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Abstract. This paper describes the tool CASPA, a new performance
evaluation tool which is based on a Markovian stochastic process alge-
bra. CASPA uses multi-terminal binary decision diagrams (MTBDD) to
represent the labelled continuous time Markov chain (CTMC) underly-
ing a given process algebraic specification. All phases of modelling, from
model construction to numerical analysis and measure computation, are
based entirely on this symbolic data structure. We present several case
studies which demonstrate the superiority of CASPA over sparse-matrix-
based process algebra tools. Furthermore, CASPA is compared to other
symbolic modelling tools.

1 Introduction

Symbolic data structures, such as binary decision diagrams (BDD) [3] and vari-
ants thereof, have proven to be suitable for the efficient generation and compact
representation of very large state spaces and transition systems. In [13] it has
been shown that in the context of compositional model specification formalisms
such as process algebra, the size of the symbolic representation can be kept
within linear bounds, even if the underlying state space grows exponentially.
The key to such compact representation is the exploitation of the compositional
structure of a given specification [14, 7, 24]. It is also known that in addition to
functional analysis, performance analysis and the verification of performability
properties can also be carried out on such symbolic representations [17, 24].

In this paper, we describe the new tool CASPA which offers a Markovian
stochastic process algebra for model specification. CASPA generates a sym-
bolic representation of the underlying labelled CTMC, which is based on multi-
terminal BDDs (MTBDD), directly from the high-level model, without generat-
ing transition systems as an intermediate representation. In addition to specify-
ing the model, the CASPA modelling language allows the user to specify different
types of performance and dependability measures of interest. Numerical analy-
sis and computation of measures are also carried out directly on the symbolic
representation of the transition rate matrix of the underlying CTMC. To our
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knowledge, CASPA is the first stochastic process algebra tool whose implemen-
tation relies completely on symbolic data structures.

1.1 Related Work

Among other tools which are based on symbolic data structures are the model
analyser SMART [4] and the probabilistic model checker PRISM [20, 21].
While SMART relies on multi-valued decision diagrams and matrix diagrams,
PRISM – like CASPA – is based on multi-terminal binary decision diagrams. In
Sec. 4, we compare CASPA to PRISM, mainly with respect to compactness of
representation and effects of state space ordering. We also performed experi-
ments with SMART, whose state space generation component seems to be even
faster. However, we deliberately do not compare the numerical analysis com-
ponent of SMART to that of CASPA, since this would basically boil down to
a comparison of the algorithms of SMART and PRISM, which is not our focus
here. In Sec. 4.1 we also compare CASPA to the work presented in [8], which
is based on multi-valued decision diagrams and matrix diagrams. With respect
to symbolic tools for stochastic process algebra, we also mention the work [11],
where a PEPA specification (derived as an intermediate language from a UML
specification) is used as input for PRISM.

1.2 Organisation of the Paper

The paper is organised as follows: In section 2 we introduce CASPA’s speci-
fication language and give an overview of its architecture. Section 3 explains
how the specification is translated to MTBDDs. In section 4 we demonstrate
the usefulness of our approach by means of several case studies, which includes
a comparison with other tools. Section 5 summarises our results and concludes
with an outlook on future work.

2 Specification Language and Tool Architecture

In this section we briefly explain how a system and its measures of interest can be
described in CASPA. We discuss an example specification and give some details
on the tool’s architecture and implementation.

2.1 System Specification

CASPA’s specification language is derived from the stochastic process algebra
TIPP [15, 12]. It provides operators for prefixing, choice, enabling, disabling,
parallel composition and hiding. Infinite (i.e. cyclic) behaviour is specified by
means of defining equations. All actions are associated with an exponential de-
lay, which is specified by a rate parameter. The technique used for symbolic
model representation (cf. Sec. 3) works only for finite state spaces. Therefore
the grammar of the input language is such that recursion over static operators
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(1) /* Rate and constant definitions */
(2) rate xi = 0.5;
(3) rate gamma = 5;
(4) rate mu = 0.3;
(5) int max = 3;
(6) /* System specification */
(7) System := (P(0) |[]| P(0)) |[b]| (hide a in Q(10))
(8) Q(m [10]) := [m > 0] -> (a,xi); Q(m-1)
(9) [m = 0] -> (b,mu); Q(10)
(10) P (n [max]) := [*] -> (b,gamma); P(n) + (c,gamma); stop
(11) [n > 0] -> (d,n*mu); P (n-1)
(12) [n < max] -> (a,0.3); P (n+1)
(13) /* Measure specification */
(14) statemeasure XXX (P{1}(n > 0) & !P{2}(n = max)) | Q(m = 4)
(15) meanvalue YYY P{2}(n)
(16) throughputmeasure ZZZ a

Fig. 1. Example CASPA specification

(i.e. parallel composition and hiding) is not allowed, which ensures that the
underlying state space is finite.

The specification language allows the specification of parameterised pro-
cesses, i.e. processes which carry one or more integer parameters. This feature
is very useful for describing the behaviour of queueing, counting, or generally
indexed processes. Within a parameterised process, the enabling of actions may
be conditioned on the current value of the process parameters. In CASPA it is
possible to define both rate and parameter constants. Parameters are always
integer numbers, whereas rates are real numbers.

2.2 Example

We now discuss a small example (see Fig. 1). This specification has no special
meaning, its only purpose is to introduce the language elements of CASPA. In
lines (2) to (4) we find the definition of specific rate values, in line (5) a global
parameter constant is defined. Lines (7) to (12) contain the system specifica-
tion. Line (7) shows both possibilities to define parallel processes: The two P(0)
processes are composed in parallel without interaction, i.e. all their actions are
performed independently of each other. In contrast, Q(10) is composed in par-
allel with the two former processes in a synchronised way, i.e. action b must be
performed by one of the P-processes and the Q-process at the same time. The
synchronisation semantics is the same as for TIPP [15, 12]. In line (7) we also
find the hiding operator: Action a in process Q is hidden from the environment
and replaced by the special silent action tau. In line (8) we see an example
of guarded choice: Action a can be performed if the value of parameter m is
greater than zero. In line (10) we see a guarded choice whose test consists of ∗,
which means the branch can be taken regardless of the actual parameter value.
In lines (8) and (10) the maximum value of the respective parameters is given:
For process P we chose a global constant max, for process Q the maximum value
10 is given explicitly. As for every process parameter such a maximum value
has to be defined, the finiteness of the underlying state space is guaranteed. In
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line (10) a choice between (b,gamma); P(n) and (c,gamma); stop is given. As
all actions have exponential delay the choice of which action is actually taken
corresponds to a race condition (as for stochastic Petri nets). In line (11) we see
that rates can be arithmetic expressions, which makes it possible to define rates
that are dependent on actual parameter values, similar to marking dependent
rates in stochastic Petri nets. Finally, in lines (14) to (16) we find examples of
measure specifications. We see that state measures can contain Boolean expres-
sions with the usual connectives conjunction (&), disjunction (|) and negation
(!). The clause (P{1}(n > 0) & !P{2}(n = max)) characterises states in which
parameter n of process P{1} is greater than zero, and parameter n of process
P{2} is smaller than the maximum value, where P{i} expresses that we are inter-
ested in the i-th of the two P processes. A mean value will return the expected
value of the specified process parameter (in line (15) it will be the mean value
of parameter n of process P{2}), and a throughput measure will compute the
throughput of the given action (in line (16) this is action a).

2.3 Tool Architecture

CASPA is written entirely in C. The lexical analyser was realised using the tool
flex, the parser was written in bison. The symbolic engine was implemented
using the BDD-library CUDD [25] and the hybrid numerical solution methods
developed by Dave Parker [22] within the context of the tool PRISM. The tool
architecture consists of three major parts [26], as shown in Fig. 2.

User Interface. Up to now, CASPA has only a textual user interface. A typical
call of the tool consists of indicating the file name that contains the system
and measure specification, the analysis method, parameters for the numerical
analysis and information about the verbosity level. An example call looks as
follows:

caspa -v 1 -r -T -a TRANSIENT 100 ftcs.cas

The textual user interface is also used to present the results of the tool, i.e.
number of states, information about the size of the symbolic representation,
computation times, results of numerical analysis, etc. Additionally, CASPA can
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generate output that makes it possible to visualise the state space using the tool
davinci [6], or for any graphical tool that can handle the .dot [1] format.

Tool Driver. From the command line the specification file is passed to the tool
driver. It parses the system and the measure specification, translates them into
their parse graphs and passes the results to the state space manager.

State Space Manager. The state space manager generates (from the parse
graphs of the system and measure specification) the MTBDD representation of
the labelled CTMC, resp. of the measures. It can perform reachability analysis,
and manipulates the MTBDD data structure to allow for efficient numerical
analysis (cf. section 3).

Numerical Engine. The numerical engine computes the vector of state proba-
bilities. Several well-known numerical algorithms for both steady-state and tran-
sient analysis are implemented. The algorithms and their implementations are
taken from PRISM, for their detailed description see [22]. The user can set the
parameters of the algorithms, such as accuracy or maximum number of itera-
tions.

3 Markov Chain Generation, Representation
and Numerical Analysis

In this section, the approach of CASPA for directly mapping the process terms
to MTBDDs is presented. Note that a CTMC is never constructed explicitly,
only its symbolic encoding. A more detailed exposition of this translation can
be found in [18]. We also briefly describe how the specified measures are related
to the Markov chain representation and how the measures are computed.

3.1 Basis for Symbolic Representations

In this subsection we briefly introduce the basics of symbolic state space repre-
sentation. An exhaustive account of this can be found in [24].

Multi-terminal Binary Decision Diagrams. MTBDDs [10] (also called al-
gebraic decision diagrams (ADDs) [2]) are an extension of binary decision dia-
grams (BDDs) [3] for the canonical graph-based representation of functions of
type IBn �→ IR. We consider ordered reduced MTBDDs where on every path from
the root to a terminal vertex the variable labelling of the non-terminal vertices
obeys a fixed ordering.
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Representation of CTMC. MTBDDs can be employed to compactly repre-
sent labelled CTMCs. Let s

a,λ−−→ t be a transition of a labelled CTMC, where s
is the source state, a is the action label, λ is the rate and t the target state of the
transition, then this transition is encoded by a bit string, a1, ..., anL , s1, t1, ...snS ,
tnS where

– a1, ..., anL encode the action label a
– s1, ..., snS encode the source state s and
– t1, ..., tnS encode the target state t

In the MTBDD, there is a Boolean variable for each of these nL + 2 · nS bits,
and the rate λ will be stored in a terminal vertex. One of the main issues in
obtaining a compact MTBDD representation is the choice of an appropriate
variable ordering. A commonly accepted heuristics is an interleaved ordering for
the variables encoding source resp. target states, i.e. the ordering of the MTBDD
will be: a1 ≺ a2 ≺ ... ≺ anL ≺ s1 ≺ t1 ≺ s2 ≺ t2... ≺ snS ≺ tnS . This ordering,
together with a proper treatment of the parallel composition operator, ensures
the compactness of the resulting MTBDD [13, 24]

Translating the CASPA-Specification to MTBDDs. The basic procedure
is as described in [18]. Here we only discuss the translation of parameterised pro-
cesses, i.e. we describe our approach of how to represent parameterised processes
symbolically. The parse graph structure describes the transitions depending on
the parameter values, thereby also describing the possible changes of the pa-
rameter values. In CASPA the definition of the transitions is separated from the
change of parameters. Let X be a parameterised process, then there is in X ’s
parse graph exactly one node, called PARAM node, which describes the pos-
sible transitions. The condition list of a guarded choice is stored in this node.
Furthermore, the parse graph may contain several nodes that store the possible
changes of the parameter values, called PARAMDEF nodes. In order to gener-
ate from this information the actual MTBDD representation of a parameterised
process, it is necessary that the generation algorithm keeps track of the current
parameter value, which information is taken from the PARAMDEF nodes. The
PARAM node serves to determine which transitions are possible in view of the
current parameter values. For every satisfied condition, the successor process is
determined, and the overall representation of a parameterised process is then
a choice over all possible successor processes.

3.2 Data Structures for Measure Representation

For state measures and mean values the main task is to identify the states,
resp. their binary encodings, that are relevant for the measure. As many states
may contribute to a particular measure, we employ BDDs for a compact repre-
sentation of the state sets.
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(1) /* Rate and constant definitions */
(2) ...
(3) /* System specification */
(4) Process := Queue(0)
(5) Queue(n [3]) := [n >= 1] -> (serve,mu); Queue(n-1)
(6) [n < 3] -> (arrival,lambda); Queue(n+1)
(7) [*] -> (fail,gamma); Repair
(8) Repair := (repair,rho); Queue(0)
(9) /* Measure specification */
(10) statemeasure Queuenotfull Queue(n < 3)
(11) meanvalue Fill Queue(n)
(12) throughputmeasure Service serve

Fig. 3. Example specification

State Measures. For a given state measure, we first generate its parse graph.
Since the state measure is related to one or several process names, each node of
the system’s parse graph that contains a process which is referenced in the state
measure will get a pointer to the respective node in the measure’s parse graph.
On generation of the MTBDD for the system, the encoding of each process that
contains such a pointer is written to the correspondig measure’s sub-BDD. After
the complete generation of the system’s MTBDD representation, the measure’s
overall BDD is generated by applying the Boolean operators in the measure’s
parse graph.

Mean Values. For mean values we have to generate for each possible parameter
value a BDD that encodes the states in which the parameter has exactly that
value. Since processes can have several parameters (and since processes are com-
posed in parallel with other processes), there may be many states in which the
parameter of interest has the same value (whereas the values of the remaining
parameters, or the states of the other processes, may change). After the genera-
tion of the system’s MTBDD representation, the measure BDDs are added up,
thereby weighing each BDD with the associated parameter value. The result is
an MTBDD in which every state encoding is related to its respective parameter
value.

Throughput Measures. Throughput measures are not related to specific pro-
cesses. Therefore no extra BDD for them needs to be generated. The system’s
MTBDD representation is restricted to the action label whose throughput is to
be determined, and the target states are abstracted away. The result is then an
MTBDD consisting of the states in which the relevant action is enabled, weighed
with the respective transition rates.

3.3 Example

We will clarify the concepts of generating an MTBDD representation for pa-
rameterised processes and relating encodings and measures by means of the
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Fig. 4. Parse graph for the specification in Fig. 3

example shown in Fig. 3. The parse graph of the specification can be found
in Fig. 4. In the PARAMDEF node (2) the parameter value is initialised to
zero. In the PARAM node (3), when it is visited for the first time, the con-
ditions of the first and the third field are fulfilled, therefore we can generate
the MTBDD for their respective successor nodes. To generate the successor
node we use the information about the actual parameter value and the change
of parameter values of the PARAMDEF nodes. In the initial case the suc-
cessor processes are (arrival,lambda);Queue(1) and (fail,gamma);Repair.
For Queue(1) and Repair we then compute again the successor processes, and
so on. For Queue(1) all three conditions are fulfilled and we have three suc-
cessor processes, namely (arrival,lambda);Queue(2), (serve,mu);Queue(0)
and (fail,gamma);Repair. For the latter two, the successor nodes are already
known, whereas for Queue(2) the successor processes still have to be computed.
The overall MTBDD representation is obtained as a choice between the MTBDD
representations of all successor processes which were found.

For the state measure Queuenotfull of Fig. 3 the states for Queue(0),
Queue(1) and Queue(2) are relevant. Therefore, on generation of the respec-
tive MTBDDs the encodings of these states are copied to the measure BDD. For
the mean value measure Fill an MTBDD is constructed where the encoding of
each reachable state leads to the corresponding value of parameter n. Assuming
that states are encoded as shown in Fig. 5 (left), the resulting MTBDD for this
mean value measure looks as shown in Fig. 5 (right).

3.4 Numerical Analysis and Computation of Measures

Our experience shows that MTBDDs are a suitable data structure for the com-
pact and efficient storing of extremely large state spaces [24]. However, it is
known that purely MTBDD-based numerical analysis is very slow [9]. In [22], it
was shown that it is possible to combine the advantages of sparse data structures
(efficient matrix-vector multiplication) with those of MTBDDs (compact model
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State Encoding
Queue[0] 000
Queue[1] 001
Queue[2] 011
Queue[3] 100
Repair 010 0 1 2 3

Fig. 5. State encoding (left) and MTBDD for measure Fill (right)
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representation), leading to so-called hybrid offset-labelled MTBDDs. These data
structures and the associated numerical algorithms were implemented in the
stochastic model checker PRISM [20, 21]. Several case studies using PRISM
proved the efficiency of the data structures and algorithms, therefore we decided
to adopt this approach for CASPA.

In PRISM, and therefore also in CASPA, numerical algorithms for both steady-
state and transient analysis are implemented. For steady-state analysis Power,
Jacobi, Pseudo-Gauss-Seidel and their overrelaxed versions can be used. For
transient analysis uniformisation is employed.

4 Case Studies

In this section we show the applicability of CASPA by means of several case
studies: All results were computed on an Intel Pentium IV 3 GHz CPU with
1024 MB RAM, running SuSe 9.0 Linux.

4.1 Fault Tolerant Multi Computer System

This example is based on a case study described originally in [23] and used again
in [8]. Due to the different modelling formalisms (stochastic activity networks
versus stochastic process algebra), some re-modelling effort was required. The
original model consists of n computers each of which has the following compo-
nents:
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– 3 memory modules, of which 2 must be operational
– 3 CPU units, of which 2 must be operational
– 2 I/O ports, of which 1 must be operational
– 2 error-handling chips, which are not redundant.

Each CPU and I/O-port consists of 6 non-redundant chips. Each memory module
possesses 41 RAM chips, of which at most 2 may fail, and 2 interface chips that all
must be operational. A computer fails, if one of its components fails. The overall
system is operational if at least one computer is operational. A diagramatic
overview can be found in Fig. 6.

Results. The measure we are interested in is the survival probability of the
system. All results were computed using uniformisation with relative precision
10−6. The computation times, including model construction, numerical analy-
sis and measure computation, range from less than one second for the smallest
configuration (889 reachable states) to about 30 sec for the largest configuration
(750,000 reachable states). In Fig. 7 we see the survival probability for differ-
ent system configurations: C1 is the configuration of the original system (i.e.
consisting of two computers with three memory modules each) which has about
750,000 reachable states. C2 consists of two computers with only one memory
module each, and has 2152 reachable states. C3, which is identical to C2 but
possesses no redundant I/0 port, has only 889 reachable states. Finally C4 has
the same configuration as C2, but consists of 3 computers instead of 2, hav-
ing 120,000 reachable states. The survival probability, dependent on the mission
time, is shown in Fig. 7.

Our results are not directly comparable to the ones reported in [8] (where
multi-valued decision diagrams and matrix diagrams are employed as the un-
derlying data structures): Firstly, we consider slightly different system configu-
rations, and secondly, we do not exploit lumpability (which is due to replicated
components). However, it is interesting that [8] reports a computation time of
15.5 sec per iteration for a 463,000 state model, while we measured only 0.12 sec
per iteration for the 750,000 state model (the machine speeds are almost identi-
cal, and ours has only one third of the memory).

4.2 Kanban System

For this case study we computed steady-state probabilities for the well-known
Kanban example (originally described in [5]). We model a Kanban system with
four cells, a single type of Kanban cards, and the possibility that some workpiece
may need to be reworked. The performance measures we compute are the average
number of cards in each cell and the throughput of parts with and without rework
for each cell.

Results. In Fig. 8 (left) we see the average fill of cells 1 to 4, depending on the
number of cards N . Note, that due to the symmetric nature of the model, the
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Fig. 7. Survival probability of fault-tolerant multi computer system

Fig. 8. Left: Average fill of cells 1 to 4. Right: Throughput of workpieces for cell 1

fill of cell 2 and 3 is identical, therefore the two curves are superposed. Fig. 8
(right) shows the throughput measures for cell 1 dependent on the number of
cards.

Details about state space size, MTBDD size and time needed for computing
the measures can be found in Table 1 (top). The analysis method used here was
Pseudo-Gauss-Seidel (which was the most efficient one), with relative precision
10−6.

As a comparison, TIPPtool [12] takes more than 4 hours just to generate
the state space of the Kanban model with N = 4 (on the same machine), not
including numerical analysis and measure computation. This huge difference can
be explained by the fact that TIPPtool needs to traverse all transitions of the
underlying labelled Markov chain explicitly in a sequential fashion, while CASPA
performs a symbolic product space construction followed by a symbolic reach-
ability analysis (where the latter works on sets of states and not on individual
states).

We now compare the experimental results obtained with CASPA to those
obtained with PRISM, which are shown in Table 1 (bottom). We observe, that
the number of MTBDD nodes (column “final”) is not the same for both tools:
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Table 1. Results for Kanban system

N Reach. States MTBDD Nodes MTBDD Generationa Iterations Num. Analysisb

peak final
CASPA:
3 58,400 5,739 2,241 0.04 sec. 213 1.63 sec.
4 454,475 14,055 3,990 0.15 sec. 319 20.39 sec.
5 2,546,432 25,514 5,392 0.42 sec. 492 184.44 sec.
6 11,261,376 47,395 8,086 0.94 sec. 625 1191.46 sec.
7 41,644,800 76,230 10,389 1.59 sec. 950 21h
8 133,865,325 116,785 13,998 3.02 sec. - -
9 384,392,800 168,694 17,762 4.87 sec. - -
10 1,005,927,208 248,461 23,231 8.37 sec. - -
11 2,435,541,472 323,115 27,411 12.90 sec. - -
12 5,519,907,575 414,719 32,324 17.22 sec. - -
PRISM:
3 58,400 ? 2,474 0.12 sec. 230 2.36 sec.
4 454,475 ? 4,900 0.49 sec. 370 25.11 sec.
5 2,546,432 ? 6,308 1.02 sec. 528 177.60 sec.
6 11,261,376 ? 7,876 1.8 sec. 891 1140.48 sec.
7 41,644,800 ? 9,521 3.11 sec. - -
8 133,865,325 ? 14,702 6.10 sec. - -
9 384,392,800 ? 17,196 8.62 sec. - -
10 1, 005, 927, 208 ? 19,877 12.43 sec. - -
11 2,435,541,472 ? 22,666 17.79 sec. - -
12 5,519,907,575 ? 25,710 24.20 sec. - -

a including reachability analysis
b including measure computation (in the case of CASPA)

While CASPA constructs smaller MTBDDs for small values of N , the converse
is the case for larger values of N . We attribute this phenomenon partly to the
different state space ordering as caused by the state space generation algorithms
of the two tools, and partly to the fact that CASPA’s symbolic representation
includes the encoding of the action labels which is not the case for PRISM. In
the case of CASPA, the peak number of MTBDD nodes during the construction
process (column “peak”) is much higher than the final number of nodes, but it is
still extremely small compared to the size of the state space. Since PRISM does
not give peak numbers, the corresponding positions are marked with a “?”. State
space construction (column “MTBDD Generation”) is faster in CASPA, but this
is not really significant since state space construction is not the bottleneck. The
number of iterations performed is always smaller in CASPA, which again seems
to be due to the state space ordering (we emphasize at this point, that finding
the optimal state space ordering is an NP-complete problem, therefore one can
only resort to heuristics as described e.g. in [13]). A comparison of the total
times for numerical analysis is not of interest for two reasons: Firstly, CASPA-
times include measure computation while PRISM-times do not. Secondly, the
numerical engine of CASPA is taken from PRISM, so the implementations are
practically identical.
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Table 2. Results for Polling system

N Reach. States MTBDD Nodes MTBDD Generationa Iterations Num. Analysisb

peak final
CASPA:
10 15,360 3,748 1,193 0.01 sec. 185 0.29 sec.
15 737,280 9,417 2,370 0.05 sec. 150 13.02 sec.
20 31,457,280 19,311 4,556 0.17 sec. 161 741.27 sec.
PRISM:
10 15,360 ? 931 0.02 sec. 74 0.29 sec.
15 737,280 ? 1,942 0.05 sec. 97 8.27 sec.
20 31,457,280 ? 3,346 0.15 sec. 112 663.65 sec.

a including reachability analysis
b including measure computation (in the case of CASPA)

4.3 Polling System

As a third case study we consider a polling system, consisting of a server and N
stations which are served in a cyclic fashion. This system was originally described
in [16] and has since been frequently used as a standard benchmark. The results
are shown in Table 2 (where the numerical method was again Pseudo-Gauss-
Seidel). We observe that the MTBDDs generated by CASPA are up to 36%
larger than the ones generated by PRISM, and that CASPA always needs more
iterations. However, quite surprisingly, the time per iteration is always smaller
in the case of CASPA.

5 Conclusions

In this paper we have presented CASPA, a stochastic process algebra tool which
realises a completely symbolic approach from model construction to the com-
putation of performance and dependability measures. CASPA implements an
MTBDD-based state space generation scheme and allows the computation of
transient and steady-state measures on the basis of well-established numerical
algorithms.

We carried out systematic tests on many case studies: In addition to the ones
given here, several queueing models, a mainframe system with software failures
and a wireless communication network were analysed using CASPA. The results
for all case studies are very positive, both state space generation and numerical
analysis have shown to be highly efficient. CASPA is clearly superior to sparse-
matrix based tools such as TIPPtool, and it compares well to other symbolic
tools such as PRISM.

We are currently working on extending CASPA with a symbolic stochas-
tic model checking engine. We plan to support the powerful action-based logic
sPDL [19] which enables the user to define complex performance and depend-
ability requirements in a formal and concise way.

Last but not least, in order to further increase its usability, in the future
CASPA shall be equipped with a graphical user interface.
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