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Abstract

The improvement of the currently used processes and
quality assurance mechanisms is an important part of soft-
ware engineering. In our work, we apply machine learning
techniques to metric data with the aim to provide techniques
that improve the state of the art. Machine learning has the
advantage of being unbiased, whereas experts instinctively
use their intuition and expertise, which may be biased.

1. Introduction

In software development, the quality of the development
process is important for the quality of software products. A
high-quality development process leads more likely to high-
quality products. The assessment of a development process
is a complicated task, usually performed by experts. The
aim of our research is to use machine learning techniques
to analyse specific features of software processes. Since
learning algorithms have been successfully applied in many
different fields of research, including software engineering
(for example, for defect prediction), we are confident that
they will provide valuable results in our setting, too.

For our research, we use software metric data as input for
learning algorithms. Our work has two different aspects.
The first aspect is the learning and verification of thresh-
olds for software metrics and the analysis of metric sets.
These can be used to efficiently locate problematic sections
of source code. The second is to analyse software devel-
opment processes. For this, we use metric data measured
at different points of time during the execution of software
projects. In the following, these two aspects are introduced
in greater detail.

2. Thresholds and metric sets

Software metrics are often used in combination with
thresholds. If the value of a metric violates a threshold,
some kind of problem with the measured entity is indicated.
With sets of software metrics {m1, . . . ,mn}, it is possible
to discriminate measured entities into good and bad ones.
If the entity violates a threshold of a metric set, it is bad,
otherwise it is good. The metric values measured over an
entity can be interpreted as a vector in the n-dimensional
real-space. The combination of the classification in good
and bad entities with their corresponding metric values re-
sults in a supervised learning sample.

An algorithm to learn n-dimensional rectangles can be
applied to such a learning sample. The algorithm deter-
mines a rectangle, such that the good entities are inside the
rectangle and the bad ones outside. The borders of the rect-
angle are interpreted as thresholds. This way, the original
thresholds, which were used to classify the entities, can be
verified. Another approach is to take only a subset of the
metrics as input for the learning algorithm while keeping
the classification defined by the whole set. With this ap-
proach, it is possible to determine whether thresholds for a
subset exist that yield a classification that is sufficient for
the whole metric set.

A variation of the approach is to consider other means to
discriminate the entities in good and bad ones. Above, one
violation is enough to classify an entity as bad. However, it
is possible that a project manager is content if there are less
than k violations, which means that the programmers have
a larger scope of coding possibilities. A more complex ap-
proach would be to use more than one threshold value, like
a soft and a hard threshold. Here the meaning would be as
follows: if less than a specified number of the soft thresh-
olds are violated, the code section unproblematic. However,
if one of the hard thresholds is violated, it is an indicator for
a huge flaw and instantly classifies the entity as bad. A sim-
ilar idea is to compare threshold violations with violations



against coding standards, like certain structures of variable
names. The idea behind this is that a person who does not
abide to one rule, often violates other rules, too.

The general ideas presented above can be applied in
various settings. For example, the measured entities can
vary between methods or classes. The approach should
work independently of the programming language or even
its paradigm. The approach was successfully applied to
TTCN-3 [3]. Currently, we are working on adapting this
approach to Java, C, C++ and C#, where we consider both
methods and classes and use a deeper algorithmic back-
ground. The metrics we use are, for example, from the
Chidamber and Kemerer metrics suite. The metric data is
obtained from several large open source projects from dif-
ferent domains. Depending on the results, this could lead to
a general approach on how to select and improve a set of of
software metrics and their threshold values.

3. Process data

Using finished projects for the analysis of the process
used is a commonly applied practice. Software metrics are
often the basis for such an analysis. For example, higher
Capability Maturity Model (CMM) [2] levels require a man-
aged quantitative analysis, i.e., measurement of the process.
Usually, only metrics measured at the end of a project are
considered. The general idea behind the analysis that is part
of our work, is to use metric data that has been measured
at different points in time during the execution of a project.
Thus, we consider not only the status quo, but the devel-
opment that led to this point. Only looking at the current
status could mask problems that are hidden in the history.
The aim is to detect different phases of software develop-
ment projects with machine learning algorithm based on the
metric data.

In a first experiment using open source data, feature
freezes have been successfully detected using the k-means
clustering algorithm [1]. For that work, we collected met-
ric data at the milestones of the development of the Eclipse
Platform Project 3.2 and the Eclipse Java Development
Tools 3.2, using both the CVS repository of the Eclipse
Foundation as well as a dump of their Bugzilla database.
As input for the k-means algorithm, we used the metrics
Lines of Code and Number of Bugs. The algorithm divided
the milestones into two sets, which were consistent with the
API freeze, that was declared in the project plan.

There are many possible software metrics that can be
used for such an analysis, depending on the exact appli-
cation. Some examples are the size of specification docu-
ments, the lines of code, the lines of comments, test case
coverage, the reported number of bugs, or the passed and
failed test cases. All of these metrics represent certain fea-
tures of a project, for example, the size of a product. How

the values of these develop, should depend on the current
phase of a project. For example, the size of the specifica-
tion documents should only change considerably during the
design phase. A general problem is the quality of the data:
since projects are usually imperfect the data will be imper-
fect as well. By using learning algorithms that can cope
with noise, we implicitly solve this problem. The imper-
fectness of the data simply results in noise.

Depending on the learning algorithm and the available
data, various approaches are possible. Since our research is
in an early phase, it has yet to be determined which met-
rics and algorithms will ultimatively be used. One interest-
ing approach is to use Conditional Random Fields (CRF).
A CRF can than be used to label sequences of data. In
this setting, the labels would be the different phases of a
project, the data would be software metrics. This could ei-
ther be used to label projects retrospectively or during their
execution. Deviations of the labels with reference to the
real phase that took place according to the project plan are
indicators for problems.

4. Summary

In our work, we try to define machine learning based
methods, to improve existing concepts. As basis for these
improvements, we consider whole processes and not only
the current status. This should perform better than methods
that only take the status quo as basis for their hypothesis,
since the history often contains valuable information.
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