
Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1327

 

 

 

 

Model-based testing with UML applied to a roaming 

algorithm for Bluetooth devices 
 

DAI Zhen Ru1, GRABOWSKI Jens2, NEUKIRCHEN Helmut2, PALS Holger3 

(1Fraunhofer Fokus, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany) 

(2Institute for Informatics, University of Goettingen, Lotzestrasse 16-18, 37083 Goettingen, Germany) 

(3Institute of Computer Engineering, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany) 

E-mail: dai@fokus.fraunhofer.de; {grabowski,neukirchen}@cs.uni-goettingen.de; pals@iti.uni-luebeck.de 

Received Dec. 2, 2003;  revision accepted July 2, 2004  

 

Abstract:    In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 
2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has 
become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven 
testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing 
UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML 
Model for a Bluetooth device. 
 
Key words:  UML 2.0, UML 2.0 Testing Profile, Re-Usability, Bluetooth, Roaming 
doi:10.1631/jzus.2004.1327                     Document code:  A                    CLC number:  TP391 

 
 
INTRODUCTION 
 

The Unified Modeling Language (UML) 
(Eriksson, 2003) is a visual language supporting the 
design and development of complex object-oriented 
systems. While UML models focus primarily on the 
definition of system structure and behavior, they 
provide only limited means for describing test ob-
jectives and test procedures. Furthermore, the 
growing system complexity increases the need for 
solid testing. Thus, in 2001, the Object Manage-
ment Group issued a Request for Proposal (U2TP 
web-site: http://www.fokus.fraunhofer.de/u2tp/) to 
develop a testing profile for UML 2.0 (UML 2.0 
Infrastructure Specification, OMG Adopted 
Specification, ptc/03-09-15; UML 2.0 
Superstructure Specification, 2004, ptc/04-05-02). 

A UML profile provides a generic extension 
mechanism for building UML models in particular 
domains. The UML 2.0 Testing Profile is such an 
extension developed for the testing domain. It 
bridges the gap between designers and testers by 
providing means for using UML both for system 
modelling and test specification. This allows a 
reuse of UML design documents for testing and 
enables test development in an early system de-
velopment phase. Meanwhile, the UML 2.0 Testing 
Profile project has come to its finalization and has 
become an official standard of the OMG.  

In this paper, we provide a methodology for 
applying UML 2.0 Testing Profile concepts in an 
existing UML design model effectively. As a case 
study, the methodology will be evaluated by ap-
plying it on a UML model for roaming with Blue-

Journal of Zhejiang University SCIENCE  
ISSN 1009-3095  
http://www.zju.edu.cn/jzus        
E-mail: jzus@zju.edu.cn 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1328

tooth devices (Pals et al., 2003). 
 
 
THE UML 2.0 TESTING PROFILE  
 

The UML 2.0 Testing Profile (U2TP) provides 
concepts that target the development of test speci-
fications and test models for black-box testing 
(Beizer, 1995). In particular, the profile introduces 
four concept groups covering the aspects: test ar-
chitecture, test behavior, test data and time. To-
gether, these concepts define a modelling language 
for visualizing, specifying, analysing, constructing 
and documenting the artefacts of a test system 
(UML 2.0 Testing Profile, Final Adopted Specifi-
cation at OMG, 2004, http://www.omg.org/cgi-bin/ 
doc? ptc/2004-04-02). 
 
Test architecture concepts 

The test architecture concept group covers 
concepts for specifying test components, the in-
terfaces of and connections between test compo-
nents and to the system under test. 

One or more objects within a test specification 
can be identified as the System Under Test (SUT). 
Test components are defined as objects within the 
test system that can communicate with the SUT or 
other components to realize the test behavior. Test 
configuration is a collection of parts, representing 
test components, the SUT and the connections 
between the test components and to the SUT. A test 
context groups test cases with the same initial test 
configuration. An arbiter is a denoted test compo-
nent which is responsible for the final test result 
calculation which derives from temporary test re-
sults. A utility part represents a miscellaneous 
component which helps test components to realize 
their test behavior. Typically, utility parts are data 
bases with data pools. A scheduler controls the 
creation and termination of test components and the 
interaction between test components and the arbiter. 
  
Test behavior concepts 

The test behavior concept group covers con-
cepts for specifying actions necessary to evaluate 
the objective of a test. Test behaviors can be de-

fined by any behavioral diagram of UML 2.0, i.e. as 
interaction diagrams or state machines. Test objec-
tives allow the designer to express the intention of 
the test. A test case is an operation of a test context 
specifying how a set of cooperating components 
interact with the SUT to realize a test objective. A 
test case always returns a test verdict. The handling 
of unexpected events (e.g. wrong responses from 
the SUT) is eased by the specification of defaults. A 
default is a separate behavior which is triggered if 
an event is observed that is not explicitly handled 
by the main test case behavior. Test verdicts specify 
possible test results, e.g. pass, fail, or inconclusive. 
The definition of the verdicts originates from the 
OSI Conformance Testing Methodology and 
Framework (ISO/IEC, 1994). Pass indicates that the 
SUT behaves correctly for the specific test case. 
Fail describes that the test case has been violated. 
Inconclusive is used where neither a Pass nor a Fail 
can be given. A validation action can be performed 
by a test component to denote that the arbiter is 
informed of a test result which was determined by 
that test component. During the execution of a test 
case a test trace is generated. A test log is used to 
log entries during the execution for further analysis. 
 
Test data concepts 

The test data concept group covers concepts 
for describing communication data between the 
SUT and the test components. Wildcards are useful 
for test data specifications, especially for data re-
ception. U2TP introduces wildcards allowing the 
specification of: Any value (1…n) and Any or None 
values (0…n). Data Pool is a container for possible 
test data for the specified test. Logical partitions are 
used to define value sets within test parameters. 
Data Selection is an operation to retrieve appro-
priate test data. The specification of coding rules 
allows the user to define which encoding of data 
values is used in the implementation. 
  
Time concepts 

The time concept group covers concepts to 
constrain and control test behavior with regard to 
time. Timers are utilized to manipulate and control 
test behavior, as well as to ensure the termination of 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1329

test cases. Time zones are defined to group com-
ponents within a distributed system and allow the 
comparison of time events within the same time 
zone. 

 
 
A METHODOLOGY FOR U2TP 
 

The U2TP has just been developed at the Ob-
ject Management Group (OMG). For a tester who 
uses the U2TP for the first time, it is hard to see 
which concepts are important for his/her test 
specifications and which concepts are less impor-
tant. In this section, we will explain briefly how a 
tester can apply the concepts of the U2TP effec-
tively after having received a detailed design model 
which should be tested. To clarify the terminologies: 
With design model, we mean the system design 
model in UML. When talking about the test model, 
we mean the UML model enriched with U2TP 
concepts. 

Having a design system model, the tester may 
want to specify tests for the system. For that, the 
existing design model can be enriched with U2TP 
concepts. The following aspects must be considered 
when transforming a design model into a test 
model: 

First of all, define a new UML package as the 
test package of the system. Import the classes and 
interfaces from the system design package in order 
to get access to message and data types in the test 
specification. 

Next, start with the specification of the test 
architecture and continue with test behavior speci-
fications. Test data and time are usually comprised 
in either the test architecture (e.g. timezone or data 
pool) or test behavior (e.g. timer or data partitioning) 
specifications. 

Below, issues regarding test architecture and 
test behavior specifications are listed. They are 
subdivided into two categories: mandatory issues 
and optional issues. Mandatory issues can normally 
be retrieved directly from the design model, while 
optional issues are specific to test requirements and 
therefore, can seldom be retrieved from existing 
UML diagrams. However, they are also not always 

needed for the test model. The most important is-
sues are the specification of the SUT components, 
the test components, the test cases and the verdict 
settings: 
 
Test architecture 

1. Mandatory 
(1) Which system component/components 

would you like to test? Assign it/them to System 
Under Test (SUT).  

(2) Depending on their functionalities, test 
components have to be defined. Try to group the 
system components (except the SUT) to test com-
ponents. 

(3) Specify a test context class listing the test 
attributes and test cases, also possible test control 
and test configuration. 

2. Optional 
(1) In order to define the ordering of test case 

execution, specify the test control. The simplest 
form is to execute test cases sequentially. In more 
complex test controls, loops and conditional test 
execution can be specified. 

(2) Test configuration can be easily retrieved 
by means of existing interaction diagrams: When-
ever two components exchange messages with each 
other, assign a communication channel between the 
components. If there is no interaction diagram de-
fined in the design model, connect the test com-
ponents and SUT to an appropriate test configura-
tion so that the configuration is relevant for all test 
cases included in the test context. 

(3) Determine utility parts within the test 
configuration. 

(4) Determine an arbiter for verdict arbitration. 
(5) Assign timezones to the components. 

Timezones are normally needed if a distributed test 
system is built and time values of different com-
ponents need to be compared. 

(6) Look at coding rule specifications. 
 
Test behavior 

1. Mandatory 
(1) For designing the test cases, take the given 

interaction diagrams of the design model and change 
(i.e. rename or group) the instances and assign them 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1330

with stereotypes of the U2TP (i.e. test component or 
SUT) according to their functionalities. 

(2) Assign verdicts at the end of each test case 
specification. Usually, the verdict in a test case is 
set to pass. 

 2. Optional 
(1) Specify default behaviors using wildcards 

for setting a fail or inconclusive verdict. 
(2) Define time events by means of timers or 

time constraints. 
 
 
A CASE STUDY: ROAMING WITH BLUETOO- 
TH DEVICES 
 

In this section, we will provide an example on 
how to design tests and modify an existing design 
model to obtain a test model. As a case study, we take 
the UML design model for roaming with Bluetooth 
devices which is introduced in (Pals et al., 2003). For 
the model modification, we will apply step by step the 
methodology introduced in the previous section. The 
main focus of this case study is to show that classes 
and interfaces specified in the design model can be 
re-used in the test model (Dai et al., 2004). 
 
Test preparation 

Before amending the design model, the focus of 
the test must be defined, i.e. which classes should be 
tested and which interfaces does the tester need in 
order to get access to these classes. For our case study, 
the functionalities of the SlaveBTRoaming layer1 are 
subject of test. 

Fig.12 presents the test configuration with one 
slave and two masters. The classes originate from 
the BluetoothRoaming package of the design model 
(Pals et al., 2003): The focus of our tests is the 
SlaveBTRoaming layer. Thus, the SlaveApplica-
tion layer is one test component. Other test com-
ponents are the underlying Bluetooth Hardware 
layer and the master components Master1 and 
Master2. 

 
 
 
 

On the top of the slave and the masters, a new 
test component of class Test-Coordinator is speci-
fied. This test component is the main test compo-
nent which administrates and instructs the other test 
components during the test execution. The coor-
dinator is also responsible for the evaluation of the 
test cases and the setting of verdicts during test case 
execution. The coordinator has access to the utility 
part Location-DataBase. This data base embodies 
the LocationServer, which owns the slave roaming 
lists and the network structure table used for 
roaming decisions. Communication between the 
Test-Coordinator and the masters is performed via 
the Test Coordination Interface (TCI). 

This test configuration is very flexible: The 
Bluetooth Hardware layer used in a test configura-
tion might either be real Bluetooth (i.e. consisting 
of the slave’s Bluetooth hardware SlaveBT-HW 
and the master’s Bluetooth hardware Mas-
terBT-HW) or emulated by software. Moreover, 
different multi party test configurations can easily 
be obtained by adding more masters. The master 
test component can be regarded as sub-divided into 
a Master Roaming and Master Application layer. 
This allows re-use of all the classes specified in the 
design model. Additionally, in a different test stage, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
1Layer is a term used in the context of communication protocols. In 
this paper, we will use it as a synonym to component within an 
object-oriented system. 
2This diagram is not a UML diagram. Fig.1  Role Assignment for System Components 

 

Test-Coordinator 

Test component 
Test-Coordinator  Utility part 

Location-DataBase 

LocationServer 

 Test component 
SlaveApp 

Slave  
Application 

  
Test component 

Master1 
Mater 

Application 

Master 
BTRoaming 

Test component 
Master2 
Master 

Application 

Master 
BTRoaming 

 Test component Hardware 

SlaveBT-HW MasterBT-HWs 

 

LNI 

TCI TCI 

SRI MRI MRI 

HCI HCI HCI 

System Under 
Test (SUT) 

Test Component 
with new class 

Test Components 
with existing classes 

SUT 
Slave 

BTRoaming 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1331

it would be possible to replace more and more of the 
emulated test components with real implementa-
tions. Consequently, it is easy to perform integra-
tion tests with such a test configuration as well. 

In our case study, the following functionalities 
of the SlaveRoaming layer should be tested: 

(1) Is the SlaveRoaming layer able to choose a 
new master by looking up in its roaming list when 
the connection with its current master gets weak? 

(2) Does the SlaveRoaming layer request a 
connection establishment to the chosen master? 

(3) Does the SlaveRoaming layer wait for a 
connection confirmation of the master when the 
connection has been established? 

(4) Does the SlaveRoaming layer send a 
warning to the environment, when no master can be 
found and the roaming list is empty? 

These test objectives assume that basic func-
tionalities of the SlaveRoaming layer like data 
forwarding from the application layer to the hard-
ware layer have already been tested in a preceding 
capability test. 
 
Test architecture specification 

First of all, a test package for the test model 
must be defined. Our package is named Blue-
toothTest (Fig.2a). The test package imports the 
classes and interfaces from the BluetoothRoaming 
package (Pals et al., 2003) in order to get access to 
the classes to be tested. 

In the test preparation phase in the section on 
test preparation, we have assigned the SlaveB-
TRoaming layer to SUT and other system compo-
nents to test components. The test package consists 
of five test component classes, one utility part and 
one test context class. The test context class is called 
BluetoothSuite. It contains various test attributes, 
some test functions and test cases (Fig.2b). 

Test configuration and test control are also 
specified in the test context class. The test con-
figuration (Fig.3a) corresponds with the test con-
figuration in Fig.1, except that it consists of one 
slave and four masters m1–m4. Ports with inter-
faces connect the test components and the SUT to 
each other. 

Fig.3b illustrates the test control, indicating 

the execution order of the test cases: First, test case 
TestRoaming_noWarning is executed. If the test 
result is pass, the second test case TestRoam-
ing_withWarning will also be executed. Otherwise, 
the test is finished. 

 
Test behavior specification 

The test cases which will be shown were all 
derived from the sequence diagrams, state machines 
and activity diagrams of the design model. Only 
little effort was necessary for deriving the test case 
specification. Some of the test cases may also be 
generated automatically. 

In the section on test preparation, we have listed 
the test objectives of the case study. As an example, we 
will present a test case with the following scenario: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

<<testContext>> 
BluetoothSuite 

 

<<testComponent>> 
SlaveApplication 

 

<<testComponent>> 
Hardware 

 

<<testComponent>> 
Master 

<<testComponent>> 
Test-Coordinator 

Location  
DataBase 

BluetoothRoaming 

HCI HCI LNI HCI LNI 

LNI 

TCI 

TCI 

SRI 

<<import>> BluetoothTest 

(a)  

<<testContext>> 
BluetoothSuite 

 
+Rlist: list 
−threshold: Integer 
−verdict: Verdict 
 
+Connect_to_Master() 
+Bad_Link_Quality() 
+Good_Link_Quality() 
<<testCase>> 
−TestRoaming_noWarning(): Verdict 
<<testCase>> 
−TestRoaming_withWarning(): Verdict 

(b)  

Fig.2  Test packages (a) and test context class (b) 

p1[4] 

p_s p_m p_hw p_co 

p_ap 

LNI 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1332

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After the exchange of two data packages, the 
link quality between Slave and its current master 
m1 becomes bad. The first alternative master in the 
roaming list m2 cannot be reached since the link 
quality is also weak. Thus, after at most two sec-
onds, a further master m3 is chosen from the 
roaming list and the connection is established 
successfully. 

Fig.4 depicts the test case for the scenario 
given above. Test case TestRoaming_NoWarning 
starts with the activation  of  the  timer  T1  with  a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

duration of six seconds. T1 is a guarding timer 
which is started at the beginning and stopped at the 
end of a test case. It assures that the test finishes 
properly even if e.g. the SUT crashes and does not 
respond anymore. In this case, the timeout event is 
caught by a default behavior. 

The function Connect_To_Master referenced 
at the beginning of the test case establishes a con-
nection between the Slave and Master m1 Fig.5a): 
The connection request (con_request) is initiated by 
the SlaveApplication and is forwarded to the 
master. The master informs the Test-Coordinator 
about that observation. Then, the master accepts the 
connection (con_accept), resulting in a confirma-
tion sent from the Bluetooth hardware to both the 
slave and the master. Thereupon, the master in-
forms the Test-Coordinator about the successful 
connection, which allows the Test-Coordinator to 
build a new roaming list containing the masters 
(reference makeList) and to transfer it via the 
master to the slave using the message roamingList 
([M2, M3, M4]). The entries of the roaming list 
indicate that if the connection between slave and its 
current master gets weak, master m2 should be tried 
next. If this connection cannot be established, 
master m3 should be contacted. As a last alternative, 
m4 should be chosen. If none of the alternative 
masters can be connected to the slave, warnings 
would be sent out (However, this is not shown in the 
diagrams). 

Fig.3  Test configuration (a) and test control (b) 

<<testContext>> 
BluetoothSuite 

verdict:= 
TestRoaming_noWarning 

ref 

verdict:= 
TestRoaming_withWarning 

ref 

[verdict==pass] 

(b)  

sd Bluetoooth_TestControl 

<<testComponent>> 
co: Test-Coordinator Location-DataBase 

<<testComponent>> 
sa: SlaveApplication 

<<SUT>> 
sr: SlaveRoaming 

<<testComponent>> 
m1: Master 

<<testComponent>> 
m2: Master 

<<testComponent>> 
m3: Master 

<<testComponent>> 
m4: Master 

<<testComponent>> 
hw: Hardware 

 <<testContext>> 
BluetoothSuite 

p1[4] 
p_co p_co p_co p_co 

p_s 

p_hw 

p_m 

p_hw 

p_m 

p_hw 

p_m 

p_hw 

p_m 

(a) 

[verdict==fail] 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1333

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
When the referenced behavior of Con-

nect_to_Master has finished in Fig.4, the slave has 
successfully connected to master m1 and 
SlaveApplication starts to send data to the master. 
Additionally, the link quality is checked periodi-
cally. The time constraint of 0.5 seconds is speci-
fied to assure the function Good_Link_Quality, 
which is performed every 0.5 seconds, is executed 
before sending the second data package. Checking 
the link quality is specified in the functions 
Good_Link_Quality and Bad_Link_Quality in Fig. 
5b. Herein, SlaveRoaming triggers the evaluation 
request and receives the result from the hardware. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the first part of test case TestRoam-

ing_noWarning (Fig.4), the Hardware has to be 
tuned to report a good link quality. Thus, further 
data can be sent. In the second part, the link quality 
is determined to be bad. Therefore, a new master is 
looked up. According to the roaming list, the new 
master must be m2. A connection request is ex-
pected to be sent to m2 by the SUT. As soon as it is 
observed and reported to the Test-Coordinator, a 
timer T2 of two seconds is started. This timer as-
sures that when the SUT cannot establish a con-
nection to a master, the SUT chooses a further 
master and tries to connect to it within two seconds. 

sd TestRoaming_noWaming():Verdict 

<<test component>> 
sa: SlaveApplication 

<<SUT>> 
sr: SlaveRoaming 

<<test component>> 
hw: Hardware 

<<test component>> 
co: Test-Coordinator 

<<test component>> 
m1: Master 

<<test component>> 
m2: Master 

<<test component>> 
m3: Master 

Good_Link_Quality 

Bad_Link_Quality

<<default>> 
Conf_Default 

makeList 

<<validationAction>> 
pass 

Disconnect 

<<default>> 
Coord-Default 

T1 (6 s) 

ref 

ref 

data data 

data 

{0.5 s…} 

con_request 

con_request 

con_request 

con_request 

con_request 

con_request 

T2 (2 s) 

con_accept 

T2 

con_confirm 
con_confirm 

con_comfirm(m3) 

ref 

ref 

roamingList([m1,m2,m4]) roamingList([m1,m2,m4]) 

roamingList([m1,m2,m4]) 

T1 

Fig.4  Test scenario 

Connect_To_Master(m1) ref 

data 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1334

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
If it is observed that the SUT requests a connection 
to the correct master m3, the timer T2 is stopped by 
the Test-Coordinator. In this test case, the connec-
tion is accepted (con_accept) by master m3 and 
hence confirmed (con_confirm). After the 
Test-Coordinator noticed the connection to the 
correct master, it assembles the new roaming list 
and sends it via the master to the slave. In case that 
no connection confirmation is received, the default 
behavior Conf_Default is invoked. Finally, slave 
and master are disconnected; the guarding timer 
T1 is stopped and the verdict of this test case is set 
to pass.  

Besides the expected test behavior of test case 
TestRoaming_NoWarning, default behaviors are 
specified to catch the observations which lead to a 
fail or inconclusive verdict. The given test case uses 
two defaults called Coord_Default and 
Conf_Default (Fig.6). In U2TP, test behaviors can 
be specified by all UML behavioral diagrams, in-
cluding interaction diagrams, state machines and 
activity diagrams. Thus, Fig.6 shows how default 
behaviors can be specified either as sequence dia-
grams (Fig.6a) or as state machines (Fig.6b). 

Coord_Default is an instance-specific default 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

applied to the coordinator. It defines three alterna-
tives. The first two alternatives catch the timeout 
events of the timers T1 and T2. In both cases, slave 
and master will be disconnected and the verdict is 
set to fail. After that, the test component terminates 
itself. The third alternative catches any other un-
expected events. In this case, the verdict is set to 
inconclusive and the test behavior returns back to 
the test event which triggered the default.  

Conf_Default is an event-specific default at-
tached to the connection confirmation event. In the 
Test-Coordinator, this default is invoked if either 
the connection confirmation is not sent from the 
correct master or another message than the con-
nection confirmation is received. In the first case, 
the verdict is set to fail and the test component 
finishes itself. In the latter case, the verdict is set to 
inconclusive and the test returns to main test be-
havior. 

 
 

CONCLUSION AND OUTLOOK 
 

In this paper, we have presented a case study of 
how to use the newly adopted U2TP, in which some 

sd Good_Link_Quality 

get_link_quality 

Quality (good) 

sd Bad_Link_Quality 

get_link_quality 

Quality (bad) 

(b) 

Fig.5  Test Functions (a) Connect to master function; (b) Link quality evaluation functions 

(a)  

sd Connect_To_Master(master:string) 

<<test component>> 
sa: SlaveApplication 

<<SUT>> 
sr: SlaveRoaming 

<<test component>> 
hw: Hardware 

<<test component>> 
master: Master 

<<test component>> 
co: Test-Coordinator 

makeList ref 

con_request con_request 

con_confirm(master) con_confirm 
con_accept 

con_request con_request 

roamingList([M1,M2,M4]) roamingList([M2,M3,M4]) 

con_comfirm 

<<test component>> 
hw: Hardware 

<<SUT>> 
sr: SlaveRoaming 

<<test component>> 
hw: Hardware 

<<SUT>> 
sr: SlaveRoaming 



Dai et al. / J Zhejiang Univ SCI   2004 5(11):1327-1335 1335

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of the authors were involved. The U2TP is a UML 
profile which allows the specification of black-box 
tests based on the new version 2.0 of UML.  

We proposed a methodology for deriving test 
models from existing design model and demon-
strated in the case study its applicability by de-
veloping a test context for a Bluetooth roaming 
model. 

Further study is required to investigate trans-
formation rules and automatic derivation of test 
models from design model. Additionally, it would 
be interesting to assess the possibility of hardware 
test specification using the U2TP.  
 
References 
Beizer, B., 1995. Black-Box Testing. John Wiley & Sons, 

Inc. 
Dai, Z.R., Grabowski, J., Neukirchen, H., Pals, H., 2004. 

From Design to Test−Applied to a Roaming Algorithm 
for Bluetooth Devices. Next Generation Testing for 
Next Generation Networks. Proceedings of the 16th 
IFIP International Conference on Testing of 
Communicating Systems (TestCom 2004), LNCS 2978, 
Springer, Oxford, United Kingdom. 

Eriksson, H.E., Penker, M., Lyons, B., Fado, D., 2003. 
UML 2 Toolkit. Wiley Publisher, ISBN: 0471463612. 

ISO/IEC, 1994. Information Technology-OSI–Conformance 
Testing Methodology and Framework. International 
ISO/IEC multi-part standard No. 9646. 

Pals, H., Dai, Z.R., Grabowski, J., Neukirchen, H., 2003. 
UML-Based Modelling of Roaming with Bluetooth 
Devices. First Hangzhou-Luebeck Conference on 
Software Engineering, HL-SE’03. 

 
 
 

<<validationAction>> 
fail 

Disconnect 

Disconnect 

T1 

T2 

* 

con_confirm(*) 

* 

(a)  

<<default>> 
statemachine Coord_Default 

T1/setverdict(fail) 

* 

T2/setverdict(fail) 

*/setverdict(inconc) 

<<default>> 
statemachine Conf_Default 

con_confirm(*)/setverdict(fail) 

* 

*/setverdict(inconc) 

(b)  

Fig.6  Test defaults (a) Default as sequence diagrams; (b) 
Default as statemachines 

<<default>> 
sd Coord_Default 

self 

alt 

self 

alt 

<<validationAction>> 
fail 

<<validationAction>> 
inconc 

<<validationAction>> 
inconc 

<<validationAction>> 
fail 

<<default>> 
sd Conf_Default 

 

Welcome visiting our journal website:  http://www.zju.edu.cn/jzus 
Welcome contributions & subscription from all over the world 
The editor would welcome your view or comments on any item in the 

journal, or related matters 
Please write to:  Helen Zhang, Managing Editor of JZUS 

E-mail: jzus@zju.edu.cn  Tel/Fax: 86-571-87952276 

 
 


