is the number of observations in the second sample,

– s2
1 =

1
n1−1 ∑

n1
i=1(x1,i− x̄1)

2, which is the variance of the first sample,
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Effect Size d
Very small d(.01)
Small d(.2)
Medium d(.5)
Large d(.8)
Very large d(1.2)
Huge d(2.0)

Table 2.1.: Rules of thumb for effect sizes. Based on [113].

– s2
2 =

1
n2−1 ∑

n2
i=1(x2,i− x̄2)

2, which is the variance of the second sample.

The resulting d is a one dimensional number. However, its interpretation is not defined,
because it is only a number. Cohen gives a rule of thumb for its interpretation in his pa-
per [112]. These rules of thumb were later extended by Sawilowsky [113]. Table 2.1 high-
lights the extended rules of thumb, as proposed by Cohen and Sawilowsky [112, 113].

2.3.7. Multiple Comparison Problem and Bonferroni Correction

Multiple comparisons using the same data can become a problem, as the likelihood of re-
jecting the H0 incorrectly (i.e., Type I error) increases [114]. The Bonferroni correction
is a method to counter the problem of multiple comparisons in statistical hypothesis test-
ing [115]. It counters this problem by testing each individual hypothesis that is done on the
same data at a significance level of α

n , where α is the overall desired significance level and
n is the number of hypotheses that we test.

The argument for the Bonferroni correction is as follows [115]. Let H1, ...,Hn be the
statistical hypothesis and p1, ..., pn their corresponding p-values. Let n be the number of
null hypotheses and n0 the number of true null hypotheses. As stated above, using the
Bonferroni correction we reject the null hypothesis for each pi ≤ α

n . Hence, we control for
the Family-wise Error Rate (FWER), which is the probability of making Type I errors when
performing more than one hypotheses tests.

Theorem 2.1 (Bonferroni Inequality). For a countable set of events A1,A2,A3, ..., the fol-
lowing inequality equation holds true: P(∪iAi)≤ ∑i P(Ai).

Proof. We can proof that the FWER using the Bonferroni correction is equal to the chosen
significance level α , as follows [116]:

FWER = P{∪n0
i=1(pi ≤ α

n )} ≤ ∑
n0
i=1{P(pi ≤ α

n )} ≤ n0
α

n ≤ α

However, applying the Bonferroni correction or any FWER control has a cost. It increases
the Type II error (i.e., the production of false negatives) and therefore reduces the statistical
power of the tests [117].





3. Related Work

This thesis describes an empirical study on the differences between unit and integration
tests. We need to acquire different data to perform this study to evaluate all differences
mentioned in Section 1.1. This includes the classification of tests into unit and integration
tests, the assessment of their effectiveness including their effectiveness per defect type, and
the evaluation of the defect-locality. Hence, we start by discussing the related work to each
of these fields within this section. Afterwards, we discuss related work that have a direct
connection to our RQs, i.e., the distribution of unit and integration tests in software projects
and evaluations of differences between unit and integration tests. In the end, we give a short
summary of the identified related work and define our research delta.

3.1. Test Level Classification

There are several approaches present in the literature that classify tests into different test
levels. However, they differ in the data that is used for the classification, the used test level,
and the process of the classification.

One of the most recent works is the short paper by Orellana et al. [118]. The authors of
this paper differentiate unit and integration tests based on the build process of the project
at hand. If a test class is executed by the Maven SureFire plugin [119], they are classified
as unit tests. All tests that are executed by the Maven FailSafe plugin [120] are classified
as integration tests. However, this classification process can be problematic due to several
reasons. First, our work [38] highlights that the classification into those two test levels, as
done by the developers, is not always in line with the definitions of the IEEE or ISTQB.
Within this work we determine how many tests are unit tests, according to the definitions of
the ISTQB and IEEE for 10 Python projects. We use a static analysis approach in which we
assess the number of imported modules in a test to find unit tests. Afterwards, we compare
the developer classification of tests with the classification according to the definitions. There
we found, that developers are not classifying their tests in accordance to the ISTQB or IEEE
definitions. Second, the analysis of Orellana et al. [118] is on a rather coarse-grained level,
as whole test classes are classified instead of test methods. Third, the number of projects
to which the classification schema can be applied is rather limited, as these projects would
need to use both: the Maven SureFire and the Maven FailSafe plugin. For none of the
projects that we have used in our study is this the case.
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In contrast to the work of Orellana et al. [118], our approach neither needs the projects
build file nor makes it assumption on the used build system. Instead, we only need the
coverage data of a test execution run. In addition, our approach is more fine-grained than
the approach by Orellana et al. [118], as we classify test methods instead of a whole test
class or module. This better reflects the testing reality and allows a finer-grained analysis.

One of the first approaches that classify tests into different test levels was proposed by
Kanstrén [121]. He proposes a dynamic aspect oriented programming based approach that
calculates the “test granularity” for each test. The test granularity refers “to the number of
units of production code included in a test case” [121]. Kanstrén’s approach calculates this
metric by summing up the number of methods that are covered by each test. Afterwards,
the results can be summarized (e.g., within a bar plot) to determine if, e.g., a program
was tested only on low-level (i.e., many tests that executed a small amount of methods)
or only on high-level. However, Kanstrén does not provide a clear separation criterion to
differentiate the tests.

Similar to Kanstrén [121], our own classification approach is also dynamic, i.e., we need
to execute the tests before we can classify them. This has several advantages. For example,
we can directly determine if a unit was used within a test (and not only imported). Further-
more, a dynamic approach is robust against modern techniques like reflection [122] or the
usage of mocking frameworks, i.e., our classification is not influenced by it. In contrast to
the work of Kanstrén [121] our approach makes a clear separation between unit and integra-
tion tests based on common definitions. However, Kanstrén [121] only provides a survey of
the granularity of tests within a project.

3.2. Test Effectiveness Assessment

There are different approaches to assess the effectiveness of tests. They all fall into the
category of fault-based testing [123]. In fault-based testing, artificial defects are introduced
into the program. Afterwards, the test suite is executed to determine if the test cases are
able to detect the integrated defect. The major challenge of this approach is the seeding
of defects. Ideally, the seeded defects should be representatives of real life defects [124].
Otherwise, the results of the analysis do not represent the effectiveness of the tests in a
real life setting. The literature discusses several solutions to this problem, like random
seeding [125], the seeding of defects based on the program dependence graph [126], or
the hand-seeding of defects [127]. In our work, we use another approach which is called
mutation testing [124] on which we focus in the following.

The field of mutation testing is large and a lot of contributions were done in the past years.
Mutation testing is used nowadays to, e.g., automatically repair software programs [128],
automatically localize defects [88], or automatically improve non-functional properties of
programs like security [51], execution speed [129, 130], or memory consumption [129].
The importance and large number of papers in this field is also reflected by the number of
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literature surveys that exist, e.g., by Offutt and Untch [131], Jia and Harman [132], and
Papadakis et al. [40].

The use of mutation testing to assess the effectiveness of tests is common in the current
research (e.g., [133, 134]). It is increasingly used as a fundamental experimental method-
ology, as Papadakis et al. [40] highlight. However, its use to assess the defect detection
capabilities of tests is controversial. It has the underlying assumption that the mutants can
construct program failures that are similar to the ones that are created through real defects.
Several studies provide support for this assumption. Daran et al. [135] did one of the first
studies that investigated the relationship between real defects and mutants. Their results
show that mutants and real defects can produce similar erroneous program states. Andrews
et al. [136, 137] came to a similar result: they conclude that the detection ratio of mutants
is representative for the the defect detection ratios. In one of the most recent papers Just et
al. [138] highlight, that there is a strong correlation between the real defect detection ratios
and mutant detection ratios.

Nevertheless, some recent papers identified limitations to the results presented above.
Namin et al. [139] found only a weak correlation between the defect detection ratios and
their injected mutants. Chekam et al. [86] found a strong correlation between defect de-
tection and the increase of the mutation score, which is the quotient from the number of
detected mutants and the total number of mutants. Nevertheless, they were only able to
identify this correlation for higher mutation score levels. The most recent paper by Pa-
padakis et al. [87] found only a weak correlation between defect detection and mutation
scores, if the size of the test suite is controlled for in experiments. The different studies
performed by different authors highlight that there exist no definite answer to the question
if mutation testing is an appropriate tool to assess the defect detection capabilities of tests.
While we also make use of mutation testing in this thesis, we do not create test suites by our-
selves. Instead, we reuse the test suites provided by the developers of the projects. Hence,
some limitations mentioned above, e.g., that the test suite size must be controlled for, are
not applicable to our research.

3.3. Defect Classification

There are numerous studies on the classification of defects. They mainly differ in the
data on which the classification is based. Some taxonomies need software specification
or design documents (e.g., [140]), others need source code (e.g., [141]), or defect reports
(e.g., [142], [143]).

The most commonly used cause-driven taxonomy is the Orthogonal Defect Classifica-
tion (ODC) and was proposed by Chillarege et al. [144]. In ODC, defects can be classified
into eight different types. The decision is made based on their description about the symp-
toms, semantics, and root causes. Another model for the characterization of defects was
proposed by Offutt and Hayes [127]. Within their model, defects are classified based on the
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syntactic and semantic size. Later, Hayes [140] presented a defect analysis methodology
that is based on requirements. In addition, Hayes applied this model to NASA projects. In
2005, Hayes [145] published two more taxonomies, where the first classifies code modules
(e.g., view, controller, data-centric,...) and the second code defects (e.g., into data, interface,
computation). Xia et al. [142] proposed a classification of defects based on the description
in defect reports. In this classification schema, the defects are classified into two different
defect trigger categories (Bohrbug and Mandelbug) via natural language processing tech-
nique. Tan et al. [143] also used defect reports and proposed a classification in which a
defect is classified based on three different dimensions: the root cause of the defect, the
impact (i.e., failure caused by the defect), and the component (location of the defect).

The main disadvantage of the above mentioned approaches is that the needed data to
classify the defects (e.g., defect descriptions or design documents) are often not available.
This is especially true for open-source projects, as the development of open-source projects
is different from the traditional software development process [146]. In addition, the above
mentioned taxonomies have the problem that the creation of a link between the classified
defect and its source code representation is hard to achieve.

Zhao et al. [141] recently proposed an approach that can overcome the problems de-
scribed above. They adapted the classification by Hayes et al. [145] and classify defects
based on the change that was made to fix it. Zhao et al. [141] created a tool for the C
language that is able to calculate the defect class: it gets the defective and clean version
as input, calculates the changes between theses versions, and detect different change pat-
terns. Afterwards, the defect gets classified based on these change patterns. Overall, they
created five different defect categories, based on the categories by Hayes et al. [145]. They
also defined nine different subcategories in which defects can be classified. The classi-
fication scheme of Zhao et al. [141] is shown in Figure 3.1. The computation category
only includes Changes on Assignment Statements (CAS). Computation-related defects can
lead to a wrong assignment of a variable. The data category includes Changes on Data
Declaration and Definition (CDDI) statements. Zhao et al. [141] reason, that if the de-
clared type of a variable is changed (e.g., from int to float), a data-related defect occurred.
Interface-related defects are caused “by wrong definition or faulty function dependency on
other functions.” [141]. This includes, e.g., defects where a function is called with an in-
correct amount of parameters, or a misplaced function call. These type of defects are then
fixed by Changes on Function Declaration/Definition (CFDD) or Changes on Function Call
(CFC). Logic/Control defects “may cause the incorrect execution sequence or an abnormal
state” [141]. It comprises of Changes on Loop Statements (CLS) (e.g., if the initialization
of a for-loop is changed), Changes on Branch Statements (CBS) (e.g., if a < is changed to a
>= in an if-statement), and Changes on Return/Goto Statements (CRGS) (e.g., if the return
value of a function was changed). All changes that cannot be classified into the categories
above are then subsumed in the Others category. Zhao et al. [141] further subdivided this
category into Changes on Preprocessor Directives (CPD) and Others (CO). The CPD cat-
egory comprises of changes that are C-language specific, while the CO category includes
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Figure 3.1.: Defect classification by Zhao et al. [141]. Figure adopted from [141].

all other changes. Besides the work of Zhao et al. [141] there are also other approaches
that classify source code changes (e.g., [147]). However, these are not further discussed, as
they do not provide a defect taxonomy and/or a mapping of source code changes to defect
classes.

Our defect classification approach is based on the work of Zhao et al. [141], as we need
an approach that only needs the source code for the defect classification. During our study,
we generated different mutants which, as they are not regular defects, do not exhibit, e.g., an
issue report. We reuse the logic behind every subcategory presented by Zhao et al. [141], but
only reuse the main category in which a defect resides in (e.g., “Computation”). Another
difference from our work to the work of Zhao et al. [141] is that we applied our defect
classification approach to Java projects, instead of C projects. Furthermore, we excluded
the CPD sub category as such changes do not occur in Java projects.
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3.4. Defect-Locality

In our work, we examine if unit tests are better able to pinpoint the source of defects than
integration tests. The goal of debugging is to locate the defect. Normally, this is done by
developers by going through the calls till the defect occurred. There exist a lot of different
approaches, which try to automate the localization of defects (e.g., [148, 149]), but these
works are out of scope of this thesis, as we do not try to locate the defect (as we know its
location already). However, we can learn from the related work in this field by evaluating
which data is used to make a localization possible and which approaches are used to collect
this data.

While there are several types of data used as a basis to locate defects (e.g., history
data [150, 151], program spectra [152, 153], or object-usage [154, 155]), we found two
data types that are of interest for our approach: call traces and coverage.

Our approach is inspired by the works of Dallmeier et al. [156] and Jones et al. [157].
Dallmeier et al. [156] use call sequences of programs (one correct and one defective one)
to localize the defect. They utilize the Java instrumentation API [34] to collect the call
traces along the program run on a per-object basis. The authors conducted two different
experiments using their implementation and found that (1) call sequences are better than
coverage to predict defects, (2) per-object sequences improve the prediction over global
sequences, and (3) the caller of a method is more likely to be defective in contrast to the
callee.

Jones et al. [157] created a technique that make use of colors to “visually map the par-
ticipation of each program statement in the outcome of the execution of the program with
a test suite, consisting of both passed and failed test cases.” [157]. They utilize statement
coverage to try to locate a defect in a program. A statement is more likely to contain the
defect the more often it is executed in failing test case runs. The authors found in their
evaluation that within a program with only one fault this fault is almost certainly marked
as “likely faulty”. However, 5% to 15% of the correct code is also marked. If programs
contain more than one fault, these numbers degrade to 5% to 20%.

In our approach we are mixing the collection of call traces and coverage to gather the
defect-locality of a defect for a test. Basically, we record the call traces by using the Java
instrumentation API (similar to [156]) of a test and check when our integrated defect was
covered. Then, the depth of our call stack is stored in a database for this particular defect
and test.

3.5. Distribution of Unit and Integration Tests

The research on the distribution of unit and integration tests is currently in its beginning.
While there are several works that had a look at the overall amount of tests [158, 159, 160]
or how they evolve (e.g., [161, 162]) there are, to the best of our knowledge, no publications
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that have a look at the distribution of unit and integration tests. During our literature study,
we only found one blog post in the Google testing blog [163], which states, that “Google
often suggests a 70/20/10 split: 70% unit tests, 20% integration tests, and 10% end-to-end
tests.” [163]. However, there is no evidence given that supports this separation or shows if
this really applies to current software projects.

3.6. Differences between Unit and Integration Tests

There are numerous papers on unit and integration testing. These works focus on, e.g., find-
ing links between the test code and the code that is tested [164, 165], finding test smells [22,
23, 166], proposing test refactorings [23, 166], detecting test refactorings [23, 166], visual-
izing test executions [21], test case minimization [21, 167], and test generation [18, 19, 20].
To the best of our knowledge, there is only the paper of Orellana et al. [118], that compares
unit and integration tests with each other.

The authors evaluated if either unit or integration tests detect more defects by using the
Travis Torrent data set [168]. They determined the number of defects that were exposed by
using data that was contained inside this data set (i.e., which test case failed during a project
build). The underlying assumption for this kind of analysis is that every failing test during a
project build exposed a real defect. However, this might not be the case. For example, tests
in a Continuous Integration (CI) system could also fail due to wrong commit behavior of the
developer (e.g., if the developer forgot to commit changes to a class interface). Furthermore,
this technique could only assess defects that were detected by the CI system. Hence, defects
that might get fixed before the changes are pushed to a CI system are missing.

To overcome the mentioned limitations in the approach by Orellana et al. [118] we de-
cided to use mutation testing to assess the effectiveness of unit and integration tests. There-
fore, we create a controlled environment and can assess the potential defect detection capa-
bilities of the tests on each test level in a systematic way.

3.7. Summary and Research Delta

The research deltas that we strive for in this thesis are concerned with the distribution of
unit and integration tests, as well as the evaluation of each difference between them that are
mentioned in the literature. The analyzed related work highlights that, to the best of our
knowledge, only one paper compares one difference between unit and integration tests (i.e.,
the paper by Orellana et al [118]).

We found no related work concerning the distribution of unit and integration tests in soft-
ware projects. While there exist works that had a look at the overall amount of tests, there
are no specific publications, except a blog post, that specifically look at the distribution of
tests on the different test levels. Hence, within this thesis we improve the body of knowl-
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edge of software testing by providing an empirical evaluation of the distribution of unit and
integration tests in open-source projects.

While there exist some approaches to classify tests into different test levels, we improve
the current state of the art by designing a technique that is able to precisely assign a test
level to each test method of a test class. This means, we developed a more fine-grained
approach than described in the existing literature.

The use of mutation testing to assess the effectiveness of tests is common practice [40].
However, there exist no related work that compares the effectiveness of unit and integration
tests with each other in respect to the type of detected defects. The only work in this
field is the work by Orellana et al. [118] who compared the overall effectiveness of unit
and integration tests by analyzing the number of failed tests in the build logs of projects.
Nevertheless, the approach by Orellana et al. [118] is coarse-grained and does not take the
type of the found defect into account. Hence, we improve the state of the art by providing
an empirical comparison of the test effectiveness of unit and integration tests, separated by
defect type.

The analysis of our related work shows that most of the data collection techniques that
we use within this thesis are not completely new, but based on related work and improved
within this thesis. However, the analysis on the data (i.e., the analysis of the differences
between unit and integration tests) is new and broadens the body of knowledge of software
testing research.



4. Research Methodology

In this chapter, we describe the research methodology for our study. At first, we give an
overview of our study in Section 4.1. Afterwards, in Section 4.2, we explain our data col-
lection approach to collect quantitative and qualitative evidence to answer our RQs. This
section includes information about the reasoning behind our collected data, detailed de-
scription of our approaches, as well as information about our implementations for the data
collection. Additionally, in Section 4.3, we explain the measures that we took to analyze
our collected data.

4.1. Overview

Figure 4.1 gives an overview of our study. There are two main RQs that we want to answer
with our study presented in this thesis. Within RQ 1, we want to analyze the distribution
of unit and integration tests in open-source projects to evaluate if the shift from more unit/-
less integration tests to less unit/more integration tests is current and visible in the data.
In RQ 2, we analyze the differences between unit and integration tests to evaluate if the
aforementioned shift is problematic.

For answering RQ 1 we need to classify the tests of releases from projects and analyze
them with respect to our RQ. This RQ is analyzed quantitatively via a case study. How
we have chosen our project sample is reported in Section 4.2.2. The results for RQ 1 are
presented in Section 5.

We divide the answer of RQ 2 into two different parts: a quantitative and qualitative
evaluation of the differences between unit and integration tests. The quantitative analysis
answers RQ 2.1-2.3 by extending the case study used in RQ 1. This kind of analysis was
not possible for all differences, as information about, e.g., the test costs are not available for
open-source projects. Therefore, we perform a qualitative analysis to answer RQ 2.4-2.6.

The quantitative analysis is done in different steps: 1) we need to extract the defect
detection capabilities per defect type to evaluate if unit and integration tests detect different
types of defects; 2) we need to extract the defect-locality to evaluate if the source of a defect
can be found more easily if it was detected by an unit test; and 3) we need to extract the
test execution time to evaluate if unit tests are really faster in terms of their execution time
in contrast to integration tests. The results of our first RQ help with the aforementioned
extractions and the following analysis, as we can reuse the test classification into unit and
integration tests. Afterwards, we need to analyze the extracted features to evaluate if we
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Figure 4.1.: Overview of our study. The yellow dashed line includes the parts of our study
that provides us with quantitative evidence, while the red dashed line includes
the parts that gives us qualitative evidence on our RQs.

find differences between unit and integration tests with respect to them. The results for the
RQ 2.1-2.3 are presented in Section 6.

The qualitative analysis is done by evaluating the current scientific literature, as well as
other internet resources to gain an understanding of the scientific and practical view on the
difference at hand. Therefore, we analyze scientific literature, developer comments, and the
current industrial landscape to evaluate 1) how unit and integration tests are/can be executed
automatically; 2) the differences in the test objective for unit and integration tests; 3) how
the costs of testing on unit and integration level differ from each other. The results and the
knowledge that we gained from our quantitative analysis, helps us with this investigation.
In Section 7 we present the results for the RQ 2.4-2.6.

4.2. Data Collection

In the following sections, we give an in-depth explanation of our data collection approach.
First, we give a rough overview of our quantitative data collection approach in Section 4.2.1.
Then, in Section 4.2.2, we describe our applied inclusion and exclusion criteria to filter for
fitting study subjects (i.e., software projects). Afterwards, we explain each step of our data
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Difference Metric
Execution time (D1) Execution time
Different defects detected (D2) Defect detection capabilities sepa-

rated by defect type
Defect source detection (D3) Defect-locality

Table 4.1.: Differences between unit and integration tests together with the test-specific met-
ric that was chosen to evaluate the differences.

collection that is mentioned in the overview section in-depth, give a reasoning for the ap-
proach, and discuss the alternatives. In Section 4.2.3, we explain how and why we extract
project meta-data from our study subjects. The extraction of the test level (i.e., the classifi-
cation of tests into unit and integration tests) is explained in Section 4.2.4. In Section 4.2.5,
we describe why and how we extract the Test Lines of Code (TestLOC) and Production
Lines of Code (pLOC) of tests. Additionally, in Section 4.2.6, we explain our approach to
assess the defect detection capabilities of tests. Afterwards, in Section 4.2.7, we explain
how we have classified the defects that were integrated via mutation testing into different
defect classes. The extraction of the defect-locality of tests is explained in Section 4.2.8.
Then, in Section 4.2.9, we explain our approach to measure the execution time of tests. In
Section 4.2.10 we describe the frameworks that we designed, which implement the quan-
titative data collection approaches described in this section. Finally, in Section 4.2.11, we
describe our approach to collect qualitative evidence for answering our RQs.

4.2.1. Overview of our Quantitative Data Collection

Before we can start with the collection of the data, we first need to map the differences
between unit and integration tests, that we have extracted from the standard literature, to
proxy metrics that we can measure on real open-source projects. Table 4.1 gives an overview
of the differences between unit and integration tests that were mentioned in the literature
(Section 1.1) together with test-specific metrics which we have chosen as representatives
for the differences that we want to evaluate.

We found statements about the execution time in the literature. It is stated, that unit
tests are faster than integration tests in terms of their execution time. Hence, we measure
the execution time of tests in a standardized environment to minimize influences on the
execution time.

We evaluate, if unit and integration tests detect different types of defects by analyzing the
defect detection capabilities of these test types. We collect the defect detection capabilities
of each test by using mutation testing (Section 2.2). Nevertheless, we do not only want
to evaluate the defect detection capabilities, but also what types of defects are detected by
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Figure 4.2.: Overview of our data collection.

each test type. Hence, we also need to classify each integrated defect into several defect
categories. This is accomplished by adopting a schema by Zhao et al. [141] (Section 4.2.7).

The literature states that the source of the defect can be easier detected if a unit test failed.
We designed a new metric for the evaluation of this difference. This metric is called defect-
locality and describes the number of methods a developer must debug to find the defect
(Section 4.2.8). Basically, it describes the depth of the call stack that a developer must
investigate if he wants to debug a found defect.

Figure 4.2 gives an overview of our data collection procedures. Besides the different test
specific metrics that must be collected to answer our RQs (Section 4.1), we need additional
data to accomplish our goal, e.g., meta-data about the projects and the TestLOC. All test-
specific metrics that we are extracting, including the test classification, are test-level metrics.
Hence, we follow a rather fine-grained approach instead of calculating the metrics, or the
test level, for each test suite as a whole.

As first step, the project meta-data is collected for each project that we selected. The
meta-data includes data about commits extracted from the VCS of the project. The mined
data is then stored into a database.
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The test level classification is collected in the following way. The project release that
should be analyzed is checked out. Afterwards, we intercept the coverage collection of the
tests of the project to generate a per-test coverage instead of a test suite coverage. This per-
test coverage is used in our rule-based classification schema to assign a test level to each
test of the project. In the end, the test levels are stored into the database and interconnected
with the previously mined data for better accessibility.

For the collection of the TestLOC and pLOC, we reuse the per-test coverage generated
during our test level classification. We parse the per-test coverage for each test to count the
number of test and production lines of code that were executed. Afterwards, the results are
stored into the database and interconnected with the previously mined data.

As mentioned in Section 4.1, we apply mutation testing to collect the defect detection
capabilities of tests. For the collection of the mutation detection results, we first checkout
the project release. Afterwards, we insert a mutation testing framework into the build pro-
cess of the project. The framework takes care of the generation of the mutants, as well as
the evaluation (i.e., if a test killed a mutant or not). After the mutation testing framework is
integrated, we let it run for each test separately, as we want to assess the mutation detection
results of each test and not the whole test suite. All mutants that are integrated into the code
and which are challenged against the tests are classified. The mutation detection results
consist of: 1) which tests were challenged against which kind of mutant; 2) the result of this
challenge (i.e., if the test killed the mutant, if the mutant survived, or if the mutant was not
covered by the test at all); 3) the classification of each integrated mutant into different defect
types. In the end, we store the mutation detection results into the database and interconnect
them with previously mined data.

The defect-locality is calculated in the following way. As a fist step, we check out the
project release. Afterwards, we insert probes into the source code. These probes are inserted
at locations where defects are/were located. These locations are extracted from the mutation
detection results. Hence, we extract the location of integrated defects from the mutation
detection results and place a probe at this position. We reuse the mutation detection results
here, as we know for each test if the test detected the defect that was placed at a certain
location. Afterwards, we run each test separately on this instrumented source code. If the
test covers the probe, we store the defect-locality for this defect (that is represented by the
probe) and the test that ran in our result. In the end, the defect-locality for each test (and
each covered defect) is stored into the database and interconnected with previously mined
data.

For measuring the execution time we decided for a rather simple approach. First, we
checkout the current project release that we want to collect data from. Afterwards, we run
its tests to generate the test results. These results are then parsed to extract the execution
time. The execution time for each test is then stored into the database and interconnected
with previously mined data.

In the following sections, we describe each data collection step in more detail. We set
them into the context of the work and state the reasons behind the design of the approach
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and its possible alternatives.

4.2.2. Subject Selection

Before we can execute our study, we need to define the study subjects, i.e., software projects.
While it would be favorable to apply our approach to as many projects as possible, this
would not be feasible, as our approach (especially the data collection, see Section 4.2.1)
is partially supported by manual input and we use mutation testing, which is known to be
computational expensive [40]. Hence, we need to select a sample of projects for which we
can execute our study in a feasible amount of time.

We defined several inclusion criteria for selecting our study subjects:

1. Projects must be a library or framework. Library and frameworks are (normally)
not executed by themselves, but included and used in other programs. Hence, system
tests are less likely to occur. Basically, system tests detect problems in the architec-
ture or design of the system by testing the whole system (e.g., by executing the main
method and assessing each step of the program) [1]. Libraries are less likely to have
system tests, as they offer several entry points into the program through which its
functionality can be used (e.g., you can create different distributions or do statistics
using the commons-math projects, but both of these function have a different entry
point into the library). Frameworks, on the other hand, potentially have a single en-
try point. This is especially true for parser like jsoup, google-json, or fastjson. But,
those parsers are used differently than a Java application. In a Java application the
user gives input to the program (e.g., via the command line), the program processes
the input and generates an output. Here, system tests are more likely, as the whole
architecture and process flow should be tested from the input through the computa-
tional steps taken till the output. But parsers (and frameworks in general) are not used
the same way as Java applications. While you call the main entry point for parser,
e.g., by giving an HTML document that should be parsed to the method, you do not
generate an output and end the program. Instead, you call several functions on the
parsed input. Hence, it is more likely that an integration test is written for such a
parser, which tests the parsing of the input together with the desired functionality
(i.e., testing if the communication between the main class and the desired functional-
ity works correctly). By focusing on libraries and frameworks, we are reducing the
risk of miss-classifying a system test as integration test.

2. Projects must have a minimum of 1000 commits and are at least 2 years old. We
only want to include mature projects in our study, as non-mature projects often do not
follow a systematic development process. While mature projects (e.g., projects from
the Apache Foundation [169]), have a systematic process and make use of modern
software engineering tools like a VCS from which we can use the data later on.
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3. Projects must use Java (6, 7, 8) or Python (2.7 or 3.x) as primary program-
ming/scripting language. Within our case study, we focus on projects that use Java
or Python as programming/scripting language and other languages are out of scope
of this thesis. We decided for Java, because it is the most popular programming lan-
guage according to the TIOBE index3 [170] and provides a good library and frame-
work support. Python is used in addition, as we wanted to raise the validity of our
study by including a scripting language. Furthermore, Python currently gains more
and more popularity and is currently the most popular scripting language according
to the TIOBE index [170].

4. Java projects must use Maven [171] as build system, and JUnit [172] or
TestNG [173] as test driver. This is an inclusion criteria that only affects projects
that use Java as primary programming language. This is a limitation of our current
tooling infrastructure.

5. Python projects must use unittest [174] or pytest [175] as test driver. This is an
inclusion criteria that only affects projects that use Python as primary programming
language. This is a limitation of our current tooling infrastructure.

Moreover, one exclusion criterion is defined:

1. Projects should not be focused on the Android platform alone4. Within our study,
we want to focus on pure Java projects. While Android projects also use Java as pro-
gramming language, there are several differences, especially in respect to the testing
of Android applications [176].

After fixing our inclusion and exclusion criteria, we used them on two different data
sources. First, the list of Borges et al. [177, 178], which classified the most popular 5000
GitHub repositories (language-independent) into six different categories (i.e., application
software, system software, web libraries and frameworks, non-web libraries and frame-
works, software tools, and documentation). Second, we used a list of the most popular
Java libraries created by the MVN Repository [179]5. Both of these lists provided us with
a pre-classification for projects, so that we can sample from the libraries and frameworks.
Overall, 44 Java projects fitted our selection criteria from which we randomly selected 17
projects for our study. Additionally, from the 55 fitting Python projects, we randomly se-
lected 10 projects for our study. Unfortunately, we could not select more projects because
of the time constraints of this thesis.

Table 4.2 gives an overview of the selected projects together with some characteristics. It
highlights the name of the project, the release that was used in our study, the overall number

3As available on the time of our analysis (January 2018)
4For example, Android widgets like https://github.com/2dxgujun/AndroidTagGroup or https://

github.com/zcweng/ToggleButton.
5As available on the time we performed our analysis (January 2018).

https://github.com/2dxgujun/AndroidTagGroup
https://github.com/zcweng/ToggleButton
https://github.com/zcweng/ToggleButton
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of commits (till the stated release), the number of files (i.e., .java files for Java projects and
.py files for Python projects), and the number of tests that are executed by the build script
of the release. All of our selected projects can be found on GitHub [180]. The number of
programming files together with the number of commits and tests highlight, that we only
included non-trivial projects in our study.

We included the latest minor release of the projects that we sampled as analysis subject,
if it was available. If this release was not available, we took the next possible one (e.g.,
release 1.11.1 of jsoup was taken, as release 1.10.0 was not available). The minor release
was determined, by looking at the available releases on the GitHub pages of the projects.
Most of the projects used the semantic versioning release naming schema [181]. Hence, all
releases have the form of XX.YY.ZZ, where the number at the position XX was raised if a
new major version was published, YY for a new minor version, and ZZ for a bugfix version.
For projects that use only two numbers (i.e., XX.YY) we considered the XX position as
major and YY as minor versions. For two of the projects that we sampled (i.e., commons-
beanutils and fastjson) the latest minor release was longer than four years ago. We took the
most recent release to prevent compatibility issues with our infrastructure.

4.2.3. Extracting Project Meta-Data

The project meta-data that we need for our study comprises of data from the VCS of the
projects. The collection of this meta-data allows a better accessibility of our results due to
the interconnection between the meta-data itself and the data collection results. Finally, it
eases the analysis of the data by working as the ”glue“ between the different data collection
results.

Nevertheless, mining software repositories (especially VCS and Issue Tracking System
(ITS)) is often hard, as there exist different VCS and ITS that are used nowadays [209, 210].
These different systems also store different data or they store data differently. For example,
Apache Bugzilla [211] has other data fields for which data is stored than Jira [212]. Hence,
there is a need for a model that is able to reflect the contents of different VCS and ITS.

During our work, we designed such a model. The model is shown in Figure 4.3. The
advantage of the model shown in the figure is its general applicability, as it can be used to
combine data from different VCSs. The yellow box depicts data that is extracted from the
VCS. In addition, there is the project entity which is the starting point for our meta-data
extraction. Therefore, it is not directly extracted from a software repository, but is used to
link different software repositories of a project together, e.g., other repositories like ITSs
can be linked to the project.

We designed and developed different programs that implement the model shown in Fig-
ure 4.3. They extract the data from the corresponding software repository, transform the
data so that it fits the model, and store the model into the database. More information on
the implementation can be found in Section 4.2.10.1.
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Project Release #Commits #Files #Test Cases
commons-beanutils [182] 1.9.3 1128 257 1197
commons-codec [183] 1.11 1677 124 874
commons-collections [184] 4.1 2852 525 6637
commons-io [185] 2.5 1868 227 1150
commons-lang [186] 3.7 5106 331 4064
commons-math [187] 3.6 5819 1616 6488
druid [188] 1.1.0 5178 3314 4132
fastjson [189] 1.2.41 2579 2496 4176
gson [190] 2.8.0 1306 193 1014
guice [191] 4.1 1513 548 701
HikariCP [192] 2.7.0 2493 83 120
jackson-core [193] 2.9.0 1323 228 774
jfreechart [194] 1.5.0 3622 990 2175
joda-time [195] 2.9 1913 329 4176
jsoup [196] 1.11.1 1106 105 593
mybatis-3 [197] 3.4.0 1816 1004 1053
zxing [198] 3.3.0 3282 485 401
ChatterBot [199] 0.8.0 1411 176 299
csvkit [200] 1.0.0 1279 47 177
dpark [201] 0.4.0 1057 59 57
mrjob [202] v0.6.0 6437 311 1862
networkx [203] networkx-1.11 4201 432 2723
pyramid [204] 1.9 10357 462 2626
python-telegram-bot [205] v10.1.0 1791 250 638
rq [206] v0.10.0 1302 46 207
schematics [207] v2.0.0 1295 2099 348
scrapy [208] 1.5.0 6568 357 1641

Table 4.2.: Selected projects with their characteristics. In the number of files only .java files
are included for Java projects and .py files for Python files. The dashed line
separates the Java projects (upper part) from the Python projects (lower part).
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Figure 4.3.: Model that describes the project meta-data that is collected. The yellow box
depicts data that is extracted from the VCS.

4.2.4. Extracting the Test Level

We developed three different rule sets to classify tests into unit and integration tests. While
the first two rule sets (ISTQB and IEEE) have the definitions of the ISTQB and IEEE as
basis (Section 2.1.2), the third rule set (DEV) represents the developer classification of a
test and is based on popular coding conventions [119, 120].

Regardless of the rule set that is used, the input is the same for all three: coverage data
that is recorded for all tests separately. Hence, the coverage recording includes a list of
executed tests together with their covered units. Beforehand, we filter out every test class
that might be in the coverage data, as we want to base our test level assignment only on
the covered production classes. We look at the path of each covered unit and if this path
contains the word “test”, we assume it is a test class and a production class otherwise. We
exclude units that have “test” or “validate” as part of their name. A unit counts as covered,
if at least one method of the unit was covered by the test. In addition, we only record the
coverage of units that are within the project. Hence, if a test or another unit calls functions
from a framework that are outside the scope of the project, we do not cover its execution.
The reasoning behind this is that we want to focus on the project that we are analyzing and
what is really tested inside this project. Besides these filtering of the tested units, we also
need to filter out tests that can not be classified correctly. Hence, we are filtering out:

• tests that are skipped by the test execution framework.

• tests that are empty.
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• tests that only test constants but no functions.

• tests that test other projects but not the project at hand (e.g., tests that ensure the
correct working of java.io).

• tests that test the test setup itself (e.g., testing if the database is correctly running, but
not executing any production code).

• tests where an exception is directly thrown after the first method call (if this is the
case, no coverage gets collected and we can not classify the test).

The resulting tests and their tested units are then used to assign a test level to each test
separately. Table 4.3 shows the rules that we designed for each rule set. A test is a unit
test in respect to the IEEE rule set if it only covers units from within one package. This
represents the IEEE definition, where a unit test is a test that tests several units that are
logically connected. Within Java, related units are put into one package, as the official
Java documentation states [213]. Same goes for Python projects [214]. However, if the
test covers units from more than one package, it is classified as integration test. The ISTQB
definition is stricter than the IEEE definition. A test is a unit test in respect to the ISTQB rule
set if it covers only one unit. If it covers more than one, the test is classified as integration
test. We developed several rules to represent the developer classification of a test based on
coding conventions. Hence, if a test is matching the name of a unit (e.g. if we have a unit
called Fnatic and a test called FnaticTest) or the path to the test has the term “unit” in it
(e.g., src/test/java/de/ugoe/unit/FnaticTest.java) it is classified as a unit test. If there is no
unit matching the name of the test or the path to the test has the term ”integration“ or ”IT“
in it (e.g. src/test/java/de/ugoe/FnaticITTest.java) it is classified as integration test. It is
important to mention that we do not classify the intent of a test, but its actual type according
to the definitions. Hence, we do not evaluate if the test should be a unit test, but if it is a
unit (or integration) test.

Figure 4.4 gives some examples of our classification schema. The figures depict
schematic call graphs. The first figure in Figure 4.4 shows that a test only calls one unit
from within one package. If we apply the above explained classification schema the test
gets classified as a unit test for the IEEE and ISTQB definitions. This is different for the
second figure in Figure 4.4. Here, two different units are called from test t1 which both
reside in one package. Hence, the test gets classified as an unit test for the IEEE definition,
but as an integration test for the ISTQB definition. The third figure in Figure 4.4 depicts
a test that is classified as an integration test for both definitions, because the test calls two
different units from two different packages. A more complex example is given in the forth
figure in Figure 4.4. While the test only calls one unit directly, this unit calls other units
from within other packages. Hence, the coverage data for test t1 would include all four
units from two different packages. Therefore, this test gets classified as an integration test
for both definitions.
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Unit Test Classification Rules Integration Test Classification
Rules

IEEE • Only covers units from within one
package

• Covers units from more than one
package

ISTQB • Only covers one unit • Covers more than one unit
DEV • A unit matching the name of the

test
• There exist no unit matching the
name of the test

• Path to the test has “unit” in it • The path to the test has “integra-
tion” or “IT” in it

Table 4.3.: Rule sets for our test level classification.

To foster the understanding of our classification approach, we included two different real
world tests from the commons-io project. Listing 4.1 shows an IEEE/ISTQB unit test. This
test asserts the correct workings of the getPrefix function of the FilenameUtils class. More
precisely, this tests checks if getPrefix returns the correct string if the input string contains
null bytes. As this test only calls one unit (i.e., the FilenameUtils class) and the class itself
does not call other units, this tests gets classified as unit test for both definitions.

1 [...]

2 package org.apache.commons.io;

3 [...]

4

5 @Test

6 public void testGetPrefix_with_nullbyte () {

7 try {

8 assertEquals("~user\\", FilenameUtils.getPrefix("~u\

u0000ser \\a\\b\\c.txt"));

9 } catch (IllegalArgumentException ignore) {

10 }

11 }

Listing 4.1: Example of an unit test from the commons-io project [185].

On the other hand, Listing 4.2 depicts a test, which is classified as integration test for both
definitions. Here, the test checks if the ByteArrayOutputStream class of commons-io works
as intended if it is used within the copy function of the CopyUtils class. As the CopyUtils
class is from the org.apache-commons.io package and the ByteArrayOutputStream class
from the org.apache.commons.io.output package, this test gets classified as an integration
test (according to both definitions).
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Figure 4.4.: Different example call graphs. t1 depicts a test, ux depict different units and Px

different packages. 1) IEEE/ISTQB unit test; 2) IEEE unit test/ISTQB integra-
tion test; 3) IEEE/ISTQB integration test; 4) IEEE/ISTQB integration test.

1 [...]

2 package org.apache.commons.io;

3 [...]

4 import org.apache.commons.io.output.ByteArrayOutputStream;

5 [...]

6

7 @Test

8 public void copy_byteArrayToOutputStream () throws Exception

{

9 final ByteArrayOutputStream baout = new

ByteArrayOutputStream ();

10 final OutputStream out = new

YellOnFlushAndCloseOutputStream(baout , false , true);

11

12 CopyUtils.copy(inData , out);

13

14 assertEquals("Sizes differ", inData.length , baout.size());

15 assertTrue("Content differs", Arrays.equals(inData , baout.

toByteArray ()));

16 }

Listing 4.2: Example of an integration test from the commons-io project [185].
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Besides the classification via per-test coverage data, we also evaluated other classifica-
tion methods. Unfortunately, none of them could be reused. Orellana et al. [118] proposed
to classify tests based on with which Maven plugin they are executed (i.e., Maven Sure-
Fire [119] or Maven FailSafe [120]) (Section 3.1). The problem with this approach is its
applicability, as it can only be applied to Java projects which use Maven and have config-
ured the use of both of the mentioned Maven plugins. Thus, the number of projects that can
be analyzed via this approach is rather limited. For example, none of the projects that we
have used in our study (Section 4.2.2) make use of the Maven FailSafe plugin, while some
of the tests of the projects are indeed integration tests. In addition, the approach by Orellana
et al. [118] classifies the whole test suite instead of a single test. A deeper analysis based
on tests and not test suites would not be possible.

Another possible classification method is the differentiation of tests based on their as-
sertions. If a test only asserts one unit, it is classified as a unit test and as an integration
test otherwise. But, during the evaluation of this approach we found that developers some-
times use only one assert, even for integration tests. They call several units during the test,
but only assert one unit, e.g., to check if the communication from one to another unit was
working (e.g., by asserting if a flag in the receiver unit was set).

In contrast to other approaches, our approach is fine-grained, as we classify each test
separately instead of each test suite only. Therefore, our level of detail is higher and better
reflects the development reality. Furthermore, our approach is dynamic in contrast to other
approaches that make use of static analysis of the tests and production units. The downside
is that we need to execute the tests before we can analyze them to collect the coverage data,
which can be difficult, as Tufano et al. [215] highlight. Nevertheless, a dynamic analysis has
the advantage that we get more reliable results, as a static analysis approach could not handle
techniques like dependency injection [122], reflection [122], other dynamic structures (e.g.,
functions that can be given as parameters of other functions in Python), or the usage of
mocking frameworks (e.g., [216, 217]), which are commonly used nowadays.

4.2.5. Extracting TestLOC and pLOC

We need to acquire the number of TestLOC and pLOC of each test as it is later on used for
the normalization of results and it is a more detailed metric than the number of tests. In our
approach, this is done by reusing the per-test coverage data (Section 4.2.4). The number
of covered lines of each test case is summed up, while we differentiate between pLOC and
TestLOC. This differentiation is done based on the path in which the covered class resides.
If the path contains the word “test” we know that the covered class is a test class (e.g., for
Maven projects all test classes reside in the “src/test” folder). Hence, all covered lines for
this class count to the covered test lines and to the production lines otherwise.

In contrast to just counting Lines of Code (LOC) or Logical Lines of Code (LLOC) this
approach has the advantage that we consider all executed test code instead of just the lines
of the test case itself. Our results could be biased otherwise. For example, the size of a test
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that calls many other test methods (e.g., to bring several units into a testable state) would
not be correctly represented by LOC or LLOC, as these other calls would not count to the
LOC of the test method itself. Thus, we decided to make use of our recorded coverage data
and use the number of TestLOC and pLOC.

4.2.6. Extracting the Defect Detection Capabilities via Mutation Testing

The assessment of the defect detection capabilities of a set of tests is done by checking
how many defects the tests can find. However, a controlled environment where as many
outside influences as possible are excluded, need to be created [124]. Furthermore, we need
an approach that is able to also cover the defects that are found by the developers before
they are committing their changes to the VCS. As explained in Section 4.1, we decided on
mutation testing (Section 2.2).

Mutation testing is an approach that is often used in research to evaluate the defect
detection capabilities of tests. Nevertheless, as Papadakis et al. [40] report, there are several
pitfalls one can encounter when using mutation testing. In our approach, we reused the
knowledge of Papadakis et al. [40] and followed their best practices on using mutation
testing in controlled experiments. As advised by Papadakis et al. [40] we report on each
decision regarding our application of mutation testing.

Mutation Testing Framework: The choice of the correct mutation testing framework is
crucial for the validity of the analysis. Mutation testing frameworks are implementing the
idea of mutation testing for a specific language (or languages). They provide different
mutant operators that can be applied to the source code and they ease the execution, e.g.,
by making mutation testing available through build management systems. There are several
mutation testing frameworks for different languages available.

Table 4.4 shows a list of mutation testing frameworks for Java and Python. We do not list
frameworks for other programming languages here, as it is out of scope for this thesis. As
Table 4.4 highlights there are several mutation testing frameworks for Java available, while
there exist only two frameworks for Python. We evaluated the listed frameworks for their
applicability in our approach to gather the mutation detection capabilities of tests. We had
the following requirements for a mutation testing framework.

• It must be open-source, so that we can evaluate and comprehend how the mutation
testing is implemented.

• It must support prominent test runners for Java (i.e., JUnit4 [172]) and Python (i.e.,
nosetests [218] and pytest [175]). Otherwise, we could not integrate the mutation
testing framework into our selected projects.
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• It is actively supported and developed. This aspect is important, as the framework
might have bugs or problems with newer technologies or program versions, e.g.,
newer Java versions.

• The mutant selection technique that is used by the framework should be coverage-
based. Only mutants that are covered by the test should be injected. This reduces the
execution time.

• The framework should show a good defect-revelation ability, which is an indicator of
its suitability for our experiments [219].

• It must work with different Java (i.e., Java 6, Java 7, Java 8) and Python versions (i.e.,
Python 2.7 and Python 3.5).

For the Java programming language, we selected PIT [67] as mutation testing framework
as it fulfills all of our requirements. There were also other mutation testing frameworks for
Java that fulfilled our requirements (e.g., PITRV or Major), but a recent study of Kintis et
al. [219] showed that PIT has a better defect-revelation ability than, e.g., Major which is
crucial for our study. Nevertheless, PITRV was able to reveal more defects (115:122), but
the number of equivalent mutants is substantially higher for PITRV in contrast to PIT. In
fact, Kintis et al. [219] discovered in their experiment that PITRV generates 88.74% more
equivalent mutants than PIT. We decided to use PIT instead of PITRV, as equivalent mutants
are a substantial threat to the validity of our study. We contributed to the development of PIT
by creating a pull request to improve PIT. This pull request included a feature that allows
PIT users to filter the tests of a test suite that should be challenged against the generated
mutants. The pull request got accepted and integrated into the version 1.3.2 of PIT, which
we also used for our study.

Unfortunately, both frameworks that we evaluated for Python (i.e., MutPy and Cosmic
Ray) did not fulfill our requirements. Cosmic Ray contained bugs and was not working for
the projects that we tested it on. The reason for this is that Cosmic Ray is not a finished
product, as we can see in the documentation which states: ”At this time Cosmic Ray is
young and incomplete. It doesn’t support all of the mutants it should, its output format is
crude, it only supports some forms of test discovery, it may fall over on exotic modules...the
list goes on and on.“ [220]. Furthermore, it does not support Python 2.7. MutPy does not
support Python 2.7 and it also does not support pytest as test runner, which is used by several
projects that we selected.
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Name & Ref Year Application Description
Jester [221] 2001 Java supports source-code-level (src-level) mutant

generation
MuJava [222,
223, 66]

2004 Java implements src-level mutant generation and
supports method-level and Object-Oriented
(OO) mutant operators

ByteME [224] 2006 Java implements bytecode-level mutant generation
and supports method-level and OO mutant
operators

Jumble [225] 2007 Java implements bytecode-level mutant generation
and supports method-level mutant operators

Javalanche [226] 2009 Java implements bytecode-level mutant generation
and supports method-level mutant operators
and mutant classification based on mutants’
impact

Not
Named [227]

2009 Java supports mutant operators that follow the fault
classification of Durães and Madeira [228]

PIT [67] 2010 Java implements bytecode-level mutant generation
and supports method-level mutant operators

MutMut [229] 2010 Java supports concurrency-related mutant opera-
tors

Judy [230] 2010 Java implements src-level mutant generation and
supports method-level and OO mutant oper-
ators

Bacterio [231] 2010 Java supports method-level mutant operators for
system-level testing using flexible weak mu-
tation

Major [232] 2011 Java supports method-level mutant operators
Paraµ [233] 2011 Java supports OO and concurrency-related mutant

operators and higher order mutation
Not
Named [234]

2011 Java supports method-level mutant operators based
on the selective mutation approach and higher
order mutation

Comutation [235] 2013 Java supports concurrency-related mutant opera-
tors [236]

HOMAJ [237] 2014 Java supports higher order mutation
PITRV [67, 238] 2016 Java has PIT as basis, but introduces more muta-

tion operators

Table 4.4.: Mutation testing tools for Java and Python. Based on [40].
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Name & Ref Year Application Description
LittleDarwin [239]2017 Java supports method-level mutation operators,

higher order mutation, mutant sampling and
disjoint/subsuming mutant analysis

Not Named [51] 2017 Java Implements security-aware mutation opera-
tors

MutPy [240] 2014 Python implements traditional and python-specific
mutation operators

Cosmic
Ray [241]

2017 Python implements traditional and python-specific
mutation operators

Table 4.4.: Mutation testing tools for Java and Python. Based on [40]. (Continued)

Mutant Redundancy: Recent research showed that redundant mutants are a substantial
threat to the validity of empirical research. Andrews et al. [137] state, that in order to have
a representative relation between mutants and real faults it might be important to filter out
trivial mutants. Visser [242] suggested to identify mutants that are hard to kill by control-
ling for the reachability of mutants. Recent empirical studies showed that the subsumed
mutant threat really endangers the validity of studies that make use of mutation testing.
Kurtz et al. [243] did a replication of earlier studies on selective mutants and found that the
approaches performed well when redundant mutants are included, but poorly when they are
discarded.

The quality of the employed mutants is a major concern when mutation testing is used
in a study. If the mutants are rather trivial (i.e., they are found by nearly all tests), we are
only measuring the ability of test suites to cover the code of the project instead of their
defect-revelation ability. This kind of threat is called the “subsumed mutant threat” [42].
This problem is especially important if we generate a large number of mutants, like we do
in our study. Recently, Papadakis et al. [42] estimated that more than 60% of scientific
conclusions (for arbitrary experiments) that were made on the basis of mutation testing are
endangered, because of the subsumed mutant threat.

Researchers proposed different solutions to tackle and ease the subsumed mutant threat.
Kaminski et al. [244, 245] and Just et al. [246] proposed to remove logical and relational
mutation operators to ease the threat. Ammann et al. [247] adopted the notion of minimal
mutants, which is the smallest possible set of mutants, while Kurtz et al. [248] suggested
mutant subsumption graphs to select the minimal set of mutants. Other solutions include
using symbolic execution to approximate subsuming mutants (e.g., [249]) or using compiler
optimizations to remove duplicated mutants6 (e.g., [43, 71]).

6Duplicated mutants are also redundant mutants.
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Kintis et al. [250] proposed another solution: they suggested to create a set of disjoint
mutants. This disjoint mutant set is a representative subset of all mutants. A representative
subset is defined as follows: “Consider that we have a set of N mutants, a representative
subset, say D, means that any test suite that kills this subset of mutants also kills the N
mutants. No redundancy between the mutants of D means that it is not safe to remove
any mutant from this set because in this case we fail to kill all the N mutants” [40]. The
difference between the disjoint mutant set and the minimal mutant set proposed by Ammann
et al [247] is that the disjoint mutant set might not be minimal, but it does not have any
redundancies. Unfortunately, computing the true disjoint mutant set is impossible and it
can only be approximated. Algorithm 4.1 computes a dynamic approximation of the disjoint
mutant set in a greedy manner. First, live and duplicate mutants are removed (lines 2 and
3). Afterwards, the subsuming mutant with the largest number of live mutants is selected
(lines 9-16). This mutant is found by looking at test cases: It “is the mutant that is killed
by test cases, which manage to collaterally kill the highest number of other mutants” [40].
The found mutant is then added to the set of disjoint mutants (D, line 18). Then, the joint
mutants are removed from the set of mutants (S, line 19). The aforementioned process is
repeated until the set of mutants (S) is empty. In the end, the set of disjoint mutants is
returned.

As mutant redundancy might have a large impact on the validity of our study, it is impor-
tant to care for this kind of threat. Checking all generated mutants by hand to detect redun-
dant mutants is not feasible and error prone for the number of mutants that we generated
within our experiments (> 500.000). Furthermore, leveraging an algorithm like JudyDif-
fOp [70] is still very time-intensive and not feasible for the size of our study. Hence, we
decided to reuse Algorithm 4.1, as proposed by Kintis et al. [250] to reduce this threat to
our study.

Mutant Selection: The selection of mutation operators is another crucial point for a mu-
tation testing study. There exist a lot of different mutation operators, e.g., operators for
specific programming languages (e.g., [47, 251, 252, 253]), operators for specific categories
of programming languages (e.g., [254, 255, 256]), operators for specific categories of ap-
plications (e.g., [48, 257, 258, 259]), as well as operators for specific categories of bugs
(e.g., [52, 53, 260, 261]).

In our approach, we decided to reuse all mutation operators that are provided by our
mutation testing framework. The reasoning behind this approach is that we wanted to gen-
erate a huge set of mutants to reduce the possibility that we only create low quality mutants
(i.e., mutants that do not reflect real software defects). Kintis et al. [219] provide empirical
evidence that supports this approach. In addition, by having a great variety of mutation
operators we reduce the risk that we only integrate defects of a certain type. We do not only
want to integrate defects that can be found by unit testing, but also integrate interface prob-
lems that should be found by integration tests. Table 4.5 depicts all mutation operators that
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Algorithm 4.1 Algorithm to dynamically approximate the set of disjoint mutants. Based
on: [40]
Require: A set S of mutants
Require: A set T of tests
Require: A matrix M of size |T |x|S| such as Mi j = 1 if testi kills mutant j

1: D = /0
2: S = S\{m ∈ S|∀i ∈ 1..|T |,Mi j 6= 1} // Remove live mutants
3: S = S\{m ∈ S|∃m′ ∈ S|∀i ∈ 1..|T |,Mi j(m) = Mi j(m′) // Remove duplicate mutants
4: while |S|> 0 do
5: maxJoint = 0
6: jointMut = null
7: maxMutDisjoint = null
8: // Select the most disjoint mutant
9: for all m ∈ S do

10: subm = {m′ ∈ S|∀i ∈ 1..|T |,(Mi j(m) = 1)⇒ (Mi j(m′) = 1)}
11: if |subm|> maxJoint then
12: maxJoint = |subm|
13: maxMutDisjoint = m
14: jointMut = subm

15: end if
16: end for
17:

18: D = D∪{maxMutDisjoint} // Add the most disjoint mutant to D
19: S = S\ jointMut // Remove the joint mutants from the remaining
20: end while
21: return The disjoint mutant set D from S

we used in our study to generate mutants together with a short description. For example,
the “Argument Propagation” operator replaces calls to non-void methods with one of the
arguments and the “Constructor Calls” operator replaces calls to constructors with null.

We note, that we reuse several mutation operators that are also used in mutation testing
approaches that are focused on integration testing (e.g., [262, 263]). Thus, with the selection
of these mutation operators we balance out the generated mutants that should be found by
unit and integration testing.
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Mutation operator Description
AP: Argument Propagation {(nonVoidMethodCall(..., par), par)}
BFR: Boolean False Return Replaces primitive and boxed boolean return values

with false.
BTR: Boolean True Return Replaces primitive and boxed boolean return values

with true.
CB: Conditionals Boundary {(op1,op2) | (op1,op2) ∈ {(<,<=),(<=,<),(>

,>=),(>=,>)}}
CC: Constructor Calls {(new AClass(), null)}
EOR: Empty Object Return Replaces return values with an empty value for that

type. For example, if the return type is a string it
returns "", if it is a List an empty List will be re-
turned.

I: Increments {(op1,op2) | op1,op2 ∈ {++,−−}∧op1 6= op2}
IC: Inline Constant {(c1,c2) | (c1,c2) ∈ {(1,0), ((int) x, x+1), (1.0, 0.0),

(2.0, 0.0), ((float) x, 1.0), (true, false), (false,
true)}}

IN: Invert Negatives {(v,−v)}
M: Math {(op1,op2) | (op1,op2) ∈ {(+,-), (-,+), (*, /), (/, *),

(%, *), (&, |), (^, &), (<<,>>),(>>,<<),(>>>
,<<) }}

MV: Member Variable {(member_var=..., member_var=b) | b ∈ {false,
0, ’\u0000’, 0.0, null}}

NR: Naked Receiver Replaces a method call with the receiver for non-void
methods where the return type matches the receiver’s
type.

NC: Negate Conditionals {(op1,op2) | (op1,op2) ∈ {(==, ! =),(! =,==
),(<=,>),(>=,<),(<,>=),(>,<=)}}

NVMC: Non Void Method Calls {(nonVoidMethodCall(), c) | c ∈ {false, 0, 0.0,
’\u0000’ , null}}

NR: Null Return Replaces return values with null.
PR: Primitive Return Replaces int, short, long, char, float and dou-

ble return values with 0.
RC: Remove Conditionals Removes or negates a conditional statement to force

or prevent the execution of the guarded statements,
e.g. {((a op b), true) or ((LHS && RHS), RHS)}

RI: Remove Increments {(−− v,v),(v−−,v),(++ v,v),(v++,v)}
RS: Remove Switch Changes all labels of the switch to the default one.

Table 4.5.: Mutation operators of PIT. Based on the table by Kintis et al. [219].
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Mutation operator Description
RV: Return Values {(return a, return b) | (a,b) ∈ {(true, false),

(false, true), (0, 1), ((int) x, 0), ((long) x, x+1),
((float) x, -(x+1.0)), (NAN, 0), (non-null, null),
(null, throw RuntimeException)}}

S: Switch Replaces the switch’s labels with the default one and
vice versa (only for the first label that differs)

VMC: Void Method Calls {(voidMethodCall(),∅)}

Table 4.5.: Mutation operators of PIT. Based on the table by Kintis et al. [219]. (Continued)

Test Suite Choice and Test Suite Size: For the scope of our analysis, the test suite choice
and size is predetermined. We want to assess the mutation detection capabilities of the tests
that are inside the test suites of our selected projects. Therefore, we reuse the test suites that
were created by the developers of the projects.

Clean Program Assumption (CPA): Basically, assessing tests via mutation testing can
be seen as a simulation that involves two “roles”: the faults role (mutants) and the oracle
role (original program). Aligning this simulation to the reality, “we can say that developers
produce the faulty programs (simulated by the mutants) which they test using a test oracle
(simulated by the original program).” [40]. Testers then apply their techniques in the mutant
program version to check for unexpected behavior (as defined by the oracle) and report
found bugs [40].

Nevertheless, test assessment is practiced differently. It is common to apply test tech-
niques on the original program (not the faulty one) and check their fault-revealing power by
executing tests on mutants. While this is less time-consuming than applying the test tech-
nique to each faulty program version, it makes an implicit assumption (called “CPA”) that
the “coverage measurements (or the application of test techniques) on the original program
are representative (or very similar) of those on the mutant programs” [40]. The problematic
part is, that test suites are assessed on the mutated program version instead of the original
one (for which they were created).

The first empirical study that evaluated the CPA was performed by Chekam et al. [86].
The results of this study showed, that we can not rely on the CPA. Chekam et al. [86]
highlighted that the CPA has an influence on the outcome of empirical studies, if the CPA
is not controlled for.
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While we do know of the CPA, we do not need to take it into account for our experiment
in this thesis. As we do not compare different testing techniques with each other or rely on
coverage that were measured on the clean program.

Multiple Experimental Repetitions: Techniques that make stochastic choices should be
assessed by multiple experimental repetitions, as the results can be skewed otherwise [264,
265]. Often, this might not be practical as mutation testing is very expensive in terms of
computation time [40]. Papadakis et al. [40] suggest, that researcher should then do their
experiments with only few subjects, but many repetitions. There even exist some work that
supports this approach [266].

In our study, we generate all mutants separately for each test to create the matrix needed
for the calculation of the disjoint mutant set. The calculations for our empirical study are
only done once, because we do not have a stochastic choice in it. Hence, a rerun of our
whole experiment would result in the same data collected. One exception is the creation
of the disjoint mutant set presented above. As Algorithm 4.1 is non-deterministic, we need
to apply multiple experimental repetitions. In our case, we repeated the generation of the
disjoint mutant set 10 times.

Presentation of the Results: Papadakis et al. [40] emphasize that the granularity level of
the empirical results should be clarified. Our results are generated and presented on test
level as our collected mutation detection capabilities data contains information about all
generated mutants together with which test killed it or failed to do so.

After the scope of our mutation analysis is set, we clarify the execution of our data col-
lection. Basically, we collect mutation detection results (i.e., which mutant was killed or
survived) for each test separately. This is done, because Algorithm 4.1 needs (among oth-
ers) a mutant killing matrix as input. This mutant killing matrix can only be provided, if
we execute our mutation testing framework (in our case PIT) for each test separately. This
is because PIT directly terminates if a test killed the mutant. As a result, we would only
know the first test that killed the mutant, but not if other test would kill it as well. Normally,
this would not be problematic as one would only wants to know if a mutant was killed by
any test of the test suite. But, for our analysis we need data about which test killed which
mutant (i.e., the mutant killing matrix). We isolate the execution of tests by running PIT
for every test of the project. Afterwards, the generated mutants are classified into different
defect categories. How this is handled is further described in Section 4.2.7. In the end, the
output of PIT is parsed and stored into the database.

4.2.7. Defect Classification

As presented in Section 3.3 there are numerous studies that propose a classification of de-
fects. Nevertheless, not all of these approaches are suitable for our purpose. As we are
using open-source projects in our study, we can not reuse classification schemes that are
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Figure 4.5.: Overview of our defect classification scheme. Figure adopted from [141].

based on external data like, e.g., design documents or specifications [140]. These kind of
data are often not available in open-source projects, as they follow a special development
process [146]. As we want to classify artificial defects, classification schemes that need
additional defect data (e.g., defect reports [142, 143]) are also not suitable. Therefore, we
decided to use a classification scheme that only needs the code for the classification. Hence,
we adapted the classification scheme of Zhao et al. [141].

Figure 4.5 depicts our defect classification scheme. In comparison to the scheme by Zhao
et al. [141] we excluded the CPD category, as pre-processor directives are not available in
Java7. In addition, we included the “Changes on Documentation (COD)” to be classified as
“Others” as well. In contrast to Zhao et al. [141], which followed a fine-grained approach
by classifying defects in accordance to the sub-categories, we decided to only collect the
top-level class (i.e., computation, data, interface, logic/control, or others) of a defect. The
reason behind this is that the data would be too scattered, i.e. many categories with too few

7Recall, that we only collect the defect detection capabilities for Java projects due to a missing mutation
testing framework for Python.
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Figure 4.6.: Overview of our defect classification process.

data points for statistical analysis.

Figure 4.6 depicts our defect classification process. Overall the process has three steps.
First, we need to gather the defective and non-defective version of the source code. In the
second step, we extract the changes (i.e., the differences) between these two versions. Third,
we apply our rule-based classification approach to assign a set of defect classes, which are
presented in Figure 4.5.

As mentioned above, the input for our approach is the non-defective and the defective
source code. Achieving the source code for the defects introduced by mutation analysis
is complicated, as the chosen mutation testing framework (Section 4.2.6) does not offer
the mutated source code, because the mutation is done on the byte-code of the original
code [267]. Fortunately, some mutation operators that we have chosen (Section 4.2.6) can
be directly mapped to a defect class, so we do not need to extract the changes beforehand.
Table 4.6 shows all mutation operators together with their assigned defect class. The defect
class is assigned in such a way, that they conform to our defect classification schema (Fig-
ure 4.5). For example, the “Null Return” operator replaces return values of function with
null. It changes the return statements of methods, which is a sub category of the Logic/-
Control class. Therefore, we can assign the Logic/Control class to all defects integrated via
this mutation operator. Unfortunately, this does not work for all mutation operators (i.e.,
mutation operators marked with “-” in Table 4.6). For these mutation operators we applied
the following approach. The mutation testing framework outputs the used mutation oper-
ator together with the line and file on which it was applied. We take the original source
code of the affected file and integrate the defect, based on the rules of the mutation operator
(Table 4.5), in the specified line. We do not know the exact change that was made by the
mutation testing framework, as this information is not available. Nevertheless, the exact
change is not needed to classify the integrated defect.
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Mutation Operator Defect Class
AP: Argument Propagation Interface
BFR: Boolean False Return Logic/Control
BTR: Boolean True Return Logic/Control
CB: Conditionals Boundary -
CC: Constructor Calls Interface
EOR: Empty Object Return Logic/Control
I: Increments -
IC: Inline Constant Data
IN: Invert Negatives -
M: Math -
MV: Member Variable Computation
NR: Naked Receiver Interface
NC: Negate Conditionals -
NVMC: Non Void Method Calls Interface
NR: Null Return Logic/Control
PR: Primitive Return Logic/Control
RC: Remove Conditionals Logic/Control
RI: Remove Increments -
RS: Remove Switch Logic/Control
RV: Return Values Logic/Control
S: Switch Logic/Control
VMC: Void Method Calls Interface

Table 4.6.: Mapping between the used mutation operators and the defect class.

1 public int g2(int i) {

2 if(i <= 0)

3 return 0;

4 else if(i==1)

5 return 1;

6 else

7 return g2(i-2)+g2(i-1);

8 }

Listing 4.1: Original source code (ex.).

1 public int g2(int i) {

2 if(i <= 0)

3 return 0;

4 else if(i==1)

5 return 1;

6 else

7 return g2(i-2)-g2(i-1);

8 }

Listing 4.2: Defective source code (ex.).

Consider the example given in listings 4.1 and 4.2. Listing 4.1 shows the original source
code. Assume, that the math mutator (Table 4.5) was used in line 7 of the shown method.
Using this information, we parse the original source code (shown in Listing 4.1) in line 7
to evaluate what kind of math operator is originally used in this line. In the given example
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Figure 4.7.: Example call sequence graph of test t1 together with two different methods
(m1,m2) which contain defects (d1,d2). The number on the arrows indicate the
order of the calls. The dashed arrows indicate return calls.

we determined, that the “+” operator is used. Afterwards, we change this operator via the
rules of the math mutation operator (i.e., we change the “+” to a “-”). The resulting method
is shown in Listing 4.2. Now, we have two variants of the source code that we can use for
the next step of our process.

For the change extraction we adopted the tool CHANGEDISTILLER [268], which is able
to extract fine-grained changes from Java source code to classify our changes. Basically, it
extracts changes between two source code files by extracting and comparing the Abstract
Syntax Trees (ASTs) of both files. For each change that is detected this way, CHANGEDIS-
TILLER outputs the Change Type (CT) (as defined by Fluri and Gall [268]) together with
the Changed Entity (CE) (e.g., an if-statement or a method), and the Parent Entity (PE) of
the changed entity (e.g., the initialization part of a for loop).

The advantage that we gain is, that the CTs that can be extracted via CHANGEDIS-
TILLER can be mapped to the defect classes presented in Figure 4.5. Table A.1 in Ap-
pendix A shows exactly this mapping. Unfortunately, not all CTs can be directly mapped
onto a defect class. Hence, we need additional information (i.e., the CE and/or PE). Ta-
ble A.2 in Appendix A highlights the conditions that need to be fulfilled for a change to
be put into the corresponding defect class. These conditions were manually created by an
incremental process. Every time a new change was found that could not be classified into a
defect class, we manually classified the change and updated our rules accordingly.

4.2.8. Extracting Defect-Locality

Defect-locality is the metric that we use to evaluate, if the defect source detection is easier
with unit than with integration tests. We define defect-locality as a function dl : T xD→ N,
where T is the set of all tests of a project, D is the set of all <, and dl(t,d) = length of the
first call sequence from t to a method m that contains the defect d, but only if the line in
which d resides in m is covered by t.
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Figure 4.7 illustrates an example call sequence graph of the test t1 and two different
methods (m1,m2). This figure depicts two defects in the program: d1 in m1 and d2 in m2.
The arrows highlight the calls from the test case to a method or from a method to another
method. Additionally, the numbers on the arrows depict the order of the calls. If we now
assume that defect d1 was not covered by the first call, but with the third (e.g., because only
then the lines in which the defect resides in are executed) we get dl(t1,d1) = 3 as a result.
If we assume that d2 was covered by the seventh call and not by the second one, we get
dl(t1,d2) = 1, as this is the first call sequence from the test case t1 to the defect d2 where
d2 was covered by t1.

This approach simulates the call sequence that a developer would look through if he
would want to debug a found defect. In general, the approach works by storing and updating
the call sequence length during the execution of a test case. If the line in which a defect
resides in is hit by the test case, we need to store the defect that was covered together with
the current call sequence length at this point in time. The hard part is to find the line in
which a defect resides in. Normally, we do not have this information available8. Therefore,
we make use of the mutation detection results that we collect (Section 4.2.6). The mutation
detection result of a test includes a list of mutants that were generated for the test, together
with the line number and the file in which the mutant was introduced. It also includes if the
mutant was covered and killed or survived the test, for each generated mutant. This data
can then be used to insert the probes into the source code at the specific source code lines
to check if (and with which call sequence length) a test covers a defect. Note, that we are
only able to extract the defect-locality for Java projects, as we were not able to find a fitting
mutation testing framework for Python (Section 4.2.6) and therefore, no defect information
is available.

Other approaches like, e.g., calculating the shortest path from a test to the method that
contains the defect in a call graph were not feasible. We want our data to be as precise as
possible. If we would take the call graph as basis and calculate the shortest paths, we would
ignore the fact that a method call only covers some lines in the code, but not necessarily the
lines in which the defect resides in.

Our defect-locality metric has the limitation that it does not store the state of each unit
that contains a method. Hence, it can happen that the first call to a method changed the state
of the unit (e.g., setting a flag) and only because of this change the second call covered the
defect (i.e., the defect gets executed). In this case a developer would not only debug the
second call (like it is represented by the defect-locality metric), but also the first call to the
unit. Nevertheless, the needed state information is not part of the execution trace itself. It
would be possible to add more information to the trace (e.g., how the state of a unit was
changed with a call), but this is out of scope for this thesis.

Another possibility to measure the defect-locality would be to count the overall number
of calls till a defect is covered. For example, if the defect d2 is covered with the seventh

8If this information would be available, the developers would have fixed the defect already.
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CPU Intel(R) Core(TM) i5-5300U CPU
@ 2.30GHz

RAM 16 GB
OS Ubuntu 16.04
HDD/SSD Samsung SSD 860 EVO mSATA

1TB

Table 4.7.: Specification of the laptop used to measure the execution time of tests.

call the value of this metric would be seven if we also count return calls, or four if not.
The problem with this metric definition is that the number of calls is highly dependent on
the project, which influences the comparability between projects. Furthermore, repeated
method calls (e.g., if a method call is part of a loop) or multi-threading would skew this
metric even more. Because of these reasons, we decided for the approach described above.

4.2.9. Execution Time Measurement

The extraction of the execution time of a test is straight forwards. We checkout the project
release that we want to analyze. Afterwards, the tests are run using the test runner of the
project. For Java projects, we just reuse the build management script that was available in
the code of the project and execute the tests via this script. For Python projects, we had a
look at the configuration file for the used continuous integration system to check how the
tests should be executed. Afterwards, we replicated the steps to execute the tests. If the
program runs on different Python versions (e.g., 2.7 and 3.5), we preferred the execution
via Python 3.x. After the execution of the tests, the test runner, i.e JUnit [172] for Java
projects and pytest [175] or nosetests [218] for Python projects, writes different result files
containing the execution time of the executed tests. These result files are then parsed to
extract the execution time of test. All execution times are then stored into the database.
The specifications of the laptop on which the tests were executed is given in Table 4.7. We
reduced the outside influences as much as possible by executing the tests in an isolated
environment where the load of the laptop was as minimal as possible.

4.2.10. Implementation

In the following sections, we describe our implementations for our data collection ap-
proaches presented in Section 4.2. All of our implementations are developed as open-source
software. The development of open-source software has several advantages, especially in a
research context [269]. First, every researcher and practitioner has the possibility to reuse
our code to advance the body of knowledge of software engineering. They do not need to
re-implement approaches for their data collection. Second, projects that are open-source
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are also transparent, i.e., people can assert all implementations. Proprietary software, on
the other hand, often has the problem that there are, e.g., unforeseen limitations.

In Section 4.2.10.1 we present our SmartSHARK platform in detail, which implements
the extraction of project meta-data (Section 4.2.3). The COllection of Metrics FOR Tests
(COMFORT)-framework is presented in Section 4.2.10.1, which implements several of our
data collection approaches (i.e., the extraction of the test level, TestLOC, pLOC, and the
mutation detection capabilities). Finally, in Section 4.2.10.3 we present the design and im-
plementation of a tool called DCD, which implements the collection of the defect-locality.

4.2.10.1. SmartSHARK

Empirical studies grow common in the field of software engineering. This trend is high-
lighted by hundreds of publications that were published in recent years. Nevertheless, we
identified several problems within the state-of-the-art that threatens the replicability and
validity of such empirical studies, i.e., the heavy re-use of data sets, the non-availability
of data sets, the non-availability of implementations, the usage of small data sets, and the
diverse tooling [270]. The SmartSHARK platform is an ecosystem that was build with the
goal to counter those threats.

One part of the concept of SmartSHARK is the unified data collection process, which
is shown in Figure 4.8. Basically, the researcher is able to provide data collection plugins,
access results, and execute the data collection via the webserver. SmartSHARK is imple-
mented as a plugin-architecture. All data collection programs are provided as plugin, which
conform to certain interfaces. We designed SmartSHARK and its plugin interface in a way,
that it has minimum restrictions for the plugins, as we want to support a broad range of
different plugins. The execution of the data collection works by accessing the webserver,
choosing the plugin and the project on which the plugin should run, and confirm the se-
lection. Afterwards, the data collection plugin is triggered on a batch system, which can
be, e.g., a High Performance Computing (HPC) system like in our current deployment9.
The usage of a batch system has several advantages: first, it allows flexible data collection
plugins, as the batch system is not fixed to one programming language. Second, it provides
us with good scalability, as it enables us to collect data from more than one project at once
(depending on the capability of the batch system). The batch system then stores the results
in a MongoDB, which can then be accessed by the webserver or by any other client that
has access rights. There are several reasons for using a MongoDB instead of a relational
database like MySQL:

1. flexibility: the usage of a NoSQL database gives us more flexibility in storing and
combining the data, as we do not have a fixed schema and can dynamically add or
delete attributes [271].

9In our current deployment, we use the HPC system of the Gesellschaft für wissenschaftliche Datenverar-
beitung mbH Göttingen (GWDG) (https://www.gwdg.de).

https://www.gwdg.de
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Figure 4.8.: Overview of the data collection part of SmartSHARK.

2. established: MongoDB itself is used and tested in big data environments, as we have
in our SmartSHARK ecosystem [272].

3. scalability: MongoDB is highly scalable due to sharding, which is important for our
use case where we potentially acquire TB of data [273].

4. support: MongoDB offers a good library support and documentation for different
programming languages [274].

5. redundancy and data availability: MongoDB offers a replication functionality,
which provides us with a redundant environment (i.e., replica sets [275]) that ensures
a high data availability.

While we designed and developed several plugins for the SmartSHARK environment that
are able to collect diverse data from software projects, we only explain one of them in more
detail. This plugin, called vcsSHARK, is used in our study to collect the project meta-
data (Section 4.2.3), which is then used to connect collected metrics to this project data to
enable our analysis. Nevertheless, a full list of all developed plugins for SmartSHARK can
be found in the Appendix B.1.

The vcsSHARK is a plugin that collects VCS data from git projects. This includes com-
mits (with commit dates, messages, etc.), tags, and action on files together with the concrete
textual change. The plugin is written in Python and uses the official libgit2 [276] library for
collecting the data. Furthermore, to speed up the whole storage and parsing process it uses
the multiprocessing library of Python [277], which starts several processes for parsing and
storing the data.
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Loading Filtering Collecting Storing

Figure 4.9.: Phases of our COMFORT-Framework.

4.2.10.2. COMFORT-Framework

The COMFORT-framework [278] implements the approaches for collecting the test level
(Section 4.2.4), collecting the TestLOC and pLOC (Section 4.2.5), and the approach for
collecting the mutation detection capabilities presented in Section 4.2.6. The framework
was build with the intention to provide researchers and practitioners with a framework that
is able to collect different test-specific metrics. As we were not able to determine an existing
framework that provides the capability to collect test-specific metrics with an extendable
data collection and analysis process, we decided to build COMFORT.

Basically, COMFORT has four different phases, which are presented in Figure 4.9.
Which parts of COMFORT are executed in which phase can be configured via a config-
uration file. In the following, we only go into detail of the parts of COMFORT that are
relevant for the study described in this thesis. While we designed and implemented more
than the parts of the framework we describe here, it would go beyond the scope of this
section. Nevertheless, we list all different parts of COMFORT, separated by its phase, in
Appendix B.2.

Loading the Data: The first phase of COMFORT is the data loading phase. In this phase
the data structure, that is used in the following phases, is created. This data structure can
be based on, e.g., a static call graph or a dependency graph. For our study presented in this
thesis, we used the per-test coverage data as basis for the data structure. This data must be
collected beforehand and stored in a file so that COMFORT can read out this file to create a
data structure based on its contents.

Figure 4.10 gives an overview of our per-test coverage collection process. The basis of
our coverage collection is Jacoco [279]. Jacoco is a coverage collection framework for
Java programs. It supports the collection of coverage data on different levels of abstraction
(e.g., class-level or method-level). We integrate Jacoco into the projects build process, i.e.
by adding it to its maven build file, so that it produces the coverage data. We decided to
use Jacoco as basis, as the development of an own coverage collection framework would
be time-intensive and complex. Other advantages of Jaccoco are that it supports all major
Java versions [280], that it can be integrated into the build process of Java projects [281],
provides an API [282], and has a good documentation and support [283].

Nevertheless, Jacoco does not collect per-test coverage, but test suite coverage. Hence,
we need to intercept the coverage collection process, so that a new coverage collection
session is started before each test run. This is the idea of the comfort-listener [284]. The
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Figure 4.10.: Overview of the per-test coverage collection.

comfort-listener makes use of the JUnit [172]/TestNG [173] API and can be integrated by
adding a custom test listener via the Maven SureFire plugin [285]. Before a test is started,
a new coverage collection session is initiated by using the Jacoco API. After a test finished,
the session is dumped into a file. This way, the coverage that is stored in the file and later on
read by the COMFORT framework is a per-test coverage. Note, that we do not collect the
coverage that might be generated by calling potential setup or break-down methods [286],
as we focus on the coverage of the test itself.

While Figure 4.10 shows the per-test coverage collection for Java projects, the col-
lection process looks the same for Python projects. Instead of Jacoco, we reuse cover-
age.py [287] as coverage collection framework and instead of JUnit/TestNG as test runner
we use unittest [174]/pytest [175]. The comfort-smother [288] replaces the comfort-listener
for Python projects.

Filtering the Data: After the data is loaded and the data structure is created, we can apply
different filters on the data structure, e.g. every covered unit that is not part of the project
should be excluded. As we do not apply any filter in the study presented in this thesis, we
do not describe them in detail.

Collecting Metrics: In the third phase, the data structure is given to the metric collectors
that were configured via the configuration file. Overall, COMFORT provides 13 different
metric collectors that work with Java/Python projects. Nevertheless, we only describe the
ones that are used in our study.

• IEEETestTypeCollector: Detects the test type (i.e., unit or integration test) using the
IEEE rule set presented in Table 4.3. Hence, it implements the test level classification
approach described in Section 4.2.4 for the IEEE definition.

• ISTQBTestTypeCollector: Detects the test type (i.e., unit or integration test) us-
ing the ISTQB rule set presented in Table 4.3. Hence, it implements the test level
classification approach described in Section 4.2.4 for the ISTQB definition.
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• NamingConventionTestTypeCollector: Detects the test type (i.e., unit or integration
test) using the DEV rule set presented in Table 4.3. Hence, it implements the test level
classification approach described in Section 4.2.4 for the developer classification.

• CoveredLinesCollector: Collects the TestLOC and pLOC for each test that is part
of the loaded data. It implements the approach described in Section 4.2.5.

• MutationDataCollector: Collects the mutation detection capabilities of each test
that is part of the loaded data. The MutationDataCollector implements the approach
described in Section 4.2.6. Hence, it uses PIT [267] to generate mutants and collect
the mutation results. Afterwards, it parses the results generated by PIT and classifies
all generated mutants into its corresponding defect class according to the approach
presented in Section 4.2.7.

Storing the Data: In the last phase, the collection results are stored using a filer. As we
want to interconnect the results from COMFORT with the project meta-data collected by
SmartSHARK, we created a SmartSHARK filer. This filer is able to store and interconnect
the collected data with data collected by SmartSHARK plugins.

4.2.10.3. Defect Call Depth (DCD)

The approach to collect the defect-locality of tests (Section 4.2.8) is implemented in a tool
called DCD. Figure 4.11 gives an overview of how DCD works. We explain each step that
is marked in the figure in the following.

1. As a first step, we integrate the dcd-agent into the project. The dcd-agent is an im-
plementation of a Java agent [34] that uses the instrumentation API of Java. It is
responsible for integrating method calls into the project classes (Step 4). The integra-
tion is done by using the “-javaagent” parameter of the Java Virtual Machine (JVM).
This parameter is added to the Maven SureFire plugin execution [119] so that our
agent gets executed with the tests of the project.

2. As a second step, we integrate the dcd-listener. The dcd-listener is similar to the
comfort-listener explained in Section 4.2.10.2: it also makes use of the JUnit [172]
API and is integrated by adding it as a custom test listener to the Maven SureFire
plugin [285].

3. After everything is integrated, and the test process via the build management system
is started by hand, the dcd-agent queries the mutation data from the MongoDB of the
SmartSHARK environment. The mutation data includes information about which test
covered which mutant together with the file name and the line in which the mutant
was integrated.
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Figure 4.11.: Overview of DCD.

4. Afterwards, the dcd-agent does an on-the-fly instrumentation of the project classes.
The on-the-fly instrumentation “allows in-memory pre-processing of all class files
during class loading independent of the application framework.” [289]. While there
are other instrumentation techniques, we decided for on-the-fly instrumentation due
to the following reasons. First, it is a byte code based instrumentation technique.
Hence, it “is very fast, it can be implemented in pure Java and works with every Java
VM” [290]. Second, using on-the-fly instrumentation enables us to do modifications
to the loaded classes without modifying the target application itself.

Using on-the-fly instrumentation the dcd-agent integrates several method calls to the
CallHelper class into the project classes that are loaded. The CallHelper class is
a static class that holds information (e.g., the current call depth, which represents
the defect-locality) during the whole testing process. Before each method call in any
project class, we integrate a call to the CallHelper that raises the call depth. After each
method call, the call depth is lowered. In addition, we integrate a call at each position
were a mutant was integrated before during the collection of the mutation detection
capabilities (Section 4.2.6). However, within some tests exceptions are thrown and
caught via the try-catch construct in Java [122]. If this is the case, the injected method
call to lower the depth after a method is never executed. To mitigate this problem, we
add a call to lower the depth within each catch block.

5. If the test is started, the dcd-listener initializes the CallHelper, i.e., it sets the current
call depth to zero.

6. Now the test gets executed including its setup and break-down methods [286], as
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they are also executed during the collection of the mutation detection capabilities.
During its run it executes the instrumented calls to the CallHelper, i.e., the current
call depth is raised and lowered. If the test hits a call at a position where a mutant was
integrated before, we store the file name together with the line number in which the
call was integrated and the current call depth in a map in the CallHelper. This map
then holds information about the covered files and lines together with the call depth
that was present when the test hit the call.

7. After the test finished, the dcd-listener queries the data from the CallHelper, i.e., the
map that includes the call depth for each file and line that was hit by the test.

8. Finally, the map is parsed and stored into the MongoDB and interconnected with the
currently available results.

4.2.11. Qualitative Data Collection

Within this thesis we want to gain qualitative evidence to answer our RQs 2.4 - 2.6. We
could not gain quantitative evidence for these RQs out of different reasons.

RQ 2.4 is concerned with the test execution automation of unit and integration tests. The
standard literature states that unit tests are easily automatable. Therefore, we want to eval-
uate, how unit and integration tests are executed nowadays. While our quantitative analysis
can help in answering this RQ, e.g., by providing evidence what kind of tests are automati-
cally executed within our case study subjects, it can not be completely answered by it. We
can not define a fitting metric that would cover the aspects of this RQ. Hence, we analyze
related literature that has contributed to the topic of test automation to assess, which tests
(i.e., unit or integration tests) can be automated. We want to gain an understanding of the
actual usage of test automation tools and for which tests they are practically used. There-
fore, we do not only evaluate the research view, but also the practical view by including,
e.g., developer comments, developed frameworks, or the industrial landscape in our quali-
tative analysis of this RQ. The qualitative evidence that we gain throughout this analysis is
then used to answer RQ 2.4.

RQ 2.5 is concerned with the different test objectives of unit and integration tests. Spill-
ner et al. [9] state that unit tests should be used to test the efficiency, maintainability, and
robustness of a software. We acquire qualitative evidence on the usage of unit and integra-
tion tests for those testing types. The procedure that we use to gain this evidence is similar
to the procedure explained above. We assess this question from the research and practical
view by evaluating related research and including developer comments and frameworks that
were developed for those specific tests. In the end, we gain a holistic view on RQ 2.5 and
provide qualitative evidence to answer our RQ regarding the differences in the test objective.

RQ 2.6 is concerned with the difference in costs of unit and integration tests. We found a
statement in the standard literature that unit tests cost less than integration tests. While this
could be measured by a metric (e.g., creation costs of tests or maintenance costs) we do not
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have this data available, as we use open-source projects for our case study. We decided to
collect qualitative evidence on the costs of tests on different levels, by evaluating research
literature that is related to test costs. Furthermore, we want to include evidence provided by
the industry within this topic. We include, e.g., comments or blog posts by developers and
companies that discuss the costs of unit and/or integration tests. By evaluating the collected
evidence we can answer the question, if unit or integration tests are more costly.

4.3. Data Analysis

Figure 4.1 shows the steps taken in our study. Our study consisted of the following steps:

• An analysis of the distribution of unit and integration tests in open-source projects
(Section 5)

• A quantitative evaluation of the differences between unit and integration tests (Sec-
tion 6)

• A qualitative evaluation of the differences between unit and integration tests (Sec-
tion 7)

Due to the diversity of our approaches to analyze the data (e.g., qualitative and quantita-
tive analysis) and the different foci of our RQs, we refrain from describing the analysis in
detail in this section. The data analysis and the results of the analysis are described in the
different sections referenced above. During our analysis we need to perform several statis-
tical tests (Section 2.3). Following the process defined in Section 2.3.2, we need to state our
significance level for the statistical tests that we perform. During this thesis, we follow the
advise by Benjamin et al. [98] for all of our statistical tests and set our significance level to
.005, i.e. α = .005.





5. Distribution of Unit and Integration Tests
in Open-Source Projects

Within this section, we present the data set that we used within the analysis of our first
RQ (Section 5.1) together with the descriptions of the analysis of each sub question (sec-
tions 5.2- 5.4). The analysis sections include the analysis procedure, as well as the results
of the analysis, together with a concrete answer to the RQ at hand.

5.1. Data Set Description

The data set used to answer the first RQ, together with its sub questions, includes all tests of
all selected projects (Section 4.2.2). The data set was generated in the following way. For
each subject project, we executed the tests after we implemented our listener(s) to record
the per-test coverage.

The test execution for all Java projects was done by using the test goal of the Maven
build management system and using Java 8. Hence, we reuse the build file of the developers
of the projects and therefore tests that are excluded by the developers (e.g., because they
are currently not working) are not executed. Moreover, for projects that have several sub-
modules (i.e., guice, google-gson, and zxing), we only analyzed the core of the project, as
generating coverage for multi-module projects is out of scope for this thesis.

For Python projects we do not have such a build management system that we can reuse.
Hence, we reproduced the steps that are taken by the CI system of the projects to test the
project. Therefore, if tests are excluded for Python projects by the developers only, they are
not executed. If the Python project works with Python 2.7 and Python 3.x, we always used
the Python 3.x version.

For both the Java and Python projects, we excluded all tests that threw an error during the
execution, as they would produce incorrect coverage results. This is the case, because only
the coverage until the error occurrence can be recorded. We would have done the same with
failed tests due to the same reason, but during our data set creation no tests failed.

After we recorded the per-test coverage data we executed the metric collectors of our
COMFORT framework (Section 4.2.10.2) to read in the data and execute the different met-
ric collectors, including the one that assigns a test level to each test. Parameterized tests
are stored in a special way: as they might cover different parts of the program, we store
one test entity for each parameter. For example, if the test MisfitsTest is called with three
parameters (a, b, c), we store three different test entities in the database: MistfitsTest[a],
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Project #All Tests #Analyzed Tests
commons-beanutils 1197 1175
commons-codec 874 853
commons-collections 6637 5930
commons-io 1150 1138
commons-lang 4064 3978
commons-math 6488 6484
druid 4132 4131
fastjson 4176 4157
google-gson 1014 1012
guice 701 701
HikariCP 120 118
jackson-core 774 774
jfreechart 2175 2174
joda-time 4176 4154
jsoup 593 589
mybatis-3 1053 1048
zxing 401 401
ChatterBot 299 283
csvkit 177 177
dpark 58 58
mrjob 1862 1836
networkx 2723 2672
pyramid 2626 2536
python-telegram-bot 638 627
rq 207 203
schematics 348 343
scrapy 1656 1591
Mean 1863.67 1820.11
StDev 1901.95 1831.26

Table 5.1.: Projects together with the number of all and analyzed tests.

MisfitstsTest[b], and MisfitsTest[c]. The coverage framework already separates the test, so
that we do not need to manually interfere.

Table 5.1 summarizes the number of all the tests and analyzed tests for each subject
project. Tests are filtered out, e.g., when they are empty. Our filter criteria are mentioned in
Section 4.2.4.

For the analysis of our RQs, we need the test level of each test for each subject project
according to the ISTQB, IEEE (RQ 1.1, RQ 1.3), and the DEV (RQ 1.2) rule sets. We define
the set of unit tests as U and the set of integration tests as I. A set of unit or integration tests
for a specific rule set is defined as Ux and Ix where x ∈ {DEV, IEEE, IST QB}. A project
specific set of unit or integration tests for a specific rule set is defined as Ux(p) and Ix(p)
where x ∈ {DEV, IEEE, IST QB} and p ∈ Pro jects, where projects is the set of all subject
projects. In addition to the test level, we need the TestLOC of each test for the subsequent
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analysis. Hence, we define a function tl(X) := ∑x∈X TestLOC(x), where X is a set of tests
and TestLOC(x) is the number of TestLOC for the specific test x. Additionally, we acquired
the KLOC of all projects using sloccount [291], a command line tool that counts the LOC
of different languages. We applied it to the folder of the projects that contain the source
code (production and test code) and used the reported number later for normalization.

Table 5.2 presents the subject projects, together with their KLOC and the number of tests
within the different test sets. This table also highlights the percentages of tests that are
contained in a test set for a specific definition. Furthermore, Table 5.2 includes the mean
and the standard deviation for the different test sets across all subject projects.

Table 5.3 presents the subject projects, together with the tl metric within the analyzed
test sets. Furthermore, the percentages for the tl metric for each test set are highlighted.
Table 5.3 includes the mean and the standard deviation for the tl metric.

5.2. Evaluation of RQ 1.1: Test Distribution Trends

This RQ is concerned with the trend mentioned in the introduction, i.e. that more integration
than unit tests are developed, and whether it is visible in actual versions of open-source
projects. This section describes the analysis procedure for RQ 1.1 (Section 5.2.1), as well
as the results of the analysis (Section 5.2.2).

5.2.1. Analysis Procedure

For the assessment of this RQ, we use the test level classification for the IEEE and ISTQB
rule sets. After gathering the test levels of all tests, we check whether there are differences
between the amount of tests at both test levels. We decided to use two different metrics to
assess this RQ: the number of tests and the tl. While the first metric is rather coarse, the
second metric presents a more detailed view on the tests and considers the test sizes. As we
have chosen the projects randomly from a list of fitting projects (Section 4.2.2) we have, by
the nature of this procedure, a large variance between the projects in terms of the selected
metrics. According to tables 5.2 and 5.3, larger projects (in terms of KLOC) tend to have
a larger number of tests and correspondingly larger tl. Therefore, to enable a comparison
between the projects we need to account for the aforementioned problem by normalizing
the chosen metrics. To assess and measure the differences after these preparations, we use
statistical tests.

Our analysis process is described in detail in the following:

1. Gather the Data: We gather the tests with their classification results that were cre-
ated via the IEEE and ISTQB rule sets, resulting in the UIEEE , IIEEE ,UIST QB, IIST QB

test sets for all subject projects.

2. Normalization: Afterwards, we perform two different normalizations, once for the
number of tests and once for the tl metric. Hence, we define two different metrics:
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nmC(X , p) := |X(p)|
KLOC(p) to normalize the number of tests and nmT L(X , p) := tl(X(p))

KLOC(p)
to normalize the TestLOC sums, where test set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB}
and p is a project. Furthermore, we define the set of all nmC metric values of all
projects as NMC(X) := {nmC(X , p)|p ∈ Pro jects} and the set of all nmT L metric
values of all projects as NMT L(X) := {nmT L(X , p)|p ∈ Pro jects}, where test set X ∈
{UIEEE , IIEEE ,UIST QB, IIST QB} and p is a project. As a result, we get values for both
normalized metrics across the four test sets.

3. Check Preconditions for Statistical Testing: We separately check for each of the
NMC(X) and NMT L(X) sets if their values follow a normal distribution using the
Shapiro-Wilk test (Section 2.3.5.1). Moreover, we separately test for equal vari-
ances using the Brown-Forsythe test (Section 2.3.5.2) between NMC(UIEEE) and
NMC(IIEEE), as well as between NMC(UIST QB) and NMC(IIST QB). Furthermore we
perform the same statistical test for the NMT L(X) sets analogously. These tests are
necessary in order to choose the correct statistical significance test in the next step.

4. Statistical Testing: Based on the results of the previous step, we chose a fitting one-
sided significance test (Section 2.3.1) to test for differences between NMC(UIEEE) and
NMC(IIEEE), as well as between NMC(UIST QB) and NMC(IIST QB). Furthermore, we
test for significant differences using the NMT L(X) sets analogously. We have chosen
a one-sided test, because we want to assess if the normalized metrics of the unit
tests sets (i.e., the normalized number of unit tests or their TestLOC) are significantly
smaller than the normalized metrics of the other sets. A two-sided test would only
tell us that there are differences, but not in which direction.

5. Effect Size: Finally, if we found a statistically significant difference between the
normalized metrics of the sets of unit and integration tests, we assess the effect size by
calculating Cohen’s d (Section 2.3.6) between them to measure the practical relevance
of the observed results.

5.2.2. Results

Table 5.4 shows the nmC and nmT L metrics for each project and for both rule sets. Over-
all, there are 24 (NMC and NMT L, IEEE) and 27 (NMC and NMT L, ISTQB) of overall 27
projects, which have less unit than integration tests. Even the projects, which have more
unit than integration tests (i.e., commons-codec, commons-io, commons-lang) are the same.
This is also highlighted by the mean that was calculated for both metrics. Table 5.4 shows
that the mean for both metrics and definitions is lower for the unit test sets than the mean
for the integration test sets, while the standard deviation is high for the nmT L metric for
both definitions. This gives a first hint that there are indeed less unit than integration tests
developed (measured in numbers and TestLOC).
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Figure 5.1.: Box-plot of the nmC metric (left) and nmT L metric (right) for unit and integra-
tion tests and the IEEE and ISTQB definition. The points in the plot represent
the concrete values for each project.

Figure 5.1 shows box-plots of the nmC (left) and the nmT L (right) metrics. If we compare
the box plots visually, we can determine a difference in them for each metric and for each
definition. The box-plots highlight that the median is always lower for unit tests than inte-
gration tests, regardless of the used definition or metric. Furthermore, the 25%-quantile of
the integration test box-plot is always higher than the 75%-quantile of the unit test box-plot.
This indicates that the trend of developing less unit than integration tests is visible in our
data.

While we see a difference in the data (Table 5.4) and visually (Figure 5.1) we do not know
if the differences are significant. Hence, we performed several statistical tests. The concrete
p-values and test statistics for each statistical test are reported in Appendix C. The Shapiro-
Wilk tests showed that the NMC set for the integration tests of both definitions follow a
normal distribution, while all other tested sets do not. The Brown-Forsythe test showed,
that all tested sets are homoscedastic for the chosen alpha level (i.e., α = .005). The one-
sided Mann-Whitney-U tests were performed to determine whether there is a significant
difference between the metrics based on the unit test sets and the ones which are based on
the integration test sets. The U-statistic was significant at the .005 critical alpha level, for
all tested sets. Therefore, we reject H0 for all of them and conclude that the difference was
significant and that the projects have a larger amount of integration tests, both in terms of
number of tests and tl for both definitions.

To assess the effect size we applied Cohen’s d to all sets, which showed statistically
significant differences. We measured a large effect (d = 1.04) between NMC(UIEEE) and
NMC(IIEEE), a huge effect (d = 2.02) between NMC(UIST QB) and NMC(IIST QB), a medium
effect (d = 0.71) between NMT L(UIEEE) and NMT L(IIEEE), and a large effect (d = 0.89)
between NMT L(UIST QB) and NMT L(IIST QB).
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Answer to RQ 1.1: Table 5.4 and Figure 5.1 highlight that there are differences in the
median and mean between unit and integration tests (measured in nmC and nmT L). A
high standard deviation for the nmT L metric indicates a high variance in this metric
among the (selected) projects. To prove the differences that are visible through the
figures and the table we performed several statistical tests, which all showed that there
is a larger amount of integration tests (measured in nmC and nmT L) for both definitions.
Furthermore, the effect is not negligible and practically relevant, as our effect size
measurements show between medium and huge effect sizes.

Overall, based on the data, visualizations, and tests we can conclude that the trend of
developing less unit than integration tests is visible in open-source software projects.

5.3. Evaluation of RQ 1.2: Test Distribution according to
Developer Classification

This RQ is similar to RQ 1.1, but tries to evaluate the trend that there are more integration
than unit tests developed, from a different perspective. Within this RQ, we want to assess
if the test level classification done by the developers are showing the trend explained in the
introduction. This section summarizes our analysis procedure (Section 5.3.1), as well as the
results of the analysis (Section 5.3.2).

5.3.1. Analysis Procedure

For the assessment of this RQ, we acquire the test level classification for the DEV rule set
of each test that we analyze. Afterwards, we perform the same analysis as presented in
Section 5.2.1, including the normalization due to the same reasons.

Our analysis process is described in detail in the following:

1. Gather the Data: We gather the tests with their classification results that were cre-
ated via the DEV rule set, i.e., we query UDEV and IDEV from the database. Further-
more, we query the sum of TestLOC for these sets, i.e., tl(UDEV ) and tl(IDEV ).

2. Normalization: Afterwards we perform the same normalization and create the
same metric sets as explained in Section 5.2.1. Hence, we create the NMC(UDEV ),
NMC(IDEV ), NMT L(UDEV ), and NMT L(IDEV ) sets.

3. Check Preconditions for Statistical Testing: We separately check for each of the
above mentioned sets if the values within these sets follow a normal distribution us-
ing the Shapiro-Wilk test (Section 2.3.5.1). Moreover, we separately test for ho-
moscedasticity using the Brown-Forsythe test (Section 2.3.5.2) between NMC(UDEV )
and NMC(IDEV ), as well as between NMT L(UDEV ) and NMT L(IDEV ). These tests are
performed in order to choose the correct statistical significance test in the next step.
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Figure 5.2.: Box-plots of the nmC metric (left) and nmT L metric (right) for unit and integra-
tion tests and the DEV rule set. The points in the plot represent the concrete
values for each project.

4. Statistical Testing: Based on the results of the previous step, we chose a fitting one-
sided significance test (Section 2.3.1) to test for differences between NMC(UDEV )
and NMC(IDEV ), as well as between NMT L(UDEV ) and NMT L(IDEV ) due to the same
reasons as explained in Section 5.2.1.

5.3.2. Results

Table 5.5 depicts the nmC and nmT L metrics for each project for the DEV rule set. Overall,
there are 14 projects for the nmC metric, where the trend of developing more integration than
unit tests holds true. These projects are mostly Java projects (11), while only three Python
projects follow the trend. The numbers are similar for the nmT L metric: overall, there is one
project more than for the nmC metric, where the trend of developing more integration than
unit tests holds true. These 15 projects include the same 11 Java projects as for the nmC

metric. Furthermore, one more Python project is part of this set. Nevertheless, the mean
for both metrics is higher for unit (20.46 (nmC), 608.93 (nmT L)) than for the integration
tests (16.19 (nmC), 516.83 (nmT L)), while all sets have a high standard deviation. This
gives a first hint that there are more unit than integration tests if we rely on the developer
classification.

Figure 5.2 depicts box-plots of the nmC (left) and the nmT L (right) metrics. If we com-
pare them visually, we can determine that the shown median for both sets (i.e., unit and
integration tests) are similar in both figures. This indicates that there is no difference in
both metrics between unit and integration tests.

While we do not see a difference in the data (Table 5.5) or visually (Figure 5.2) we need
to assess it statistically. Hence, we performed several statistical tests. The concrete p-values
and test statistics for each statistical test is reported in Appendix C. The Shapiro-Wilk tests
showed that only the nmC values for the set of integration tests follow a normal distribution,
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Project nmC(UDEV ) nmC(IDEV ) nmT L(UDEV ) nmT L(IDEV )

commons-beanutils 0.00 35.16 0.00 1659.91
commons-codec 35.96 6.94 412.21 95.86
commons-collections 82.67 14.97 4000.03 1334.89
commons-io 14.68 24.36 281.17 807.20
commons-lang 32.41 19.10 502.65 262.77
commons-math 26.00 5.05 686.90 137.23
druid 1.26 16.22 26.52 279.01
fastjson 1.99 26.40 19.23 276.86
google-gson 13.51 33.46 128.79 488.47
guice 5.53 17.41 114.01 343.58
HikariCP 1.50 8.91 39.17 504.85
jackson-core 2.14 16.47 44.73 546.01
jfreechart 15.70 0.51 243.96 8.67
joda-time 16.12 32.47 312.89 704.04
jsoup 21.35 10.01 434.25 231.29
mybatis-3 8.80 12.60 203.29 411.57
zxing 1.07 11.55 25.05 458.80
ChatterBot 12.08 25.49 79.26 386.35
csvkit 61.95 0.00 720.69 0.00
dpark 4.53 0.08 119.12 0.95
mrjob 45.45 4.31 4818.83 2702.85
networkx 23.03 21.59 532.44 540.06
pyramid 50.62 7.70 1660.72 173.30
python-telegram-bot 26.80 6.28 329.06 44.42
rq 33.38 3.85 404.73 57.77
schematics 9.38 31.07 128.09 673.68
scrapy 16.98 45.27 173.44 823.94
Mean 20.92 16.19 608.93 516.83
StDev 20.46 12.18 1152.01 587.75

Table 5.5.: Normalized test count values (nmC) and normalized tl values (nmT L) for each
project.
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while all other tested sets do not. The Brown-Forsythe test showed, that all tested sets are
homoscedastic. The U-statistic was not significant at the .005 critical alpha level, for all
tested sets. Therefore, we fail to reject H0 for all of the tested sets.

In addition to the one-sided Mann-Whitney-U test, we performed a two-sided test to
assess, if there are any differences at all between unit and integration tests for the two
assessed metrics. The U-statistic was not significant at the .005 critical alpha level for all
tested sets. Hence, in addition to the one-sided test we also fail to reject the H0 for all tested
sets for the two-sided test. Therefore, we conclude that there is no statistically significant
difference between unit and integration tests according to the developer classification.

Answer to RQ 1.2: Table 5.5 and Figure 5.2 show that there are no differences in the
median and the mean between the amount of unit and integration tests (measured in
nmC and nmT L), while a high standard deviation exists for the nmT L metric. To assess
if the table and figures provide a correct view, we performed several statistical tests,
which all failed to reject H0. Also the two-sided test failed to reject H0. Therefore,
we conclude that when relying on the developer classification, the trend of developing
more integration than unit tests is not visible in open-source software projects. Fur-
thermore, our two-sided test shows that there is no difference at all between unit and
integration tests for the examined metrics according to the developer classification.

5.4. Evaluation of RQ 1.3: Developer Classification according to
Definitions

Within this RQ we want to compare the classification of tests by definition (RQ 1.1) with
the classification done by developers (RQ 1.2). The answer to this RQ provides us with a
deeper understanding of the current practice of testing in the real world and the (potential)
difference of testing between academia/education and practice. This section presents our
analysis procedure (Section 5.4.1), together with its results (Section 5.4.2).

5.4.1. Analysis Procedure

Within our analysis, we compare the number of tests and their tl of the UDEV set with the
UIEEE and UIST QB sets, as well as the IDEV set with the IIEEE and IIST QB sets. However, as
we believe that there is a connection between the unit tests sets, as well as the integration
test sets, we can not perform the same kind of analysis as done in sections 5.2.1 and 5.3.1.
The significance tests used in these sections have the precondition that the tested samples
are independent of each other, which is violated if we compare, e.g., the UDEV and UIST QB

sets, due to their relationship. Hence, instead of statistically testing for differences, we
perform different set operations to gather the overlap and differences between the developer
classification and the classification by the definitions. Additionally, we calculate the tl of
the test sets, which are newly created by the set operations.
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Our analysis process is described in detail in the following:

1. Gather the Data: We gather the tests with their classification results that were cre-
ated via the DEV, IEEE, ISTQB rule sets for all subject projects. Furthermore, we
query the tl for all test sets, i.e., all tl(X) with X ∈ {UDEV , IDEV ,UIEEE , IIEEE ,UIST QB,
IIST QB}.

2. Set Operations: As we want to assess if the developers of the projects classify
their tests according to the definitions, we perform four set operations for each def-
inition. To gather the number of tests that are classified according to the defini-
tions, we calculate the intersection between the unit and integration tests as classified
by the developers and by the definitions, i.e., UDEV ∩UIEEE ,UDEV ∩UIST QB, IDEV ∩
IIEEE , IDEV ∩ IIST QB. Furthermore, as we also want to assess the number of tests that
are missclassified according to the definitions, we calculate the difference between
the unit and integration tests as classified by the developers and by the definitions,
i.e., UDEV \UIEEE ,UDEV \UIST QB, IDEV \ IIEEE , IDEV \ IIST QB. In a last step, we sum
up the number of tl for each of these newly created sets.

3. Compare Results: Finally, we compare the number of tests within the newly cre-
ated sets visually and by value to determine if there is a difference and assess its
magnitude.

5.4.2. Results

Tables 5.6 and 5.7 depict the number of tests and their tl within the sets that were created
by the different set operations described in Section 5.4.1. Table 5.6 shows the compari-
son of tests based on the IEEE definition, while Table 5.7 the comparison of tests based
on the ISTQB definition. However, both tables show a similar trend. They depict that
on average more test get classified correctly according to the definitions (1037.59 (IEEE),
972.37 (ISTQB)), than they get missclassified according to them (781.63 (IEEE), 846.85
(ISTQB)). On average, most misclassifications occur for unit tests, as both of the tables
highlight (636.19 (IEEE), 793.74 (ISTQB)). The results are changing, if we compare the tl
of the tests that are contained with the sets. We can see that on average more tl get missclas-
sified (27452.04 (IEEE), 29508.89 (ISTQB)) than correctly classified (27174.22 (IEEE),
25117.37 (ISTQB)) according to the definitions. However, the differences between these
values are rather low. Furthermore, both tables depict that the standard deviation is rather
high for the shown data, indicating a large variance between projects. This is supported by
the raw numbers shown in the tables. For example, HikariCP has substantially more tests
that are classified according to the definitions (98 (IEEE), 97 (ISTQB)) than missclassified
ones (20 (IEEE), 21 (ISTQB)), while it is vice versa for other projects like commons-math,
where less tests are classified according to the definitions (1670 (IEEE), 1283 (ISTQB)) and
more are misclassified (4814 (IEEE), 5201 (ISTQB)).
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These results are also supported by the Venn-diagrams presented in figures 5.3 and 5.4.
Figure 5.3 depicts Venn-diagrams that show the number of tests and their overlap between
UDEV and UIEEE , UDEV and UIST QB, IDEV and IIEEE , IDEV and IIST QB for all Java projects.
Figure 5.4 shows the same data for all Python projects.

Answer to RQ 1.3: Tables 5.6 and 5.7 highlight that while on average more tests
get classified according to the definitions than misclassified, there is still a large gap
between the developer classification of tests and the classification based on the defi-
nitions. This gap is larger for tests that get classified as unit tests by the developers,
showing that especially the current definition of unit tests might not fit to modern de-
velopment practices. This is supported by the Venn-diagrams shown in figures 5.3
and 5.4.
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Figure 5.3.: Venn-diagrams showing the number of tests and their overlap between UDEV

and UIEEE , UDEV and UIST QB, IDEV and IIEEE , IDEV and IIST QB for all Java
projects.
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Figure 5.4.: Venn-diagrams showing the number of tests and their overlap between UDEV

and UIEEE , UDEV and UIST QB, IDEV and IIEEE , IDEV and IIST QB for all Python
projects.



6. Quantitative Evaluation of the Differences
between Unit and Integration Tests

This section describes the analysis procedures and results of the quantitative evaluation of
the differences between unit and integration tests. The quantitative evaluation was done by
extending the case study that produced the results highlighted in Section 5. For each of the
RQs that we evaluate quantitatively, we include a section (sections 6.1 - 6.3) in which the
used data set, the analysis procedure, and the results are described. Based on the results of
RQ 1.3, where we observed that developers do not classify their tests according to any of
the definitions, we decided to perform all subsequent analyses with both definitions and the
developer classification.

6.1. Evaluation of RQ 2.1: Test Execution Time

This RQ is concerned with the difference in the test execution time between unit and inte-
gration tests. We want to assess if the difference stated in the standard literature (i.e., unit
tests are faster than integration tests) is reflected in the data collected from current open-
source software projects. Hence, we first describe the data that we used within our analysis
in Section 6.1.1. Afterwards, we specify our analysis procedure (Section 6.1.2) and report
the results of our analysis (Section 6.1.3).

6.1.1. Data set Description

For the analysis of this RQ, we reuse the data set described in Section 5.1. Additionally, we
define exeSUM(X) := ∑x∈X exeTime(x) as the average execution time for all tests within the
test set X and pl(X) := ∑x∈X pLOC(x) as the sum of all production lines that are covered by
tests in X . The collection of the execution time is detailed in Section 4.2.9 and the collection
of the pLOC in Section 4.2.5.

Table 6.1 shows the accumulated execution time measured in ms for each project and
each test set. This table depicts that the integration tests have a higher execution time (70.91
ms (IEEE), 75.67 ms (ISTQB), 45.76 ms (DEV)) than unit tests (9.99 ms (IEEE), 5.23 ms
(ISTQB), 35.15 ms (DEV)), while also having a higher standard deviation (102.14 (IEEE),
109.23 (ISTQB), 77.99 (DEV) in contrast to 23.40 (IEEE), 20.81 (ISTQB), 61.66 (DEV)).
As the standard deviation highlights, there are some projects with a rather high overall
execution time (e.g., scrapy), while others have a low execution time (e.g., pyramid).
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Table 6.2 depicts the number of production lines covered by the tests within the different
test sets. The values in this table are given in pKLOC. The numbers in brackets depict the
pl per test in the test set. This table highlights that (in the mean) integration tests cover
more code (906.32 (IEEE), 902.78 (ISTQB), 427.74 (DEV)) than unit tests (26.09 (IEEE),
3.94 (ISTQB), 195.61 (DEV)). This also holds true if we compare the pl values per test in
the test set (0.04 (IEEE), 0.02 (ISTQB), 0.26 (DEV)) than integration tests (0.44 (IEEE),
0.40 (ISTQB), 0.47 (DEV)). Furthermore, these numbers have a lower standard deviation
than the absolute numbers for all test sets.

6.1.2. Analysis Procedure

We assess the difference in the execution time by evaluating the execution time per cov-
ered line of code for unit and integration tests. We decided against an analysis of the raw
execution time (i.e., execution time without normalization), as there would be a bias in the
data: integration tests cover more code and are therefore (mostly) slower than unit tests.
Therefore, we can assess which testing techniques are faster per covered production line
with our results. The analysis process is similar to the one presented in Section 5.2.1. Nev-
ertheless, different data is used and therefore we explain each step of the analysis in detail
in the following.

1. Gather the Data: We gather the exeSUM(X) and pl(X) for each X ∈ {UIEEE ,UIST QB,
IIEEE , IIST QB,UDEV , IDEV} for all projects.

2. Calculate Ratio: As we want to assess, if there are differences in the execution time
per covered production line of unit and integration tests, we need to calculate this ratio
first. Hence, we define ratEXE(X , p) := exeSUM(X(p))

pl(X(p)) as the ratio of the accumulated
execution time to the covered production lines of one test set X for one project p.
Furthermore, we define the set of all ratEXE ratios of all projects for a test set X as
RATEXE(X) := {ratEXE(X , p)|p ∈ Pro jects}.

3. Check Preconditions for Statistical Testing: We separately check for each of the
RATEXE(X) if the ratios inside these sets follow a normal distribution using the
Shapiro-Wilk test (Section 2.3.5.1). Moreover, we separately test for homoscedas-
ticity using the Brown-Forsythe test (Section 2.3.5.2) between RATEXE(UIEEE)
and RATEXE(IIEEE), RATEXE(UIST QB) and RATEXE(IIST QB), as well as between
RATEXE(UDEV ) and RATEXE(IDEV ). These tests are done to be able to choose the
correct statistical significance test in the next step.

4. Statistical Testing: Based on the results of the previous step, we chose a fitting two-
sided significance test (Section 2.3.1) to test for differences between the values within
RATEXE(UIEEE) and RATEXE(IIEEE), RATEXE(UIST QB) and RATEXE(IIST QB), as well
as RATEXE(UDEV ) and RATEXE(IDEV ). We choose a two-sided test here as we want to
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Figure 6.1.: Box-plot of the ratEXE ratio for unit and integration tests and the IEEE and
ISTQB definitions, as well as the DEV classification. The right box-plot is a
zoomed-in version of the left box-plot. The points in the plot represent the
concrete values for each project.

assess if there are any statistically significant differences at all. All concrete p-values
and test statistics for these tests are presented in Appendix C.2.

6.1.3. Results

Table 6.3 depicts that in the mean unit tests have a higher accumulated execution time per
pKLOC (1396.83 (IEEE), 1575.05 (ISTQB), 551.08 (DEV)) than integration tests (597.17
(IEEE), 585.03 (ISTQB), 517.46 (DEV)). Nevertheless, the unit test sets contain a higher
standard deviation (5258.70 (IEEE), 5943.81 (ISTQB), 894.58 (DEV)) than the integration
test sets (866.36 (IEEE), 844.83 (ISTQB), 789.52 (DEV)). This highlights that the common
wisdom that unit tests are faster (with respect to their execution time) cannot be supported
by our data. In fact, the data shows us the opposite: integration tests are faster per covered
line of code than unit tests.

The box-plot in Figure 6.1 shows the distribution of the values from Table 6.3. The box-
plot also shows that we have a wide range of values, as also highlighted by the standard
deviation in Table 6.3. Nevertheless, Figure 6.1 shows that most of the values are in the
lower part of the figure (i.e., between 0 and 500). Furthermore, the similar shape of the
boxes highlight that there are no large differences between unit and integration tests with
respect to their execution time per covered production line, neither for both definitions nor
for the developer classification.

As explained in Section 6.1.2, we additionally performed several statistical tests. These
tests showed, that none of the tested sets follow a normal distribution. The Brown-Forsythe
test showed, that all tested sets are homoscedastic. The U-statistic was not significant at the
.005 critical alpha level for neither of the tested sets. Therefore, we fail to reject H0 for all
of the tested sets and can conclude that there are no statistically significant differences in
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Project UIEEE IIEEE UIST QB IIST QB UDEV IDEV
commons-beanutils 236.62 55.52 141.07 70.36 0.00 70.54
commons-codec 330.99 162.64 492.35 263.39 232.87 856.69
commons-collections 129.94 6.30 45.34 25.10 44.38 2.14
commons-io 698.02 1669.28 1191.44 1300.81 2208.69 931.94
commons-lang 93.32 82.09 275.74 78.72 148.15 66.12
commons-math 34.43 136.36 57.59 134.60 128.65 160.22
druid 364.46 18.26 186.90 18.37 22.25 18.13
fastjson 21.94 16.29 103.03 16.24 13.30 16.42
google-gson 7.19 3.82 6.44 3.94 7.36 3.68
guice 183.91 12.23 250.00 12.33 21.80 10.54
HikariCP 253.44 2430.79 137.10 2425.48 1791.54 2469.18
jackson-core 410.27 34.22 708.46 34.24 10.57 37.92
jfreechart 61.25 8.17 87.70 8.22 7.77 12.79
joda-time 12.80 8.85 9.09 8.87 16.28 5.83
jsoup 58.73 15.79 62.02 15.84 10.42 24.65
mybatis-3 482.26 78.22 1157.72 78.39 218.74 45.75
zxing 1046.84 1341.38 56.41 1340.15 525.60 1381.21
ChatterBot 372.38 2273.87 66.76 2256.29 120.42 2533.39
csvkit 5.68 777.25 7.10 771.74 750.71 0.00
dpark 2159.76 2030.36 3309.39 2004.73 2035.47 0.00
mrjob 678.45 549.88 204.50 566.52 479.43 754.45
networkx 83.18 134.93 178.23 130.30 126.00 144.90
pyramid 7.00 13.70 10.83 13.50 12.18 16.46
python-telegram-bot 2376.05 2603.94 2377.17 2592.95 2719.96 1929.42
rq 38.49 490.48 294.29 456.82 393.77 1170.19
schematics 28.97 8.37 45.10 8.61 8.29 9.30
scrapy 27538.14 1160.53 31064.67 1159.18 2824.45 1299.42
Mean 1396.83 597.17 1575.05 585.03 551.08 517.46
StDev 5258.70 866.36 5943.81 844.83 894.58 789.52

Table 6.3.: ratEXE of each project for each test set.

the execution time per covered production line between unit and integration tests, neither
for both tested definitions nor for the developer classification.

Answer to RQ 2.1: Table 6.3 and Figure 6.1 highlight that there are no differences in
the execution time per covered production line between unit and integration tests. In
fact, Table 6.3 shows that (in the mean) the execution time per covered production line
is higher for unit tests than for integration tests. In addition, all statistical tests failed
to reject H0. Overall, we can conclude that there is no statistically significant differ-
ence between unit and integration tests in terms of their execution time per covered
production line of code.
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Project #Analyzed Tests #Unique Mutants
commons-beanutils 1175 11310
commons-codec 853 9059
commons-collections 5930 26464
commons-io 1138 9593
commons-lang 3978 36549
commons-math 6484 113469
druid 4127 123835
fastjson 4147 48289
google-gson 1012 8816
guice 688 10851
HikariCP 117 4967
jackson-core 774 34361
jfreechart 2174 96104
joda-time 4153 32951
jsoup 588 14171
mybatis-3 1043 17126
zxing 401 29592
Overall 38782 627507

Table 6.4.: Number of analyzed tests and unique mutants for each project.

6.2. Evaluation of RQ 2.2: Test Effectiveness

This RQ is concerned with the difference in the test effectiveness between unit and integra-
tion tests. We divided this question into two different parts: first, we analyze if there is an
overall difference in the test effectiveness between unit and integration tests. Second, we
analyze if there is a difference in the test effectiveness between unit and integration tests per
defect type. This analysis is done, as the standard literature agrees, that integration tests are
mostly detecting integration defects, while unit tests detect other kind of defects. Within
this RQ, we want to evaluate if this difference is reflected in actual open-source projects.
Therefore, we describe the data that we have used to analyze this RQ (Section 6.2.1), our
analysis methodology for both sub questions (Section 6.2.2), as well as the results of both
analyses (Section 6.2.3).

6.2.1. Data set Description

To evaluate this RQ, we make use of mutation testing (Section 2.2). Hence, we integrate
mutants into the source code of the projects to assess the defect detection capabilities of their
tests, according to the procedure explained in Section 4.2.6. Table 6.4 shows the number of
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unique mutants10 that are generated and the number of analyzed tests for each project. As
explained in Section 4.2.6 we were only able to gather the mutation detection capabilities
for Java projects, as a functioning and fitting Python mutation testing framework was not
available. The number of analyzed tests shown in Table 6.4 can be lower than the overall
number of tests for some projects (e.g., commons-beanutils or commons-collections), as our
mutation testing tool might not be able to run the tests in isolation, e.g., if tests fail when
they are executed alone as they depend on other tests that must be run beforehand).

We create two different data sets for the analysis of this RQ. These data sets represent the
different perspectives on the RQ at hand.

• ALL: This data set consists of the test results for all generated mutants. It is used to
assess the defect detection capabilities of unit and integration tests for a large data set
with many different defects that are integrated.

• DISJ: This data set consists of the test results for the set of disjoint mutants (Sec-
tion 4.2.6. It is used to gain insights into the defect detection capabilities of unit and
integration tests for defects that are “hard to kill” [42].

6.2.2. Analysis Procedure

We executed the following analysis for both data sets presented in Section 6.2.1.

1. Calculate the Number of Detected Defects: We sum up the number of all detected
defects. We consider a killed mutant as a detected defect. The results for test cases
that are executed with different parameters are combined and analyzed as one test
case. Furthermore, as the algorithm applied to create the disjoint mutant set is non-
deterministic (Algorithm 4.1), we repeated the analysis process using the disjoint
mutant set 10 times and took the average of all 10 runs for the number of detected
defects.

2. Calculate the Sum of Detected Defects for each Test Level:

• For analyzing the Overall Effectiveness: We check for each detected defect,
if it was detected by an unit or an integration test. We then sum up the number of
detected defects for each test set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB,UDEV , IDEV}
and each of the above mentioned data sets. DetectedDe f ects(X , p) is defined as
the number of defects that are detected by tests within a test set X for a project
p.

10The mutation testing tool that we used for our analysis (Section 4.2.6) is executed for each test case separately.
Therefore, all mutants are generated separately for each test case. But, the mutation testing framework pre-
selects mutants against which the test case should run by using the coverage data of the test case [67].
Hence, not all mutants are generated for each test case.
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• For analyzing the Defect-Specific Effectiveness We divide the detected de-
fects by their type (i.e., computation, data, interface, and logic/control) and sum
them up for each test set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB,UDEV , IDEV} sepa-
rately. DetectedDe f ects(X , t, p) is defined as the number of defects of type t
that are detected by tests within test set X for project p. This way, we can as-
sess if one test level is more effective in detecting a certain type of defect. We
excluded the defect type Other from our analysis, as it does not represent a real
defect type, but more a type of change that can not be classified as one of the
other types (Section 4.2.7).

3. Normalize by the Number of TestLOC: The resulting sums from the previous step
are normalized by the number of Thousand Test Lines of Code (TestKLOC) to create
scores. This normalization step is performed to include the effort that was put into
the creation of a test into our analysis. Hence, we define the following sets for each
test set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB,UDEV , IDEV}.

• SCORE(X) := {DetectedDe f ects(X ,p)
∑x∈X TestKLOC(X ,p) |p ∈ Pro jects} is a set that contains all nor-

malized scores for each project.

• SCORET (X , t) := {DetectedDe f ects(X ,t,p)
∑x∈X TestKLOC(X ,p) |p ∈ Pro jects} is a set that contains all

normalized scores for a defect type t for each project.

4. Check Preconditions for Statistical Testing: In the next step we separately check
for each SCORE set if they follow a normal distribution using the Shapiro-Wilk test.
Moreover, we check for equal variances using the Brown-Forsythe test, between the
SCORE sets of unit and integration tests for both definitions and the developer clas-
sification.

5. Statistical Testing: Based on the results of the previous step, we chose a fitting two-
sided significance test to test for differences between the SCORE sets of unit and
integration tests. Performing multiple statistical tests on the same data set could in-
crease the overall chance of false discoveries (Type 1 Errors) [115]. Therefore, we
decided to apply corrections for multiple comparisons. We use the Bonferroni cor-
rection (Section 2.3.7) for all of the statistical hypothesis tests that we made. Overall,
we use 30 statistical hypothesis tests: six for the analysis of the overall effectiveness,
where we check for differences in the scores for the ALL and DISJ data sets for the
IEEE and ISTQB definition, as well as the developer classification, and 24 for the
analysis of the defect-specific effectiveness. Within this analysis we reuse the ALL
and DISJ data sets and check for differences in the scores based on the defect type
(i.e., computation, data, interface, logic/control), which results in 24 different tests
(two data sets * 4 defect types * 3 definitions/classifications). Hence, the adjusted
significance level is α∗ = 0.005/30 = 0.0002. All concrete p-values and test statis-
tics for these tests are presented in Appendix C.2.



6. Quantitative Evaluation of the Differences between Unit and Integration Tests 104

6.2.3. Results

Within this section we present the results of our analysis. This includes the results of the
analysis of the overall test effectiveness of unit and integration tests (Section 6.2.3.1), as
well as the results of the test effectiveness of unit and integration tests separated by defect
type (Section 6.2.3.2).

6.2.3.1. Overall Effectiveness of Unit and Integration Tests

Table 6.5 shows the number of defects that are detected by unit tests, integration tests, and
both, together with their score (i.e., number of detected defects per TestKLOC) for the ALL
and DISJ data sets, if the tests are classified by the IEEE definition. In addition, the mean
and standard deviation is shown for each column.

Table 6.5 shows that there are projects, where integration tests detect more defects than
unit tests (e.g., commons-beanutils, commons-collections), but also projects where unit tests
detect more defects than integration tests (e.g., commons-codec). This holds true for both
data sets, i.e., ALL and DISJ. There are nine of overall 17 projects for the ALL data set,
where the integration test scores are higher than the unit test scores. This is also reflected
in the mean of the scores (479.43 for unit test scores, 573.57 for integration test scores).
However, there is a large standard deviation within both populations (320.81 for unit test
scores, 369.63 for integration test scores). The picture is different for the DISJ data set.
Here, there are only five projects (i.e., fastjson, google-gson, HikariCP, joda-time, and
jsoup) where the integration test scores are higher than the unit test scores. Furthermore,
the mean of the scores for the DISJ data set are higher for unit tests than for integration
tests (5.66 for unit test scores, 2.42 for integration test scores). Nevertheless, the results are
also influenced by the large standard deviation that both samples have (7.72 unit test scores,
2.80 integration test scores). There are also mutants that are detected by both test types. For
the ALL data set 2129.71 mutants are on average detected by both test types and 121.12
mutants for the DISJ data set. Interestingly, there are proportionately more mutants that are
detected by both test types for the DISJ data set, if we take the number of all mutants in the
data set into account.

We performed several tests for the set of scores. For the ALL data set the unit test scores,
as well as the integration test scores follow a normal distribution. In addition, both score
sets have equal variances. The t-test (Section 2.3.5.3) showed, that the t-statistic is not
significant at the .0002 critical alpha level. Therefore, we conclude that while there is a
difference in the mean of the scores, this difference is not statistically significant.

For the DISJ data set we found that only the integration test scores follow a normal dis-
tribution. In addition, both samples have equal variances. However, the U-statistic was not
significant at the .0002 critical alpha level. Therefore, we conclude that there is no statisti-
cally significant difference in the defect detection capabilities between unit and integration
tests for the DISJ data set using the IEEE definition.
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Table 6.6 shows the number of defects that are detected by unit tests, integration tests, and
both, together with their score (i.e., number of detected defects per TestKLOC) for the ALL
and DISJ data sets, if the tests are classified by using the ISTQB definition. In addition, the
mean and standard deviation is shown for each column. Table 6.6 shows that there is only
one project where the unit tests detect more defects than the integration tests for the ALL
data set (i.e., commons-lang). For all the other projects and the ALL data set the integration
tests detect more defects than the unit tests. Nevertheless, there are some projects where the
unit test score is higher than the integration test score (e.g., commons-beanutils, commons-
collections, commons-io). This is also highlighted by the mean of the scores for the ALL
data set (372.23 for unit test scores, 609.73 for integration test scores). However, these
results are influenced by the high standard deviation (289.18 for unit test scores, 387.13
for integration test scores). This is different for the DISJ data set, as shown in Table 6.6.
There are now two projects, where unit tests detect more defects than integration tests (i.e.,
commons-codec and commons-lang). However, a comparison of the scores shows that the
unit test scores are higher than the integration test scores for 12 projects. Furthermore, for
the DISJ data set the mean of the scores is higher for unit tests than for integration tests
(7.72 for unit tests, 3.67 for integration tests). Nevertheless, this is also influenced by the
high standard deviation (9.27 for unit tests, 3.63 for integration tests). On average, 1120.53
mutants are detected by both test types for the ALL and 81.76 mutants for the DISJ data
sets. These numbers are lower than the numbers presented in Table 6.5.

We performed several tests for the sets of scores. For the ALL data set we found that
the unit test scores, as well as the integration test scores follow a normal distribution. Fur-
thermore, they both have equal variances. However, the t-statistic is not significant at the
.0002 critical alpha level. Hence, we conclude that while there is a difference in the mean
of the scores, this difference is not statistically significant. These results are similar to the
tests that we performed on the scores for the DISJ data set. With regard to the scores, the
unit tests and the integration tests scores follow a normal distribution and both samples have
equal variances. The t-statistic is not significant at the .0002 critical alpha level. Hence, we
conclude that while there is a difference in the mean of the scores, this difference is not
statistically significant.

Table 6.7 shows the number of defects that are detected by unit tests, integration tests,
and both, together with their score (i.e., number of detected defects per TestKLOC) for the
ALL and DISJ data sets, if the tests are classified according to the developer classification.
In addition, the mean and standard deviation is shown for each column. Table 6.7 shows
that there are five of overall 17 projects where unit tests detect more defects than the integra-
tion tests for the ALL data set (i.e., commons-codec, commons-collections, commons-lang,
commons-math, jfreechart). For all the other projects and the ALL data set the integration
tests detect more defects than the unit tests. Furthermore, on average 5881.76 defects are
detected by both test types for the ALL data set. There are nine projects, where the unit test
scores for the ALL data set depicted in Table 6.7 are higher than the integration test scores.
That unit and integration tests have similar scores for the ALL data set over the projects
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can be seen on the mean, which is close together (i.e., 430.64 for the unit test scores and
445.87 for the integration test scores). However, these results are influenced by the high
standard deviation (294.86 for unit test scores, 377.33 for integration test scores). The pic-
ture is different for the DISJ data set. The number of projects, where unit tests detect more
defects than integration tests is now similar to the number of projects where it is vice versa
(i.e, 8:9). In addition, there are on average 167.35 defects found by both test types for
the DISJ data set, which is larger compared to the ALL data set. However, a comparison
of the scores shows that the unit test scores are higher than the integration test scores for
13 projects. Furthermore, the difference of the mean scores (i.e., 3.16 for unit tests, 1.26
for integration tests) between unit and integration tests is now larger for the DISJ data set.
Nevertheless, this is also influenced by the standard deviation (4.52 for unit tests, 1.26 for
integration tests).

We performed several tests for the sets of scores. For the ALL data set we found that the
unit test scores, as well as the integration test scores follow a normal distribution. Further-
more, they both have equal variances. However, the t-statistic is not significant at the .0002
critical alpha level. Hence, we conclude that there is no statistically significant difference in
the mean of the scores. These results are similar to the tests that we performed on the scores
for the DISJ data set. With regard to the scores, only the integration tests scores follow a
normal distribution, but both samples have equal variances. The U-statistic is not significant
at the .0002 critical alpha level. Hence, our result is the same as with the ALL data set, i.e.,
there is no statistically significant difference in the defect detection capabilities between
unit and integration tests, if they are classified according to the developer classification.

Answer to RQ 2.2 (Overall Effectiveness): Our results highlighted in tables 6.5, 6.6,
and 6.7 and the statistical tests that we performed show that there is no statistically
significant difference in the overall effectiveness between unit and integration tests.
Neither for any of the defect data sets (i.e., ALL and DISJ), nor for any of the tested
definitions (i.e., IEEE and ISTQB) or the developer classification. Hence, neither the
test level definition used nor the set of mutants have an influence on the results. How-
ever, our data shows that unit tests are (in the mean) more effective in detecting the
“hard to kill” mutants than integration tests, but not significantly. This holds true for
both test level definitions. This is in line with Papadakis et al. [42] who stated that
mutation-based assessment metrics can change if disjoint mutants are considered. Fur-
thermore, our data indicates that there are differences between projects (highlighted by
the large standard deviation), as some projects have unit tests that are more effective
(e.g., commons-lang), while in other projects the integration tests are more effective
(e.g., commons-math). Moreover, we also see that there are mutants that are detected
by both test types, while the numbers differ between the analyzed test sets. Hence, it
seems that both types test similar parts in the software.



6. Quantitative Evaluation of the Differences between Unit and Integration Tests 110

COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 3.83 2.29 6.29 3.30 38.39 32.44 69.31 44.69
commons-codec 71.27 22.01 134.42 66.02 252.44 344.19 389.12 448.94
commons-collections 2.24 1.25 2.98 1.11 8.31 7.05 20.08 13.62
commons-io 11.01 15.09 20.12 19.34 57.94 64.77 101.64 104.29
commons-lang 24.59 17.06 61.36 44.46 125.25 162.62 354.29 276.36
commons-math 28.39 38.68 41.90 76.47 86.57 129.81 195.15 215.08
druid 133.33 57.56 169.23 55.92 194.87 396.17 558.97 501.95
fastjson 31.50 50.47 66.57 109.65 63.01 213.72 263.72 328.86
google-gson 66.36 17.09 59.04 14.22 65.45 115.61 174.37 157.17
guice 11.32 37.93 18.87 31.05 226.42 223.94 362.26 264.82
HikariCP 37.80 30.61 65.29 28.73 151.20 125.68 109.97 163.13
jackson-core 87.76 153.07 136.73 154.32 293.88 195.42 561.22 589.97
jfreechart 36.34 76.47 71.16 92.93 75.32 290.01 281.98 593.41
joda-time 7.47 13.76 19.93 21.91 65.12 100.98 87.19 158.89
jsoup 5.67 32.45 19.86 58.78 41.13 280.33 114.89 372.07
mybatis-3 15.87 13.89 18.63 12.25 193.24 119.15 204.28 116.21
zxing 41.56 81.83 190.54 211.46 203.32 282.42 435.42 611.12
Mean 36.25 38.91 64.88 58.94 125.99 181.43 251.99 291.80
StDev 35.45 37.67 58.56 56.96 86.22 110.24 168.34 197.19

Table 6.8.: Scores for unit and integration tests, classified by the IEEE definition, for the
ALL data set and separated by defect type.

6.2.3.2. Defect-Specific Effectiveness of Unit and Integration Tests

Tables 6.8 and 6.9 show the scores (i.e., number of detected defects per TestKLOC) of unit
and integration tests, separated by the type of defect that they have detected for the IEEE
definition, for the ALL and DISJ data sets respectively. In addition, the mean and standard
deviation is shown for each column of the tables. Additional tables and visualizations,
including the number of detected defects separated by test level and defect type, can be
found in Appendix D.

Table 6.8 depicts the scores for unit and integration tests, as classified by the IEEE defi-
nition, for the data set ALL. This table highlights that the mean scores of integration tests
are higher than the mean scores of unit tests for each defect type, except DATA defects.
However, they also have a higher standard deviation. This data shows that integration tests
are more effective (i.e., the scores are higher) for any defect type, except DATA defects.
Some of the differences between the projects are made more evident in Table 6.8. For some
projects, the results are as expected (i.e., integration tests are more effective in detecting
interface defects, while unit tests are more effective in detecting other defects), while for
other projects it is vice versa (e.g., jackson-core).

Table 6.9 shows the scores for unit and integration tests, as classified by the IEEE defini-
tion, for the data set DISJ. This table shows a different picture than Table 6.8. Integration
tests are less effective in detecting any defect type than unit tests, i.e., the mean of the
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COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 0.09 0.00 0.09 0.02 0.18 0.09 0.55 0.38
commons-codec 0.97 1.76 0.97 0.00 2.60 2.64 7.14 1.76
commons-collections 0.00 0.01 0.06 0.00 0.14 0.03 0.35 0.11
commons-io 0.23 0.15 0.40 0.15 1.33 0.15 1.67 0.68
commons-lang 0.54 0.09 1.03 0.28 2.42 0.46 7.82 0.28
commons-math 0.18 0.30 0.09 0.16 0.37 0.17 1.85 1.02
druid 3.42 0.66 3.42 0.32 6.84 1.64 17.09 2.81
fastjson 0.00 1.02 0.00 1.21 0.00 2.54 2.03 5.95
google-gson 0.92 0.00 0.00 0.27 0.00 0.18 0.92 0.81
guice 0.00 0.37 0.00 0.44 0.00 1.11 3.77 1.77
HikariCP 0.00 0.00 0.00 0.17 0.00 0.17 0.00 0.17
jackson-core 0.00 0.34 0.00 0.06 2.04 0.23 10.20 0.74
jfreechart 1.51 0.35 0.76 0.00 1.14 0.54 4.92 1.31
joda-time 0.00 0.11 0.00 0.17 0.71 0.60 1.42 2.65
jsoup 0.00 0.00 0.00 0.08 0.00 0.08 0.00 0.08
mybatis-3 0.00 0.14 0.00 0.00 2.07 0.03 0.69 0.07
zxing 0.64 0.07 0.00 0.14 0.00 0.00 0.64 0.29
Mean 0.50 0.32 0.40 0.20 1.17 0.63 3.59 1.23
StDev 0.88 0.46 0.86 0.29 1.74 0.85 4.62 1.49

Table 6.9.: Scores for unit and integration tests, classified by the IEEE definition, for the
DISJ data set and separated by defect type.

integration test scores are lower than the mean of the unit test scores. However, the stan-
dard deviation of the integration test scores is lower than the standard deviation of the unit
test scores. Nevertheless, Table 6.9 also depicts that some defects are only detected by
integration tests (e.g., interface defects for the projects fastjson, google-gson, guice, Hikar-
iCP, jsoup) or only unit tests (e.g., computation defects for the projects commons-beanutils,
google-gson).

We performed significance tests between the scores of unit and integration tests for each
defect type and for the data sets ALL and DISJ. None of the test statistics was significant for
the .0002 critical alpha level. Therefore, we can conclude that neither unit nor integration
tests are more effective in detecting any kind of defect type, if we classify our tests according
to the IEEE definition.

Tables 6.10 and 6.11 show the scores (i.e., number of detected defects per TestKLOC)
of unit and integration tests, separated by the type of defect that they have detected for the
ISTQB definition, for the ALL and DISJ data sets, respectively. In addition, the mean and
standard deviation is shown for each column of the tables. Additional tables, including
the number of detected defects separated by test level and defect type can be found in
Appendix D.

Table 6.10 depicts the scores for unit and integration tests, as classified by the ISTQB
definition, for the data set ALL. This table highlights that the mean scores of integration
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COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 6.40 3.21 11.73 4.14 29.85 38.14 69.30 56.62
commons-codec 28.88 105.70 81.49 176.17 158.23 301.80 271.36 542.16
commons-collections 5.58 1.39 7.80 1.25 18.27 7.40 50.55 14.41
commons-io 38.51 11.17 43.92 19.26 81.83 67.71 145.61 115.38
commons-lang 32.16 17.59 79.33 42.31 140.17 134.92 461.16 253.48
commons-math 12.24 41.24 20.31 79.90 45.91 135.89 133.83 231.35
druid 112.09 58.03 147.25 56.56 129.67 397.07 443.96 504.15
fastjson 32.21 54.15 61.19 117.11 35.43 217.56 331.72 351.91
google-gson 13.10 27.25 30.05 21.83 43.14 115.31 89.37 172.30
guice 0.00 39.10 0.00 33.49 70.18 231.83 105.26 280.11
HikariCP 34.01 31.38 54.42 30.21 136.05 129.67 88.44 165.72
jackson-core 70.12 153.42 158.54 154.77 314.02 197.08 585.37 594.11
jfreechart 28.88 76.13 67.38 92.89 67.88 286.20 272.04 588.50
joda-time 2.09 14.02 14.61 22.81 31.32 102.18 96.03 163.27
jsoup 6.19 33.61 18.56 60.12 37.11 284.61 78.35 377.75
mybatis-3 15.44 24.10 15.44 18.00 88.80 177.41 71.43 186.46
zxing 22.44 84.52 71.53 227.90 70.13 303.14 192.15 662.35
Mean 27.08 45.65 51.97 68.16 88.12 184.00 205.05 309.41
StDev 28.03 40.18 46.39 65.68 72.66 106.87 163.18 202.59

Table 6.10.: Scores for unit and integration tests, classified by the ISTQB definition, for the
ALL data set and separated by defect type.

tests are higher than the mean scores of unit tests for each defect type. However, they also
have a higher standard deviation. This data shows that integration tests are more effective
(i.e., the scores are higher) for any defect type. Moreover, for some projects the results are
as expected (i.e., integration tests are more effective in detecting interface defects, while unit
tests are more effective in detecting other defects), while for other projects it is vice versa
(e.g., jackson-core). Overall, the results for tables 6.8 and 6.10 are similar, highlighting that
the used definition (i.e., IEEE or ISTQB) does not has an influence on the results.

Table 6.11 shows the scores for unit and integration tests, as classified by the ISTQB
definition, for the data set DISJ. This table shows a different picture than Table 6.10, but
a similar than Table 6.9. Integration tests are less effective in detecting any defect type
than unit tests, i.e., the mean of the integration test scores are lower than the mean of the
unit test scores. However, the standard deviation of the integration test scores is lower than
the standard deviation of the unit test scores. The similarity between tables 6.9 and 6.11
indicates that the test level definition being used (i.e., IEEE or ISTQB) has no influence
on our data. Nevertheless, Table 6.11 highlights that some defects are only detected by
integration tests (e.g., interface defects for the projects commons-beanutils, fastjson, google-
gson, guice, HikariCP, jsoup, zxing) or only unit tests (e.g., data defects for the projects
commons-codec, commons-collections).

We performed significance tests between the scores of unit and integration tests for each
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COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 1.07 0.06 0.00 0.06 0.00 0.29 1.07 1.10
commons-codec 0.79 1.89 1.98 0.00 1.98 1.68 9.10 3.36
commons-collections 0.00 0.01 0.25 0.00 0.25 0.05 1.08 0.16
commons-io 0.30 0.33 1.50 0.18 1.50 1.47 4.21 1.98
commons-lang 0.78 0.25 1.55 0.32 2.64 1.31 11.81 1.35
commons-math 0.28 0.38 0.00 0.22 0.83 0.28 4.73 1.51
druid 4.40 0.66 4.40 0.35 8.79 1.66 19.78 2.85
fastjson 0.00 1.81 0.00 1.78 0.00 3.14 6.44 9.24
google-gson 0.00 0.17 0.00 0.42 0.00 0.25 0.77 0.92
guice 0.00 0.51 0.00 0.44 0.00 1.67 0.00 2.48
HikariCP 0.00 0.00 0.00 0.17 0.00 0.67 0.00 0.33
jackson-core 0.00 0.39 0.00 0.06 3.05 0.23 6.10 1.47
jfreechart 2.03 0.34 1.01 0.03 1.01 0.72 6.08 1.50
joda-time 0.00 0.13 0.00 0.20 4.18 0.70 8.35 3.24
jsoup 0.00 0.17 0.00 0.25 0.00 0.42 0.00 0.50
mybatis-3 0.00 0.17 0.00 0.07 3.86 1.15 1.93 1.32
zxing 1.40 0.20 0.00 0.14 0.00 0.07 0.00 0.41
Mean 0.65 0.44 0.63 0.27 1.65 0.93 4.79 1.98
StDev 1.14 0.56 1.18 0.41 2.34 0.82 5.33 2.11

Table 6.11.: Scores for unit and integration tests, classified by the ISTQB definition, for the
DISJ data set and separated by defect type.

defect type and for the data sets ALL and DISJ. None of the test statistics was significant for
the .0002 critical alpha level. Therefore, we can conclude that neither unit nor integration
tests are more effective in detecting any kind of defect type, if we classify our tests according
to the ISTQB definition. This is in line with our results for the IEEE definition.

Tables 6.12 and 6.13 show the scores (i.e., number of detected defects per TestKLOC)
of unit and integration tests, separated by the type of defect that they have detected for
developer classification and the ALL and DISJ data sets, respectively. In addition, the
mean and standard deviation is shown for each column of the tables. Additional tables,
including the number of detected defects separated by test level and defect type can be
found in Appendix D.

Table 6.12 depicts the scores for unit and integration tests, as classified by the developers
of the projects, for the data set ALL. This table shows a different picture than tables 6.8
and 6.10. Here, the mean scores of unit tests is higher for computation defects, while the
mean scores of integration tests is higher for data and interface defects. The difference
between the mean scores of unit and integration tests for logic/control defects is only .69.
However, these scores also have the highest standard deviation. This data shows a mixed
picture, i.e., it seems that unit tests are better for certain defect types than integration tests
and vice versa, with the exception of logic/control defects. This mixed picture can also be
seen, if we have a closer look at the differences between projects for each defect type. For



6. Quantitative Evaluation of the Differences between Unit and Integration Tests 114

COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 0.00 3.31 0.00 4.78 0.00 38.89 0.00 59.95
commons-codec 56.28 57.38 102.14 211.48 215.90 400.00 335.77 544.26
commons-collections 2.19 0.12 2.23 0.01 10.16 0.83 21.37 1.38
commons-io 28.79 9.24 34.65 17.37 83.70 61.94 128.36 109.01
commons-lang 27.59 8.82 58.58 44.11 136.90 126.21 365.36 240.89
commons-math 32.08 15.70 65.23 48.06 113.57 76.61 184.08 106.49
druid 45.93 43.39 39.46 43.50 158.50 331.05 221.25 396.03
fastjson 11.72 45.03 20.60 94.89 85.23 163.01 191.05 270.12
google-gson 51.89 12.46 57.30 11.88 115.68 81.04 224.86 109.63
guice 7.18 13.00 9.76 16.30 47.37 112.44 80.10 135.04
HikariCP 60.81 9.28 92.34 9.81 261.26 61.29 240.99 69.69
jackson-core 113.38 131.21 112.31 136.64 192.91 162.94 473.94 497.28
jfreechart 69.47 12.01 91.32 28.30 235.58 187.82 547.57 183.53
joda-time 8.26 4.39 18.88 10.70 66.29 67.07 127.34 82.09
jsoup 7.48 32.00 21.46 46.96 119.05 200.51 125.67 273.71
mybatis-3 5.17 6.10 5.88 6.15 64.84 49.65 68.09 49.50
zxing 28.89 81.77 157.04 211.57 209.80 270.36 413.32 608.77
Mean 32.77 28.54 52.30 55.44 124.51 140.69 220.54 219.85
StDev 30.51 34.74 45.53 68.48 78.09 109.51 158.64 187.09

Table 6.12.: Scores for unit and integration tests, classified according to the developers, for
the ALL data set and separated by defect type.

example, there are 9 projects where the unit test scores are higher than the integration tests
scores for interface defects and 8 projects where it is vice versa. Overall, the results for
tables 6.8, 6.10, and 6.12 are different, highlighting that there is a difference between the
actual definitions of the IEEE and ISTQB and current development practices.

Table 6.13 shows the scores for unit and integration tests, as classified by the developers
of the projects, for the data set DISJ. This table shows a different picture than Table 6.12,
but a similar than tables 6.9 and 6.11. Integration tests are less effective in detecting any
defect type than unit tests, i.e., the mean of the integration test scores are lower than the
mean of the unit test scores. However, the standard deviation of the integration test scores is
lower than the standard deviation of the unit test scores. The similarity between tables 6.9,
6.11, and 6.13 indicates that the test level definition being used (i.e., IEEE, ISTQB, or
reusing the developer classification) has no influence on our data. Nevertheless, Table 6.13
highlights that some defects are only detected by integration tests (e.g., interface defects
for the projects commons-beanutils, fastjson, google-gson, guice, zxing) or only unit tests
(e.g., data defects for the projects commons-codec, commons-collections, commons-math,
joda-time).

We performed significance tests between the scores of unit and integration tests for each
defect type and for the data sets ALL and DISJ. None of the test statistics was significant for
the .0002 critical alpha level. Therefore, we can conclude that neither unit nor integration
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COMP. DATA INT. L/C
Project UT IT UT IT UT IT UT IT
commons-beanutils 0.00 0.09 0.00 0.05 0.00 0.32 0.00 1.45
commons-codec 1.34 0.00 0.74 0.00 2.38 3.28 10.42 0.00
commons-collections 0.02 0.00 0.02 0.00 0.10 0.00 0.32 0.04
commons-io 0.73 0.40 0.85 0.18 3.54 0.89 2.93 2.14
commons-lang 0.90 0.00 1.19 0.21 2.55 1.35 8.27 1.87
commons-math 0.15 0.00 0.12 0.00 0.18 0.08 0.86 0.16
druid 0.32 0.05 0.32 0.03 0.65 0.18 1.46 0.27
fastjson 0.00 0.12 0.00 0.22 0.00 0.37 0.71 1.13
google-gson 0.36 0.00 0.00 0.10 0.00 0.10 0.72 0.19
guice 0.00 0.10 0.00 0.10 0.00 0.19 0.29 0.29
HikariCP 0.00 0.00 0.00 0.18 2.25 0.18 0.00 0.18
jackson-core 0.54 0.19 0.00 0.00 0.54 0.12 1.61 0.99
jfreechart 0.76 0.00 0.28 0.86 0.70 0.00 2.57 0.00
joda-time 0.04 0.00 0.04 0.00 0.19 0.02 0.93 0.02
jsoup 0.00 0.00 0.00 0.00 0.25 0.23 0.12 0.00
mybatis-3 0.00 0.00 0.00 0.00 0.30 0.00 0.20 0.00
zxing 0.00 0.34 0.00 0.34 0.00 0.21 0.00 1.51
Mean 0.30 0.08 0.21 0.13 0.80 0.44 1.85 0.60
StDev 0.41 0.13 0.37 0.21 1.13 0.81 2.98 0.74

Table 6.13.: Scores for unit and integration tests, classified according to the developers, for
the DISJ data set and separated by defect type.

tests are more effective in detecting any kind of defect type, if we reuse the developer
classification. This is in line with our results for the IEEE and ISTQB definition.

Answer to RQ 2.2 (Defect-Specific Effectiveness): Tables 6.8, 6.9, 6.10, 6.11, 6.12,
and 6.13 indicate that there are differences in the effectiveness between unit and in-
tegration tests for different defect types, if we compare the mean scores of unit and
integration tests. However, the results are different from project to project. Further-
more, we found that the differences are minimal, if we reuse the developer classifica-
tion for our separation into unit and integration tests. For some projects, our results are
as expected, as integration tests are more effective in detecting interface defects, but
for some projects it is vice versa (i.e., integration tests are more effective in detecting
any kind of defect except interface defects). Furthermore, our results are not consistent
over the ALL and DISJ data sets. This is an indication that unit tests are more effec-
tive in detecting “hard to kill” defects, which is in line with the result of our overall
effectiveness analysis. However, while the mean scores are different between unit and
integration tests, our statistical tests highlight that these differences are not statistically
significant. Interestingly, our results are consistent for the different test level defini-
tions that we used, i.e., the definitions of the IEEE and ISTQB, as well as the developer
classification, indicating that the definition being used has no influence on our results.
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6.3. Evaluation of RQ 2.3: Test Defect-Locality

One difference mentioned in the literature is that the source of the defect can be easier
identified if a unit test failed instead of, e.g., an integration test. We evaluate this difference
within this RQ by using our defect-locality metric (Section 4.2.8) that is designed as a
proxy metric to evaluate this difference. Therefore, we present our data set description
(Section 6.3.1), our analysis procedure (Section 6.3.2), as well as our results (Section 6.3.3)
for this RQ within this section.

6.3.1. Data set Description

For the analysis of this RQ, we reuse the data set described in Section 6.2.1, as our approach
to extract the defect-locality needs the collected mutation data (Section 4.2.8).

6.3.2. Analysis Procedure

For all of the mutant data sets presented in Section 6.2.1, we executed the following analysis
process.

1. Calculate the Average Defect-Locality: As a first step, we calculate the average
defect-locality for each test set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB,UDEV , IDEV} by
summing up the dl(x,d) values for each x ∈ X and d ∈ {ALL,DISJ} and dividing
it by the number of dl values that we aggregate. These values are summarized in dif-
ferent sets that are defined as DLAV G(X) := {dlAV G(X , p)|p ∈ Pro jects} for each test
set X ∈ {UIEEE , IIEEE ,UIST QB, IIST QB,UDEV , IDEV}, where dlAV G(X , p) is the average
of all defect-locality values for all x ∈ X and all mutants (i.e., the ALL or DISJ set)
for a project p.

2. Check Preconditions for Statistical Testing: We check for each DLAV G set if it
follows a normal distribution using the Shapiro-Wilk test. Moreover, we check
for equal variances between DLAV G(UIEEE) and DLAV G(IIEEE), DLAV G(UIST QB) and
DLAV G(IIST QB), as well as DLAV G(UDEV ) and DLAV G(IDEV ) using the Brown-Forsythe
test.

3. Statistical Testing: Based on the results of the previous step, we chose a fit-
ting one-sided significance test to test for differences between DLAV G(UIEEE) and
DLAV G(IIEEE), DLAV G(UIST QB) and DLAV G(IIST QB), as well as DLAV G(UDEV ) and
DLAV G(IDEV ) to evaluate if the average defect-locality of unit tests is smaller than the
average defect-locality of integration tests.

4. Effect Size: If our statistical test showed a difference in the defect-locality between
unit and integration tests, we assess the effect size by calculating Cohen’s d (Sec-
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tion 2.3.6) between them to measure the practical relevance of the observed signifi-
cant result.

6.3.3. Results

Table 6.14 summarizes the dlAV G values for each analyzed test set and the ALL and DISJ
mutant data sets. For the ALL data set, the results show that, except for one project (i.e.,
commons-lang), the dlAV G values for unit tests are always lower than for integration tests.
This holds true for both definitions. For the developer classification, there are two projects
where it is vice versa, i.e., commons-codec and commons-io. The mean is lower for unit
tests (i.e., 2.99 (IEEE), 1.88 (ISTQB), and 5.94 (DEV)) than for integration tests (i.e., 7.63
(IEEE), 7.67 (ISTQB), and 11.01 (DEV)) for both definitions and the developer classifica-
tion. However, the standard deviation is rather high for all integration test sets (i.e., 4.10
(IEEE), 3.99 (ISTQB), and 7.62 (DEV)) compared to the unit test sets (1.96 (IEEE), 0.58
(ISTQB), and 7.62 (DEV)). This gives a first hint, that the defect-locality is (on average)
smaller for unit tests resulting in a clearer pinpointing of defects, at least for the ALL data
set.

The results for the DISJ mutant data set, depicted in Table 6.14, are similar to the ALL
data set described above. The unit tests of the commons-lang project have a higher average
defect-locality than its integration tests. However, this is the only project where this is
the case for the IEEE and ISTQB definitions. For the developer classification, the projects
commons-codec and commons-collections have unit tests, where the dlAV G values are higher
for their unit than for their integration tests. The mean shows, that the defect-locality of
unit tests is on average lower (i.e., 2.78 (IEEE), 1.85 (ISTQB), and 5.25 (DEV)) than for
integration tests (i.e., 7.15 (IEEE), 7.18 (ISTQB), and 10.24 (DEV)) for both definitions and
the developer classification, which is a similar result as above. Furthermore, the standard
deviation of the dlAV G values for the unit test sets is lower (i.e., 1.61 (IEEE), 0.50 (ISTQB),
and 3.08 (DEV)) than for the integration test sets (i.e., 3.47 (IEEE), 3.37 (ISTQB), and 6.68
(DEV)).

Figure 6.2 shows box-plots of the dlAV G values. The left part of Figure 6.2 shows the
dlAV G values for the ALL mutant data set and the right part the values for the DISJ data
sets. This figure indicates, that the general trend is similar. The box-plots highlight that the
median is always lower for unit tests than for integration tests, regardless of the test set or
mutant data set. Furthermore, the 25%-quantile of the integration test box-plot is always
higher than the 75%-quantile of the unit test box-plot. This indicates that unit tests have
indeed a smaller defect-locality than integration tests.

While we do see the same difference in the data for both mutant data sets (i.e., ALL
and DISJ) in Table 6.14 and visually in Figure 6.2, we need to assess it statistically using
statistical hypothesis tests. The concrete p-values and test statistics for each statistical test
are reported in Appendix C.2. The Shapiro-Wilk tests showed, that all sets for both mu-
tant data sets except the DLAV G(UIEEE) set follow a normal distribution. However, only the
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Figure 6.2.: Box-plot of the dlAV G values for unit and integration tests and the IEEE and
ISTQB definition, as well as the DEV classification for the ALL (left) and DISJ
(right) mutant data set. The points in the plot represent the concrete values for
each project.

DLAV G(UIEEE) and DLAV G(IIEEE), as well as the DLAV G(UDEV ) and DLAV G(IDEV ) sets have
equal variances for both mutant data sets, as the Brown-Forsythe test shows. Therefore,
we apply the Mann-Whitney-U test for the DLAV G(UIEEE) and DLAV G(IIEEE), as well as
the DLAV G(UDEV ) and DLAV G(IDEV ) sets for both mutant data sets. The Welch t-test (Sec-
tion 2.3.5.3) is applied on the DLAV G(UIST QB) and DLAV G(IIST QB) sets for both mutant data
sets.

For the DLAV G(UIEEE) and DLAV G(IIEEE) and both mutant data sets the U-statistic is
significant at the 0.005 alpha level. Moreover, the t-statistic is significant at the 0.005
alpha level for the DLAV G(UIST QB) and DLAV G(IIST QB) and both mutant data sets. Hence,
we can conclude that there is a statistically significant difference in the defect-locality for
IEEE and ISTQB unit and integration tests using both mutant data sets. However, for the
DLAV G(UDEV ) and DLAV G(IDEV ) and both mutant data sets the U-statistic is not significant
at the 0.005 alpha level.

In addition, we calculated Cohen’s d for the sets, where we found significant differences.
The effect size is “very large” for the IEEE definition and both mutant data sets (d = 1.4437
(ALL) and d = 1.6160 (DISJ)), while it is “huge” for the ISTQB definition and both mutant
data sets (d = 2.0339 (ALL) and d = 2.2046 (DISJ)).

Answer to RQ 2.3: Table 6.14, as well as Figure 6.2 indicate that there are differences
in the median and the mean between unit and integration tests for both definitions, as
well as the developer classification, and regardless of the mutant data set being used.
Our statistical tests (including “very large” and “huge” effect sizes) illustrate that there
is indeed a difference between unit and integration tests regarding their average defect-
locality for both definitions. However, the differences in the defect-locality between
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unit and integration tests for the developer classification are not significant. For the
IEEE and ISTQB definition, we can confirm that unit tests have (on average) a lower
defect-locality than integration tests and therefore the pinpointing of bugs is easier, as
developers do not need to go through a very big call stack. This difference can not be
confirmed for the developer classification.



7. Qualitative Evaluation of the Differences
between Unit and Integration Tests

We assessed relevant research literature, developer comments, and further information to
extract indications regarding the question if the differences between unit and integration
tests are still valid nowadays. We evaluated the resources that we found (e.g., blog posts
that highlight developer opinions) to gain an understanding of the research and industrial
landscape (i.e., the research and practical view) and to create a holistic view on the RQs in
this thesis.

Within the following sections, we present the results of our qualitative evaluation. Sec-
tion 7.1 summarizes our results regarding the differences in the test execution automation
between unit and integration tests. The results regarding the different test objectives are
presented in Section 7.2. In Section 7.3, we summarize the results regarding the differences
in the costs of unit and integration tests.

7.1. Evaluation of RQ 2.4: Test Execution Automation

Test automation is a broad field, including the generation of tests, automatic prioritization of
tests, as well as the automatic test selection. Within this section we focus on the test execu-
tion automation. Test execution automation tools provide means for the automatic execution
and result comparison of tests. Hence, the expected result is automatically compared to the
results calculated by the test object and reported back to the developer.

The standard literature points out that unit tests should be automated [11] and are indeed
often automated [15]. However, we could not find any statements in the standard literature
regarding the test execution automation of integration tests. Within this section, we present
the research view regarding the test execution automation of unit and integration tests in
Section 7.1.1. The practical view on this question is presented in Section 7.1.2. Finally, in
Section 7.1.3, we summarize our results and give an answer to the RQ if there is a difference
in the test execution automation between unit and integration tests.

7.1.1. Scientific View

The research literature that we collected agree on the fact that the execution of both, unit
tests as well as integration tests, can be automated [292]. This is highlighted by the large
number of works in the different areas that are connected to the automatic execution of
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those. For example, there are several publications that present new or improve existing
unit testing frameworks (e.g., [293, 294, 295]), which make an automatic execution of
unit tests possible or more efficient. Furthermore, there are several works that ports unit
testing frameworks to different system types (e.g., agent systems [296] or embedded soft-
ware [297]). Moreover, there are different published studies that have a closer look at how
the automation of the execution of unit tests is used or improved within an industrial context
(e.g., [297, 298, 299]).

This looks similar for the automation of integration testing. There are publications of
frameworks that ease the execution of integration tests (e.g., [300]) and studies that evalu-
ated the automation of integration testing in an industrial context (e.g., [301]). Furthermore,
the automatic execution of integration tests is also used in other research areas. One exam-
ple is the area of mutation testing. In the paper by Delamaro et al. [262] an integration level
mutation testing approach was introduced. Here, the study in the paper integrated different
mutations and executed the integration tests automatically through an integration testing
framework that included the automatic execution of tests [262].

However, the literature also states that the automation of integration tests is more difficult
than the automatization of unit tests [302]. On the other hand, there exist studies that show
that the automatic execution of integration tests is beneficial for the project (e.g., [303, 304]).
The difficulty of creating automated integration tests is highlighted by studies that evaluated
the automatization of tests in an industrial context (e.g., [303]). These studies showed that
most companies primarily automated the execution of unit tests. The reasons for this are
manifold. One is that the business logic tested via integration tests, often needs other mod-
ules, e.g., a databases, to be available. If these modules exist only once, multiple parallel
test executions might interfere with each other. Hence, the complexity of the automation of
integration tests is higher than for tests on the unit level.

7.1.2. Practical View

Our evaluated resources to create a practical view agree on the fact that the automation of
test executions is beneficial. They state that tests are important and a high number of tests
and their executions increase the confidence in a software product. Due to the large number
of tests it is often impossible to manually execute all of them. Therefore, an automated test
execution is needed [305].

Furthermore, the evaluated resources agree that both (integration and unit tests) should
be automated. During our study we found several tools that automated the execution of unit
and/or integration tests (e.g., [172, 306, 307, 308, 309]). They mostly differ in the focus
and supported programming language(s). However, the automation of unit and integration
tests is done via two different approaches. The literature states that unit tests are mostly
executed locally in the environment of the developers [310, 311]. Furthermore, test exe-
cution frameworks are often integrated into Integrated Development Environments (IDEs)
(e.g., [312, 313]) so that the execution of the tests can be done from the IDE of the devel-
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oper and the results are presented within the IDE. However, the way that integration tests
are executed is different, as they are (mostly) not executed by the developers, but through a
CI system [305, 314]. For that, the execution of the tests is integrated into the build process
(e.g., via the use of specific plugins for unit [119] and integration [120] tests) of the project
and at certain points in time (e.g., after each change or before a release) the project gets
build on a server which also executes all unit and/or integration tests. This separation is
often done because integration tests take longer to execute [314]. However, while these two
different approaches are also used by the projects that we analyzed within our quantitative
analysis, we could not make out a separation of test types based on these approaches. In-
stead, all of the projects that we analyzed executed all their tests (i.e., unit and integration
tests) locally and in the CI system.

7.1.3. Summary

We found indications that the automated test execution of integration tests is possible and
is done in an industrial context. However, it seems that it is not as comprehensively used
as the automated execution of unit tests. The reasons for this are the higher complexity
of integration tests. On the other hand, our analysis of the practical view provides indi-
cations, that unit and integration tests are both executed automatically. However, different
approaches are used to automate the execution of tests on those levels. While unit tests are
mostly executed by developers through integrations of test execution frameworks into IDEs,
integration tests are mostly executed automatically via a CI system.

Answer to RQ 2.4: The analysis of the research and practical view provide us indi-
cations that suggest that unit and integration tests can both be executed automatically.
Our analysis highlights, that the automatic execution of unit and integration tests is part
of active research. In addition, we found indications that both test types are automat-
ically executed within industry. However, scientific studies show that the automatic
execution of integration tests is not as common as the automatic execution of unit tests.

7.2. Evaluation of RQ 2.5: Test Objective

Some literature (e.g., [9]) state that the efficiency, maintainability, and robustness of soft-
ware should be tested by unit tests on the unit level instead of doing this on the integration
or system level. Within this section, we focus on this statement and evaluate separately for
efficiency (Section 7.2.1), maintainability (Section 7.2.2), and robustness (Section 7.2.3) if
this is really the case.
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7.2.1. Efficiency Testing

Efficiency testing is used to test the usage of resources (e.g., CPU, RAM, network) of the
SUT/component and is often measured via certain characteristics like response time or
memory usage [9]. There exist several types of performance testing, including load test-
ing (tests how a system behaves under a specific expected load), stress testing (tests how
a system behaves under extreme load), and spike testing (tests how a system behaves un-
der sudden load spikes). Within this section, we present the results of our analysis of the
research (Section 7.2.1.1) and practical (Section 7.2.1.2) view on the topic of efficiency
testing.

7.2.1.1. Scientific View

The field of efficiency testing is rather broad. There are numerous papers that describe the
results of case studies or give experience reports on the application of efficiency testing
(e.g., [315, 316, 317]). Furthermore, there exist several papers that propose efficiency test-
ing approaches, e.g., to automatically generate efficiency testing test suites (e.g., [316, 318,
319]) or that ease the analysis of performance data [320, 321]. Our analysis is focused on
paper that describe how efficiency testing was applied to a software and on which level.

One of the first paper that described an approach for efficiency testing was authored by
Avritzer et al. [322]. Within their paper the authors present three automatic test case gener-
ation algorithms to test the allocation mechanism of specialized software (i.e., telecommu-
nications software systems). They used these algorithms to perform efficiency testing for
several real industrial software systems.

Another paper by Avritzer et al. [323] presents an approach to compare the efficiency
of an existing platform and an architecture that should work as a replacement to evaluate
if the new architecture is capable of handling the workload (i.e., if the resources are used
efficiently). Within their approach, they did not port the software to a new platform to do
the efficiency testing, but artificially created workloads to test the new and old architecture.

Another relevant paper was published by Weyuker et al. [315]. They report within their
paper that very little work was published in the field of efficiency testing. The authors
present an approach to software efficiency testing together with a case study on a large
industrial project where the approach is evaluated. Their approach includes the “design
of test case selection or generation strategies specifically intended to test for performance
criteria rather than functional correctness criteria” [315].

More recently, Zhang et al. [316] proposed an approach to automatically generate test
cases for the efficiency testing of multimedia systems. Their approach makes use of con-
straint solving techniques to construct test cases that target the resource saturation point
(i.e, the point when all resources are in use) in multimedia systems. They implemented
their approach into several tools that were applied to real industrial projects.
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Garousi et al. [324] proposed an approach to assist in the generation of test cases,
which are focused on revealing efficiency related defects using Unified Modeling Language
(UML) models. The UML model of a SUT is used as an input for their approach. After-
wards, a test model is build to enable the subsequent automation steps. This model, together
with some test parameters (i.e., the objectives, set by the user), are used by an optimization
algorithm to derive the efficiency test requirements. These can then be used to define the
test cases. However, as with the other approaches, the SUT in this case is the whole system.

All these papers do efficiency testing on system level. We were not able to find a paper
that did efficiency testing on another level. This shows that efficiency testing in the context
of research is done on system level.

7.2.1.2. Practical View

There exist numerous companies that provide a service to do efficiency testing on ap-
plications (e.g., [325, 326, 327, 328]), even for modern technologies like Virtual Reality
(VR) [329].

There are also several tools that can be used to do efficiency testing on applications
(e.g., [330, 331, 332, 333]). They mostly differ in their application domain (e.g., load testing
of websites, application servers, or APIs) [334]. Furthermore, there exist tools for manual
efficiency testing (e.g., JVMMonitor [335], VisualVM [336]). Those tools are profilers that
measure, e.g., the usage of RAM, CPU, as well as the response times of units and functions.
These tools do not provide means to create or generate test cases.

That efficiency testing is an important topic for practitioners is also highlighted by several
blog posts that we found within our analysis. There is one guide by Microsoft [337] that
provides a step-by-step tutorial to perform efficiency testing of web applications. This guide
only describes how efficiency testing can be done on the system level. Furthermore, there
are several other blog posts by developers (e.g., [338, 339, 340]) that describe different
approaches to do efficiency testing of applications or websites. While they differ in their
approach, used tools, and application domain, they all agree on the level on which efficiency
testing is applied, i.e., the system level. One exception is the blog post by Stackify [341],
which highlights that efficiency testing is mostly done on the system level, but “There is
value in testing individual units or modules.” [341].

7.2.2. Maintainability Testing

Maintainability testing is used to test all characteristics that influence the difficulty to change
a program. These characteristics include code structure, modularity, code comment quality,
and so on [9]. However, most of those characteristics can only be evaluated by static tests
(i.e., the source code is not executed). One technique that is especially useful for testing the
maintainability are reviews [9].
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Maintainability is a concept that is rather broad. The ISO 25000 standard characterizes
maintainability by dividing it into five different categories [342].

• Modularity: degree to which a software is separated into different components so
that a change to one component does not (or only on a minimal level) affect another
component.

• Reusability: degree to which code parts can be reused in other components.

• Analysability: degree to which it is possible to trace the impact of a change to parts
of the system, or to detect the causes for software defects, or to find parts that should
be modified.

• Modifiability: degree to which a system can be modified without introducing defects
or reduce the systems quality.

• Testability: degree to which it is possible to fulfill test criteria for a system and to
which tests can be executed to measure if those criteria are met.

Within this section, we present the results of our analysis of the research (Section 7.2.2.1)
and practical (Section 7.2.2.2) view on the topic of maintainability testing.

7.2.2.1. Scientific View

One of the earliest publications on maintainability testing was written by Oman et al. [343].
They tried to determine different factors that have an influence on the maintainability of
software. They present different metrics that can be used to measure these factors. Oman
et al. [343] discuss the reasoning for these metrics and how they fit to the determined fac-
tors. Furthermore, they present an approach to compile these metrics into one metric, which
should measure the maintainability of a software system. This metric is called the Main-
tainability Index (MI).

Within their follow up publication [344] the authors makes use of the MI. They performed
a case study on 8 software systems to calibrate the MI (i.e., defining factors of the chosen
metrics). Afterwards, they evaluated their MI formula on 14 industrial projects by compar-
ing the output of the formula with expert opinions. The evaluation highlighted that there is
a correlation between the MI and the expert opinions. Hence, they concluded that the MI is
a useful measure for the maintainability of software.

That the MI is a useful metric to test the maintainability of software is also highlighted
by other publications (e.g., [345, 346, 347, 348]). Based on these publications, there are
several others that try, e.g., to improve/extend the maintainability index (as a recent review
highlights [349]) or that develop new models to grasp the concept of maintainability and
make it testable (e.g., [350, 351, 352]). There are even different forms of MIs, e.g., [353,
354]. Additionally, the research community defined several other metrics that are connected
to the maintainability of software like the readability [355].



127 7.2. Evaluation of RQ 2.5: Test Objective

The testing of maintainability itself (e.g., through the calculation of the MI) is mostly
done through the calculation of source code metrics (e.g., Cyclomatic Complexity (CC)) and
evaluating if a certain threshold is exceeded. These metrics are calculated on the unit level
and aggregated later on. However, these metrics can also be used to test the maintainability
of single units (e.g., by defining a threshold for the unit level).

Spillner et al. [9] describe, that the maintainability should be tested via reviews on the unit
level. Extensive research is also done in this direction to improve the quality of reviews or
make the reviewing process more efficient. There exist approaches to recommend reviewers
for code parts (e.g., [356, 357]) or to improve the overall review process (e.g., [358]). It is
possible to perform code reviews on the unit level. On which level reviews are performed
(i.e., unit, integration, or system level) is highly dependent on the employed reviewing
process and the system under review. However, most code reviews are done after a change
of a developer, i.e., one developer reviews the change of another one and, therefore, several
code units may be affected by the review.

7.2.2.2. Practical View

The interest within the developer community on maintainability testing seems to be limited.
We found more resources discussing the topic of maintainable tests (e.g., [359, 360]) than
maintainability testing. However, there exist several resources that are focusing on this
topic.

One resource is a blog post by Nupul Kukreja [361]. Within his post he defines the
term maintainability and its sub-characteristics. In addition, Kukreja shows different tables
to each of these sub-characteristics, which include different code quality/maintainability
metrics together with their correlation to quality, importance, feasibility of automated eval-
uation, ease of automated evaluation, completeness of automated evaluation, and units. He
makes clear that the maintainability of software code is very complex and therefore hard to
assess via different metrics. However, there exist metrics with which it is possible to assess
several aspects of maintainability. These metrics are not only unit-level metrics (e.g., CC
or unit length), but also metrics that are calculated over all units (e.g., coupling, cohesion).
Furthermore, Kukreja also highlights the importance of the MI, which we also described
within the scientific view (Section 7.2.2.1).

During our analysis we found several static source code analysis tools that are able to cal-
culate (parts of) the metrics that are mentioned by Kurkeja and that are used to calculate the
MI (e.g., [354, 362, 363]). Two of these tools are SonarQube [362] and Checkstyle [363].

SonarQube [362] is a platform that is able to statically analyze source code to assess its
quality. The results of this analysis are then presented within a website that can be browsed
by developers. It calculates metrics like the number of duplicated lines of code, the com-
plexity of code, or the comment lines of code. Furthermore, SonarQube can calculate met-
rics that are connected to the maintainability, e.g., it is able to calculate a “Maintainability
Rating”, which is a rating that is based on the ratio of the code size and the estimated
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time to fix all maintainability issues of the code. All these maintainability related metrics
that are calculated by SonarQube are calculated for the whole system and not for the units
themselves.

Checkstyle [363] is a static source code analysis tool that is able to check the adherence
of code to given style guidelines. For example, it can determine if the brackets of loops are
at the correct place (i.e., in accordance to the style guideline given to Checkstyle). Through
this, Checkstyle can contribute to assessing the maintainability of source code, but it cannot
assess all of its facets.

Another technique that is often discussed for maintainability testing is code review. There
exist several platforms that can assist developers with the execution of them, e.g., Code-
Flow [364], GitHub [180], or Gerrit [365]. All of these tools and platforms have in com-
mon that changes that are committed to the VCS are reviewed. While it is possible to review
only changes for one unit, this is often not the case as several units are changed within one
commit. Therefore, most of these reviews can

7.2.3. Robustness Testing

Robustness is defined as “the degree to which a system or component can function correctly
in the presence of invalid inputs or stressful environmental conditions” [27]. Hence, the goal
of robustness testing is the development of test cases and environments where the robustness
of a system can be assessed. Spillner et al. [9] argue that the testing for robustness should
be done by unit tests (i.e., negative tests). Within this section, we present the results of our
qualitative analysis regarding the test level of robustness testing. Section 7.2.3.1 presents
the results from the scientific view, while Section 7.2.3.2 highlights the practical view on
robustness testing.

7.2.3.1. Scientific View

Over the years, several tools and approaches were developed to assess the robustness of
a system or component. One of the earliest works in the field was done in the early
1990s. Several approaches were developed that injected physical faults into the environ-
ment of the software (or hardware) without damaging the tested component. There are
several tools that simulate physical faults by injecting defects through the software, e.g.,
FIAT [366], FTAPE [367], or FERRARI [368]. FIAT [366] uses probes that are manu-
ally placed to change the binary process image in memory, while the program is executing.
FERRARI [368] uses a similar approach, but instead of the manually integrated probes, it
uses software traps to allow the emulation of hardware faults. FTAPE [367], on the other
hand, generates random workload that is processed by the software and during this process
it injects faults into the system. All of these techniques work on system level.

Another robustness testing technique, which is still used today in security related test-
ing [369] is the generation of random inputs. Random inputs are generated and given as
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parameters to functions or systems to evaluate how they react on those. A robustness defect
was found, if the tested component or system crashes or does not respond. These techniques
are rather efficient, as the creation of random inputs is not expensive in terms of computa-
tional power [370]. Those techniques are used in several studies (e.g., [371, 372]) and are
also effective in testing the robustness of modern standard software [372]. One tool that im-
plements this concept is Fuzz [371]. Fuzz [371] is a tool that generates random characters
which can then be used as an input for command-line tools. While random input testing can
be applied on any testing level, the Fuzz tool is only capable of testing command-line tools
and therefore performs tests on the system level.

The generation of invalid inputs can also be done in a more structure way. These tech-
niques use inputs that are inside and outside of the allowed domain and specifically select
inputs by defined rules [370]. These rules can be generated, e.g., grammar-based [373]
or specified manually for specific domains [374]. Ghosh et al. [373] present a tool called
RIDDLE, which uses the input grammar of the SUT to generate test cases. The input that
is used by these test cases conforms to the basic syntax of the SUT’s input. However,
RIDDLE is not designed to test single functions, but the whole software system. On the
other hand, Mendonca et al. [374] present a robustness testing study done on the Windows
device driver toolkit. Within their approach, they determine the functions that are used
within device drivers and select the ones that are used most often. For these functions,
workload (i.e., input) is generated according to given rules to evaluate if the function fails.
Here, the testing is done on unit level and not on system level.

The type-specific approach to test the robustness of software was introduced in the early
2000s. It uses the random generation of inputs, as well as the invalid input generation tech-
nique explained above. Within type-specific testing “valid and invalid inputs are defined for
the data types used in the system’s interface functions, and the robustness tests are generated
by combining the values for the different parameters” [370]. One approach and tool that is
popular within this area is Ballista [375, 376]. The robustness testing methodology devel-
oped by Koopman et al. [375] creates test cases for a single pair of test values for single
functions. It parses the interface definition of the functions to be able to create fitting test
inputs for them. Hence, Ballista focuses on single functions instead of the whole system.

An extension to the generation of type-specific tests is the generation of object-oriented
tests. With the increasing popularity of object-oriented software this robustness testing
technique gained a lot of interest. The advantage of object-oriented systems is that within
those systems a parameter graph containing the type structure of the parameters can be built.
This graph describes how specific object types can be generated by calling constructors
and/or public methods of classes within the software system. Using this information, it is
possible to easily generate invalid objects by tracing back the different calls in the parameter
graph [370]. One popular tool that implements these techniques is the JCrasher tool [377].
It “examines the type information of a set of Java classes and constructs code fragments that
will create instances of different types to test the behavior of public methods under random
data” [377]. Hence, it is a tool that works on the unit level.
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More recently, due to the increasing popularity of model-driven development, model-
based robustness testing approaches were developed. Models that are created during the
development can be used to generate robustness test cases, e.g., “by looking for extreme
values and conditions on the basis of the pre- and post-conditions, invariants, and constraints
fixed in the design model” [370]. An example is IOLTS [378], which is an approach that
uses path searching and model mutation techniques. This approach is applied on the system
level. Another framework was introduced by Oláh et al. [379]. This framework is directly
integrated into the Eclipse IDE. It uses UML class diagrams to inject faults into the software
and monitors its execution. The framework provides means to configure the fault injection
process and the robustness testing experiment overall.The tester needs to provide a workload
that is given as input to the application, i.e., none of the above mentioned input generation
techniques are applied. Hence, this framework works on system level, as the whole system
needs to be executed with the provided workload.

Most recently, robustness testing techniques have been used in several specific applica-
tion domains, e.g., user interfaces (e.g., [380]), high availability middleware (e.g., [381]),
real-time executives like microkernels (e.g., [382, 383, 384]), online transaction processing
systems and database management systems (e.g., [385, 386]), and web services (e.g., [387,
388, 389]). All of these approaches have in common that they are performed on the system
level, e.g., by sending messages to the systems’s exposed API [387].

Another specialization of robustness testing that gained a lot of interest is the field of pen-
etration testing. In penetration testing the execution of the system is monitored, while (pos-
sibly) malicious inputs are given. The goal of penetration testing is the detection of poten-
tial vulnerabilities in the software [370]. There exist several categories of approaches [370].
The black-box penetration testing approaches test the robustness of a system on system
level, by providing inputs to the system interface (e.g., [390, 391, 392]). The gray-box pen-
etration testing approaches complement the black-box approach by integrating white-box
techniques. These techniques (e.g., [393, 394]) analyze or observe the execution of the
program, while the input is provided through the system’s interface.

7.2.3.2. Practical View

While robustness testing is an important topic in research that was continuously advanced
during the years, we only found a limited amount of resources that highlights the practical
view on robustness testing. A website [395] entry explains the term robustness testing, its
significance, and the challenges, but besides this website, few resources were found.

One source is the software robustness tutorial [396], which was held by Vincent Sinclair
employed at Nokia. Within his tutorial, he explained the term robustness and robustness
testing and explains where robustness testing is (or should be) applied. He highlighted that
robustness testing is an activity that should be applied on all test levels and areas, including
unit, integration, and system level, as robustness defects might not be detected otherwise.
On the unit level, several techniques are used, e.g., the provisioning of invalid inputs to
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functions, or performing boundary tests (i.e., testing the boundaries for a given function
parameter). Techniques on the integration level include input overload/storms to see how
the system can handle it. On the system level, different feature interactions are tested, as
well as the user interface. Sinclair [396] highlights in his presentation that robustness tests
for all levels should be included in the software robustness test plan.

Another source is the white paper published by Bridgewater et al. [397]. The authors
describe their approach to improve the robustness testing at VMware. They present two
different pseudorandom test generators, which are able to create test cases using knowledge
extracted from the SUT. This knowledge is used to select input data that is most likely to
produce relevant test cases from a wide range of values. Their approach is able to create
complex test conditions, which could not be covered by unit tests alone. Bridgewater et
al. [397] did several experiments with their approaches and found that the presented genera-
tors “have been critical in finding problems in our complex software and are a good comple-
ment to other test methods such as directed unit tests and running real-world system-level
workloads.” [397].

Besides these resources mentioned above, we found several tools that are used by practi-
tioners to test the robustness of software. We found one commercial product that is able to
test the robustness of C/C++ software [398]. However, it is not explained in detail how this
tool works or how test cases are generated. Another framework that is often used in terms
of robustness testing is JUnit for Java applications [172]. JUnit can be used to execute test
cases that evaluate the exception handling procedures of a software by asserting if the cor-
rect exceptions are thrown. The test cases can be on unit, integration, or system level. Other
tools that we found were presented by Bahmutov [399]. Within his blog posts he explains
his tools that could help in robustness testing by mocking responses (e.g., by slowing down
requests, returning specific status code, or returning specific mock data). These tools work
on the system level.

7.2.4. Summary

During our analysis of the scientific view regarding the differences between unit and inte-
gration tests in context of efficiency testing, we found indications that the use of efficiency
testing tools is well established at the system level. We could not find any evidence or
research that tried to perform efficiency testing on unit or integration level. Woodside et
al. [400] mentions several reasons for this imbalance, e.g., a lack of theoretical justification
for the methods that try to improve the efficiency (i.e., measurement data is provided, but
the interpretation is still open) or the difficulty to correlate the events from different systems
within distributed systems [400]. The analysis of the practical view provided us insights
into two approaches for efficiency testing that are used by practitioners. One approach is
done on the system level, where the user behavior is mimicked while the resource usage
of the system is monitored. The other approach is the manual efficiency testing on smaller
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levels by using profilers and running existing test cases (possibly enhanced by profiling
output [401]), whereas the level targeted by these test cases is not specified.

Research tries to realize the concept of maintainability (e.g, through the development of
new metrics) and support the maintainability testing process (e.g., through the support of
code reviews). However, for the maintainability to be thoroughly tested (i.e., to test ev-
ery aspect of maintainability), it is necessary that the calculation of metrics like the MI or
the performing of code reviews span all three testing levels (i.e., unit, integration, and sys-
tem level). On the practical side, our results indicate that maintainability testing is a topic
that seems not to be present within the development community, as the amount of found
resources is rather low in comparison to other topics that we evaluated. The maintainabil-
ity of tests seems to be a topic which is more relevant. While tests are important for the
maintainability of a product, they are not used to test the maintainability itself. However,
the resources that we found agree that maintainability testing is a complex field, which is
mostly tackled by the calculation of metrics that are connected to the maintainability, or the
execution of code reviews.

Within our analysis of the scientific view regarding the differences between unit and
integration tests in the context of robustness testing we found indications, that extensive
research is done in this field. Several tools, techniques, and frameworks were developed
throughout the years. These tools and techniques can be used as an internal step in the
development process, e.g., by applying the robustness testing early on and develop unit
tests for it. On the other hand, robustness testing can also be executed after the release
of the system on the system level. During our analysis of the practical view, we found
indications that practitioners know of the importance of robustness testing. Nevertheless,
from the resources it is clear that robustness testing can be done on all test levels and should
be done on all test levels, as focusing robustness testing on only unit level would not be
sufficient to test for complex test conditions.

Answer to RQ 2.5: For efficiency testing the research and the practical view agree:
within both view we found indications that show that efficiency testing is mostly done
on system level, while there is a need for automated efficiency testing on lower levels
(e.g., unit or integration level). Currently several manual approaches are in use to test
the efficiency on lower levels, e.g., through the use of profilers.

In the field of maintainability testing, extensive research is done to develop ap-
proaches to automate the process of maintainability testing and to develop metrics that
can describe the maintainability of software. One of such metrics is the MI which is
used in research and practice, as our results highlight. The MI can be calculated on
several levels, e.g., unit, integration, or system level. Another technique that is often
used to test the maintainability of a software is code reviews. Within our analysis, we
found indications that those reviews are often done change-based and, therefore, not
only on unit level. As the ISO 25000 standard [342] highlights, the maintainability of
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a software should be tested on different levels, as different aspects of maintainability
like the modularity or analysability, can not be tested on one testing level alone.

There exist an extensive body of knowledge on robustness testing. Currently, a lot
of research is focused on this area, as our results highlight. Robustness testing can be
done on unit, integration, and system level. That robustness testing is an activity that
should be done on all test levels is highlighted by the results of our analysis of the
practical view.

7.3. Evaluation of RQ 2.6: Test Costs

Some literature state, that the development and execution costs of unit tests are smaller than
the ones for integration tests (e.g., [13]). Hence, within this chapter, we analyze the scien-
tific view (Section 7.3.1) and practical view (Section 7.3.2) on this topic, while focusing on
the differences in the costs between unit and integration tests. Finally, in Section 7.3.3 we
answer our RQ regarding the differences in the costs between unit and integration tests.

7.3.1. Scientific View

There exist a lot of different cost models that try to estimate and predict the costs of software
testing in general, e.g., by Berry Boehm [402]. However, there exist very few empirical
evidence regarding the costs of software testing on the different test levels from real software
projects, as a systematic literature review highlights [403]. One potential reason is that
researchers often do not have access to such data from industrial projects. This kind of data
is often highly confidential and therefore not shared easily. Furthermore, such data is not
available for open-source projects, as these projects are only developed by contributors (that
do not get paid by the project11) and the development process is different from a formal one
that might get applied in industrial projects [146]. Most papers that focus on the costs of
different test levels or techniques perform experiments using humans (e.g., [404, 405, 406]).
These studies are often not done in a realistic context and are often small in their size (i.e.,
number of students/developers and size of program that is tested). Within this section, we
focus on studies that were done on real industrial software projects and that report the costs
for either unit testing or integration testing.

A paper by Williams et al. [299] evaluated the effectiveness of unit test automation at
Microsoft. The authors performed a post-hoc data analysis using the code, test, bug, and
other repositories from a Microsoft team, which changed their testing practices from ad hoc
and individual testing practices to unit testing practices. In addition, Williams et al. [299]
executed a survey of developers and testers from this team after their transition. Afterwards,
four developers and testers were interviewed and asked questions regarding the efficiency
and applicability of the testing practices. Williams et al. [299] found, besides other results,

11Recently, diverse large companies put resources into the extension and development of open-source projects.
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that the writing of unit tests increases the development time by 30%. Hence, the writing of
unit tests increases the costs of the development process. However, the they also found a
“20.9% decrease in test defects” [299].

Another study that had a closer look at the cost effectiveness of unit testing was done by
Delgado et al. [407]. They performed a case study within a financial institution. Within
their study they first chose fitting software projects, implemented unit tests for it, identified
prevented defects, and performed a cost and savings analysis. As one of the few studies,
they report the costs and savings not only in hours spend, but also in U.S. dollars. Within
their case study the developers spend 323 hours (totaling in 8,721$ cost) in developing
unit tests and saved 73 hours (totaling in 2,462$ cost). The savings were derived from the
number of defects in production and testing that were found by unit testing. Hence, one
major finding of their case study is “that unit testing has a high cost in terms of time (effort)
and money)” [407]. Furthermore, they state that 28% of the total development time was
dedicated to the development of unit tests and therefore the effort of unit testing is about
4.4 times greater than the return. The numbers are slightly different for the investment in
money, which is 3.5 times greater than the return. The application of unit testing was not
profitable in their case study.

Besides these two studies that focus on assessing the cost of unit testing within an indus-
trial context, we did not find any papers that do the same for integration testing. However,
there exist two papers which report differences in the costs of unit and integration testing.

The first was written by Ellims et al. [16]. The authors collected data from three different
industrial software projects that performed unit testing. The three safety-related projects are
between 3500 LOC and 13500 LOC and were developed by the same company. Ellims et
al. [16] accumulated the data from different data sources (i.e., timesheets, review records,
change requests, code coverage), to analyze the economics of unit testing. One finding is
that “unit testing can be between 2 and 13 times more effective than other test activities
applied” [16]12, if the data that was collected from one of the projects is representative.

The second paper that provides a case study on a safety-critical application was done
by King et al. [408]. During the development of this application, they recorded different
metrics (e.g., the number of found faults at different testing stages), which they then report
within their paper. While the main focus of the paper is the comparison of proof to the
more traditional types of testing, we can extract several information from the paper. In their
analysis they compared proof with various types of testing, including unit and integration
testing, in terms of their efficiency. Overall they found, that proof is more efficient than the
traditional testing techniques. However, more important for our context, they also found that
while unit tests detect more defects within the software than integration tests, integration test
are more efficient in terms of number of faults found per day of effort. Hence, the effort
(i.e., the costs) of unit testing is 25 times higher than for integration testing [408].

12Effective in this case means the spent man hours per detected defect.
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7.3.2. Practical View

Our search for the practical view on this topic revealed a uniform opinion regarding the
differences of cost between unit and integration tests with one exception. Most of the re-
source we found agree on the point that integration tests are more costly (in terms of writing
and running the tests) [32, 29, 409, 410, 411]. However, we did not find any real empirical
studies or data on this topic, but experiences of developers. Nevertheless, developers made
clear in their articles, that empirical data on this topic would be highly appreciated [32].

The one single exception that we found separates the costs of unit and integration testing
based on the project type [412]. Kudryashov distinguishes between projects that need to be
integrated into an existing environment and with existing systems (i.e., brownfield projects)
and those which do not need to be integrated (i.e., greenfield projects). He writes, that in his
experience integration tests are more costly in the maintenance than unit tests. This holds
true for both project types. However, the introduction of new unit tests is more costly than
the introduction of integration tests for brownfield projects only, while it is nearly equal for
both testing types for greenfield projects.

7.3.3. Summary

Within our analysis of the scientific view, we found statements that unit tests are cheaper
than integration tests and statements that integration tests are cheaper than unit tests. While
it is clear and uncontroversial that unit testing has its costs (as has integration testing),
research seems to be discordant in this respect. While the paper by Ellims et al. [16] state
that unit testing was more effective (i.e., less costs per found defect) than other testing
techniques, King et al. [408] comes to the conclusion that integration tests are more effective
than unit tests (and have a higher effort in developing). On the other hand, the resources
that we found to enlighten the practical view on this topic agree on the fact that integration
tests are more costly (in terms of developing and running the test) than unit tests.

Answer to RQ 2.6: Overall, our results showed that the current research on the topic
of costs of tests on different levels cannot provide a definite answer, as we found indi-
cations in both directions. However, our analysis of the practical view show that in the
experience of the developers integration tests are (mostly) more costly than unit tests.
Moreover, we found that we are missing empirical studies with real software projects
on this topic to come to a definite conclusion.





8. Discussion

Analyzing the results, we see that most of them do not represent what we have learned or
what we teach teach at the university, or what is defined in the literature. Hence, the results
of this thesis are interesting from several perspectives. Within this Section, we discuss our
results and draw conclusions from the perspective of education and academia (Section 8.1),
as well as from a practical perspective (Section 8.2). Moreover, in Section 8.3 we explain
the threats to validity for our study, as well as our validation procedures that we performed
to assess and/or lower the threats.

8.1. Education and Academia

Academia, as well as organizations like the ISTQB, teach that developers should follow
the concept of the testing pyramid: they should develop more unit than integration tests, as
unit tests are the basis on which the integration tests are built upon. However, our results
show, that most of the projects do not follow this concept anymore and instead follow the
proposal mentioned in the introduction, i.e., that there are less unit than integration tests
developed (Section 5.2.2). While there is a difference in the number of unit and integration
tests depending on the used definition (i.e., IEEE or ISTQB), this result holds true for both
of them. Nevertheless, our results also highlight that the developer classification of tests and
the classification according to the definitions are different (Section 5.3.2 and Section 5.4.2).
This result suggests, that we need a better education for developers and make clear how
unit and/or integration tests are defined or that the definitions must be adapted to modern
development contexts.

With our quantitative analysis, we did not find any difference in the execution time be-
tween unit and integration tests, if we assess the execution time per covered line of code
(Section 5.2.2). The execution time is often neglectable nowadays, due to the research on
and development of, e.g., CI systems which automate the execution of long running tests.
Moreover, the computational power that most companies have at their disposal contribute
to the reduction of the execution time of tests.

All of our assessed literature agree, that unit and integration tests detect different types of
defects and that a separation into unit and integration tests is important. However, our quan-
titative results show that there is no statistically significant difference in the effectiveness
between unit and integration tests (Section 6.2.3.1). More interestingly, we could not find
any evidence for the statement that unit and integration tests find different types of defects
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(Section 6.2.3.2). Our results on the defect-locality showed that the common belief that unit
tests are better able to pinpoint the source of a defect than integration tests holds true. We
found that the defect-locality metric is significantly lower for unit tests than for integration
tests for both definitions (i.e., IEEE and ISTQB). However, if we reuse the developer clas-
sification of tests, we can not find a statistically significant difference in the defect-locality
between unit and integration tests.

Our qualitative analysis found several shortcomings in the current research on unit and
integration tests. It shows that it is favorable to do efficiency testing on all testing levels,
as performance problems might be detected too late or not at all. We also found that there
is currently a need for the automated performance testing on lower test levels, i.e., there
exist a research gap (Section 7.2.1). Furthermore, our results highlight that maintainability
testing should and must be done on all test levels, if all aspects of maintainability should be
assessed. There is a lack of automation besides the calculation of the MI. We are missing
tools (and their evaluation) that are able to automatically assess and improve the maintain-
ability of a software system considering all maintainability aspects (Section 7.2.2). Another
research gap that we identified is the evaluation of costs of tests. There is a very limited
amount of studies of a limited scope that assessed the costs of tests on different test lev-
els (Section 7.3). Here, we need more research with bigger case studies using real world
software systems.

Nevertheless, we also identified research areas which have substantially improved over
the years. The area of automatic test execution (Section 7.1) or robustness testing (Sec-
tion 7.2.3) are both research areas, where a lot of research was done. Especially the area
of automatic test execution delivered usable results, e.g., software testing frameworks like
JUnit [172]. There is still some research in these areas missing, e.g., to automate robustness
testing on the integration level.

Overall, our results raise the question, if academia should develop another distinction
criterion to differentiate between unit and integration tests. While we found that some
differences exist (e.g., the defect-locality), most of the exercised differences are not statis-
tically significant. Especially the most mentioned and therefore most important difference
of unit and integration tests (i.e., that unit and integration tests detect different types of de-
fects) can be identified as a software testing myth. Hence, it might not be a good idea to
distinguish tests based on their structural content or which units they assess. Ammann and
Offutt [1] reason that “most of the literature emphasizes these [test] levels in terms of when
they are applied, a more important distinction is on the types of faults that we are looking
for.” [1]. Hence, they propose to divide the tests on the test levels based on the defects they
target. This thesis provides evidence that it might be beneficial to find another distinction
criterion, e.g., by following the proposal of Ammann and Offutt [1]. Hence, research needs
to be done to revise current valid definitions of unit and integration tests that we teach in
academia, practice, and industrial certifications.
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8.2. Practice

Software development and software testing goes hand in hand. The developed parts should
always be accompanied by tests that exercise them. However, it is often hard to tell from a
developer point of view, which test type might be favorable in certain situations. Our results
can give hints to developers on which test level they should develop tests, if they pursue a
specific goal.

Our results show a discrepancy between the developer classification of a test (i.e., unit or
integration test) and the classification using common definitions (Section 5.4.2). This result
has two interpretations. Either, it shows that we need a better education for developers in
the field of software testing, or it highlights that we need modern definitions that better fit
to the developer reality. The current definitions of the IEEE and ISTQB are historically
grown and decades old. Through the growing technologization and the advances in the
field of software engineering and software testing, the current definitions might do not fit
to our modern software engineering world anymore. Modern practices like CI, DevOps,
and new software testing frameworks contribute to this shift. However, more research is
needed in this field to evaluate, if we really need new definitions and how they should look
like. Nevertheless, this thesis highlights that the research community needs to act and work
together with practitioners to solve this problem.

Moreover, our results show that it does not matter what kind of test (i.e., unit or integra-
tion test) a developer is creating, as we could not find significant differences between unit
and integration tests for most of the differences that we evaluated. These results are also
robust along the used definitions (i.e. the IEEE and ISTQB definitions). However, it also
depends on the goal that the developer pursues with a test, if a unit or integration test might
be favorable. For the test execution time we did not find any difference between unit and
integration tests, if we assess the execution time per covered line of code (Section 6.1.3).
If the test effectiveness is of interest, it also does not matter if a unit or integration test is
created, as they both do not differ from each other in this aspect (Section 6.2.3.1). Interest-
ingly, even if a developer targets specific defect types (e.g., interface defects), our results
highlight that it does not matter if a unit or integration test is used (Section 6.2.3.2). This
also holds true, if the robustness of a software should be tested, as our qualitative analysis
highlights (Section 7.2.3).

While we can give hints to developers or managers on the usage of unit and integration
tests, we cannot give concrete guidelines. During our qualitative analysis we found several
shortcomings in our current knowledge on unit and integration testing. We cannot make
conclusions about the costs of these two test types, as we only found anecdotes or experience
report with our qualitative analysis and only very few and limited scientific papers on this
topic. This is also valid for other aspects like, e.g., the different test objectives. Here,
research is missing to come to a definite conclusion and to create guidelines for developers
to support them in choosing the best test in certain circumstances.

To come back to the question from our introduction, where we presented the proposal of
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developers to reduce the amount of unit tests and develop more integration tests instead: as
explained above, it depends on the goal one wants to achieve to evaluate if this proposal
is wise. For example, if developers would only want to achieve a good effectiveness of
their tests, our results highlight that the proposal would make sense if we consider that the
creation of unit tests is more work than the creation of integration tests (e.g., because of
the creation of mocks). If the goal is to be able to pinpoint the source of bugs (i.e., have
a lower defect-locality) than the proposal would not be favorable, as unit tests are better in
this case. However, we would advise developers to follow the proposal, as the savings in
development time for unit tests are non-neglectable, but unit tests should still be developed
for the complex parts of a software system.

8.3. Threats to Validity and Validation Procedures

In this section, we discuss the construct, external, and internal validity of our study together
with the validation procedures that we have taken to measure or counter those threats.

8.3.1. Construct Validity

Construct validity threats are concerned with the degree to which our analysis measures
what we intended it to measure [413]. During our research we developed tools and plug-ins
for the data collection, as well as analysis scripts for our data analysis. Developing this
amount of code raises the possibilities of bugs in the code that have an influence on our
study. Nevertheless, we took several measures to minimize this threat. As the coverage
collection is one essential part of our study (e.g., to detect the test level), we have chosen
a library with a high quality and maturity. Hence, the possibility of bugs that have a big
influence on the results is lowered. Furthermore, we have chosen a mutation testing frame-
work that is mature and often used in research, e.g. in [414, 415]. It is less likely that
assessment of the mutation detection capabilities is not working correctly. In addition, we
manually inspected every problem that occurred during the mutation testing. We found that
PIT sometimes threw an error, because a test was failing. However, this occurred only for
35 out of 36435 (i.e., 0.1%) analyzed test cases. We wrote tests for all of our tools to reduce
the possibility of bugs and gives us confidence in our implementations. In addition, we used
manually sampled data to test all used and created tools to determine if they are working
correctly.

The used test level classification scheme might also have an influence on our results. We
decided to be as close as possible to the definitions and therefore designed and implemented
approaches that represent the test level classifications of the IEEE and ISTQB. While we
did our experiments with these two different test level classifications, other classifications
might produce different results.



141 8.3. Threats to Validity and Validation Procedures

For the calculation of the defect-locality of tests we integrate calls to our CallHelper
(Section 4.2.10) at places where mutants were integrated before as the mutation detection
capabilities were calculated. Thus, to validate the calculation of the defect-locality we can
perform the following process: we know that all killed and survived mutants have been
covered by the tests (by definition). Therefore, we evaluated, if all mutation results of
killed/survived mutants have a defect-locality calculated for them, i.e. the test covered the
place where the mutant was integrated. In the mean 1.53 % of all killed/survived mutants
were not covered by the test. We determined two different reasons for this: first, PIT does
not handle parameterized tests well. Hence, if the test should only be executed with one
parameter, PIT executes the test for all given parameters. Therefore, if DCD executes the
test with only one parameter and queries the mutation detection capabilities of this test, it
gets the combined capabilities of the test executed for all parameters. Therefore, some parts
might be covered with one parameter, but not with another one. We addressed this issue
with PIT during our analysis by merging the results for parameterized tests (Section 6.2).
Second, PIT sometimes reports the wrong line number of an integrated defect for multi-line
statements, which then results in an incorrect placement of a call to the CallHelper.

Mutant redundancy is a substantial threat to the construct validity of our study. We
counter this thread by calculating the disjoint mutant set, as proposed by Kintis et al. [219]
and use it within our analysis. Nevertheless, this set is only an approximation and other
mutants might fit better.

Another threat to the construct validity of our study is the choice of the defect classifica-
tion scheme. A different classification scheme might produce different results. However, we
needed a scheme that works on source code level, as we also wanted to classify integrated
mutants that do not have any supplementary material, e.g., a bug report. Nevertheless, the
defect classification of our mutants can be wrong for some of them. The re-integration of
the defect for the classification might be problematic, if several statements are on one line.
Hence, it might occur that not the correct statement gets modified and therefore the wrong
classification is produced.

Our choice of the differences between unit and integration tests might not be complete.
While we looked through the standard literature and collected all differences from them,
there might be differences between unit and integration tests that we have overlooked or
that are reported in other literature. However, we have chosen our literature based on our
knowledge of the field and added often mentioned literature.

8.3.2. External Validity

External validity threats are concerned with the ability to generalize our results [413]. Parts
of our study were only executed for Java projects. For the results of these parts we do not
know if they are representative for other programming languages too. Although, we took a
larger sample of projects than most other empirical studies [270], we cannot conclude that
our results are representative for all Java projects. The problem with our approach is that
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it needs a compilable release as we run the tests to gather the coverage data. Nevertheless,
a compilable release of the project is often not given [215]. It is also very time-consuming
as some manual work is required. Other parts of our study were executed with a second
programming language, which raises the external validity of our results.

Another threat to the external validity of our study is that we only use open-source
projects. We can not be sure that our results are representative for closed source projects too.
Nevertheless, nine of 27 projects are mostly industry-driven, i.e. developed by a company.

8.3.3. Internal Validity

Internal validity threats are concerned with the ability to draw conclusion from the relation
between causes and effects [413]. While we tried to create an isolated environment for our
study (e.g., by using mutation testing) we might have overlooked some influencing variable
that we did not account for. We applied different mechanisms to counter the influences that
we know of, e.g., the normalization of results to calculate the defect detection capabilities
(Section 6.2).

Furthermore, with our current approach we are not able to differentiate integration and
system tests. It can happen that a system test gets classified as an integration test. To
reduce this threat, we only included projects that are libraries or frameworks, because the
possibility that they have systems tests is lower as for applications.

Another threat to the internal validity of our study is the execution of our statistical tests.
We rely on the accurate implementation of the algorithms that we used during our analysis.
Hence, we use a well known public library (i.e., SciPy [416]) to perform our statistical
testing.

Within our qualitative analysis we analyzed different resources like research papers, de-
veloper comments, and other internet resources. However, another methodology or paper
that we might have overlooked could produce different results. Nevertheless, to ease this
threat, our analysis is not only based on research papers to create a “scientific view”, but
also includes other resources to create an “practitioners view”.



9. Conclusion

In this section, we conclude the thesis. Therefore, we provide a summary and give an
outlook on potential future work.

9.1. Summary

In this thesis, we presented a qualitative and quantitative analysis of the differences between
unit and integration tests. At first, we analyzed the distribution of unit and integration tests in
open-source software projects according to different definitions. Afterwards, we explored
and analyzed six differences between unit and integration tests, that were mentioned in
the standard literature. Three of these differences were analyzed quantitatively, the others
qualitatively.

We designed and implemented several approaches to collect data from software projects.
We developed an approach to classify software tests into unit and integration tests based on
the definitions of the IEEE and ISTQB and the developer classification. Furthermore, we de-
signed approaches to collect the TestLOC and pLOC of software tests. We also collected the
defect detection capabilities of tests, where we applied mutation testing in combination with
an approach to classify the mutants into different defect classes. Moreover, we designed an
approach to extract the defect-locality of software tests using artificial defects. All of these
approaches are combined into two different frameworks, which are open-source and free
to use for the research community. This facilitates the replication of our study and enables
other researchers to contribute to the body of knowledge of software testing research.

The quantitative analysis was done via a case study including 27 Java and Python projects
with more than 49 000 tests. We classified tests into unit and integration tests according to
the definitions of the IEEE and ISTQB and collected the above mentioned data from them.
We found that most current open-source projects possess more integration than unit tests,
if tests are classified according to the above mentioned definitions. Nevertheless, there are
differences in the number of unit and integration tests between the developer classification
and the classification using the definitions of the IEEE and ISTQB. Our quantitative anal-
ysis of the execution time reveled no differences between unit and integration tests for the
execution time per covered line of code. More surprisingly, our results indicate that there is
no difference in the overall and defect type specific effectiveness between unit and integra-
tion tests. The last part of our quantitative analysis was the assessment of the defect-locality
of unit and integration tests. Within this part, we found a statistically significant difference
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between unit and integration tests for the IEEE and ISTQB definitions only, showing that
unit tests are more likely to pinpoint the source of a defect.

For the qualitative analysis, we reviewed related literature out of the research and in-
dustrial perspective. We created a holistic view on the analyzed differences at hand. Our
qualitative analysis highlighted, that we are missing research in most of the analyzed fields
to make scientifically grounded conclusions. The results of our analysis of the test execu-
tion automation showed that unit, as well as integration tests are executed automatically.
There exist different approaches for the execution automation of unit and integration tests,
e.g., CI systems. The results of our qualitative analysis of the test objective highlighted,
that efficiency testing is mostly done on system level, while approaches exist that can be
used for unit and integration level.We also identified a need for automated efficiency testing
on lower test levels. Maintainability testing must be done on all levels to assess all aspects
of maintainability. Nowadays projects often only make use of the MI to assess the main-
tainability of software, which is rather limited. More research is missing in this direction.
The last aspect that we analyzed to assess the differences in the test objective is the use of
robustness testing on unit and integration level. We found that robustness testing is well
researched and done on unit, integration, and system level. The last difference that we ana-
lyzed qualitatively is the difference in test costs. We found that the current research on this
topic cannot provide a definite answer to the question if unit or integration tests are more
costly in their development, maintenance, and execution. Nevertheless, the analysis of the
experience of developers highlighted, that integration tests are more costly. We are missing
empirical studies with real software projects on this topic to come to a definite conclusion.

9.2. Outlook

There are several open problems and possible improvements that provide opportunities for
future research. Our quantitative analysis can be improved in several ways. Overall, we
could use more projects to assess if our results are generalizable. This would improve the
external validity of our results and could provide further insights. Furthermore, our analysis
could be done with other types of projects. Within this thesis, we focused on frameworks
and libraries, but extending the focus to also include applications could give us interesting
findings. Especially, as the tests of frameworks and libraries are rather different from tests
for an application. Currently, we performed our analysis on open-source projects only,
because we do not have industrial data available, but the use of industrial project data for
the quantitative analysis could provide further insights. A comparison of the results of the
quantitative analysis between open-source and industrial projects could present especially
interesting results, as tests are often developed differently in an industrial context.

Future research could also include a manual analysis of test cases. This, in addition to our
automated quantitative analysis, could provide insights into the reasons for our results. For
example, we could manually analyze test cases and their (not) detected defects and defect
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types. This could help us to understand why certain tests are not detecting certain defect
types. These results could be used to develop tests that detect specific defect types.

Furthermore, we could perform our quantitative analysis on different releases of the same
project. This way, we could assess how (and if) the results are changing during the evolution
of a software. For example, it would be interesting to assess if there are more unit tests for
a software in the beginning of the development in contrast to later versions. Moreover,
checking when and if there is a transition of tests from a unit to an integration tests (or vice
versa) could provide us with insights in software testing practices. The results from this
analysis could help us to guide the evolution of software tests.

Another possible research direction is to assess, if the development paradigm has an
influence on the distribution and quality of tests on the different test levels. For example,
we could apply our approach to projects that follow the Test-Driven Development (TDD)
paradigm and compare these results with results from other projects. This way we could
assess the influence of TDD on the number of unit and integration tests, as well as its
influence on, e.g., the effectiveness of these tests.

There are also several opportunities to improve our frameworks. Currently, our
COMFORT framework is not able to differentiate integration from system tests. This
could be addressed by developing a methodology to differentiate those test types from each
other. One approach could be that the test is analyzed to evaluate if it is assessing the
software through its main interface (e.g., the main method of a Java program). If this is the
case, the test is most likely designed as a system test and as an integration test otherwise.
A further improvement could be the extension of our defect classification approach. In
addition to the classification of the defects in several defect classes, a severity could be
assigned to each defect. This way, we could include the severity of defects into our analysis
to evaluate which defects with which severity unit and/or integration tests detect.

We were able to provide a qualitative analysis of the differences between unit and inte-
gration tests regarding the test execution automation, the test objective, and the test costs.
Further work can be a quantitative evaluation of these aspects. This might not be easily
possible, as data might not be available for open-source projects. For example, evaluating
the costs of tests is only possible using industrial data. Furthermore, we could repeat our
qualitative analysis using a different methodology (e.g., conducting a Systematic Literature
Review (SLR) for each difference).

In addition to the above mentioned directions and research opportunities, we plan to per-
form a developer study on unit and integration testing practices. We hope for feedback from
developers and how they use unit and integration tests in their work. This feedback could
help us to understand why developers classify their tests differently and not according to
the definitions. The results of this study could lead to new definitions for unit and integra-
tion tests, that better reflect the current development reality. In connection to this study,
the usage of unit and integration tests in different development models or phases would be
interesting to assess. We could compare the usage of both test types in a classical and agile
development environment to gather information of their usage and the differences.
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A. Defect Class Mappings

In Table A.1 the mappings of the CTs by Fluri et al. [268] that can be directly mapped to the
defect classes by Zhao et al. [141] are depicted. This mapping is used within our case study
to map the output of ChangeDistiller [268], which is applied to our generated mutants, to
the defect classes by Zhao et al. [141].

Table A.2 depicts different conditions that must be met by the output of ChangeDis-
tiller [268], i.e. the CT, CE, and PE must be of certain types, so that they are assigned a
specific defect class. As the direct mapping shown in Table A.1, this information is needed
to classify our generated mutants into different defect classes.

Change Type (CT) Defect Class
ADDING_ATTRIBUTE_MODIFIABILITY Data
ADDING_CLASS_DERIVABILITY Interface
ADDING_METHOD_OVERRIDABILITY Interface
ADDITIONAL_CLASS Interface
ADDITIONAL_OBJECT_STATE Data
ALTERNATIVE_PART_DELETE Logic/Control
ALTERNATIVE_PART_INSERT Logic/Control
ATTRIBUTE_RENAMING Data
ATTRIBUTE_TYPE_CHANGE Data
CLASS_RENAMING Interface
COMMENT_DELETE Other
COMMENT_INSERT Other
COMMENT_MOVE Other
COMMENT_UPDATE Other
CONDITION_EXPRESSION_CHANGE Logic/Control
DECREASING_ACCESSIBILITY_CHANGE Interface
DOC_DELETE Other
DOC_INSERT Other
DOC_UPDATE Other
INCREASING_ACCESSIBILITY_CHANGE Interface
METHOD_RENAMING Interface
PARAMETER_DELETE Interface
PARAMETER_INSERT Interface
PARAMETER_ORDERING_CHANGE Interface
PARAMETER_RENAMING Interface
PARAMETER_TYPE_CHANGE Interface
PARENT_CLASS_CHANGE Interface
PARENT_CLASS_DELETE Interface

Table A.1.: Mapping of the CTs by [268] that can be directly mapped onto the defect classes
by [141].
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Change Type (CT) Defect Class
PARENT_CLASS_INSERT Interface
PARENT_INTERFACE_CHANGE Interface
PARENT_INTERFACE_DELETE Interface
PARENT_INTERFACE_INSERT Interface
REMOVED_CLASS Interface
REMOVED_OBJECT_STATE Data
REMOVING_ATTRIBUTE_MODIFIABILITY Data
REMOVING_CLASS_DERIVABILITY Interface
REMOVING_METHOD_OVERRIDABILITY Interface
RETURN_TYPE_CHANGE Interface
RETURN_TYPE_DELETE Interface
RETURN_TYPE_INSERT Interface

Table A.1.: Mapping of the CTs by [268] that can be directly mapped onto the defect classes
by [141]. (Continued)
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Condition Defect Class
CT ∈ {STATEMENT_*} ∧
CE ∈ {ASSIGNMENT, POSTFIX_EXPRESSION,

PREFIX_EXPRESSION} ∧
PE /∈ {FOR_INCR}

Computation

CT ∈ {STATEMENT_*} ∧
CE ∈ {VARIABLE_DECLARATION_STATEMENT} ∧
PE /∈ {FOR_INIT}

Data

CT ∈ {UNCLASSIFIED_CHANGE} ∧
CE ∈ {MODIFIER}

Data

CT ∈ {STATEMENT_*} ∧
CE ∈ {METHOD_INVOCATION, CONSTRUCTOR_INVOCATION,

SYNCHRONIZED_STATEMENT, CLASS_INSTANCE_CREATION}

Interface

CT ∈ {ADDING_FUNCTIONALITY, REMOVING_FUNCTIONALITY} ∧
CE ∈ {METHOD}

Interface

CT ∈ {UNCLASSIFIED_CHANGE} ∧
CE ∈ {TYPE_PARAMETER}

Interface

CT ∈ {STATEMENT_*} ∧
CE ∈ {IF_STATEMENT, FOREACH_STATEMENT,

CONTINUE_STATEMENT, RETURN_STATEMENT, THROW_STATEMENT,

SWITCH_CASE, SWITCH_STATEMENT, BREAK_STATEMENT,

CATCH_CLAUSE, TRY_STATEMENT, FOR_STATEMENT,

WHILE_STATEMENT, DO_STATEMENT, LABELED_STATEMENT}

Logic/Control

CT ∈ {STATEMENT_*} ∧
CE ∈ {ASSIGNMENT, POSTFIX_EXPRESSION,

PREFIX_EXPRESSION} ∧
PE ∈ {FOR_INCR}

Logic/Control

CT ∈ {STATEMENT_*} ∧
CE ∈ {VARIABLE_DECLARATION_STATEMENT} ∧
PE ∈ {FOR_INIT}

Logic/Control

CT ∈ {STATEMENT_*} ∧
CE ∈ {ASSERT_STATEMENT}

Other

Table A.2.: Mapping of the CTs by [268], where the CE and/or the PE needs to be taken
into account to map a change onto the defect classes by [141]. The term STATE-
MENT_* includes the general change types, i.e., STATEMENT_UPDATE, STATE-
MENT_INSERT, STATEMENT_DELETE, STATEMENT_PARENT_CHANGE, STATE-

MENT_ORDERING_CHANGE.





B. Implementation Details

During our work, we developed several implementations. Within this section, we give more
detailed information on the developed SmartSHARK plugins in Section B.1 and further
details on the COMFORT framework in Section B.2.

B.1. SmartSHARK Plugins

During our work on SmartSHARK we and other colleagues developed several plugins that
can be used within the SmartSHARK ecosystem. Table B.1 gives an overview of the cur-
rently available plugins of SmartSHARK, together with a short description of the plugin.

Name Description
coastSHARK Collects AST data from all files within the project
issueSHARK Collects data from issue tracking systems
mailingSHARK Collects data from project mailing lists
mecoSHARK Collects metric and clone data
refSHARK Detects refactorings of classes and methods
travisSHARK Collects data from Travis [417]
vcsSHARK Collects data from the version control system

Table B.1.: List of all data collection plugins of SmartSHARK.

B.2. COMFORT-Framework Implementations

The following tables highlight the different parts of the COMFORT-framework that we
implemented. Table B.2 depicts all implemented loaders together with a short description,
the language on which they can be applied, as well as the granularity that the output has
(i.e., file, class, or method-level). Table B.3 show all implemented filters together with a
short description and the input data that the filter can process. All implemented test metric
collectors are highlighted in Table B.4. Besides the name of the collector, the table gives
a short description for each collector, as well as the input data that it can process. Finally,
Table B.5 shows all implemented filers together with a short description.
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Name Description Languages Granularity
CallGraph Loads a static (Java) or dynamic

(Python) call graph of the program
Java/Python Method-Level

ChangeSet Loads the change set (i.e., how of-
ten was the file changed together with
a another one) for all files using the
VCS of the project

Java/Python File-Level

ClassFiles Loads all .class files of the project Java File-Level
DependencyGraph Loads a dependency graph (i.e., what

units depend on which other units in
the project) using xx (Java) or a script
that extracts the imports to build a de-
pendency graph (Python)

Java/Python Class-Level

ProjectFiles Loads all files of the project and sep-
arates them into test and production
files

Java/Python File-Level

TestCoverage Loads the per-test coverage of the
project

Java/Python Method-Level

Table B.2.: List of all data loaders that are implemented within the COMFORT-Framework.

Name Description Input
DeletePythonPackages Filters out python packages (i.e., __-

init__.py files)
Dependency graph
(Python)

DirectConnectionToTest Filters out all nodes that do not have a
direct connection to a test

Call & Dependency
graph

MergeInnerClassToMainClass Merges the nodes that represent in-
ner classes into their defining class by
adding the corresponding edges to the
main class node

Dependency graph
(Java)

SameProject Filter out all nodes that are not part of
the project

Call & Dependency
graph

TransformCallGraph Transforms a call graph to a depen-
dency graph

Call graph

Table B.3.: List of all filters that are implemented within the COMFORT-Framework.
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Name Description Input
CoEvolutionTestType Detects the test type by analyzing the

change set: if a file is only changed together
with one other file it is assumed to be a unit
test and an integration test otherwise

Change set

Dependency Calculates the number of dependent units of
each test (i.e., how many units does the test
need to work)

Call & Dependency
graph, coverage

Directness Calculates the percentage of units that are
directly covered by the tests (i.e., units that
have a direct connection in the call graph to
the test)

Call graph)

CoveredLines Calculates the TestLOC for each test Coverage
IEEETestType Classifies tests into unit and integration

tests according to the IEEE definition
Call & Call &
Dependency graph,
coverage

ISTQBTestType Classifies tests into unit and integration
tests according to the ISTQB definition

Call & Dependency
graph, coverage

LOCAndMcCabe Calculates the LOC and McCabe complex-
ity for tests

Project files

MaximumCallGraphDepth Calculates the maximum depth of the call
graph for each test

Call graph

MutationData Calculates the mutation-detection capabili-
ties of each test

Coverage (Java)

NamingConventionTestType Classifies tests into unit and integration
tests according to naming conventions

Project files, cover-
age

NumAssertion Calculates the number of assertions of each
test

Call graph, class
files (Java)

TestCoverage Calculates the percentage of covered units
for each test

Call graph, depen-
dency graph, cover-
age

Table B.4.: List of all metric collectors that are implemented within the COMFORT-
Framework.

Name Description
CSV Stores the resulting data into a Comma Separated Values (CSV) file
SmartSHARK Stores the resulting data into the SmartSHARK database

Table B.5.: List of all filers that are implemented within the COMFORT-Framework.





C. Test Statistics

C.1. Detailed Results for all Statistical Tests executed for the
analysis of RQ 1

The following tables depict all concrete test statistics and p-values for all statistical tests
that were performed in RQ1. Table C.1 depicts the input that was used for the Shapiro-
Wilk tests, as well as the resulting test statistic including the p-value and the reference to
the concrete research question. The same contents are shown for Table C.2 (results of the
Brown-Forsythe tests) and Table C.3 (results for the Mann-Whitney U tests).

Input Shapiro-Wilk Test Statistic Reference to RQ
NMC(UIEEE) (W = .8317, p = .0005)

R
Q

1.
1

NMC(IIEEE) (W = .9481, p = .1929)
NMC(UIST QB) (W = .8440, p = .0009)
NMC(IIST QB) (W = .9183, p = .0359)
NMT L(UIEEE) (W = .7314, p = 1.0957∗10−5)

NMT L(IIEEE) (W = .4929, p = 1.4275∗10−8)
NMT L(UIST QB) (W = .7960, p = .0001)
NMT L(IIST QB) (W = .5007, p = 1.7102∗10−8)

NMC(UDEV ) (W = .8641, p = .0022)

R
Q

1.
2NMC(IDEV ) (W = .9466, p = .1774)

NMT L(UDEV ) (W = .5156, p = 2.4320∗10−8)

NMT L(IDEV ) (W = .7492, p = 2.0327∗10−5)

Table C.1.: Input and Shapiro-Wilk test statistic (including p-values) for all Shapiro-Wilk
tests that were done to answer RQ1.
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Input Brown-Forsythe Test Statistic Reference to RQ
NMC(UIEEE), NMC(IIEEE) (F = .76, p = .3873)

R
Q

1.
1NMC(UIST QB), NMC(IIST QB) (F = 7.1013, p = .0102)

NMT L(UIEEE), NMT L(IIEEE) (F = 2.7057, p = .1060)
NMT L(UIST QB), NMT L(IIST QB) (F = 4.4709, p = .0393)
NMC(UDEV ), NMC(IDEV ) (F = 2.2856, p = .1366) RQ 1.2
NMT L(UDEV ), NMT L(IDEV ) (F = .4733, p = .4945)

Table C.2.: Input and Brown-Forsythe test statistic (including p-values) for all Brown-
Forsythe tests that were done to answer RQ1.

Input Mann-Whitney-U Test Statistic Reference to RQ
NMC(UIEEE), NMC(IIEEE) (U = 149, p = 9.9810∗10−5)

R
Q

1.
1

NMC(UIST QB), NMC(IIST QB) (U = 35, p = 6.2893∗10−9)

NMT L(UIEEE), NMT L(IIEEE) (U = 106, p = 4.0334∗10−6)
NMT L(UIST QB), NMT L(IIST QB) (U = 10, p = 4.5573∗10−10)

NMC(UDEV ), NMC(IDEV ) (one-sided) (U = 388.5, p = .6642)

R
Q

1.
2NMC(UDEV ), NMC(IDEV ) (two-sided) (U = 340.5, p = .3422)

NMT L(UDEV ), NMT L(IDEV ) (one-sided) (U = 308.5, p = .1685)
NMT L(UDEV ), NMT L(IDEV ) (two-sided) (U = 308.5, p = .1685)

Table C.3.: Input and Mann-Whitney-U test statistic (including p-values) for all Mann-
Whitney-U tests that were done to answer RQ1.
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C.2. Detailed Results for all Statistical Tests executed for the
analysis of RQ 2

The following tables depict all concrete test statistics and p-values for all statistical tests
that were performed in RQ2. Table C.4 depicts the input that was used for the Shapiro-
Wilk tests, as well as the resulting test statistic including the p-value and the reference to
the concrete research question. The same contents are shown for Table C.5 (results of the
Brown-Forsythe tests), Table C.6 (results for the Mann-Whitney U tests), and Table C.7
(results for the t-tests).

Input Shapiro-Wilk Test Statistic Reference to RQ
RATEXE(UIEEE) (W = .2636, p = 1.3389∗10−10)

R
Q

2.
1RATEXE(IIEEE) (W = .7131, p = 5.9359∗10−6)

RATEXE(UIST QB) (W = .2683, p = 1.4556∗10−10)

RATEXE(IIST QB) (W = .7167, p = 6.6814∗10−6)

RATEXE(UDEV ) (W = .6508, p = 8.6040∗10−7)

RATEXE(IDEV ) (W = .6998, p = 3.8477∗10−6)

SCORE(UIEEE) (ALL) (W = .9233, p = .1681)

R
Q

2.
2

SCORE(UIEEE) (ALL, COMPUTATION) (W = .8442, p = .0088)
SCORE(UIEEE) (ALL, DATA) (W = .8538, p = .0123)
SCORE(UIEEE) (ALL, INTERFACE) (W = .9166, p = .1292)
SCORE(UIEEE) (ALL, LOGIC/CONTROL) (W = .9318, p = .2334)
SCORE(IIEEE) (ALL) (W = .9442, p = .3713)
SCORE(IIEEE) (ALL, COMPUTATION) (W = .8116, p = .0029)
SCORE(IIEEE) (ALL, DATA) (W = .8576, p = .0140)
SCORE(IIEEE) (ALL, INTERFACE) (W = .9691, p = .8027)
SCORE(IIEEE) (ALL, LOGIC/CONTROL) (W = .9253, p = .1816)
SCORE(UIEEE) (DISJ) (W = .6392, p = 2.5598∗10−5)

SCORE(UIEEE) (DISJ, COMPUTATION) (W = .6935, p = 9.7608∗10−5)

SCORE(UIEEE) (DISJ, DATA) (W = .5400, p = 2.888∗10−6)
SCORE(UIEEE) (DISJ, INTERFACE) (W = .7003, p = 0.0001)
SCORE(UIEEE) (DISJ, LOGIC/CONTROL) (W = .7607, p = .0006)
SCORE(IIEEE) (DISJ) (W = .7743, p = .0010)
SCORE(IIEEE) (DISJ, COMPUTATION) (W = .7031, p = .0001)
SCORE(IIEEE) (DISJ, DATA) (W = .6596, p = 4.1783∗10−5)
SCORE(IIEEE) (DISJ, INTERFACE) (W = .7131, p = .0001)
SCORE(IIEEE) (DISJ, LOGIC/CONTROL) (W = .7480, p = .0004)
SCORE(UIST QB) (ALL) (W = .8491, p = .0104)
SCORE(UIST QB) (ALL, COMPUTATION) (W = .7894, p = .0015)
SCORE(UIST QB) (ALL, DATA) (W = .8674, p = .0200)
SCORE(UIST QB) (ALL, INTERFACE) (W = .7908, p = .0015)
SCORE(UIST QB) (ALL, LOGIC/CONTROL) (W = .8323, p = .0058)
SCORE(IIST QB) (ALL) (W = .9408, p = .3281)
SCORE(IIST QB) (ALL, COMPUTATION) (W = .8806, p = .0325)
SCORE(IIST QB) (ALL, DATA) (W = .8572, p = .0138)
SCORE(IIST QB) (ALL, INTERFACE) (W = .9730, p = .8674)
SCORE(IIST QB) (ALL, LOGIC/CONTROL) (W = .9297, p = .2154)
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SCORE(UIST QB) (DISJ) (W = .7682, p = .0008)

R
Q

2.
2

SCORE(UIST QB) (DISJ, COMPUTATION) (W = .6430, p = 2.2794∗10−5)

SCORE(UIST QB) (DISJ, DATA) (W = .6171, p = 1.5302∗10−5)
SCORE(UIST QB) (DISJ, INTERFACE) (W = .7466, p = .0004)
SCORE(UIST QB) (DISJ, LOGIC/CONTROL) (W = .8391, p = .0073)
SCORE(IIST QB) (DISJ) (W = .7222, p = .0002)
SCORE(IIST QB) (DISJ, COMPUTATION) (W = .6728, p = 5.7750∗10−5)

SCORE(IIST QB) (DISJ, DATA) (W = .5754, p = 6.0739∗10−6)
SCORE(IIST QB) (DISJ, INTERFACE) (W = .8710, p = .0228)
SCORE(IIST QB) (DISJ, LOGIC/CONTROL) (W = .6952, p = .0001)
SCORE(UDEV ) (ALL) (W = .9531, p = .5068)
SCORE(UDEV ) (ALL, COMPUTATION) (W = .8837, p = .0365)
SCORE(UDEV ) (ALL, DATA) (W = .9169, p = .1311)
SCORE(UDEV ) (ALL, INTERFACE) (W = .9643, p = .7125)
SCORE(UDEV ) (ALL, LOGIC/CONTROL) (W = .9469, p = .4091)
SCORE(IDEV ) (ALL) (W = .8734, p = .0249)
SCORE(IDEV ) (ALL, COMPUTATION) (W = .7493, p = .0004)
SCORE(IDEV ) (ALL, DATA) (W = .7382, p = .0003)
SCORE(IDEV ) (ALL, INTERFACE) (W = .8991, p = .0656)
SCORE(IDEV ) (ALL, LOGIC/CONTROL) (W = .8728, p = .0244)
SCORE(UDEV ) (DISJ) (W = .6964, p = .0001)
SCORE(UDEV ) (DISJ, COMPUTATION) (W = .7771, p = .0009)
SCORE(UDEV ) (DISJ, DATA) (W = .6509, p = 3.3850∗10−5)
SCORE(UDEV ) (DISJ, INTERFACE) (W = .7281, p = .0002)
SCORE(UDEV ) (DISJ, LOGIC/CONTROL) (W = .6381, p = 2.4945∗10−5)
SCORE(IDEV ) (DISJ) (W = .8493, p = .0105)
SCORE(IDEV ) (DISJ, COMPUTATION) (W = .6747, p = 6.0610∗10−5)

SCORE(IDEV ) (DISJ, DATA) (W = .6562, p = 3.8396∗10−5)

SCORE(IDEV ) (DISJ, INTERFACE) (W = .5598, p = 4.3536∗10−6)
SCORE(IDEV ) (DISJ, LOGIC/CONTROL) (W = .7884, p = .0014)
DLAV G(UIEEE) (ALL) (W = .7810, p = .0011)

R
Q

2.
3

DLAV G(IIEEE) (ALL) (W = .8937, p = .0533)
DLAV G(UIST QB) (ALL) (W = .9560, p = .5584)
DLAV G(IIST QB) (ALL) (W = .9111, p = .1042)
DLAV G(UDEV ) (ALL) (W = .8502, p = .0108)
DLAV G(IDEV ) (ALL) (W = .8622, p = .0165)
DLAV G(UIEEE) (DISJ) (W = .8138, p = .0032)
DLAV G(IIEEE) (DISJ) (W = .9117, p = .1067)
DLAV G(UIST QB) (DISJ) (W = .9491, p = .4420)
DLAV G(IIST QB) (DISJ) (W = .9270, p = .1935)
DLAV G(UDEV ) (DISJ) (W = .9298, p = .2161)
DLAV G(IDEV ) (DISJ) (W = .8993, p = .0660)

Table C.4.: Input and Shapiro-Wilk test statistic (including p-values) for all Shapiro-Wilk
tests that were done to answer RQ2.
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Input Brown-Forsythe Test
Statistic

Reference
to RQ

RATEXE(UIEEE), RATEXE(IIEEE) (F = 0.5772, p = .4508)
RQ 2.1RATEXE(UIST QB), RATEXE(IIST QB) (F = 0.6958, p = .4080)

RATEXE(UDEV ), RATEXE(IDEV ) (F = 0.0088, p = .9258)
SCORE(UIEEE), SCORE(IIEEE) (ALL) (F = .7817, p = .3832)

R
Q

2.
2

SCORE(UIEEE), SCORE(IIEEE) (ALL, COMPUTATION) (F = .0002, p = .9895)
SCORE(UIEEE), SCORE(IIEEE) (ALL, DATA) (F = .0532, p = .8191)
SCORE(UIEEE), SCORE(IIEEE) (ALL, INTERFACE) (F = .7310, p = .3989)
SCORE(UIEEE), SCORE(IIEEE) (ALL, LOGIC/CONTROL) (F = .4490, p = .5076)
SCORE(UIEEE), SCORE(IIEEE) (DISJ) (F = 2.2217, p = .1359)
SCORE(UIEEE), SCORE(IIEEE) (DISJ, COMPUTATION) (F = 0.9716, p = .3317)
SCORE(UIEEE), SCORE(IIEEE) (DISJ, DATA) (F = 1.2642, p = .2692)
SCORE(UIEEE), SCORE(IIEEE) (DISJ, INTERFACE) (F = 1.8549, p = .1827)
SCORE(UIEEE), SCORE(IIEEE) (DISJ, LOGIC/CONTROL) (F = 3.9303, p = .0561)
SCORE(UIST QB), SCORE(IIST QB) (ALL) (F = 2.0864, p = .1583)
SCORE(UIST QB), SCORE(IIST QB) (ALL, COMPUTATION) (F = 1.2007, p = .2184)
SCORE(UIST QB), SCORE(IIST QB) (ALL, DATA) (F = .7603, p = .3897)
SCORE(UIST QB), SCORE(IIST QB) (ALL, INTERFACE) (F = 4.1370, p = .0503)
SCORE(UIST QB), SCORE(IIST QB) (ALL, LOGIC/CONTROL) (F = 1.0049, p = .3236)
SCORE(UIST QB), SCORE(IIST QB) (DISJ) (F = 1.2655, p = .0470)
SCORE(UIST QB), SCORE(IIST QB) (DISJ, COMPUTATION) (F = 1.2109, p = .2794)
SCORE(UIST QB), SCORE(IIST QB) (DISJ, DATA) (F = 2.0214, p = .1648)
SCORE(UIST QB), SCORE(IIST QB) (DISJ, INTERFACE) (F = 4.0008, p = .0540)
SCORE(UIST QB), SCORE(IIST QB) (DISJ, LOGIC/CONTROL) (F = 8.6605, p = .0060)
SCORE(UDEV ), SCORE(IDEV ) (ALL) (F = 0.2975, p = .5892)
SCORE(UDEV ), SCORE(IDEV ) (ALL, COMPUTATION) (F = .0225, p = .8818)
SCORE(UDEV ), SCORE(IDEV ) (ALL, DATA) (F = .2663, p = .6094)
SCORE(UDEV ), SCORE(IDEV ) (ALL, INTERFACE) (F = .9199, p = .3447)
SCORE(UDEV ), SCORE(IDEV ) (ALL, LOGIC/CONTROL) (F = .2175, p = .6441)
SCORE(UDEV ), SCORE(IDEV ) (DISJ) (F = 2.7982, p = .1041)
SCORE(UDEV ), SCORE(IDEV ) (DISJ, COMPUTATION) (F = 5.1429, p = .0302)
SCORE(UDEV ), SCORE(IDEV ) (DISJ, DATA) (F = .6939, p = .4110)
SCORE(UDEV ), SCORE(IDEV ) (DISJ, INTERFACE) (F = 1.3571, p = .2527)
SCORE(UDEV ), SCORE(IDEV ) (DISJ, LOGIC/CONTROL) (F = 2.4625, p = .1264)
DLAV G(UIEEE), DLAV G(IIEEE) (ALL) (F = 5.8472, p = .0215)

R
Q

2.
3DLAV G(UIST QB), DLAV G(IIST QB) (ALL) (F = 14.7811, p = .0005)

DLAV G(UDEV ), DLAV G(IDEV ) (ALL) (F = 3.8220, p = .0594)
DLAV G(UIEEE), DLAV G(IIEEE) (DISJ) (F = 4.9191, p = .0338)
DLAV G(UIST QB), DLAV G(IIST QB) (DISJ) (F = 12.6466, p = .0012)
DLAV G(UDEV ), DLAV G(IDEV ) (DISJ) (F = 5.4284, p = .0263)

Table C.5.: Input and Brown-Forsythe test statistic (including p-values) for all Brown-
Forsythe tests that were done to answer RQ2.
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D. Additional Data for RQ 2.2

Within this section, we present additional data for RQ 2.2. The following tables show the
number of detected defects (separated by defect type) for unit and integration tests. Fur-
thermore, these tables highlight the number of defects that were detected by both test types.
Within this section, we present four different tables for the ALL and DISJ data sets, as
well as the IEEE and ISTQB definitions and the developer classification, which we used
to classify our tests into unit and integration tests. Furthermore, we show additional visual-
izations. On the one hand, we show different box plots that highlight and aggregated view
on the number of detected defects (overall and defect-type specific). On the other hand, we
show Venn-diagrams for each project that visualizes this data on a project level.

D.1. Tables of the Killed Mutants per Defect Type

For each data set (i.e., ALL and DISJ) there exist three different tables, depicting the con-
crete numbers of killed mutants per defect type separated by unit and integration tests, and
mutants that are killed by both. Table D.1 shows these numbers for the ALL data set and
unit and integration tests that are classified via the IEEE definition, Table D.2 shows them
for the ISTQB definition, and Table D.3 for the developer classification.

Table D.4 depicts the number of killed mutants per defect type for unit and integration
tests as classified by the IEEE definition, Table D.5 shows them for the ISTQB definition,
and Table D.6 for the developer classification.
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D.2. Box Plots of Defect Detection Scores

Within this section, several summary statistics in form of Box-plots are given for RQ 2.2.
Figure D.1 depicts the scores of the ALL and DISJ data sets for unit and integration
tests according to the IEEE and ISTQB definitions and the developer classification. Fig-
ures D.2, D.3, and D.4 show the scores for the ALL and DISJ data sets for unit and integra-
tion tests separated by defect type for the IEEE and ISTQB definitions, and the developer
classification, respectively.
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Figure D.1.: Box plots of the scores for the ALL (left) and DISJ (right) data sets for unit
and integration tests according to the IEEE and ISTQB definitions and the
developer classification. The points in the plot represent the concrete values
for each project.
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Figure D.2.: Box plots of the scores for the ALL (left) and DISJ (right) data sets for unit
and integration tests separated by defect type for the IEEE definition. The
points in the plot represent the concrete values for each project.
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Figure D.3.: Box plots of the scores for the ALL (left) and DISJ (right) data sets for unit
and integration tests separated by defect type for the ISTQB definition. The
points in the plot represent the concrete values for each project.
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Figure D.4.: Box plots of the scores for the ALL (left) and DISJ (right) data sets for unit
and integration tests separated by defect type for the developer classification.
The points in the plot represent the concrete values for each project.

D.3. Venn-Diagrams

Within this section we visualize the data shown in Section D.1. The Venn-diagrams show
the number of killed mutants for the ALL and DISJ data sets for unit and integration tests
of each project. Figure D.5 depicts these numbers for the ALL data set and for tests that
are classified according to the IEEE definition. Figure D.6 shows the same data, but tests
are classified according to the ISTQB definition. The same goes for Figure D.7. Within this
figure, the tests are classified according to the developer classification. Figures D.8, D.9,
and D.10 depict Venn-diagrams showing the number of killed mutants for the DISJ data
sets of unit and integration tests for each project, where the tests are classified according to
the IEEE and ISTQB definition and according to the developer of the project, respectively.
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Figure D.5.: Venn-diagrams showing the number of mutations for the ALL data set that are
killed by Unit Tests (UT) and Integration tests (IT) together with their intersec-
tion, separated by defect type. The tests are classified according to the IEEE
definition.
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Figure D.6.: Venn-diagrams showing the number of mutations for the ALL data set that are
killed by Unit Tests (UT) and Integration tests (IT) together with their intersec-
tion, separated by defect type. The tests are classified according to the ISTQB
definition.
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Figure D.7.: Venn-diagrams showing the number of mutations for the ALL data set that
are killed by Unit Tests (UT) and Integration tests (IT) together with their in-
tersection, separated by defect type. The tests are classified according to the
developer classification.
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Figure D.8.: Venn-diagrams showing the number of mutations for the DISJ data set that are
killed by Unit Tests (UT) and Integration tests (IT) together with their intersec-
tion, separated by defect type. The tests are classified according to the IEEE
definition.
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Figure D.9.: Venn-diagrams showing the number of mutations for the DISJ data set that are
killed by Unit Tests (UT) and Integration tests (IT) together with their intersec-
tion, separated by defect type. The tests are classified according to the ISTQB
definition.
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Figure D.10.: Venn-diagrams showing the number of mutations for the DISJ data set that
are killed by Unit Tests (UT) and Integration tests (IT) together with their
intersection, separated by defect type. The tests are classified according to
developer classification.
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