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Abstract The usage of empirical methods has grown common in software
engineering. This trend spawned hundreds of publications, whose results are
helping to understand and improve the software development process. Due
to the data-driven nature of this venue of investigation, we identified several
problems within the current state-of-the-art that pose a threat to the repli-
cability and validity of approaches. The heavy re-use of data sets in many
studies may invalidate the results in case problems with the data itself are
identified. Moreover, for many studies data and/or the implementations are
not available, which hinders a replication of the results and, thereby, decreases
the comparability between studies. Furthermore, many studies use small data
sets, which comprise of less than 10 projects. This poses a threat especially to
the external validity of these studies. Even if all information about the studies
is available, the diversity of the used tooling can make their replication even
then very hard. Within this paper, we discuss a potential solution to these
problems through a cloud-based platform that integrates data collection and
analytics. We created SmartSHARK, which implements our approach. Using
SmartSHARK, we collected data from several projects and created different
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analytic examples. Within this article, we present SmartSHARK and discuss
our experiences regarding the use of it and the mentioned problems. Addition-
ally, we show how we have addressed the issues that we have identified during
our work with SmartSHARK.

Keywords Software Mining · Software Analytics · Smart Data Platform ·
Replicability · Validity

1 Introduction

The usage of empirical methods, (e.g., controlled experiments, case stud-
ies), has grown common in software engineering. They were used by only
2% of papers published at major journals and conferences between 1993 and
2002 (Sjøberg et al 2005) and the usage raised to 94% at the three major venues
and conferences (International Conference on Software Engineering (ICSE)
(2012, 2013), European Software Engineering Conference/Symposium on the
Foundations of Software Engineering (2011 to 2013), and Empirical Software
Engineering (2011 to 2013)) (Siegmund et al 2015a). This new trend spawned
hundreds of publications, which focus on, e.g., data collection from software
repositories (Draisbach and Naumann 2010; Dyer et al 2015), data analysis
of the collected data (Di Sorbo et al 2015; Giger et al 2010), or the develop-
ment of new methods that could help in supporting the software development
process (He et al 2015; Jorgensen and Shepperd 2007).

A recent study by Siegmund et al (2015a) highlights two different prob-
lems that the current empirical software engineering research has: replication
studies are important, but there are very few of them; the validity of studies
can often not be assessed or checked with new data. There are two different
kinds of replication: exact, where the original procedures of the experiment
are followed as closely as possible and conceptual, where the same research
question is evaluated by using a different experimental procedure or different
data (Shull et al 2008). To enable researchers to perform either of the repli-
cation types the following needs to be available: data from the original study
that should be replicated, used methods, and used algorithms. Very few pa-
pers provide all the above mentioned information, as González-Barahona and
Robles (2012) point out in their study. The problem is also present in the field
of Mining Software Repositories (MSR) (Robles 2010).

The problem of insufficient replications and the validity problems are tightly
connected. As root cause for both of them, 5 different problems can be iden-
tified:

1. Heavy re-use of data sets. While the re-use of the same data is im-
portant for the comparability of results, too heavy re-use without also
considering new data poses a threat to the external validity of the results.
One example for this is the heavy use of the NASA defect data for soft-
ware defect prediction, which is used in at least 58 different studies on
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software defect prediction (Hall et al 2012). This allows good comparabil-
ity between results, but poses a threat to the validity, as, e.g., Shepperd
et al (2013) point out problems with the quality of the data which could,
thereby, threaten the validity of 58 studies at once.

2. Non-availability of data sets. The opposite of the above mentioned
problem is that the data used for a study is not available for other re-
searchers. In this case, a replication of the study is not possible, which
makes it hard to compare results between studies with different data sets.

3. Non-availability of implementations. The implementations of
approaches are not always publicly available as open source. Furthermore,
visualizations that summarize results, give an overview of the data, or are
used to study certain aspects of a software system (e.g., (Van Rysselberghe
and Demeyer 2004)) are even less often available for researchers. But these
visualizations are important, as they make the results and the data better
comprehensible for humans (Thomas and Cook 2006).
For a complex research proposal, a re-implementation of approaches and/or
visualizations can require a high amount of resources. Even for a simple ap-
proach, the re-implementations may differ from the initial implementation
due to different interpretations of the paper contents where the original
implementation was described. Moreover, there are instances in which the
description of an approach does not provide all necessary details for a one-
to-one re-implementation.

4. Small data sets. Due to a lack of readily preprocessed public data, some
studies use rather small amounts of data, often of less than ten software
projects. Moreover, only very few studies use larger data sets with more
than 100 software projects. This is a threat especially to the external va-
lidity of these studies.

5. Diverse tooling. For most studies, developers create their own tool envi-
ronment based on their preferences. These environments are often based on
existing solutions for data analytics, e.g., R1 for data mining or WEKA (Hall
et al 2009) for machine learning. These solutions range from prototypes
that can only be applied to the data used in the case study but nothing
else, to close-to-industrial level solutions that can be applied in a broad
range of settings. However, these solutions are usually incompatible to each
other (e.g., solutions for Linux or for Windows). Hence, even if all data,
implementations, etc. required for a replication are available, the diversity
of the required tooling puts a heavy burden on the replication process,
especially if multiple results need to be replicated.

Within this paper, we want to investigate how we can address these prob-
lems. Our solution to the above mentioned problems, which hinder the replica-
tion and therefore the assessment of the validity of an approach is the creation
of a smart data platform, which combines data collection and data analysis.
The integration of the data analysis into the platform gives researchers a com-
mon ground, on which they can build their implementations. Furthermore,

1 https://www.r-project.org/
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we want to enable researchers to directly share their used data as well as the
used implementations. This would remove the burden (especially for novice
researchers) to set up a complete environment to replicate studies or perform
conceptual replications. Furthermore, such a platform would help researchers,
who do not have a background in MSR, to analyze the data. This is especially
important, as more and more researchers from other disciplines use data from,
e.g., software repositories to perform their studies.

That such a platform is possible in principle was demonstrated by Mi-
crosoft, which developed a tool for internal use called CODEMINE by Czer-
wonka et al (2013). However, within the current state of the art we found no
publicly available platform, which is similar to CODEMINE in terms of its ca-
pabilities. Hence, we wanted to create a platform for researchers who work on
publicly available data, which is based on publicly available technologies. To
this aim, we created SmartSHARK. With SmartSHARK we want to evaluate
the feasibility of such a smart data platform in terms of the following factors:
1) capability to perform different analytic tasks; 2) potential to address the
problems discussed above; and 3) provide lessons learned for researchers in-
terested in such a platform. To this aim, we conducted an experience study to
evaluate the platform to the above mentioned criteria. Furthermore, we con-
sidered the usability of such a platform, because this is a central aspect for
the acceptance by other researchers.

In summary, the contributions of our paper are the following.

– We analyzed the current state of practice with respect to the five prob-
lems mentioned above, based on the proceedings of the ICSE 2015, the
International Conference on Mining Software Repositories (MSR) 2015,
the International Symposium on Empirical Software Engineering and Mea-
surement (ESEM) 2015, and the Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE) 2015.

– We implemented the SmartSHARK platform that combines automated
data collection from different sources with a web fronted from which Apache
Spark jobs can be submitted to the platform to perform software analytics
on the collected data.

– We analyzed, based on an experience report, if and how SmartSHARK can
be used to resolve problems mentioned above.

– We evaluated the lessons learned from CODEMINE (Czerwonka et al 2013)
from a research perspective.

This work is based on our previous work (Trautsch et al 2016) which was
published in the proceedings of the MSR 2016. Based on the feedback from
the community we received during the conference and our continuing work on
the project, this article provides the following extensions in comparison to the
conference paper.

– We added the analysis of the current state of practice.
– We extended our focus include to replication studies for MSR research.
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– We improved the design and implementation of the platform to address
issues we raised ourselves during the initial presentation of our work, as
well as community feedback.

– We added a new visualization, which is a replication of a visualization from
the paper by Bird et al (2006).

– We added a table that shows the need of data storage for our newly devel-
oped plugins if they are executed on the analyzed projects.

1.1 Paper Organization

The remainder of this paper is structured as follows. In Section 2 we give
an overview of related work. Then, we present the results of our analysis of
current papers in Section 3. Afterwards, in Section 4, we describe the Smart-
SHARK platform, which was the basis for our experience report presented
in Section 5. In Section 6 we discuss how SmartSHARK can contribute to
resolve the five problems mentioned above. Then, we describe how we have
addressed the problems described in the experience report in an updated ver-
sion of SmartSHARK in Section 7. Afterwards, we present threats to validity
of this paper in Section 8. Finally, we conclude our paper in Section 9.

2 Related Work

The research on software data collection, as well as software analytics, cover
many different directions and aspects. Most related work only considers either
the data collection (e.g., Bevan et al 2005; Čubranić et al 2005; German 2004),
potentially including the provision of data sets or queryable databases (e.g.,
Howison et al 2005; Gousios and Spinellis 2012; Gousios et al 2014; Di Ruscio
et al 2015, the GitHub Archive2) or the analytical aspect (e.g., defect predic-
tion (Catal and Diri 2009), effort prediction (Jorgensen and Shepperd 2007),
developer social networks (Jermakovics et al 2011)). Only very few studies deal
with both aspects. Furthermore, there is no approach which focus on tackling
the problems regarding the replication and validity of MSR case studies.

A proprietary and not publicly available approach for building a software
analytics platform with integrated data collection is the Microsoft internal
CODEMINE by Czerwonka et al (2013). With our work, we tried to build a
platform with features similar to CODEMINE with publicly available and cost-
free tools. CODEMINE is designed in a way, that more than one CODEMINE
instance can run at the same time by different product teams. These instances
all have a common core. In CODEMINE, the data is collected by different data
loaders and stored in a data store. The stored data is then exposed via different
Application Programming Interfaces (APIs) on which analytics and tools can
be defined. Due to its proprietary nature, no details on the implementation of
the platform are available. However, Czerwonka et al. provide lessons learned

2 https://www.githubarchive.org/
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for building tools similar to CODEMINE. Our SmartSHARK platform uses
the same general structure as CODEMINE and these lessons, provided by Cz-
erwonka et al., were vital for the development of SmartSHARK. Details on
how the lessons learned influenced SmartSHARK are discussed in Section 6.2.
Due to the focus of CODEMINE on supporting the product teams at Mi-
crosoft only Microsoft internal data is collected. Therefore, considerations on
the collection and analysis of publicly available data are out of scope of their
work. Conversely, our paper focuses on the development of a platform that can
be used by researchers who work with publicly available data and the impact
such a platform can have on the replication and validity of studies.

Dyer et al (2015, 2013) developed Boa, a domain-specific language and
infrastructure for analyzing ultra-large-scale software repositories. Boa is a
query system, where complicated queries can be executed to extract informa-
tion from previously cached repositories using a distributed MapReduce query
language. Boa programs compile down to different MapReduce jobs, which
are then executed on an Apache Hadoop3 cluster. The key difference between
Boa and SmartSHARK is the type of analytics that is supported. While Boa
provides Abstract Syntax Trees (ASTs) of the projects, it does not directly en-
able deep analytics. Data like, software metrics, social metrics, etc. would have
to be calculated manually for each project by the researchers, which is very
time consuming and, thereby, probably lead to performance problems of the
analytic approaches. Additionally, previously developed programs could not
be re-used. Furthermore, Boa heavily uses MapReduce for its queries, whereas
SmartSHARK uses Apache Spark (Zaharia et al 2010, 2012). It is reported
that Hadoop MapReduce is inefficient for interactive analytics (Zaharia et al
2010) as they are intended to be performed with Boa. Finally, we evaluated
different aspects of such a platform. The developers of Boa focused on how
to enable large-scale analytics, while we additionally consider how factors re-
lated to the validity and replication of approaches can be improved and how
our platform contributes to the five mentioned problems. However, Boa can
also contribute in solving the problems mentioned in the introduction, e.g.,
through collecting data from repositories (see: problem 1, 2, and 4). But, due
to the different focus of Boa, it currently does not provide the sharing of im-
plementations, although it should be possible to extend Boa in such a way.
Furthermore, regarding the diversity of tooling, Boa solves only part of the
problem. The Boa domain-specific language harmonizes the queries and the
analysis that are directly performed on the Boa database. However, in case the
results of the Boa queries are further processed, e.g., with an additional ma-
chine learning or visualization tool, users may still use arbitrary technologies
on the Boa output.

Gousios and Spinellis (2009) developed the Alitheia Core platform to per-
form “large-scale software quality evaluation studies” (Gousios and Spinellis
2009). The architecture of Alitheia Core is divided into three different layers:
(1) result presentation, (2) system core, and (3) data mirroring, storage, and

3 https://hadoop.apache.org/

https://hadoop.apache.org/


Addressing Problems with Replicability and Validity of MSR Studies 7

retrieval. The first layer is implemented via a web front-end. The second layer
includes a job scheduler and cluster service as well as other services, which are
connected via an Open Services Gateway Initiative (OSGi) interface Alliance
(2007). Basically, the OSGi specification describes a hardware-independent
platform that makes it easier for developers to modularize and maintain appli-
cations and services. The third layer is responsible for the storage and retrieval
of the collected data. This platform provides a metrics plug-in system, which
enables researchers to implement their own plug-ins to calculate metrics out
of the collected data. From a structural perspective and general idea, Alitheia
Core is similar to our approach: we also have a data collection part, an analytic
core, and a web front-end. However, our platform is designed around big data
technologies to allow scalable analytics. Moreover, our platform is deployed in
a cloud, which allows elastic scaling of resources. Finally, our analytic core,
using Apache Spark, is more powerful in terms of computational capabilities
due to the usage of an Apache Hadoop cluster for job execution and provides
powerful algorithms for data analytics through Apache Spark’s Mllib4 and
GraphX5 libraries. Moreover, same as Boa, the authors did not consider how
the platform can help in tackling the five problems mentioned in Section 1.

There are also commercial approaches that try to combine software data
collection with software analytics. Bitergia6 offers several packages, which dif-
fer in the level of analytic capabilities. However, the analytics provided by
Bitergia are on the level of Business Intelligence (BI), i.e., reporting the his-
tory of the repositories. For example, they provide dashboards that display the
number of performed commits or how many authors are active in the analyzed
project. Similar to Bitergia is the OpenHub project7. OpenHub is an open
platform, where every user can add or edit projects. The platform calculates
different statistics for added projects, which are similar to the statistics cal-
culated by Bitergia and also on the BI level. In comparison to SmartSHARK,
Bitergia and OpenHub do not support deep analytics or predictions for the fu-
ture of projects. Additionally, users of Bitergia and OpenHub are not allowed
to create their own analytics.

3 Current State of Practice

To show that the five problems mentioned in Section 1 are still topical, we
looked at the current state of practice by analyzing papers from the ICSE
2015, MSR 2015, the ESEM 2015 and the ESEC/FSE 2015 in respect to them.

We only included papers, which have done a case study in the field of
MSR, were published on the main research track, and where the case study
does not only includes a study with human participation (e.g., surveys). We

4 http://spark.apache.org/docs/latest/mllib-guide.html
5 http://spark.apache.org/graphx/
6 http://bitergia.com/
7 https://www.openhub.net/

http://spark.apache.org/ docs/latest/mllib-guide.html
http://spark.apache.org/ graphx/
http://bitergia.com/
https://www.openhub.net/
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determined, if a paper has one of the problems mentioned in Section 1 in the
following way:

– Heavy re-use of data sets: the paper used a previously published data set
(e.g., from the PROMISE Menzies et al (2015) repository).

– Non-availability of data sets: the paper does not provide all data (results,
raw, and processed data) or the data is not publicly available.

– Non-availability of implementations: the paper does not provide all imple-
mentations (used tools, scripts) or made them publicly available.

– Small data sets: the paper included less than 10 projects in their data set.
However, the problem of small data sets heavily depends on the research
question and the used data. Nevertheless, this evaluation is useful to have
a first look at the generalization of approaches, as it is more concerned
with the assessment of the external validity of them.

– Diverse tooling: the paper does not provide or describe details of the exe-
cution environment. We checked this only for papers, where the implemen-
tation is publicly available, as otherwise, we would not be able to execute
the implementation anyhow.

Tables 1 and 2 report the results of our inspection. Table 1 shows the
number of papers for the four conferences, which were included in our inspec-
tion, and the number of papers that had the problems mentioned in Section 1.
For the first problem (heavy re-use), we found that papers concerned with
defect prediction often re-use data sets, e.g., the problematic reuse of the
pre-processed NASA defect data (Shepperd et al 2013). Six papers used an
established data set and produced their own additionally to it.

We found that over 54% did not (or only partly) publish their data sets
(problem 2). Furthermore, we found that sometime the links, where the data
sets should have been published, are dead links, even though the conferences
have taken place only a year ago. For six papers, the data sets are only partly
available (e.g., only the results as CSV-file).

In over 65% of all analyzed papers the authors did not publish their used
implementations (problem 3). The authors did not mention which tools they
used or they did not make their own tools publicly available. Moreover, we
had the same problem as mentioned above: links that should redirect to the
tools or direct download links are no longer working.

In our inspection we saw that nearly 50% of the papers that we included in
our analysis use only a small data set. Two papers were concerned with user
profiles or user sessions and one with Topcoder tasks8 and not projects. These
three papers were excluded from the analysis of the last problem, as we were
not able to see from how many different projects these data origins.

Table 2 highlights the problem of diverse tooling. We included all papers,
where the implementation is freely available and the environment is described
in the paper or in supplementary material (e.g., in the replication package).
Furthermore, we added the description of the environment as we found it in

8 https://www.topcoder.com/
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Table 1 Current state of practice. The numbers in the table corresponds to the problems
mentioned in Section 1.

Conference #Papers (1) (2) (3) (4)

ICSE 2015 15 3 9 10 (1 partly) 7
MSR 2015 23 5 (3 partly) 13 (2 partly) 15 (1 partly) 11
ESEM 2015 12 3 7 9 5
ESEC/FSE 2015 47 21 (3 partly) 18 (4 partly) 28 23

Overall 97 32 (6 partly) 47 (6 partly) 62 (2 partly) 46

the material. Hence, some descriptions are more elaborate (e.g., which version
of Java or Python is used), whereas others are more generic. Overall this
table supports our hypothesis that even if the implementations are available,
the diversity of the required tooling puts a heavy burden on the replication
process.

4 The SmartSHARK Platform

In order to get insights of how a CODEMINE-like tool can be made available
for all researchers, as well as analyze the features that such a platform should
offer from a research perspective, we created the platform SmartSHARK9.
Figure 1 gives a logical overview of the platform, which is independent of the
underlying infrastructure. SmartSHARK is designed as a cloud-based data
platform. This means that data is shared between all users of the platform.
The process of analyzing a software project can be divided into two steps:
1) Extract, Transform, Load (ETL) of the project data and 2) writing and
running the analytic program. The ETL is implemented as an automated
process that loads extracted project data in a MongoDB. Hence, researchers
can focus on writing their analytic programs that utilizes the previously stored
data from the MongoDB.

In this section, we present our first prototype of SmartSHARK. This in-
formation is needed, as the reader needs to know the version on which our
experience report in Section 5 and the subsequent discussion in Section 6 is
based on. Changes that we made to cope with the limitations and problems
are discussed in Section 7.

4.1 Data ETL Process

Projects, from which the data should be extracted, transformed and loaded, are
added via the web front-end of SmartSHARK. SmartSHARK only requires (1)
the URL of the Version Control System (VCS), (2) the programming language,
and (if applicable) (3) the URL of the mailing list of the project. After this

9 The complete source code as well as deployment scripts are available in our public
SVN: http://trex.informatik.uni-goettingen.de/svn/smartshark/. A running instance
is located at the following URL: http://smartshark.informatik.uni-goettingen.de.

http://trex.informatik.uni-goettingen.de/svn/smartshark/
http://smartshark.informatik.uni-goettingen.de
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Table 2 Papers and their environment that must be built before executing their approach
(as described in the paper or supplementary material).

Reference Environment, as described

(Yang et al 2015) APKTools, Python 2, Java SDK 1.7, Android SDK
tools, Android SDK platform-tools

(Zhu et al 2015) WEKA, C#, Roslyn, Visual Studio 2012+
(Avdiienko et al 2015) R, Python, Flowdroid
(Joblin et al 2015) Python, R, MySQL, Perl, CPPStats, Nginx, Nodejs
(Nanz and Furia 2015) Python, R, Cloc
(Lin and Whitehead 2015) CVSAnalY, Python, ChangeDistiller, SimPy, Net-

workX, ply, Java
(Linares-Vásquez et al 2015b) Python, Apktool, Dex2jar, Procyon, srcML, MITLM
(Coelho et al 2015) MongoDB, Java
(Tao and Kim 2015) IBM Watson Libraries (WALA), Python difflib
(Claes et al 2015) Ocaml
(Le et al 2015) Java, Python, git, svn
(Kouroshfar et al 2015) Class Dependency Analyzer, Java, Bunch, ACDC,

ArchDRH
(Gupta et al 2015) Jflex, Java
(Gallaba et al 2015) Node.js
(Cavalcanti et al 2015) Groovy, Neo4j, gitminer, Java
(Bang et al 2015) Java SDK 7, Mathematica
(Safi et al 2015) Java, Scala
(Linares-Vásquez et al 2015a) Android Debug Bridge, HierarchyViewer, UIAutoma-

tor, jMetal
(Arcuri et al 2015) Java SDK 8, Maven
(Long and Rinard 2015)

Amazon Machine Image (AMI) Image and Virtual Ma-
chine (VM) Image

(Samak and Ramanathan 2015) VM Images
(Shi et al 2015) PIT, Ekstazi
(Gong et al 2015) Node.js, Java SDK 1.6+, git, libgmp, Chrome, Python

2.7, Visual Studio 2010, Windows 7 64-bit SDK
(Nguyen et al 2015a) Eclipse, PHP Development Tools for Eclipse
(Siegmund et al 2015b) git, xamarin, accord, accord.math, aforge,

aforge.math, ilnumerics (only for MacOSX described)
(Xu et al 2015) Ant, Java
(Eichberg et al 2015) JDK8+
(Smith et al 2015) GenProg, TrpAutoRepair
(Dhar et al 2015) Java, Soot
(Nguyen et al 2015b) Java SDK 6, Eclipse
(Beyer et al 2015) VM Image or Linux, OpenJDK 1.7, CPAchecker, Ul-

timateAutomizer
(Park et al 2015) VM Image
(Hermann et al 2015) Scala, R
(Foucault et al 2015) VM image

information is supplied, the ETL process for this project can be started and is
performed automatically. This process generally also works for closed source
software, as we just need to be able to clone a project via git. Nevertheless,
this feature is not implemented in this version of SmartSHARK, as we focus
on open-source projects first, because they are widely used in research.
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Researcher

MongoDB

Project Data 
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Project 
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Software Project Analytic Program

choose write

Fig. 1 Design of SmartSHARK

Currently, SmartSHARK supports GIT as VCS. The programming lan-
guage is required by InFamix10 for the calculation of software metrics. During
the ETL process, the progress can be observed in the web front-end to give
the user feedback. Furthermore, each project has its own configuration files,
which can optionally be edited via the web front-end to customize the ETL
process. In this prototypical version of SmartSHARK we only support data
collection from VCSs and mailing lists. Nevertheless, we plan to include the
collection of data from several Issue Tracking Systems (ITSs) (e.g., bugzilla,
jira) in our improved platform, which is explained in Section 7.

4.1.1 Model-based Fact Extraction and Transformation Framework

Many tools and methods, which are used for data extraction and application,
are context-specific. These tools are often have a tight coupling between the
extraction process and the application, which can be problematic.

The output from the extraction process for each tool is usually in a for-
mat suitable for the intended application, which can make the integration of
the output from different tools challenging. Additionally, each application may
have certain requirements towards its input, requiring further adaptation of
the integrated output from the extraction process. Performing the integration
and adaptation at input and output level may incur considerable development
overhead and some redundancies, while still remaining context-specific. Fig-
ure 2 illustrates an abstract representation of this scenario where inputs and
outputs are integrated in an ad-hoc manner at a lower level of abstraction.
The programs in this figure are available data collection programs (e.g., CVS-
AnalY11), that generate different outputs (e.g., CVS or XML files). These out-
puts are then integrated by different integration scripts in an ad-hoc manner,
depending on what the application need as input. For example, if a researcher
wants to analyze data using the application WEKA (Hall et al 2009), she needs

10 The developing company Intooitus does not exist anymore and the tool is also not
available anymore.
11 http://github.com/MetricsGrimoire/CVSAnalY

http://github.com/MetricsGrimoire/CVSAnalY
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Program 1 Program 2 Program N

Output 1 Output 2 Output 3

Application A Application B Application Z

Input A Input B Input Z

Integration B Integration ZIntegration A

Fig. 2 Ad-hoc integration at input-output level.

to make sure that all the output from the data collection programs are inte-
grated and transformed into a format that is readable by WEKA (Hall et al
2009). If the researcher now wants to use another application for the analysis
besides WEKA (Hall et al 2009), she needs to create another integration to
change the input accordingly, which results in a development overhead.

Hence, Makedonski et al (2015) proposed a model-based software mining
infrastructure, called DECENT, to circumvent these problems. The infras-
tructure relies on domain-specific models of facts extracted from the outputs
of the different tools, making the facts available in a homogeneous high-level
representation. These domain-specific facts models are then integrated and
transformed into models that are related to a certain assessment task. The
integrated assessment task models are queried and exported into the input
formats required by the various applications.

The DECENT infrastructure is built on top of the Eclipse Modeling Frame-
work (EMF). The EMF and related technologies provide interfaces for obtain-
ing models from various lower-level representations, such as structured text,
relational databases, XML files, and CSV files, by means of corresponding
mappings. This makes the integration of various input and output formats
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very convenient and reusable, where resulting models can be used in a variety
of contexts with little development overhead.

To extract facts from raw assets, DECENT uses various tools, which are
widely used in research. These include CVSAnalY for extracting information
out of source code repository logs (e.g., used by Fernandez-Ramil et al (2009)
and Herraiz et al (2007)), InFamix for calculating software quality metrics
(e.g., used by Alexandru and Gall (2015)), and DuDe (Draisbach and Nau-
mann 2010) for duplication detection.

A high-level overview of the DECENT infrasturcture is shown in Figure 3.
Existing programs (such as CVSAnalY or InFamix) can be used to collect
data from software projects . The resulting outputs in different formats (e.g.,
MySQL databases, XML files) are translated into facts models by means of
resource mappings and then combined into integrated assessment models by
means of model-to-model transformations resulting in a DECENT model in-
stance that corresponds to the project. This model instance now holds all the
project data relevant for the assessment task that was collected by the dif-
ferent tools. Thanks to EMF, the model instance can be stored in different
output formats, such as a relational database, XML file, or a MongoDB with
little or no additional development overhead. The model instance can then be
querried and refined further to suit the input requirements for the different
applications.

4.1.2 VCS-ETL

The VCS-data, obtained during the ETL process, is change-based. For each
change (i.e. commit), we store all changed software artifacts and their loca-
tion in the project. Therefore, it is possible to reconstruct the whole project
structure at any point in time. The software artifacts include source code files,
classes, methods, functions as well as documentation files, such as readme files.
Five different types of data are stored for each artifact: 1) software metrics;
2) source code changes; 3) project structure; 4) change history; and 5) bug-
related labels. This data is stored for each commit of the project.

The software metrics include static source code metrics, change metrics,
and social metrics (e.g. developer cooperation factors). A list of all the metrics
can be found in the SmartSHARK documentation online12. Additionally, we
save delta values for each metric, which indicate how this metric has changed
since the artifact was last touched. In addition to the metrics, we also save the
concrete textual change that was made, i.e., the diff 13 of the commit. The diffs
can be particularly important for the development of new analytic approaches,
as shown by Walden et al (2014). The project structure includes information
about the location of each artifact at each commit, including logical artifacts
such as methods and classes. The change history includes information regard-
ing the time and purpose for each change as well as the person responsible for

12 http://smartshark.informatik.uni-goettingen.de/index.php?r=site%

2Fmongodesign
13 http://www.gnu.org/software/diffutils/

http://smartshark.informatik. uni-goettingen.de/index.php?r=site%2Fmongodesign
http://smartshark.informatik. uni-goettingen.de/index.php?r=site%2Fmongodesign
http://www.gnu.org/software/diffutils/
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Program 1 Program 2 Program N

Output 1 Output 2 Output 3

Application A Application B Application Z

Input A Input B Input Z

DECENT Core

Model Extraction

Model Integration and Transformation

Model Query and Export

Fig. 3 High-level model-based integration with DECENT.

it. The bug-related labels include information on whether a change is consid-
ered to be a fix and/or a cause for a fix, i.e. a bug.

Whether a change is considered to be a fix can be determined based on
a regular expression evaluated against the commit message or other means.
Whether a change is considered to be the cause for a fix is computed by
means of a weighted multi-factor multi-layer approach for identification of po-
tential causes for events of interest based on an origin analysis (Makedonski
and Grabowski 2016). The approach establishes cause-fix relationships be-
tween changes to artifacts at different layers of granularity (project, file, class,
method) in a cause-fix graph. Based on weights assigned to a fix according
to a given factor, such as a regular expression, it computes the contribution
of each cause to the fix depending on the number of causes. Then, for each
cause it computes the average contribution to fixes according to the given fac-
tor. The approach supports determining the causes for fixes across different
factors, such as refactorings and bug fixes, based on regular expressions or
other means for determining the fixes. It is implemented within the DECENT
infrastructure and by default it uses regular expressions inherited from CVS-
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C5
time

C3 C4

causes

causescauses
fixes

bugfix = 1.0
total contribution = 0.0

average contribution = 0.0

bugfix = 0.0
total contribution = 0.5

average contribution = 0.5

bugfix = 0.0
total contribution = 0.5

average contribution = 0.25

contribution = 0.5

contribution = 0.0 contribution = 0.5

bug-prone = false
confidence = low

bug-prone = true
confidence = high

bug-prone = false
confidence = high

Fig. 4 Identifying causes and fixes.

AnalY 14 for determining whether a change is considered a fix for a bug. The
regular expressions can also be customized further to suit a specific deployment
scenario.

A simplified overview of the approach for finding causes and fixes is out-
lined in Figure 4 containing an excerpt from a cause-fix graph including three
changes C3, C4, and C5. C5 is identified as a fix based on the commit mes-
sage, thus it has a weight for the “bugfix” factor equal to 1.0. C3 and C4 are
identified as potential causes, as, e.g., they both changed lines in a file that
were also changed in the fix in C5. For both, C3 and C4 it is assumed that
they contribute equally 15 (contribution = 0.5) to the fix. In this example, the
total contribution to fixes for both C3 and C4 is the same, however, since C3

also contributes to changes in C4, where C4 is not identified as a fix under the
“bugfix” factor, the average contribution of C3 is lower.

Based on the computed average contributions to causing a fix, changes are
labeled as causes for fixes. In addition to the label (true or false), a confidence
indicator (high, low) is added to indicate whether the resulting label can be
trusted. The label is based on a threshold derived from the distribution of
the average contributions. The threshold for this study is calculated as 50% of
the mean average contribution for the corresponding level of granularity. If the
average contribution of a change is below the threshold, it is less likely that the
change caused a fix as the actual cause for the fix is either distributed among
several potential causes or the change caused a number of other changes that
were not necessarily considered fixes. If the average contribution of a change is
above the threshold for the corresponding level of granularity, it is more likely

14 The default set of regular expressions includes:
"defect(s)?", "patch(ing|es|ed)?", "bug(s|fix(es)?)?",

"(re)?fix(es|ed|ing|age|\s?up(s)?)?", "debug(ged)?", "\#\d+", "back\s?out",
"revert(ing|ed)?"
15 The default assumption may be overridden by applying different strategies based on the

size of the changes or other information.
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that the change caused a fix (i.e. was bug-prone). The confidence indicator
is based on the proximity to the threshold. If the average contribution of a
change is close to the threshold then the label is considered less reliable, hence
its confidence is “low”. In this study, we considered a window of 1% around
the threshold. Considering the example scenario illustrated in Figure 4, if we
assume for illustrative purposes that the mean average contribution for the file
level (including all changes, not only the shown ones) is 0.5, the threshold will
be 0.25 (50% of the mean average contribution). In this case, C4 is labeled as
bug-prone, while both C3 and C5 are labeled as not bug-prone, however, C3

will have a low confidence as it is close to the threshold, while C4 and C5 will
have a high confidence as they are farther away from the threshold.

By applying this approach, a DECENT model instance is enriched with
the computed contributions, labels, and confidence indicators for each change
at each level of granularity.

4.1.3 Mailing List-ETL

SmartSHARK extracts, transforms, and loads mailing lists of projects in the
MongoDB. The data includes information about the sender, receiver, time,
subject, actual message, and if the mail was sent in response to another mail.

This data is linked via the email address of the contributor to the VCS
data, as proposed by Herraiz et al (2006). Therefore, it is possible to build
complex developer cooperation networks on basis of this data. This is especially
interesting for the development of new models regarding the cooperation and
communication of developers or to perform intention mining, as shown by
Di Sorbo et al (2015).

4.2 Software Analytics

We define software analytics as data analytics applied in the domain of soft-
ware development to gain insights into the software development process and
support the associated decision making process. This includes defect prediction
(Catal and Diri 2009), effort prediction (Jorgensen and Shepperd 2007), de-
pendency analysis (Honsel et al 2015), developer social networks (Jermakovics
et al 2011), and other topics related to the field of software evolution.

With the collected data, various kinds of aspects regarding the software
projects and their evolution can be analyzed, e.g., the number of file changes
in a given timeframe, changes within the file ownership, and patterns in mailing
list activities. Furthermore, different applications of machine learning, e.g., for
defect prediction are possible.

To facilitate such a diversity of analytic problems, SmartSHARK uses the
Apache Spark framework as analytic back-end. Apache Spark is especially
designed for big data analytics. In our deployment, Apache Spark uses an
Apache Hadoop cluster to distribute data and computations across nodes.
For the definition of analytic jobs, Spark supports multiple languages. With
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SmartSHARK, we currently support Java and Python. To perform analytics on
SmartSHARK, the researcher first writes their analytic program. The analytic
programs can use the whole functionality of the programming language as well
as Spark specific features. The standard language features are computed on a
single node of the Hadoop cluster used by Spark. The Spark specific features
allow the distributed computation of results within the Hadoop cluster and,
therefore, analytics that are very complex or data intensive. Researchers can
upload and execute the compiled Java application or a Python file to the
platform using the web front-end. The front-end allows to add Spark arguments
as well as program arguments. This allows for parametrizeable analytic jobs,
e.g., to define the name of the project to be analyzed or a certain threshold
important for the analytics. For the execution, the Spark jobs are submitted
to the Hadoop cluster. Results can either be saved in the MongoDB to enrich
the database or as a file that users can download later.

4.3 Web Front-End

From an end-user perspective, the web front-end is the central part of our plat-
form and it is based on the Yii2 framework16. It is the only place where users
directly interact with SmartSHARK and the starting point for both the data
collection and the software analytics. The front-end allows to add projects as
well as view information about the already processed projects, e.g., general
information about the number of commits, project ages, and changed artifacts
in each commit. Moreover, it provides a job submission interface, through
which users of SmartSHARK can run their analytic programs. Each user owns
a results folder, which can be accessed through the web front-end. Smart-
SHARK implements a simple access rights system. We defined different roles:
the administrator has all rights on the web interface and complete access to
the MongoDB, whereas the advanced spark user role is restricted in using the
web interface and can only modify the underlying MongoDB through analytic
jobs. The normal user role has very limited access rights in the web interface
and can only read data from the MongoDB.

The front-end is connected via a REST API to the Apache Hadoop cluster
manager. But in the current state of the platform several shell scripts are
executed for the data ETL process and the sending of the analytic jobs to the
Spark instance. Nevertheless, in the near future we want to change this by
providing a REST API for submitting Spark jobs.

Moreover, the web front-end allows users to create a backup of the Mon-
goDB for download. This way, users can replicate the data of the platform
and, e.g., use it in their local environment or archive it as part of a replication
set for a published study.

16 http://www.yiiframework.com/

http://www.yiiframework.com/
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Webserver /
Data Collection Server

Slave 1 Slave N

Namenode Ressourcemanager

Hadoop Cluster for 
Analytic Job Execution

Researcher

access

MongoDB

Fig. 5 Infrastructure of SmartSHARK.

4.4 Cloud Deployment

The infrastructure of our SmartSHARK deployment is depicted in Figure 5.
The web-server also serves as database server and data collection server. Fur-
thermore, there is an Apache Hadoop cluster to execute analytic jobs. The
platform can be automatically deployed via our deployment scripts using the
DevOps technologies Vagrant17 and Ansible18. Details regarding the used soft-
ware versions and more information regarding the deployment are given on the
homepage of SmartSHARK19.

5 SmartSHARK Experience Report

In order to evaluate if SmartSHARK can address the problems of heavy data
re-use, non-availability of data sets, non-availability of implementations, small
data sets, and diverse tooling, we made experiments with the platform. We
collected data from multiple projects to see if such a high degree of automa-
tion for such complex data is feasible. Then, we proceeded with the definition
of three kinds of software analytics: 1) visual analytics of evolutionary trends
during the development and within the mailing list usage; 2) a complex ma-
chine learning based defect prediction approach; and 3) a statistical evaluation
of data in order to support effort estimation. The three analytical examples
are selected in a way to cover a broad area of research topics. Furthermore,
each of these topics is a very prominent research area. Additionally, we wanted
to evaluate if the machine learning support of Apache Spark is good enough
for complex research tasks like defect prediction. The last part of our experi-
ence report is related to an often neglected, but important attribute of such
platforms: the usability.

Note that the experience report is based on our first prototype version of
SmartSHARK, which is presented in Section 4. In Section 7 we describe how

17 https://www.vagrantup.com/
18 http://www.ansible.com/
19 http://smartshark.informatik.uni-goettingen.de/

https://www.vagrantup.com/
http://www.ansible.com/
http://smartshark.informatik.uni-goettingen.de/


Addressing Problems with Replicability and Validity of MSR Studies 19

we changed our platform to cope with the limitations that we identified during
our work with SmartSHARK.

5.1 Data Collection

To evaluate the data collection, we randomly selected 23 projects from GitHub20.
We did not follow any specific methodology for the selection of projects, in-
stead we used the explore function of GitHub to browse available projects.
The only requirement for the inclusion of a project was that it is programmed
in Java, C, or C++. Table 3 lists the chosen projects, including number of
commits, number of files in the repository, size of the repository, programming
language, number of stored mails, and a very brief project description. We
started the ETL process via the SmartSHARK web interface and noted the
following problems during the data collection:

– CVSAnalY stopped working for the oryx project for a while, but then
simply resumed. Upon further investigation we determined that this was
most likely a race condition in the ”Content” extension of CVSAnalY. The
”Content” extension of CVSAnalY is used to store the textual content of
files at each revision.

– InFamix did not work for all revisions of the Mahout21 project. We were
not able to track down the problem because InFamix is a closed source
software.

– The collection of source code metrics was restricted to one programming
language per project, because InFamix does not support multiple languages
within a project.

– We could collect the data for only one project at a time due to the limited
resources and the high resource consumption in terms of both memory and
computing power required for the data collection.

Besides these problems, there were no other failures in our data collection
process for the projects we have tested.

Nevertheless, in our current version of SmartSHARK we have substituted
InFamix and CVSAnalY with two tools, that we developed on our own. More
information regarding these tools can be found in Section 7.

20 http://github.com/
21 https://github.com/apache/mahout

http://github.com/
https://github.com/apache/ mahout
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Fig. 6 Example of the change history visualization for the project ksudoku.

5.2 Software Analytics

The second part of our experience report should evaluate how well the col-
lected data in combination with the architecture of the SmartSHARK plat-
form is suited to perform tasks from software analytics. The source code for
all analytics is available in the SmartSHARK SVN.

5.2.1 Visualization of Evolution Trends

We created six different visualizations for the projects we added to Smart-
SHARK.

Change History Visualization. This visualization shows how many soft-
ware artifacts (i.e., files, classes, functions) were changed at which point in
time (i.e., commit). Furthermore, the commit message can be retrieved for
each change in this visualization. An example for this visualization is shown
in Figure 6 for the project ksudoku.

File-level Bug Overview Visualization. This visualization depicts the
number of changed files over the project lifespan together with the number of
defects. An example for this visualization is shown in Figure 7 for the project
k3b. This figure only shows the graph for the number of defects over the time,
while the other graph is deactivated. The confidence cut indicates till which
revision we can trust our defect label data. We can not trust all the data, as we
do not know directly when a new version of the program is committed, which
files in the new revision are defect prone. The detection of bugs within revision
takes some time (some bugs are detected in week, some after three years or
even later). Therefore, we have chosen such a confidence cut as suggested by
Tan et al (2015) to draw a line between trustful and non-trustful data.
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Fig. 7 Example of the file-level bug overview visualization for the project k3b.
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Fig. 8 Example of the mailing list activity (sent messages) visualization for the project
log4j. The blue bars depict the number of sent messages, whereas the black bars shows the
number of changed files at a certain point in time.

Mailing List Activity - Number of sent Messages. For projects that
have a mailing list, this visualization depicts how many messages were sent
at which point in time. The mailing list activity is shown together with the
number of changed files for the project in order to allow researchers to look for
correlations. Figure 8 depicts an example for this kind of visualization. This
figure shows the number of sent messages (blue bars) and changed files (black
bars) for the project log4j.
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Fig. 9 Example of the mailing list activity (active people) visualization for the project k3b.

Mailing List Activity - Activity of contributing People. For projects
that have a mailing list, this visualization shows how many people were active
on the mailing list on a monthly basis. The visualization allows to differentiate
between new users on the mailing list and these also active in the previous
month. An example for this visualization is depicted in Figure 9 for the project
k3b.

Mining Email Social Networks. For projects that have a mailing list, this
visualization shows the social network of developers. This visualization is a
replication of a figure from the paper by Bird et al (2006). We analyzed the
mailing list by the number of messages sent by developers, and the number of
messages sent in reply to developers. There exist an edge between developer A
and developer B if A has sent a message to B24. Here, we distinguish between
big and small mailing lists: If overall more than 3000 messages were sent on
the mailing list, there exist an edge between A and B only if A has sent B
at least 150 messages, which is conform to the approach by Bird et al (2006).
For mailing lists smaller than 3000 messages, we did not apply this rule, as
the goal of this threshold is to reduce the size of the figure, which is not
necessary for smaller mailing lists. Nevertheless, we experienced, that for this
kind of visualization the data must be thoroughly cleaned and prepared. For
some projects, we were only able to reconstruct that the developers have sent
messages to the mailing list, but not if they were replies to other messages. An
example for this visualization is depicted in Figure 10 for the project libyami.

Defect Prediction Results Visualization. In order to show if the platform
can also be used to give feedback on analytics performed, we created a visu-
alization of the defect prediction results (see Section 5.2.2). We show which

24 Note, that all messages were always additionally sent to the mailing list.
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Fig. 10 Example of the email social network of the project libyami.
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Fig. 11 Example of the defect prediction results visualization for the project guice.

files were predicted as defective by our created model in comparison to which
files were marked as defective by the data collection process. This visualization
shows, that visualizations for results computed by complex analytics are also
possible with the platform. An example for such an visualization is depicted
in Figure 11 for the project guice. The figure shows for a classifier which data
was used for the training and when the classification started. It also shows
the results (blue line). The reasoning behind the confidence cut is explained
above.
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The visualizations give a first impression about the project and provide
researchers insights regarding several evolutionary questions, e.g., patterns on
the mailing list activity, the evolution of the size of a project or when bugs
were created. Furthermore, we were able to replicate a visualization from the
paper by Bird et al (2006).

In general, this visualizations use different javascript visualizations libraries
like HighCharts/HighStock25 or visJS26. These libraries can be easily inte-
grated for use in a view in the web front-end of SmartSHARK. Therefore, if
we want to create a new visualization, we can choose a library that supports
this visualization style and add it to the web-frontend to access the library
in our created view. Other visualizations are accessible via the SmartSHARK
website.

5.2.2 Defect Prediction

The second analytic example implemented on SmartSHARK is a defect pre-
diction model. For this, we performed a conceptual replication of a recent
publication by Tan et al (2015). The authors suggest to perform just-in-time
defect prediction, i.e., for each commit, based on change metrics (e.g., added
lines) as well as textual data from the commits and source code. Tan et al. sug-
gest to use the first part of a project as training data, then leave a gap and
predict the remainder of the project using a prediction model trained on the
first part of the data. We selected to replicate this approach, as we are not
aware of any public defect prediction data set that contains both the metrics
and textual features.

The data required for the defect prediction was readily available in the
MongoDB back-end of SmartSHARK, i.e., the defect labels, which were deter-
mined by DECENT and the software metrics, which are calculated by InFamix
via statically analyzing the source code. As explained in Section 4.1.2, this data
(labels and metrics) is collected for each commit of a project for each changed
artifact.

Using the functionality provided by Spark, creating the data splits as re-
quired for the approach by Tan et al (2015) as well as the training of the defect
prediction model was straight-forward. After fetching the data from the Mon-
goDB, a Map job was used to prepare the data. Then, the defect prediction
model was trained using Apache Spark’s Mllib. We evaluated our classifier
with the project data available in the MongoDB. Furthermore, a confusion
matrix is created to allow the calculation of performance metrics like recall
and precision. The prediction results, as well as the confusion matrix, are then
stored in the MongoDB for later use by the visualization.

To evaluate the versatility of the platform to exploit different types of data,
as well as create different types of models, we created four different defect
prediction models as described above, all using different data and classifiers:

25 See: http://www.highcharts.com/
26 See: http://visjs.org/
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1) a logistic regression model based on static source code metrics and change
metrics; 2) a random forest based on static source code metrics, change metrics,
and social metrics; 3) a näıve bayes for text classification based on textual diffs
of revisions; 4) and a majority voting scheme with three algorithms: a random
forest and a logistic regression model trained on the static source code metrics,
change metrics, and social metrics as well as a näıve bayes model trained on
the textual diffs. All of these models could be trained and defined without any
problems.

Thus, our example demonstrates that SmartSHARK can be used for regres-
sion of probabilities as shown with logistic regression, classification problems
as shown with the random forest, as well as text mining. Moreover, the ex-
ample demonstrates that the Spark-based approach allows for the arbitrary
combination of techniques, which we demonstrate with the voting scheme we
implemented.

5.2.3 Effort Estimation

The third analytic example was created with the aim to gain insights into
how much effort must be put into the creation of a simple effort prediction
model. The example was inspired by work on effort estimation in open source
projects by Gousios et al (2008) and Robles et al (2014). Gousios et al. estimate
the contributions of developers as the LOC they contributed, plus additional
contribution factors. Robles et al. try to determine the person months invested
in an open source project using the number of commits and the number of
active days within a period.

With our example, we create a mixture of both. As input, we use a list
of projects. To create the effort model, the means for the lines added, lines
removed, the growth of the absolute file size of the repository, and the LOC in
the repository per commit were calculated for each project. The required infor-
mation is all part of the collected data. For the aggregation of the information
with Apache Spark, two Map jobs and two reduce jobs were defined, first to
create a map between the file names and the associated metric data, and then
to reduce the maps to the required means. Moreover, the mean values not only
for each project by themselves, but for all listed projects are calculated. This
information gives an overview on the average contribution of developers per
commit, similar to the work of Gousios et al (2008).

The output of the analytic job is then a list of the means for the metrics for
each project in the list, as well as the overall mean values. This information
can be used to estimate and predict the effort for new projects or project
phases based on the number of source code revisions that are expected. We
denote the mean LOC as L in the following.

The number of expected code revision can be determined the same way, as
the mean values of change for each revision: by determining the mean number
of commits per developer per month, denoted as C in the following. If #dev
developers are working on the project, it follows that the mean output will
be #dev · C · L per month. Thus, if the estimated size of a project release is
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x, the expected time required for the project is t = x
#dev·C·L months. This

estimation of developer activity for effort estimation mimics the person month
estimation by Robles et al (2014), except that we estimate the LOC produced
and not the person months.

This straight forward approach shows how SmartSHARK can facilitate
insights into the software development using simple analysis that can be used
to interpolate how projects evolve in terms of effort measured in time and
LOC based on previous research. Please note that we are aware that this
is not a perfect state-of-the-art effort prediction model, but just an example
we developed to evaluate the potential of SmartSHARK. The same concepts
can be applied to other questions, e.g., how the complexity evolves over time
simply by replacing LOC with a complexity metric.

5.3 Usability

Usability is defined through its major aspects: a given task must be executed
with effectiveness, efficiency and satisfaction (ISO/IEC 1998). If users are able
to accomplish their tasks, the product has a good effectiveness. Efficiency
includes, that users need a minimum amount of resources (e.g. psychological
strain, time, material) to achieve their task or goal. If the users expectations
are fulfilled or even excelled they feel satisfied with the product. To assess
these attributes we conducted different experiments with SmartSHARK. In
this section, the usability of the four most important tasks is evaluated.

5.3.1 Definition of Analytic Jobs

SmartSHARK allows the usage of any existing library for the definition of
analytic jobs. In case the full power of Apache Spark is required, e.g., to achieve
scalability for complex analytics, features for the distributed processing must
be used. This includes regular map/reduce jobs and libraries, which are directly
developed for Apache Spark. We demonstrated the use of the Spark machine
learning library for the definition of our defect prediction model.

The definition of analytic jobs fulfilled all of the different major usability
aspects, as defined in the ISO 9241-11 (ISO/IEC 1998) standard, because we
were able to successfully define different analytic jobs without much effort.
Furthermore, we were able to use libraries to which we are used to, which
fulfilled our expectations.

5.3.2 Debugging

Currently, SmartSHARK offers the possibility to gather debugging informa-
tion via log files of the Hadoop cluster. Although, this solution is feasible,
most developers are used to directly debug within their Integrated Develop-
ment Environment (IDE). Furthermore, the debugging of applications which
are executed on multiple nodes, is difficult to perform, e.g., debugging Hadoop
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Map Reduce programs27. Nevertheless, Apache Spark offers debugging possi-
bilities, which can be included in later versions of SmartSHARK to offer a
direct interface for developers to debug their programs.

We were able to successfully debug our programs via the log file access.
But the satisfaction for this task is currently lacking, because the debugging
was a repetitive task as we needed to gather information from the log file to
pinpoint the bug.

5.3.3 Evaluation and Presentation of Results

The evaluation of the results with Apache Spark is well supported by libraries.
The feedback loop, of how the results are displayed and returned to the user,
is passive. Currently, SmartSHARK offers three options: 1) storage of the
results directly in the MongoDB, as we demonstrate with the defect prediction
example; 2) storage on the file system for later download by the user as we do
it in the effort estimation example; and 3) directly output the desired results
via the language specific print commands.

One way to make the analysis of the results more comfortable was shown
by incorporating the defect prediction results directly in the SmartSHARK
website. By providing such a visualization as shown in Figure 11 together with
metrics like recall, precision, G-Measure, F-Measure, and MCC, the evaluation
of, e.g. defect prediction, approaches gets more comfortable. The researcher
only needs to execute the corresponding Spark job for a project and the website
will then show the results directly.

Therefore, the task of evaluating and presenting the results fulfilled all of
the different usability aspects, at least for our defect prediction example. Our
visualization directly gives feedback to the developer, without the need of her
to actively retrieve the results. This shows, that SmartSHARK is capable of
switching the feedback loop from a passive one (i.e., the user needs to get
active to get the results) to an active one. The only requirement for this is the
provision of Yii2-Widgets28, which are plug-ins that implement the logic to
gather and display the data. Furthermore, these plug-ins can easily be shared.

5.3.4 Addition of New Data Sources

We developed SmartSHARK in two increments: the first increment contained
only the ETL of VCS data, while in the second increment the ETL of mailing
list data was added to the platform. Therefore, at first we were only able to
make use of the first increment (collecting VCS data), but as we added the
second one we were able to collect the mailing list data without problems.

Hence, our design of the ETL process and the schema of the MongoDB en-
sured that the task of adding new data sources could be performed effectively,
efficiently and with satisfaction.

27 https://wiki.apache.org/hadoop/HowToDebugMapReducePrograms
28 http://www.yiiframework.com/doc-2.0/guide-structure-widgets.html

https://wiki.apache.org/ hadoop/HowToDebugMapReducePrograms
http://www.yiiframework.com/doc-2.0/guide-structure-widgets.html
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6 Discussion

Within this section, we discuss how SmartSHARK can be used to address the
five problems mentioned in Section 1. Furthermore, we compare the lessons
learned from CODEMINE, with our own experience with SmartSHARK. At
last, we present lessons that we learned during the design, development, and
usage of SmartSHARK.

6.1 Addressing Threats to Validity and Replicability with SmartSHARK

The motivation of our work on SmartSHARK are the five major problems,
which are discussed in Section 1. Based on our experience with SmartSHARK,
we discuss the impact a platform like SmartSHARK can have on these prob-
lems, how it may help to overcome these problems, or which additional work
is required.

(1) Heavy Re-use of Data Sets. A platform like SmartSHARK natively
addresses this problem. Due to an automatic project data ETL process, new
projects can be added without much effort. This way, SmartSHARK provides
a foundation for a constantly growing database, which means that with every
experiment, new data could be used. However, SmartSHARK also demon-
strates the limitation regarding this research question: the desired analytics
are a central part. The used platform must be able to collect the required data
for the required analytics. If it does not provide such data it must be extensi-
ble in a way that researchers are able to plug-in their own implementations so
that they can also be shared easily across different SmartSHARK instances.

Currently, our ETL process is extensible and, moreover, the results of Spark
jobs can be stored in the MongoDB to further enrich the data, if required.
Additionally, by providing a plug-in system, researcher are able to plug-in
their existing programs (see: Section 7).

(2) Non-availability of Data Sets. SmartSHARK provides two possible
ways to address this problem: the first is a shared cloud deployment, where all
researchers have access to the same data. The second is to create and share
backups of the underlying MongoDB.

(3) Non-availability of Implementations. All analytic jobs on Smart-
SHARK are provided as Apache Spark jobs. Therefore, published implemen-
tations can be executed on each instance of SmartSHARK, both private and
public. Implementations can be shared both as source code or compiled Spark
jobs. However, SmartSHARK itself currently does not directly offer the shar-
ing of the implementation, this must be done at a third-party side. Therefore,
one extension would be the addition of an implementation catalog, where
researchers can upload their implementation to share them with other re-
searchers.

Our experience shows, that the adding of new visualizations is easy, as
our website uses the Yii2 framework, which provides a plug-in mechanism for
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widgets. Therefore, if a researcher develops a visualization, it can easily be
shared and installed in any SmartSHARK instance via this mechanism.

(4) Small data sets. Through the automated data collection, the addition
of new data to SmartSHARK is not very time consuming for researchers, even
if the collection itself might take a while. Hence, constantly growing data sets
are not a problem, which will lead to a large body of rich data that includes
the structure and meta information about the VCS, software metrics, defect
information, and mailing list data.

(5) Diverse Tooling. SmartSHARK currently addresses this problem differ-
ently for data collection and analytic applications. For the data collection, we
use a model-based framework for the harmonization of the heterogeneous data
produced by diverse tooling. This allows us to abstract away from concrete low-
level representations in diverse formats such as XML, relational databases,
CSV files and other assets, and instead work with homogeneous high-level
models that allow us to use model-to-model transformation to integrate and
enrich data, while still suppotring translation between different concrete rep-
resentations of the models. We have experienced, as described in Section 5.3.4,
that this approach is easily extensible and also feasible for the data collection
and combination.

For the analytics, we address this problem by using Apache Spark as ana-
lytic back-end. This means that for the execution, the problem of tool diversity
is resolved, as Spark jobs can easily be shared and executed on any Smart-
SHARK instance.

6.2 Lessons from CODEMINE

While not many details about Microsoft’s internal CODEMINE (Czerwonka
et al 2013) were published, the authors gave a list of lessons learned during
the creation of the platform. We now compare these lessons to our experience
with SmartSHARK as a tool for the research community.

Create an independent instance for each product team in the data
platform. Partitioning of the platform parts to, e.g., restrain access is one im-
port lessons that the developers of CODEMINE learned. The target of Smart-
SHARK are not product teams, but rather research communities. Nevertheless,
we built up our platform as modular as possible to be able to restrain access
to certain parts.

Have uniform interfaces for data analysis. Czerwonka et al (2013) de-
scribe in their lessons learned, that a uniform interface is very important for
such a platform. Furthermore, the evolution of the API for data analysis must
be done carefully. This lesson lead to the central design decision of Smart-
SHARK to use Apache Spark as common API for the analytic tasks. This
uniform interface allows more specific APIs to evolve for different research
communities, e.g., to better support defect prediction.
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Encode process information. Process information ”includes release sched-
ule (milestones and dates), organization of code bases, team structure, and so
on” (Czerwonka et al 2013). Czerwonka et al. advise, that these information
should be embedded into the platform’s data store. For open source projects,
this information is often not available or unclear. Still, the collection of such
information for open-source projects would be valuable for SmartSHARK and
will be part of future work.

Provide flexibility and extensibility for collected data and deployed
analytics. At Microsoft, the requirements on such a platform in respect to
the collected data or deployed analytics varies between product teams. We
found this lesson to be very important for SmartSHARK, because this also
holds true for our research community. Deployed analytics can be of any kind.
Therefore, we designed the database to be as flexible as possible (NoSQL
key/value storage), allow with Apache Spark all kinds of analytic programs,
and allow a wide variety of different data collection plug-ins with our improved
version (see: Section 7).

Allow dynamic discovery of data platform’s capabilities by applica-
tion. Czerwonka et al (2013) describe, that the platform should offer some
kind of interface through which the available data can be identified by the an-
alytical applications. This lesson was partially followed. While SmartSHARK
does not provide a sandbox where researchers can test the capabilities, the
incremental development of Apache Spark jobs allows them to experience the
capabilities and test the limits. Furthermore, we are currently working on a
specialized API, which allows to identify the available data that is stored in
the platform.

Support policies for security, privacy, and audit. The platform must al-
low the setting of authorization, authentication, and other security measures
to secure the data and the access, as Czerwonka et al (2013) point out. While
SmartSHARK has a basic user access rights system, the current implementa-
tion is not enough and more diverse access rights are required, e.g., to restrict
writing access only on parts of the database.

Allow ongoing support and maintenance outside of CODEMINE.
At Microsoft, product teams take over the ownership and operation of a data
platform instance. Therefore, the data platform and the offered services must
be well defined. With our design of SmartSHARK, we tried to implement
this experience. We know, that for acceptance in the research community it is
mandatory to allow maintenance outside of SmartSHARK. SmartSHARK is
open-source and we invite other researchers to work together with us on the
extension of the prototype.

Host as a cloud service. Czerwonka et al (2013) suggest, that one should
determine if such a platform should be hosted as a cloud service or on tradi-
tional servers, based on their needs for availability, load, etc. Following this
lesson, we designed SmartSHARK as a cloud platform to be easily scalable
in terms of computational and storage resources, as we believe that especially
very complex analytic jobs are highly resource demanding.
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Know the data platform might not fulfill all data needs. The platform
might not satisfy all users, as some data might be not available for a certain
analytics. For SmartSHARK we used this lesson as motivation to create an
extensible approach for the ETL process. This way, if the platform is lacking
in terms of data, it is designed in a way that the problem can be mitigated by
extending the ETL process.

Innovate at the right level of the stack. Czerwonka et al. advise, that
you should only use mature foundational technology as much as possible. For a
platform aimed at researchers, like SmartSHARK, this lesson is only partially
applicable, because it is part of research to innovate and test new technolo-
gies. However, due to the high level of integration between tools within Smart-
SHARK, we also think that a certain level of quality and maturity is required
for everything that shall be part of the main branch of SmartSHARK.

6.3 Lessons from SmartSHARK

Because of the different focus of SmartSHARK on research instead of the
support of product teams, as well as due to the difference in available resources
for researchers in comparison to a company like Microsoft, we learned the
following lessons.

(L1) Use only mature tools which you can maintain by yourselves.
The development of SmartSHARK was challenging due to the quality and
maturity of the tools used. For the ETL of the VCS data, we relied on the
popular CVSAnalY. However, the tool once stopped for an extended period
of time, which is problematic for a fully automated data collection process,
where human intervention should be the exception and not the rule. However,
since CVSAnalY is open source, we could pin point the source of the problem
and can provide a solution in the future. For the proprietary InFamix on the
other hand, we do not know the source of the failure for Mahout and have no
means of fixing this problem. Additionally, InFamix is not available anymore,
which means that no fix will be available in the future, leaving no choice but
switching the tool.

(L2) Model-based fact extraction works, but is very resource de-
manding. SmartSHARK is based on DECENT, a model-based fact extrac-
tion and transformation framework (see Section 4.1.1). DECENT provided a
good foundation for the integration of information. However, the created EMF
model must fit completely into the RAM and therefore sufficient resources need
to be available. This a threat to the scalability of the data collection, as the
memory requirements of very large projects like the Linux kernel or Firefox
are high. Nevertheless, there are solutions to this problem, such as Scheid-
gen et al (2012) and Benelallam et al (2014). Scheidgen et al (2012) showed,
that it is possible to transparently fragment the different models and store
these fragments, e.g., in a MongoDB. NeoEMF29 (Benelallam et al 2014) has

29 http://www.neoemf.com
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evolved into a mature, efficient, and scalable multi-database storage solution,
supporting on-demand loading and powerful querying for large EMF models.

(L3) Support optimized database queries. Since the amount of collected
data grows rapidly with the number of projects, well-formulated database
queries are required in order to keep the burden on the storage back-end
and internal network traffic in the cloud low. Therefore, an API that already
supports the most important database queries is important for a large-scale
deployment with thousands of projects.

(L4) Heavy resource demand on the infrastructure. Even taking the
above lessons into account, we experienced that our setup with four VMs is the
bare minimum at which we can get SmartSHARK to run somewhat decently.
For a large deployment that should be able to mine thousands of projects
a larger cloud infrastructure is required with multiple worker nodes for the
project data collection and a dedicated database back-end that is separated
from the web-front-end.

(L5) Allow visualization plug-ins. While Apache Spark is a good solution
for non-visual analytics, it does not support visual analytics, as we described
in the experience report. To this aim, a good and very flexible plug-in sys-
tem is required, that allows, e.g., visualization of trends, social networks, and
dependencies within projects.

(L6) Provide externally accessible APIs. An enhanced API for job sub-
mission, which could be accessed via a script, directly from an IDE, or from
within other applications (e.g., as part of other Java applications) could help
to further improve the writing of analytic jobs. Moreover, an API that makes
log information, which was collected during the execution of jobs, visible to
users would offer another active feedback loop besides the visualizations. These
APIs are on our list for future work.

7 Scaling Up the Prototype

Through the experience that we gathered with the SmartSHARK version pre-
sented in Section 4 and the gathered feedback we updated our platform. The
update does not only change parts in the implementation, but also the design
and focus of the platform is changed to address the feedback and several issues
that we uncovered (see: Section 5).

7.1 Design

We want to address the issue, that only data from one project could be col-
lected at a time and take care of the lessons that we have learned with our
first version. Therefore, we changed our database design and added indexes to
support optimized database queries.

Furthermore, we re-designed our infrastructure. In Figure 12 our new de-
sign is depicted. This new design was created based on lesson L4, as we have
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Fig. 12 Improved SmartSHARK design.

experienced that front-end, database, and data collection should be physically
and logically separated from each other. In contrast to Figure 1, which only
gives a broad overview of the old system, Figure 12 includes details about the
infrastructure and the implementation of the conceptual design. The central
access point for the researcher is the webserver, where she can provide plu-
gins, access the analysis results, and execute the analysis jobs. Furthermore,
we separated the data collection from the data analysis: the data collection is
executed on a batch system, which can be, e.g., a High Performance Comput-
ing (HPC) cluster while the data analysis is still executed on a Spark cluster.
The plug-in that is executed on the batch system stores its results in the Mon-
goDB, which can than be accessed by the analysis job that runs on the Spark
cluster. Hence, this design provides us with a good scalability, enables us to
collect data from more than one project at once (depending on the capability
of the batch system), and addresses the heavy resource demand of the data
collection.

This is different to our first design, as we have a clearer separation between
data collection and data analysis. This leads to a wide variety of possible
data collection plug-ins, as the batch system is not fixed to one programming
language. Another central part in the new design is the MongoDB, which
should be deployed in a distributed manner to cope with the high load. All
results are stored in the MongoDB, while it is regularly accessed by the analysis
jobs. In our first design, the webserver, MongoDB, and data collection server
are placed on one single node, which did not scale well.
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7.2 Implementation

As it is stated in Section 5.1 we had four different problems during the execu-
tion of our data collection process, which we wanted to address by developing
new programs that can exchange the ones we used before. Three of these
problems were connected to the tools that we used to execute it. The first
problem was the unreliability of CVSAnalY, as it stopped working for the
oryx project30. Furthermore, InFamix did not work for all revisions of Ma-
hout, why we needed to exclude it from our first report. Additionally, with
InFamix we were only able to collect source code metrics for one programming
language per project, as it does not have multiple language support.

We addressed these issues and our lesson L1, by developing two new data
collection plug-ins for SmartSHARK: vcsSHARK31 and mecoSHARK32. The
vcsSHARK is a tool that is able to collect the complete commit history of
a project including, e.g., all commits on all branches, tags, differences be-
tween file revisions, and changed files. The collected data is then stored in
a database. Currently, the vcsSHARK is able to collect data from projects,
which use git as VCS33 and stores the data in a MongoDB. The vcsSHARK’s
design is modular and offers a plug-in system that allows additional VCSs
(e.g., Subversion (SVN) or Mecurial) or data storages (e.g., MySQL).

During the development of vcsSHARK we compared its results with the
data that we got via CVSAnalY and the data that is stored on GitHub using
its web interface. We tested the vcsSHARK by comparing the collected data
with the data we got from CVSAnalY, as well as the original data on GitHub
using GitHub’s web interface. Through this procedure, we discovered another
bug in CVSAnalY, which sometimes caused commits to be placed in the wrong
branch of the extracted data.

We discovered, that the data collected by vcsSHARK matched the data
that is stored on GitHub, but the results of CVSAnalY are different to it. E.g.,
in CVSAnalY some commits are placed on other branches than it is displayed
at GitHub. Because of this observation and the first problem mentioned above,
we exchanged CVSAnalY with the vcsSHARK in our new data collection
process.

The mecoSHARK is a tool that is able to collect very detailed metrics
of files in a project. Currently, it works with Java and Python projects. It
checks out every revision of the project, automatically detects the used pro-
gramming languages, executes the metric calculation plug-ins that correspond
to the used programming languages, executes a clone detection algorithm34,

30 This problem does not occur anymore with the current version of CVSAnalY.
31 https://github.com/smartshark/vcsSHARK
32 https://github.com/smartshark/mecoSHARK
33 We use the official git library for analysis: https://libgit2.github.com/
34 Currently, mecoSHARK is able to detect Type-2 clones, which are clones that are syn-

tactically identical except for variations in layout, comments, whitespaces, type references,
identifier names, and literals. Details can be found in the SourceMeter documentation: (Fron-
tEndART Ltd. 2016a)

https://github.com/smartshark/vcsSHARK
https://github.com/smartshark/mecoSHARK
https://libgit2.github.com/
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and stores the collected data in a MongoDB. The programming language is
detected with sloccount (Wheeler 2004), the metric calculation itself is per-
formed by SourceMeter (FrontEndART Ltd. 2016c), a free to use metric cal-
culation and clone detection tool. The mecoSHARK’s design is also modu-
lar like the vcsSHARK and can be extended via plug-ins, e.g., to use other
tools than SourceMeter for metric calculation. This allows the extension of
mecoSHARK for additional programming languages, which can be measured
with other tools. Table 4 lists all currently calculated metrics for Java and
Python projects. These metrics are calculated on different levels of abstrac-
tion, e.g., class, method, and/or function level. Furthermore, the table shows
which of these metrics are also available in InFamix. Note, that InFamix does
not calculate clone metrics. Table 5 reports all clone metrics that are calcu-
lated with mecoSHARK. A exact description of each metric is given in the
documentation of SourceMeter (FrontEndART Ltd. 2016a,b).

Table 4 Calculated source code metrics for mecoSHARK (Java/Python) and InFamix.

Category Metric Name Java Python InFamix

Cohesion
Lack of Cohesion in Methods 5 x x
Lack of Cohesion in Methods x
Tight Class Cohesion x

Complexity

Access to Foreign Data x
Access to Local Data x
Average Method Weight x
Class Weight x
Dispersion Ratio x
McCabe’s Cyclomatic Complexity x x x
Nesting Level x x x
Nesting Level Else-If x x
Specialisation Index x
Weighted Methods per Class x x

Coupling

Base Class Usage Ratio x
Capsules Providing Foreign Data x
Coupling Between Object classes x x x
Coupling Between Object classes
Inverse

x x

Incoming Coupling Dispersion for
an Operation

x

Incoming Coupling Intensity for
an Operation

x

Locality of Data Accesses x
Loose Class Cohesion x
Number of Incoming Invocations x x
Number of Outgoing Invocations x x
Outgoing Coupling Dispersion for
an Operation

x

Outgoing Coupling Intensity for
an Operation

x

Response set For Class x x x

Documentation

API Documentation x
Comment Density x x
Comment Lines of Code x x
Documentation Lines of Code x x

Continued on next page
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Table 4 – continued from previous page
Category Metric Name Java Python InFamix

Public Documented API x
Public Undocumented API x
Total API Documentation x
Total Comment Density x x
Total Comment Lines of Code x x x
Total Public Documented API x
Total Public Undocumented API x

Inheritance

Base Class Overriding Ratio x
Depth of Inheritance Tree x x x
Number of Ancestors x x
Number of Children x x x
Number of Descendants x x
Number of Parents x x

Size

Lines of Code x x x
Logical Lines of Code x x
Number of Abstract Methods x
Number of Accessed Variables x
Number of Accessor Methods x
Number of Added Services x
Number of Attributes x x x
Number of Classes x x
Number of Enums x
Number of Getters x
Number of Interfaces x
Number of Local Attributes x x
Number of Local Getters x
Number of Local Methods x x
Number of Local Public At-
tributes

x

Number of Local Public Methods x
Number of Local Setters x
Number of Methods x x x
Number of Outgoing Calls x
Number of Overriding Methods x
Number of Packages x x
Number of Parameters x x x
Number of Protected Attributes x
Number of Protected Methods x
Number of Public Attributes x x
Number of Public Methods x x
Number of Setters x
Number of Statements x x
Percentage of Newly Added Ser-
vices

x

Total Lines of Code x x
Total Logical Lines of Code x x
Total Number of Attributes x x
Total Number of Classes x x
Total Number of Directories x x
Total Number of Enums x
Total Number of Files x x
Total Number of Getters x
Total Number of Interfaces x
Total Number of Local Attributes x x

Continued on next page
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Table 4 – continued from previous page
Category Metric Name Java Python InFamix

Total Number of Local Getters x
Total Number of Local Methods x x
Total Number of Local Public At-
tributes

x

Total Number of Local Public
Methods

x

Total Number of Local Setters x
Total Number of Methods x x
Total Number of Packages x x
Total Number of Public At-
tributes

x

Total Number of Public Classes x
Total Number of Public Enums x
Total Number of Public Interfaces x
Total Number of Public Methods x
Total Number of Setters x
Total Number of Statements x x
Weighted Operation Count x

Through the exchange of InFamix in favor of mecoSHARK we were able to
collect metrics for Mahout and we are also able to collect source code metrics
for different programming languages in one project, as we automatically deter-
mine the languages that are used and execute the corresponding mecoSHARK
plugins. Furthermore, we have more metrics available on different levels of
abstraction than with InFamix.

We measured the execution times of the vcsSHARK and the mecoSHARK
in comparison to the previous version of the prototype based on CVSAnalY
and InFamix. To this aim, we executed all tools on a machine with 8 Intel Xeon
cores (3.6GHz each) and 16GB of RAM, which is similar to the old deploy-
ment of SmartSHARK. Additionally, we measured the execution time of the

Table 5 Calculated clone metrics by mecoSHARK.

Metric Name Java Python

Clone Age x x
Clone Classes x x
Clone Complexity x x
Clone Coverage x x
Clone Elimination Effort x x
Clone Elimination Gain x x
Clone Embeddedness x x
Clone Instances x x
Clone Line Coverage x x
Clone Lines of Code x x
Clone Logical Line Coverage x x
Clone Risk x x
Clone Variability x x
Lines of Duplicated Code x x
Logical Lines of Duplicated Code x x
Normalized Clone Radius x x
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Table 6 Used nodes of the HPC cluster

#Nodes CPU Cores Frequency Memory

5 Magny-Cours, AMD Opteron 6174 4x12 2.20 GHz 128GB
48 Abu-Dhabi, AMD Opteron 6378 4x16 2.40 GHz 256GB
1 Haswell, Intel E7-4809 v3 4x8 2.00 GHz 2TB
15 Broadwell, Intel E5-2650 v4 2x12 2.20 GHz 512GB
5 Haswell, Intel E5-4620 v3 4x10 2.00 GHz 1.5TB

vcsSHARK and mecoSHARK in a HPC cluster as batch system. The different
nodes and their capabilities of the used HPC cluster are listed in Table 6.
Note, that we could not reserve the whole HPC cluster for our measurements,
as it is a cluster available for all researchers from Göttingen University and
hosted by our datacenter35. Therefore, the results may vary due to different
work loads. Note, that we needed to change our plug-ins to enable a nearly
fair comparison. First, we excluded the calculation of file differences between
revisions for the vcsSHARK, as CVSAnalY does not provide this data. Fur-
thermore, we excluded the last step of mecoSHARK (saving the data in the
MongoDB) for this analysis, as this step is not done by InFamix, but by an ad-
ditional transformation script based on DECENT (see Section 4.1.1). Instead,
we measured the time required only for the calculation of metrics values for
mecoSHARK.

We needed to exclude the project ”Minesweeper” that we have used in
our earlier work (Trautsch et al 2016), as it is no longer available on GitHub.
Additionally, for the comparison of mecoSHARK to InFamix, we could only
use Java projects, as mecoSHARK currently only supports Python and Java
projects.

Figure 13 compares the execution time of CVSAnalY to the vcsSHARK.
CVSAnalY is faster for all but two projects. We see several reasons for this:
first, our plug-in is designed for bigger projects and heavy computation load,
as we spawn different processes. If we exclude the only task that takes com-
putational time (comparing file revisions) the different processes block each
other, which results in a slower run time. Furthermore, as we have explained
above, CVSAnalY does not provide as much data as the vcsSHARK (e.g.,
comments on tags) and the data that CVSAnalY collects is not equal to the
data which GitHub provide via their web interface.

Furthermore, vcsSHARK on the new deployment (HPC cluster) is the
slowest among the three tested plug-ins/setups. We see several reasons for
this: first, we could not control for the load of the HPC cluster. Therefore,
this could have an influence on the run time. Another possible reason is the
overhead in the communication. CVSAnalY, as well as vcsSHARK in the old
deployment were communicating with a database, which was running locally
on the machine that also executed the plug-ins. In case of the vcsSHARK,
executed on our new deployment, this was not possible. Therefore, all results
needed to be communicated through the network to the database server. Nev-

35 http://gwdg.de

http://gwdg.de
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Fig. 13 Comparison of run times of CVSAnalY (single node), vcsSHARK (single node), as
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Fig. 14 Comparison of run times of InFamix (single node), mecoSHARK (single node), as
well as mecoSHARK running on the HPC cluster.

ertheless, we note that all run times are below 100 seconds regardless of the
deployment and whether we use CVSAnalY or the vcsSHARK. Hence, both
tools as well as deployment scale well.

Figure 14 compares the execution time of InFamix and mecoSHARK.
InFamix is slower than our newly developed mecoSHARK for every project
except log4j. The reason for the difference for log4j is unclear and requires
further investigation. The mecoSHARK, executed on our new deployment, is
up to 50 times faster than InFamix and up to 42 times faster than mecoSHARK
on the old deployment (depending on the project). The reason for this massive
speed up is that we have an embarrassingly parallel workload: if we are using
the HPC cluster, several jobs can be submitted (for each revision one job),
which executes the plug-in on the given revision. This results in a massive
parallelism and in a drastic reduction of the execution time.

Our comparison shows that we get a massive improvement of the run times
through our new deployment, if the plug-ins needs to be executed for each
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Table 7 #Documents and used storage space in the MongoDB after vcsSHARK was exe-
cuted. The results are reported for each project separately.

Project #Documents
(vcsSHARK)

Storage
(vcsSHARK)

cursynth 3.502 3,131 MB
cxxnet 10.797 9,603 MB
elasticsearch-hadoop 30.336 14,785 MB
fatal 17.550 12,501 MB
guice 195.043 790,116 MB
HackerNews 1.144 0,560 MB
k3b 187.771 161,092 MB
ksudoku 15.599 12,28 MB
libxcam 11.440 6,222 MB
libyami 22.421 14,962 MB
log4j 85.790 57,182 MB
mxnet 129.532 90,622 MB
oclint 18.770 6,973 MB
ohmu 10.336 6,361 MB
openage 60.953 26,923 MB
oryx 11.120 6,513 MB
osquery 79.326 48,743 MB
passivedns 3.013 1,209 MB
SMSSync 49.192 38,453 MB
swift 32.744 44,713 MB
wds 13.381 4,451 MB
xgboost 56.796 64,34 MB

Overall 1.046.556 1.421,735 MB

revision. Furthermore, it shows that our developed mecoSHARK is faster than
InFamix in most cases, whereas the vcsSHARK is slower than CVSAnalY, but
provides more data.

Additionally to the execution time we also measured the used storage space
for each project and for each plugin. Tables 7 and 8 depict the number of docu-
ments that are created in the MongoDB for each plugin and the storage space
that these documents take. Please note, that the concrete used storage space is
lower, as MongoDB optimizes the storing of the documents. Furthermore, as we
also stated above, the project Minesweeper is no longer available and therefore
we could not gather data using our new plugins. Tables 7 and 8 highlight, that
the bigger the projects the more documents are created and the more storage
space is needed. Furthermore, it also highlights the differences between both of
our plugins in respect to the needed storage space: vcsSHARK needs less stor-
age space as mecoSHARK. The reason for this is the difference in the stored
data. vcsSHARK stores mostly meta-data about the commits of a project,
but also the concrete textual change that was made. But, mecoSHARK stores
one document for every code entity (e.g., class, method, interface) for every
commit together with its calculated metric data. Therefore, a lot more storage
space is used.
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Table 8 #Documents and used storage space in the MongoDB after mecoSHARK was
executed. The results are reported for each project separately.

Project #Documents
(mecoSHARK)

Storage
(mecoSHARK)

elasticsearch-hadoop 7.611.833 4.878,285 MB
guice 13.574.467 10.012,43 MB
HackerNews 9.220 6,14 MB
log4j 22.442.724 13.747,25 MB
oryx 2.060.098 1.368,7 MB
SMSSync 6.107.692 3.824,99 MB
swift 2.591.012 1.727,42 MB

Overall 54.366.710 35.550,43 MB

7.3 Further Extensions of the Prototype

In addition to the new vcsSHARK and mecoSHARK, which just replaced pre-
viously already existing functionality in the prototype, we also developed the
issueSHARK36 and the coastSHARK37. The issueSHARK is able to collect
data from ITSs (e.g., issue title, description, changes on the issue, etc.) and
currently supports GitHub Issues, Bugzilla, and Jira. The coastSHARK gen-
erates the ASTs for Java (or Python) files and gathers the AST node counts
for all files. This enables the custom definition of new metrics. Count-based
metrics can be calculated directly from the MongoDB, structural metrics could
be added by extending the coastSHARK. Both plug-ins further demonstrate
the extensibility of our prototype. The complete available data of the current
state of the prototype is documented online38.

That such data is useful for research is without question. For example,
the complete body of work on software defect prediction, which encompasses
hundreds of publications (see, e.g., the surveys by (Catal and Diri 2009), (Hall
et al 2012), and (Herbold 2017)), can be supported by such a prototype as
demonstrated in Section 5.2.2. Additionally, natural language processing tasks
like topic modeling require the commit messages, issue comments or mailing
list contents, which are all already available, covering another popular research
topic (Sun et al 2016). Moreover, work on developer social networks, based on
commonly changed files, ITS information, as well as emails is supported. While
we unfortunately cannot cite a survey to demonstrate the impact of this topic,
one of the early papers by Bird et al (2006) was already cited 512 times39.
All of these are high-impact research topics, for which now new data can be
continuously generated and shared using SmartSHARK.

The extensible nature of our platform allows us to further grow the number
of possible applications. Since we have no lock-in regarding the data collection
technology and basically allow command line tools, only very little overhead is

36 https://github.com/smartshark/issueSHARK
37 https://github.com/smartshark/coastSHARK
38 http://smartshark2.informatik.uni-goettingen.de/documentation/
39 According to Google Scholar on 2017-07-06.
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created for developers of data collection tools, if they want to extend Smart-
SHARK. They only need to make sure that they store the data compliant
to the already available data to avoid redundancies and ensure a consistent
schema. As a benefit, they then get the integration with the other data col-
lection plug-ins. As for the analysis of the data, we already support Spark as
a powerful analysis engine. Depending on the demands by the community, it
would be possible to open this up and allow more technologies, e.g., native
Python or R, without using Spark as a backend. For the visualizations, we al-
ready demonstrated the versatility in Section 5.2.1 based on JavaScript using
HighCharts and visJS. Together with other libraries like D3.js40 JavaScript
supports many kinds of graphical representation of data. Still, we are aware
that our platform will never be able to support all MSR research, e.g, research
that also requires developer surveys. However, we are confident that such a
large, diverse, and extensible database coupled with an analysis frontend that
allows sharing implementations can help researchers produce replicable re-
search results that do not suffer from the problems with external validity we
outline in this article.

7.4 Limitations and Future Work

The current version of SmartSHARK is able to execute different plug-ins (e.g.,
our vcsSHARK or mecoSHARK) for an arbitrary git-using project. Further-
more, we can analyze the data via Spark. However, there are some limitations
of our platform on which we are working at the moment.

When it come to the non-availability of data sets and implementations,
SmartSHARK by itself cannot tackle this problem. Nevertheless, we alleviate
this issue by providing a tool, which supports the sharing of data and imple-
mentations. Furthermore, a tool such as SmartSHARK could be integrated
into the existing publication process. E.g., researchers that submit a paper
must provide their implementation (for SmartSHARK: a Apache Spark job)
and access to their SmartSHARK instance. Hence, in a peer-review process,
reviewers can re-run the jobs on the opened SmartSHARK instance and eval-
uate the results and the used data. Moreover, it would be possible to compare
the results with other available approaches for which Spark jobs are existing.
These jobs could be acquired by the catalogs that we mentioned in Section 6.
Hence, reviewers could run these jobs to compare the results on the same data
set.

Furthermore, for solving the problem of the non-availability of implemen-
tations our goal is just partly fulfilled. Currently, only Spark jobs and data
collection plug-ins can be shared, but visualization plug-ins are not part of the
platform at the moment. Additionally, we want to provide the catalogs, that
were mentioned in Section 6. But for this, the general design and structure
must be fixed and evaluated by a larger group of users.

40 https://d3js.org/
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Moreover, the problem of too small data sets only applies for some ap-
proaches. Empirical software engineering is not only about analyzing big data,
but there exist a lot of papers that base their approaches on, e.g., surveys,
questionnaires, interviews with developers, etc., like in (Smith et al 2016).
This data is called ”thick data” and such studies can be supported by Smart-
SHARK (e.g., by complementing survey results with mined project data like
in (Devanbu et al 2016)), but a full replication only using SmartSHARK is
not possible. Because such data (e.g., survey data) is not stored or connected
within the platform.

For the diverse tooling, we also see some limitations. First of all, one es-
sential step in analyzing data, such as the data collected by SmartSHARK, is
understanding and processing it. SmartSHARK supports the understanding of
data by providing several visualizations (see: Section 5.2.1), but this can not
be automated fully as human interaction is mandatory. Furthermore, the pro-
cessing (e.g., cleaning) of data is only supported via Apache Spark jobs. Hence,
SmartSHARK by itself only collects raw data (e.g., metrics data from files,
commits from the VCS) and stores it in the MongoDB. If the data should
be analyzed or used in an approach, it must be cleaned and pre-processed
first. This step belongs to the analysis step and must be therefore put into the
Apache Spark job that can be shared later on.

For future work, we plan to perform an evaluation of SmartSHARKs ca-
pabilities with students of the courses that we teach. We want to evaluate
how novice MSR researchers can make use of SmartSHARK. This does not
only include an usability analysis, but we want to get feedback regarding
SmartSHARKs capabilities especially from novice researchers, as it is hard
to get into MSR research, because of the complex working environment that
needs to be built up beforehand.

Furthermore, we are planing to improve our ETL process. First of all, we
want to pre-process the data by combining different user identities. Moreover,
we plan to classify done commits, i.e., by putting commits into different classes
like ”bugfix”, ”bug inducing”, etc.).

We described several improvements for SmartSHARK that we are currently
planning. But, for SmartSHARK to be able to significantly help in replicating
a large portion of papers, we need to improve our plug-in development process.
This improvement, together with the planned catalogs and the promotion of
the platform, is essential to make this platform interesting for a larger set of
researchers and will result in more plug-ins developed for the platform. Hence,
one focus is the improvement of the usability of the platform, as we will not
be able to provide plug-ins for every kind of data collection or analysis task
by ourselves. We plan an ecosystem, which is developed around SmartSHARK
together with the community.

————–
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8 Threats to Validity

8.1 Internal Validity

The main threat to the internal validity of our work is an inappropriate choice
of collected data and analysis techniques. In case the data we collected is not
of interest for the community, this would invalidate all of our findings and
insights related to the data collection and combination. Similarly, in case our
analytic examples are inappropriate, our conclusions regarding the usability of
the platform may be invalid, especially in terms of required libraries. However,
to our mind these threats are minimal, as both metric data as well as historic
data about the usage of GitHub are frequently used in MSR research and
visualizations, defect prediction, and effort predictions have been of constant
interest to researchers in the past decade.

Furthermore, the categorization of papers, as done in Section 3, is a manual
task and, by the nature of it, there can be errors. Nevertheless, Section 3 is
not meant to be an exhaustive, systematic literature review, but it should only
show a trend and that the problems mentioned in Section 1 are still topical.

8.2 External Validity

Threats to the external validity are concerned with the ability to generalize
results. In our analysis we used SmartSHARK to collect data from 23 different
projects. Although we have chosen projects, which have a wide variety of
characteristics (e.g., size, number of revisions, field of application), the results
may vary if other projects are chosen.

Furthermore, for our analysis of the current state of practice we only have
analyzed the ICSE, MSR, ESEC/FSE, and ESEM from 2015. The results
may vary if other conferences or journals are chosen. Additionally to that,
SmartSHARK, in its current state, is not able to replicate all of the papers
mentioned in Section 3. For that, more plug-ins for the data collection and for
the analysis need to be written by the research community and implemented
in SmartSHARK to support the replication of various approaches.

8.3 Construct Validity

Construct threats are concerned with the degree to which our analysis really
analyses what we are claiming it does. We developed different tools, which we
connected to build up our platform. We carefully tested these tools with man-
ually written tests and manually-curated data samples. Nevertheless, defects
in our program can still exist, which might have an influence on the results
presented in this paper.

Furthermore, our usability evaluation was done only by the authors of this
paper and, therefore, may be biased. Hence, an usability evaluation needs to
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be done with more and unbiased people to get additional insights regarding
the usability of SmartSHARK, e.g., students or other researchers.

Additionally, we compared the run time of our plugins with established
programs like inFamix or CVSAnalY. In this comparison, we tried to create
an environment which enables a fair comparison. Nevertheless, a complete fair
comparison can not be established, as the compared tools are different in, e.g.,
the number of metrics they calculate or data they fetch and process.

9 Conclusion

Within this paper, we discussed how a platform that combines automated data
collection with a flexible analytic front-end can help to solve the problems of
insufficient replicability and problematic validity of repository mining studies.

To show that these problems are still current, we analyzed the publications
of the ICSE 2015, MSR 2015, ESEC/FSE 2015, and ESEM 2015 in respect to
the identified problems. Our analysis showed, that these problems still exist
nowadays.

To address these problems, we created the platform SmartSHARK, which
is inspired by CODEMINE (Czerwonka et al 2013). Due to the differences be-
tween research and industrial exploitation of such a platform, we focused our
evaluation on three aspects: 1) we showed through the definition of visualiza-
tions, defect prediction, and effort analysis, based on two different data sources
(VCS and mailing lists) that SmartSHARK can be used to define analytics;
2) we outlined how SmartSHARK can help to improve the replicability and
validity of studies; and 3) we gave insights on research-specific lessons learned
that are important for building such a platform that were not addressed by
the proprietary CODEMINE. SmartSHARK is open-source and we invite all
interested researchers to contribute to our platform in order to go from a
proof-of-concept prototype, to a reliable and valuable tool for the research
community that solves some of the problems we are having. We moved all our
development infrastructure to GitHub to enable others to contribute easily41.

Furthermore, we described our improvements of the platform based on
our experience report and comments from other researchers. We adapted our
design and our implementation and improved our data collection process to
address the raised issues.
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