Towards a Petri Net Based Semantics Definition for
Message Sequence Charts

Peter Graubmann
Siemens AG ZFE BT SE 4, Otto-Hahn-Ring 6, D-8000 Miinchen 83

gr@ztivax.zfe.siemens.de

Ekkart Rudolph
Siemens AG ZFE BT SE 5, Otto-Hahn-Ring 6, D-8000 Miinchen 83

rudolph@ztivax.zfe siemens.de

Jens Grabowski

Universitdt Bern, LinggassstraBe 51, CH-3012 Bern
grabowsk@iam.unibe.ch :

Abstract: Within the study period 1988 - 1992 of the CCITT the work on Message Sequence Chart
(MSC) within the CCITT Study Group X focussed on the definition of the graphical and textual syn-
tax of MSC [3] and on the development of a corresponding informal semantics definition to explain
the meaning of the standardized MSC constructs. Within Study Group X it has been decided that the
new study period should be used to provide a formal semantics definition for the existing MSC rec-
ommendation. The discussion about a suitable model for MSC semantics started at a CCITT interims
meeting in Geneva, November 1992. The semantics models for MSC discussed at this meeting are
based on Process Algebra, Automata Theory, and Petri Nets. In this paper the Petri Net based ap-
proach is presented.

1 Introduction

Since the new MSC recommendation Z.120 [3] has been approved quite recently
(May 1992) only an informal semantics description has been developed correspond-
ing to the syntax definition. For noncritical situations this may be often sufficient.
However, experience with related specification languages can give hints about the
usefulness and even necessity of a formal semantics definition.

For formal description techniques, a formal semantics is defined since they are
bound to describe the functional properties (i.e. the behaviour) of a communication
system without any ambiguities. In particular, the formal semantics definition serves
as the basis for the development of simulation, analysis, or validation tools. Addition-
ally, it ensures an unambiguous communication between partners. Therefore, for
complex specification languages like SDL, Estelle, or LOTOS, a formal semantics
definition is necessary.

In contrast, for TTCN (*Tree and Tabular Combined Notation’, a standardized test
case description language of the ISO/IEC [10]) no formal semantics is defined, yet
the TTCN standard is claimed to have an unambiguous meaning.

For MSCs the situation lies somehow in-between. In many cases, they are used sim-
ply as informal illustrations and these applications do not require a formalization.
Furthermore, the current MSC recommendation only includes a few and mainly sim-
ple language constructs and some people argue that these constructs can be under-
stood easily and therefore no formal semantics would be necessary. But this is only
part of the story. Different variants of MSCs, such as Arrow Diagrams, Time Se-
quence Diagrams, Interworkings, frequently are used at universities, standardization
bodies, and within companies [8]. Depending on the application areas, they assume
different communication mechanisms and include different language constructs any
exchange between organizations or tools proves to be problematic. Besides the stan-
dardized syntax definition [3], a formal semantics definition may be helpful to har-
monize the use of MSCs. Beyond that, it is no longer true that the MSC recommen-
dation only includes simple constructs. This may be substantiated by means of three
examples:

e At an experts meeting in Munich, March 1992, it was recognized that the
submsc-construct may lead to ambiguities since it is not clear whether the re-
finement of a decomposed instance axis should maintain the message ordering
along the refined axis, or whether the message ordering along the refined in-
stance axis should only be possible within the submsc.

¢ At the last CCITT interim meeting in Geneva, November 1992, problems con-
cerning the interpretation of Conditions were discussed. Some people argued
that a Condition can be interpreted as a synchronization point, whereas other
denied this.

e At the same meeting a high level construct for the description of more general
time orderings along an instance axis was required.

In order to clarify and unambiguously define the meaning of such constructs, a for-
mal semantics definition for MSC is inevitable.

Since the MSC recommendation Z.120 has been produced just recently it seems to
be the right point of time for the development of a formal semantics. Further exten-
sions of Z.120 may then evolve from this sound basis.

This paper is organized in the following way: Within the second chapter, we give a
brief rationale for our selection of Petri nets as a basis for the MSC semantics and re-
late it to two further approaches which came up recently. In chapter 3, a special class
of Petri Nets, the so-called labelled occurrence nets, is introduced. Within the fourth,
fifth and sixth chapter, the translation of MSCs into labelled occurrence nets is de-
fined. In the seventh chapter, a semantics for MSC composition and decomposition is
provided. Finally, an outlook is given.

2 Comparison with other approaches

Until now, two further approaches towards a formal MSC semantics have been pro-
posed in addition to the Petri Net based semantics definition described in this paper.
They can be considered the starting points from which the MSC semantics discussion
within CCITT SG X will proceed. For completeness and comparison also the other
approaches shall be sketched briefly in the following.

One approach which has been worked out at University of Berne uses an interleav-
ing model and is based on finite automata [6,12]. Formally, a single MSC can be in-
terpreted as a graph with two sorts of edges. The nodes represent communication
events, e.g. message sending and message consumption. This graph can be inter-
preted as a global state transition graph, containing all possible global states specified
by the MSC. It corresponds to an automaton without explicitly defined end states.
Unfortunately, with MSC composition problems may occur with unique end-state de-
termination. To find proper end states a termination criterion from w-automata the-
ory, due to Biichi [14], is used. The main advantage of the sketched semantics ap-
proach and the hereupon based MSC semantics is its flexibility. According to the
chosen set of end states it is possible to analyse MSCs under various points of view,
e.g. with respect to safety and liveness properties of the system.

A second approach again applies an interleaving model and is based on a process al-
gebra [13]. The semantics is used to process, analyse, and combine so called Inter-
workings which are closely related to MSCs. Within an Interworking a message inter-
action between two entities can be split into two different events: output and input of
the message. But contrary to MSCs, within Interworkings communication is meant to
be synchronous. A formal semantics for Interworkings is defined with the use of the
algebraic concurrency theory Basic Process Algebra. To that end, it is extended by
two operators: merging and sequencing of Interworkings.

The approach towards a formal MSC semantics chosen in this paper is based on
_Petri net theory [5,9]. As the idea of partial ordering of signaling and instance events
was one of the leading principles during the definition of MSCs, occurrence nets -
which are the Petri net way of presenting partial orderings - seem to be particularly
well suited for a basis of MSC semantics. Within this framework in particular a clear
semantics may be attached to composition rules for MSCs.

In comparison with the other semantics definitions the correspondence between syn-
tax definition and formal semantics description seems to be more evident in the Petri
net approach. In particular, occurrence nets immediately reflect the partial ordering
of events since the relations co (concurrency) and li (line, i.e. sequentiality) may be
derived directly from the net structure. By employing occurrence nets for a semantics
description of MSCs the well elaborated mathematical theory within net theory can
be utilized. :

3 Occurrence nets

As basis of our considerations we use occurrence nets. In fact, for the semantics we
are going to provide, we aim at something similar to Petri net processes. Yet, in our
case, there is no original Petri net from which a Petri net processes can be assumed
to have evolved, and thus, we are forced to formulate the essentials of the Petri net
processes without relying on such a related net.

Occurrence nets [1,2] are cycle free and conflict free nets which therefore suitably
describe individual traces within distributed systems. As mentioned above they evi-
dently present the partial ordering of events being contained.

Definition:
An occurrence net is a net (B, E, F) with
(1) arbitrary elements, places B and the transitions E with BNE=@ and BUE=@,
(2) a flow relation F with FC(BxE)u(ExB),
such that:
(3) no place has more than one predecessor and one successor in F
(W beB . card(eb)<1 A card(be)<1),
(4) the flow relation F is cycle free
(N X yeBUE . (3y)€F" = (y.x)¢F").

A labelled occurrence net is obtained from an occurrence net by assigning a labelling
function to it.

The labeling is a carefully arranged string (cf. the conversion schemes) and it is used
to relate the elements of the occurrence net to instance axis and the MSC elements
thereon. Further it serves to identify which places of the occurrence net correspond
to which messages and timer constructs in the MSC. Thus the labeling establishes the
actual semantic link.

Definition:
A labeled occurrence net (B, E, F; X) is an occurrence net (B, E, F) with labeling
function A : BUE — LABEL.

Thereby, LABEL is an arbitrary set of labels. Indeed, we consider LABEL as the set of
arbitrary strings. During occurrence net composition, labeling strings are analysed
and indicate thus which occurrence net elements are to be identified.

We further need the notion of initial and final elements of a (labeled) occurrence
net: Final elements of an occurrence net are the elements with no output place or
transition, initial elements are those with no input places or transitions. Thus we de-
fine for the occurrence net (B, E, F): |

Definition:
The element x€BUE is an initial element of (B, E, F) iff ex=@. It is a final element
of (B, E, F) iff xe=.

4 MSC nodes: the basis for the mapping of MSCs onto Occurrence Nets

Any MSC document merely contains an arbitrary collection of MSCs. Our consider-
ations with respect to formal semantics therefore rather start on the level of MSCs
contained in one MSC document. In order to describe appropriately the formal map-
ping of MSCs onto occurrence nets we have to identify further structures within
MSCs and their instances. At this, the first step is to consider an MSC as a collection
of event structures that are represented by the MSC’s instance axes:

..., instance.

(A) msc instance name n }

= { instance,

message sequence chart name instance name 1?

This view of MSCs is based on the alphanumeric definition of MSCs by the concrete
textual grammar [3] (we refer the MSC syntax as condensed as possible to keep ar-
guments brief):

<message sequence chart> .=
msc < message sequence chart name> ... <instance definition>* endmsc <end>
<instance definition> 1= instance <instance name> ... <instance body > endinstance <end>

The iteration of <instance definition> produces the various numbered event struc-
tures (instance, ..) in equation (A). The rendering of the MSC syntax defini-
tion as given here excludes the <global condition> which we do not tackle in this
paper. Reason for this is that the construct itself is up to now under controversial dis-
cussion and requires a somewhat clumsy albeit not problematic semantics definitions.

Each instance axis, or better, the event structure represented by it, is viewed as a list
of consecutively numbered nodes,

.., hode.

(B) 1nstance. = (node instance name, m)’

instance name instance name, ()* °

which again are basically drawn from the MSC grammar:

<instance definition> ;=
instance <instance name> ... [decomposed | <end > <instance event list> [<stop>]
endinstance <end> :

<instance event list> =
{ <message input> | <message output> | <create> | <set> | <re-set> | <timeout> |
<coregion> | <action> | <condition> }*

The linear numbering scheme of the nodes reflects the order in which nodes are
written down in a concrete instance definition. First node is the Instance-init-node,
last one is the Instance-end-node.

Additionally to the instance events, a node is needed to express initialization of an
instance (this node corresponds to the instance definition) and another to indicate
the stop event. Thus, we derive a list of nodes which again are related to certain ex-
pressions of the concrete textual grammar. Node parameters collect the information
specific to the instance event, i.e. names or lists of names defined by the syntactical
representation of the instance event. Each node has the name of its instance axis as a
first parameter. In the following MSC grammar expressions, references to other in-
stance axes are preceded by qualifiers set in italics.

(1) Instance-init-node (instance name)
maps onto the grammatical expression- "instance <instance name>" beginning the
<instance definition >

(2) Message-input-node (instance name, message identification, sender instance

name)
< message input> =
in <message identification> from { <sender instance name> | env } <end>

(3) Message-output-node (instance name, message identification, receiver instance
name)
<message output> =
out <message identification> to { <receiver instance name> | env } <end>

(4) Create-node (instance name, created instance name)
<create> ;= create <created instance name> ... <end>

(5) Set-node (instance name, timer name, timer instance name)

<set> .= set <timer name> [, <timer instance name>] ... <end>

(6) Reset-node (instance name, timer name, timer instance name)
<reset> 1= reset <timer name> [, <timer instance name>] <end>

(7 Timeout-node (instance name, timer name, timer instance name)
<timeout> ::= timeout <timer name> [, <timer instance name>] <end>

(8) Coregion-node (instance name)
<coregion> 1=
concurrent { <message output> + | <message input> + } endconcurrent <end >

(9 Action-node (instance name) :
<action> ::= action <action text> <end>

(10) Condition-node (instance name, condition name, shared instance list)
<condition> 1=
condition <condition name> [shared { <shared instance list> | all } | <end>

(11) Stop-node (instance name)
<create> 1= stop <end>

(12) Instance-end-node
maps onto the keyword “endinstance” occurring in <instance definition>.
The Instance-end-node has no corresponding occurrence net representation.

Default rules for syntactic options are fixed: timer instance names are considered an
empty string if not explicitly stated; in case, a message comes from or goes to the en-
vironment, receiver or sender instance name is given as "env”, respectively.

So far, we systematically have described a fragmentation procedure for MSCs into
certain nodes which is solely based on matching the respective syntactic MSC ele-
ments. The construction of the corresponding occurrence nets inverts this procedure
(cf. section 6).

In case a submsc definition was used in one of the transformed MSC’s <instance
definitions>, i.e. if one of them has the form

<instance definition> = instance <instance name> ... decomposed <end> ... endinstance <end >

a final step becomes necessary. The MSC’s occurrence net representation has to be
merged specifically (see section 6) with the one, derived from the submsc. The rel-
evant submsc is determined by its name (the submscs <message sequence chart
name> is equal to <instance name> of the decomposed instance).

5 Occurrence net fragments, corresponding to the MSC nodes

A considerable part of the information contained in an instance event goes into the
labeling of the occurrence net elements. The parameters of the respective nodes have
collected this information. Basically, the occurrence net fragments we use here con-
sist of a transition with one input and one output place. After the composition pro-
cess, this construct establishes the ”line” corresponding to the instance axis, along
which the instance events are ordered. Interaction with other instance events is pro-
vided by an additional place linked with the transition (Message- and Timer-nodes).
For Instance-init-node and Condition-node the construct degenerates to a simple

place. The Coregion-node is a special case, for it has to provide for the causal inde-
pendency of its messages and itself is the result of a composition process (see below).

(1) (10)

Instance-init-node

(instance name) instance name /
(condition-name

Shared-Instances)

O instance name / ()

Condition-node

(instance name,
condition name,
shared instance list)

The Instance-init-node indicates the beginning of an instance axis. Like all the places
referring to the "line” of an instance axis, it is labeled with the instance name. Addi-
tionally, a pair of brackets »()« is separated from the instance name by a slash »/«.
»()« indicates an empty list. The Condition-node also maps to one place labeled with
the instance name and, separated by the slash »/«, it follows a one element list. The
only list element is the condition name together with the set “Shared-Instances”,
which is built from the instance names, occurring in the shared instance list. Shared-
Instances is denoted as set of elements enclosed in curled brackets:
”{ shared instance name, .., shared instance name_ }”.

) 3

Message-input-node
{ instance name,

instance name / () instance name /()

message identification,
sender instance name)

Message-output-node
(instance name,
message identification,

message identification,
sender instance name,
instance name

in message identifica-

out message identification

message identification,
O instance name,

receiver instance name
receiver instance name)

instance name / () instance name / ()

The place label "message identifier, sender instance name, instance name” in the
Message-input-node is identical to the place label "message identifier, instance name,
receiver instance name” in the Message-output-node, if the message is exchanged be-
tween sender and receiver instance. '

()

Create-node
(instance name,
created instance name)

instance name /()

create

created instance name / {) é

The place labeled “created instance name” identifies with the Instance-init-node of
the created instance.

instance name / ()

(5)

Set-node
(instance name,
timer name,
timer instance name)

instance name / ()

set limer name

timer name,
timer instance name,
instance name

instance name /()

(6) (7

Reset-node
(instance name,
timer name,
timer instance name)

instance name /() insltance name /()

timer name,

timer instance name,
instance name

timer name,
timer instance name,
instance name

Timeout-node
(instance name,
timer name,
timer instance name)

reset Limer name timeout timer name

instance name / () instance name / ()

The additional places in the Set-, Reset-, and Timeout-node of one timer instance
are uniquely labeled "timer name, timer instance name, instance name”. They indi-
cate concurrency of a running timer with the events and conditions between fork
(Set-node) and join (Reset- or Timeout-node).

(8)

COI’QgiOI‘l-I‘IOde instance name ‘¢

(instance name) concurrent instance name

endconcurrent insance name

insiance name /¢

The Coregion-node has to be composed separately. Like the instance axis itself it is
considered a sequence of nodes
(C) Coregion-node =
(Co-init-node, Co-msg-...-node,, ..., Co-msg-...-node,, Co-end-node),
along which the occurrence net composition will be done.

Co-msg-input- and -output-nodes correspond to the <message input> and <mes-
sage output> definitions that occur within the coregion. They contain Message-
input- and -output-nodes, which are expanded by transitions to allow a fork and join
respectively, Co-init- and -end-node map onto the keywords "concurrent™ and “end-
concurrent”, respectively.

(8.1) (8.4)

Co-init-node

(instance name) instance name / () endconcurrent

instance name

Co-end-node

(instance name) concurrent

s instance name / ()
instance name

(8.2) (8.3)

Co-msg-input-node

(instance name,
message identification,
sender instance name)

concurrent instance name concurrent instance name

Message-input-node

Message-output-node

instance name / () instance name / ()

Co-msg-output-node
(instance name,
message identification,

receiver instance name)

1
1
1
1
- B -)
message identification, 1
sender instance name,
. 1 out message name
instance name i
: message identification,
: instance name,
1 receiver instance name
1
1
1
]

in message name

instance name / () instance name / ()

e e e |
[= -

endconcurrent
instance name

endconcurrent
instance name

Action-node and Stop-node do not contribute to the communication between in-
stances. They, however, appear as separate events in the occurrence nets in order to
reflect the event structure of an instance axis completely.

9) (11)

Action-node

(instance name) instance name / () instance name / ()
Stop-node
(instance name) action stop

instance name /

instance name / ()
stopped

6 Construction of the occurrence net corresponding to an MSC

The construction of the corresponding occurrence net inverts the fragmentation pro-
cess, described by the equations (A) and (B) in section 4. Hence, the first step is to
compose equivalent occurrence nets for the instance axes of the MSC.

Let us denote the MSC under consideration with msc and its corresponding occur-
rence net with occ [msc). Each instance axis /nst of msc has to be converted into a
labelled occurrence net occ (inst). Following the numbering scheme given in (B), we
construct successively the occurrence nets occ (inst,i] which are meant to represent
the instance axis up to its i*" node.

To start with, we identify occ (inst,0] with the Instance-init-node (here, we do not
distinguish between a node as constituent of the instance axis and its occurrence net

msc/nsc
() arnc sy (Denataraein (o

< : m2,A,B i m1,C, env
I 4 1 I outm2 . . - inm2 inm1 . .
cl mi :
S "> () an OLL () crecisn
m2 . T.A m3,8,C
m3 O . setT out m3 . . . inm3
F > : :
. () an (Jim o i
- J m4, 8, A
< - l inm4 . . . out m4 . action

() an QLG {A},c:A{C}) () citeaisy
c4 _> ms,C, B
< mb5 . resetTE inm5s . : . . outm$S

X R . Al(c3 {:B}) . B stopped . c/()

Fig. 1: The MSC msc and its occurrence net representation occ (msc)

representation). If we have already constructed occ (inst,i), we get occ (inst,i+1) by
identifying final elements of occ (inst,i) with initial elements of the (i+1)'" node, pro-
vided they are equally labeled.

For all labels containing a slash »/«, the label is split into the ”proper label” (consist-
ing of the part before the slash) and the "associated list” (following the slash). To be
’equally labeled’ means in this case for two elements, that their proper labels are
identical. Identifying element e, with element e, additionally means to concatenate
the associated lists, such that the label of the identified elements look like

»proper label / associated list of e, + associated list of e,«.

In case, a Coregion-node has to be added, an analogous construction process is per-
formed to yield the Coregion-node’s occurrence net representation, following the
coregion’s presentation as list in (C).

The composition process described above terminates, if the m™ node is the Instance-
end-node (which is without occurrence net representation). Then, the already pro-
vided occ (inst.m-1) is the desired occ (inst). The gained occurrence net representa-
tion occ (inst) of the instance axis /nst is again a occurrence net due to the construc-
tion process.

If an instance axis /nst is decomposed into an submsc submsc, then occ [inst,m-1) is
not yet the final occurrence net representation of /nst. The submsc representation
occ (submsc) has to be merged with occ (inst,m-1). The partial ordering of message
events on /nst is necessarily equal to the partial ordering of environmental messages
in submsc, due to the MSC syntax [3] (i.e. /nst and submsc are partial order equiv-
alent).

10

The instance representation occ (inst} is yielded by identifying the related Message-
input- and -output-nodes of both the occurrence nets:

For each initial place p, of occ (inst,m-1), that is labeled according to the scheme
“message identifier, sender instance name, receiver instance name”, the correspond-
ing initial place p, of occ (submsc} has to be labeled ”message identifier, env,
submsc instance name” (i.e. the first components match). The places are identified
and the label of the place p, in occ {inst,m-1) prevails. Subsequently, the two transi-
tions t, and t, for which the just identified places are input places are also identified

(pl.: {tl}, p,®= {tz})-

It may happen that more than one place in occ (submsc/ correspond with p,. In that
case, it has to be checked whether the place selected for identification does not vio-
late the partial order equivalence of inst and submsc. It can be done in the follow-
ing way: let p;’ and p,” be two other identified places of occ (inst,m-1) and
occ (submsc), respectively. In case, p,” and p,’ are initial places, let be b, and i, the
transitions with p,"e={t’} and p,’e={t,’}, if they are final places, then their respec-
tive predecessors have to be chosen (ep,’={t,’}, ep,’={t,’}). Select an arbitrary path
in occ (inst,m-1), that contains both t, and t,” and one in occ (submsc), that contains
t, and t,’: The correspondence between p, and p, is correct, if and only if the two
pairs of transitions occur in same order in each path. In case, no path containing
both p, and p,’ can be found in occ (instm-1), there must not be a path of
occ (submsc), containing the other pair.

An analogous identification process is performed for final places of occ (inst,m-1)
and occ {submsc). This identification process exactly reflects that messages from and
to the environment of submsc correspond to messages sent and received by the de-
composed instance axis (for an example see fig. 2).

occfinst A)
A

decomposed ' | :

-

.
L

msc A
t==1 | e |
|-
>
g
-
R]

ocefinst A, m-1)

Fig. 2: A decomposed instance axes and its occurrence net representation

1

As second step, all occurrence nets occ finst) resulting from the transformation of
the instance axes of msc have to be concatenated to yield occ (msc). This is done by
identifying each initial place of one of the occ (inst) with an equally labeled final
place, if it exists. In fact, by this procedure, places representing messages between in-
stance axes are identified, as well as places, indicating instance creation with the re-
spective Instance-init-node.

That occ [msc) indeed is a labelled occurrence net can be proven out of the compo-
sition procedures and the MSC properties (an example is given in fig. 1).

7 Composition of occurrence nets

Two MSCs msc, and msc, can be composed by means of conditions, if for each in-
stance, which both MSCs have in common, the first ends and the second begins with
a corresponding condition. ’Corresponding’ in this context means that both condi-
tions refer to the same subset of instances and both conditions agree with respect to
name identification.

Based on this considerations, there is the most important concatenation: the concat-
enation of occurrence nets that represent MSCs. This concatenation however is not,
like the concatenations discussed above, a mere identification of equally labelled ele-
ments. We have also to take into account that this concatenation is governed by the
matching rule for MSC conditions. We call this process ‘occurrence net composition’
in accordance with the notion 'MSC composition’ and define it as follows: Let
occ {msc,) and occ (msc,) be the two occurrence nets, representing the MSCs msc,
and msc,. We identify a final element x, of occ ([msc,) with the equally labeled ini-
tial element x, of occ (msc,), if - and only if - these elements represent the same
condition. This is provided if the last element of the associated list in the label of x,
is identical with the first element of the associated list in the label of x,.

Under that assumption, occ (msc,/®occ (msec,) provides the corresponding occur-
rence net to the MSC composition of msc, and msc,.

8 Conclusion

Because of their close relationship to Message Sequence Charts, occurrence nets
prove to be an appropriate means for the formalization of basic MSCs. Within this
framework, in particular a clear semantics may be attached to composition rules for
MSCs. A generalization of transformation rules for basic constructs to cover struc-
tural concepts like coregion and submsc has been shown to be straightforward.

References

[1] E. Best, C. Fernindez: Notations and Terminology on Petri Net Theory. Gesellschaft fir
Mathematik und Datenverarbeitung, Arbeitspapiere der GMD 195, GMD 1986

[2] W. Brauer, W. Reisig, G. Rozenberg: Advances in Petri Nets 1986, Lecture Notes in Computer
Science Vol. 254, 255, Springer 1987

[3] CCITT Recommendation Z.120: Message Sequence Chart (MSC), Geneva, 1992

[4] CCITT SDL Methodology Guidelines, Appendix I to Z.100, Geneva 1992

12

(5]
[6]

(71

(8]
(]
[10]

[11]
[12]
[13]
[14]

[15]

J. Grabowski: Statische und dynamische Analysen fiir SDL-Prozessdiagramme auf der Basis von
Petri-Netzen und Sequence Charts. University of Hamburg, Diploma Thesis, April 1990

J. Grabowski, D. Hogrefe, P. Ladkin, S. Leue, R. Nahm: Conformance Testing - A Tool for the
Generation of Test Cases. Interim Report of the F&E Project Contract No. 233, funded by Swiss
PTT, University of Berne, May 1992

J. Grabowski, P. Graubmann, E. Rudolph: Towards an SDL-Design-Methodology Using Se-
quence Chart Segments. SDL’91 Evolving Methods. O. Faergemand and R. Reed (editors),
North-Holland 1991

J. Grabowski, P. Graubmann, E. Rudolph: The Standardization of Message Sequence Charts.
Submitted to SESS’93, 1993

P. Graubmann, E. Rudolph: Comments on a Petri Net Based Message Sequence Chart Seman-
tics. CCITT Interims-Meeting, Geneva, 1992

ISO/IEC JTC 1/SC 21: Information Technology - Open Systems Interconnection - Conformance
Testing Methology and Framework - Part 3: The Tree and Tabular Combined Notation. Intern.
Standard 9646-3, 1SO 1991

P. B. Ladkin, S. Leue: An Automaton Interpretation of Message Sequence Charts. Technical Re-
port IAM 92-012, University of Berne, Institute of Informatics and Applied Mathematics, 1992
P. Ladkin, S. Leue: An Analysis of Message Sequence Charts. Technical Report 1AM-92-013,
University of Berne, 1992

S. Mauw, M. van Wijik, T. Winter: Syntax and Semantics of Synchronous Interworkings, Formal
and Informal Semantics. CCITT Interims Meeting, Geneva, 1992

W. Thomas et al.: Automata on Infinite Objects. Handbook of Theoretical Computer Science,
pp. 132-191, Elsvier Science Publisher 1990

P. A, J. Tilanus: A Formalization of Message Sequence Charts. SDL’91 Evolving Methods. O.
Faergemand and R. Reed (editors), North Holland 1991

13

