
Reflecting the Adoption of Software Testing
Research in Open-Source Projects

Fabian Trautsch
Institute of Computer Science

Georg-August-University Göttingen
Göttingen, Germany

trautsch@cs.uni-goettingen.de

Abstract—In the recent years, a lot of research has been done
in the field of software testing. But, there exist few empirical
studies which analyze, if results of software testing research are
actually practiced in real software projects, why they are (not)
practiced, and how this influences the quality of the project. Our
proposed research project tries to close this gap by analyzing
open-source software projects. We focus our work on a concept,
which is well accepted and known in our community for a longer
period of time: test levels.

Hence, we propose a two step approach to tackle the problem.
First, we want to determine if the concept of a unit is still up-to-
date and propose alternatives otherwise. Furthermore, we aim
to investigate, why developers think that the concept of a unit
is (not) current. In the second step we intend to check, based
on the unit definition determined in the first step, how many
tests on the different levels exist for the investigated projects.
Additionally, based on the results, we want to examine, why
developers are (not) developing tests for a certain test level and
how this influences the software quality of the project.

Our initial study showed, that very few projects have unit tests,
using the unit definition of the IEEE and ISTQB. Furthermore,
it revealed that developers intend to write unit tests, but they fail
to do so.

I. PROBLEM STATEMENT AND RESEARCH HYPOTHESIS

A lot of research has been done in the field of software
testing. But, very few empirical studies (like [1]) are performed
to analyze, if research results are actually practiced in software
projects. This information would also help to determine, if
taught lessons are actually practiced. Additionally, based on
this data, the influence of (not) practicing these lessons on
software quality could be investigated. The results of this
kind of research could help to, e.g., improve the training of
future developers or give recommendations for future software
development.

We have designed three different research hypotheses to stir
our research:

• Hypothesis 1: Open-source developers do not apply
concepts, that are well established in software quality
research.

• Hypothesis 2: They are not applied, because developers
think they are hard to implement in real software projects.

• Hypothesis 3: The software quality decreases by not
applying these concepts.

Therefore, we want to check if testing concepts from
research are applied in real open-source software projects. If
they are not applied, we need to check the reasons for this.
Furthermore, we also want to check how the software quality
is influenced by (not) applying these concepts.

We focus our research on the concept of test levels, which
is well accepted and discussed in the software engineering
community since at least 1986 [2]. It is important that the
concept is in the community for a longer period of time, as
it needs time to propagate through the developer community.
Furthermore, the concept of having tests that focus on different
levels of the system is used in a variety of software develop-
ment models, like the spiral model [3]. Additionally, much
research is focusing on tests on the different levels like [4].

The first step is to check if developers apply the concept
of a unit, like it is defined by, e.g., the Institute of Electrical
and Electronics Engineers (IEEE) or the International Software
Testing Qualification Board (ISTQB). This is the requirement
for investigating, if the concept of unit testing, integration
testing, and system testing is applied by the developers, as the
definition of unit is essential for separating tests into different
levels. The results will highlight, if the concept of test levels
is applied in software projects. For each test level and the
definition of unit, we need to investigate why the concepts
are (not) applied. Additionally, we need to analyze, for each
test level, if the application of the concepts has an impact on
software quality.

To the best of our knowledge this problem has not yet
been addressed. There exist single studies, that investigate
how developers use certain concepts or practices (e.g., [1]),
but none of them focus on test levels and the impact of (not)
following these concepts.

II. RESEARCH APPROACH AND EXPECTED
CONTRIBUTIONS

Our research approach can be divided into two different
steps: 1) unit definition and 2) test level detection. For each
step, we need to gather data to find support for or against
our hypothesis. In the first step, we need to determine if
the available definitions of a unit (e.g., from the IEEE or
ISTQB) are usable and reflected in the practice. Therefore,
we will use our SmartSHARK [5] platform to collect data
to investigate, how many units are in the examined projects978-1-5090-6031-3/17 $31.00 ©2017 IEEE

based on available definitions and compare this with self-made
definitions. One approach to create these definitions, is to look
at the commit behavior of developers and apply an association
rule mining algorithm to find files which are often changed
together [6]. This would indicate, which files might form a
unit. Another approach that we want to test is to use techniques
from the field of social network analysis to detect communities
within a software project [7], which might give hints on the
separation into units. But this is in an early stage of research.
This step is planned to be evaluated by a user study, where
we ask developers to look at our results and choose the one,
which has detected the units of the system best (i.e., IEEE,
ISTQB, or own definition of unit) and why the others do not
fit.

After we have found a good working definition of the
concept of an unit, we will use our SmartSHARK platform
to mine data from software projects. This data is used to
categorize tests of the projects, using the unit definition found
in step 1, into different test levels. Hence, we will analyze how
many unit tests, integration tests, or system tests the project
really possess and also how the number of tests in the different
levels have evolved over time during the project. Furthermore,
we want to find support for or against hypothesis 3. Hence, we
plan to correlate the results of step 2 with, e.g., the software
quality of the project measured by the number of issues over
time. Additionally, we aim to investigate the fault detecting
capabilities of tests on the different levels. The results of this
investigation can give us hints regarding the importance of unit
tests, integration tests, and system tests in respect to software
quality.

The evaluation of our results will be achieved by performing
another user study. In this study, we want to confront the
developers with our results. This way, we can determine why
developers have developed a test for a specific test level and
compare it with their intention. The intention of the developers
of writing a test for a certain test level can be mined from the
project data (e.g., commit message or separation of tests of
the projects into specific folders).

Our expected contributions are as follows:

• an update of the current definition of a unit
• an in-depth analysis of the usage of unit tests, integration

tests, and system tests in open-source software projects
• an in-depth analysis of the reasons for (not) unit tests,

integration tests, and/or system tests in open-source soft-
ware projects

• an in-depth analysis of the impact of performing unit
testing, integration testing, system testing

III. DISSEMINATION PLAN

Our initial study was already accepted on the ICST 2017 [8].
Furthermore, we plan to publish the results of each of the
steps explained in Section IIResearch Approach and Expected
Contributionssection.2, as the results will extend the existing
body of knowledge in the field of software testing. Addition-
ally, other researchers might profit from the results, as it is

interesting to see, if research results are actually applied in
practice and what the outcome is if they are not practiced.

Furthermore, we plan to publish all our tools (as open-
source) and data sets, and make them publicly available in a
reusable manner, such that all studies can be replicated. This
can also help new researchers in the field to start with their
research, as they can reuse, e.g., our data collection tools.

IV. STATE OF THE RESEARCH

We already had a first look at open-source Python
projects [8] to examine, if they use unit tests at all. For this, we
used the definitions of the IEEE and the ISTQB for an unit. We
analyzed data from over 70K revisions of 10 different python
projects and calculated the actual number of unit tests (based
on the definitions). Furthermore, we compared this number
with the expected number of unit tests, as inferred from the
intentions of the developers. Additionally, we investigated the
mocking behavior of the developers and its influence on the
calculated numbers together with the evolution of the number
of unit tests.

Our paper presents five results: 1) developers believe that
they develop more unit tests than they actually do, 2) most of
the examined projects have a very small amount of unit tests,
3) developers use mocking frameworks, but the usage does
not influence the number of unit tests, 4) we detected four
different patters of the evolution of the number of unit tests,
and 5) the used unit test definition influences the results.

Currently, we are working on the improvement of our data
collection tools and want to publish them in a re-usable
manner. First tools are already published on GitHub [9].
Furthermore, we plan to redo our study with projects that use
another programming language (e.g., Java). Afterwards, the
next step is, as explained in Section IIResearch Approach and
Expected Contributionssection.2, the creation and evaluation
of new definitions of the term unit.

ACKNOWLEDGMENTS

I would like to thank my supervisor Jens Grabowski for his
support and fruitful comments.

REFERENCES

[1] P. Runeson, “A survey of unit testing practices,” IEEE software, vol. 23,
no. 4, pp. 22–29, 2006.

[2] P. Rook, “Controlling software projects,” Software Engineering Journal,
vol. 1, no. 1, p. 7, 1986.

[3] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[4] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[5] F. Trautsch, S. Herbold, P. Makedonski, and J. Grabowski, “Adressing
problems with external validity of repository mining studies through a
smart data platform,” in Proceedings of the 13th International Workshop
on Mining Software Repositories. ACM, 2016, pp. 97–108.

[6] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
source code changes by mining change history,” IEEE transactions on
Software Engineering, vol. 30, no. 9, pp. 574–586, 2004.

[7] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[8] F. Trautsch and J. Grabowski, “Are there any unit tests? an empirical study
on unit testing in open source python projects,” in Proceedings of the
International Conference on Software Testing, Verification and Validation
(ICST 2017). IEEE, 2017, to appear.

[9] F. Trautsch and S. Herbold, “SmartSHARK GitHub Page,” https://github.
com/smartshark, [accessed 18-January-2017].

