
Some Implications of MSC, SDL
and TTCN Time Extensions for
Computer-aided Test Generation

Dieter Hogrefe, Beat Koch, and Helmut Neukirchen

Institute for Telematics, University of Lübeck
Ratzeburger Allee 160, D-23538 Lübeck, Germany
Tel.: +49 451 500 3721 Fax: +49 451 500 3722
{hogrefe,bkoch,neukirchen}@itm.mu-luebeck.de

Abstract. The purpose of this paper is to describe how computer-aided
test generation methods can benefit from the time features and exten-
sions to MSC, SDL and TTCN which are either already available or
currently under study in the EC Interval project. The implications for
currently available test generation tools are shown and proposals for their
improvement are made. The transformation of MSC-2000 time concepts
into TTCN-3 code is described in detail.

1 Introduction

Computer-aided test generation (CATG) from system specifications has been
an active field of research for many years [1, 5, 10, 24]. This research has re-
sulted in the development of a number of test generation tools [2, 8, 9]. Today,
two industrial-strength, commercially available CATG applications exist [6, 18].
These tools take formal system specifications with the 1992 edition of the Speci-
fication and Description Language (SDL-92) and test purpose descriptions with
the 1996 version of Message Sequence Charts (MSC-96) as input and produce
test suites based on the second edition of the Tree and Tabular Combined Nota-
tion (TTCN-2) [14].

Meanwhile, the standards of both SDL and MSC have been updated (SDL-
2000 [16], MSC-2000 [15]) and a thoroughly new version of TTCN has been
standardized (TTCN-3 [7]). In addition, the European Commission has set up
the Interval project [21] to prototype an SDL, MSC and TTCN-based tool chain
for the development and testing of systems with real-time constraints. During
the first project stage, the Interval consortium identifies constructs which are
suitable for capturing, specifying, modelling and testing real-time requirements.
Based on these constructs, the consortium proposes time extensions to the formal
languages as ITU-T recommendations. In the second project stage, tools will be
developed which include the new time constructs.

Taking existing test generation tools as reference implementations, this paper
evaluates the implications of existing and proposed time extensions to CATG.
It is structured as follows: Section 2 shows when and why time constructs are

 (c) Springer-Verlag

needed during testing. Section 3 contains an overview of the timer concepts in
MSC, SDL and TTCN. In Section 4, timer support of the test generation tools
TestComposer and Autolink is discussed. Section 5 is the main part of this paper.
It examines first how the test generation process may be improved through the
use of SDL-2000 together with the proposed extensions. Second, the benefits of
using MSC-2000 for test purpose description are shown and a concrete mapping
of MSC-2000 time concepts to TTCN-3 is presented. Section 6 concludes this
paper.

2 Timer in Test Purpose Descriptions

Timers in test sequences have one of the following purposes:

– assuring that test cases end even if they are blocked due to unexpected
behavior of the system under test (SUT);

– checking constraints on the response time of the SUT;
– delaying the sending of messages to the SUT in order to
• allow the SUT to get into a state where it can receive the next signal (if

the tester is too fast);
• check the reaction of the SUT if a signal is delayed too long (invalid

behavior specification);
• check that the SUT does not send any signal for a given amount of time.

To guarantee the conclusion of a test case, one or more global timers are used.
In case of a single-tester test architecture, one timer is started at the beginning
of test case execution. Its duration is chosen to be longer than the expected
execution time of the test case. At the end of each possible test sequence, the
timer is reset. In the exception handling section of the test case, the timeout
of the global timer is caught and handled. If a distributed test system is used,
a global timer is started within each test component participating in the test
execution. In case of a timeout in any test component, the other test components
have to be notified in order to let them conclude the test execution gracefully.

Time constraints are checked through the use of one or a pair of guarding
timers. Guarding timers are started when a signal is sent to the SUT. If a lower
bound is specified in the time constraint, one timer has to expire before the
response signal from the SUT is received. The second timer — which checks the
upper bound of the time constraint — is reset immediately upon reception of
the response signal. Premature reception of the response signal or the expiration
of the second timer are caught in the exception handling section of the test case
and result in a FAIL verdict.

A delaying timer is specified by inserting a timer start operation immediately
followed by a timeout event into the test sequence.

3 Timer in Formal Languages

The formal languages MSC, SDL and TTCN all contain timer support. In this
Section, an overview of the timer concepts of these languages in given.

3.1 MSC-96

Timer support in MSC-96 [13] is very basic: there exist events to set and re-
set a timer, and a timeout event. Timer events are identified by a mandatory
timer name and an optional timer instance name. The specification of a timer
duration is optional; if it is specified, it has no semantics. Pairs of timer set and
reset/timeout events must be specified on the same MSC instance.

3.2 MSC-2000

MSC-2000 [15] supports the same basic timer events as MSC-96, with some
changes and refinements. First of all, the set event has been renamed to start-
timer and reset is now called stoptimer. If a duration is specified, then it must
be done in the form of an interval with an optional lower bound (default value:
zero) and an optional upper bound (default value: infinite). This means that the
timer can expire within the specified period.

In addition to the basic timer concepts, MSC-2000 also provides a timed se-
mantics for constraining and measuring the time of events. (However, a formal
semantics for MSC-2000 is still missing.) Using the external data language ap-
proach introduced in MSC-2000, variables of type Time may be declared. There
are two operators to measure time and store it in time variables: one to deter-
mine the absolute time at the moment of the execution of a given event, and
one to determine the amount of time which passes between two events. It is
also possible to specify time constraints: the lower and upper bound of a time
interval between a pair of events may be defined in order to specify the allowed
delay between those events. For a single event, the absolute time of occurrence
can be constrained, too.

An extension to the MSC-2000 standard has been proposed by the Interval
consortium to ITU-T Study Group 10 in [20]. A new symbol is proposed to
express periodic occurrence of repetitive events which are folded into a loop.

3.3 SDL-2000

In SDL-2000 [16], timer declarations are mandatory. As part of the declaration,
a constant default duration may be defined. With the set statement, a timer is
activated. With the reset statement, a timer is put back to the inactive state.
If an active timer expires, a signal with the same name as the timer is put into
the input queue of the process which contains the timer. This corresponds to the
timeout event in the MSC language. Whereas timers in SDL-2000 and MSC-2000
are basically equivalent, the new time constraint concept of MSC-2000 has no
equivalent in standard SDL-2000.

Timer handling has been a weak point of SDL since its first introduction and
there has been no improvement with the publication of SDL-2000. Therefore,
several timer and time semantics related extensions to the SDL standard have
been proposed by research groups [19] and Interval consortium members [3, 4,
11]. The latter proposals include

– the addition of cyclic timers which are automatically restarted after expira-
tion;

– mechanisms to read a timer value;
– the introduction of interruptive signals and timeouts.

Furthermore, a real-time semantics is introduced. This semantics allows to assign
urgencies to transitions and to model time progression caused by actions which
are annotated with a corresponding assumption on time consumption.

3.4 TTCN-2

In TTCN-2 [12], there are three timer operations: the common START and
CANCEL operations to activate and deactivate a timer, as well as the READ-
TIMER operation which returns the amount of time which has passed since a
timer has been activated. Timer expiration is caught with the TIMEOUT event.

There are several problems with the implementation of timers in TTCN-2.
First, timers have to be declared at test suite level. According to the standard, a
full set of timers must be allocated for each test component, potentially wasting
scarce hardware resources. The second problem concerns the applicability of
TTCN-2 to the testing of real-time time constraints: timeout events are stored
in a list until they match an alternative in the test sequence. As a consequence,
timeout events may remain unnoticed for some time. This in turn may lead to
incorrect test execution and verdict.

Moreover, due to the snapshot semantics of TTCN, it has to be noted that
when using the existing timer concepts, a coherent and valid test verdict for
real-time tests can only be found if the test equipment is reasonably fast. Since
the snapshot semantics may summarize time-critical events arriving at different
queues into one snapshot, important timing or ordering information might get
lost. In this case, it is not decidable whether a violation of real-time constraints
has occurred or not. The test verdict will rather depend on the question of
how the triggering events of an alternative are ordered in the TTCN dynamic
behavior description.

To solve this problem, a refinement of the standard snapshot semantics is
proposed in [25]. Instead of testing time constraints using standard timers, ad-
ditional columns for earliest and latest execution times of TTCN events are
proposed. Since this way of specifying time constraints is orthogonal to the eval-
uation of alternatives, the test verdict does not depend on the speed of the tester
or the ordering of alternatives.

Nevertheless, even with [25] the test system has to be fast enough in order to
avoid the overflow of input queues. Therefore, sufficient processing capabilities
of the tester are in any case a necessary prerequisite of real-time testing.

3.5 TTCN-3

TTCN-3 [7] renames some of the timer operations of TTCN-2: the keyword
to deactivate a timer is now stop and the elapsed time of an active timer can

be queried with the read operation. In addition, the running operation returns
true if a given timer is running, false otherwise. The start operation and timeout
event remain unchanged. Timer functionality is also included in the synchronous
call operation. A timeout value may be provided as an optional parameter to
this operation. If a timeout occurs, it may be handled as an exception with the
catch operation.

No concrete proposals have been published so far regarding the extension of
time concepts in TTCN-3. However, since TTCN-3 uses the same snapshot se-
mantics as TTCN-2, the weakness of this semantics concerning real-time testing
still holds for TTCN-3. A forthcoming proposal to overcome this problem is cur-
rently under study by the Interval consortium. Rather than using the standard
timers to test real-time requirements, it is intended to separate the description
of functional requirements (e.g. signal reception and “functional” timeouts) and
non-functional (i.e. real-time) constraints. Since these extensions are currently
under study, the test cases given in this paper are written using standard TTCN-
3 notation.

4 Timer in Current Test Generation Tools

At the time of writing this paper, there are two major test generation tools on
the market which take SDL-92 and MSC-96 specifications as input and produce
TTCN-2 as output: TestComposer [18] and Autolink [6]. In this Section, the
current status of these tools with respect to timer support is presented.

4.1 TestComposer

TestComposer automatically generates four types of timers during the compu-
tation of test cases:

– a timer TAC is set whenever a test component waits for a response from the
SUT. A fail verdict is assigned in case of a timeout. With respect to timer
purposes introduced in Section 2, TAC corresponds to a guarding timer;

– the timer TWAIT is another guarding timer: it checks that time to execute
an implicit send does not exceed a predefined amount of time;

– the timer TNOAC is set to check that the SUT does not send a message to
the tester for a specific amount of time. TNOAC is a delaying timer;

– TEMPTY is a delaying timer which is used to force a timeout in the SUT.

4.2 Autolink

Autolink generates the declaration of a global timer T Global automatically.
Depending on the test architecture, timer statements for T Global are added to
the test case behavior description and the top-level test steps of all parallel test
components.

Guarding and delaying timers can be specified by the user in test purpose
MSCs with timer set, reset and timeout events; these events are translated into
corresponding TTCN-2 statements during test generation.

4.3 Discussion

With the methods available in the current test generation tools, the common
cases for using timers in test cases can be handled fairly well. However, both
tools do not offer optimal timer support. On the one hand, unnecessary timer
events may be generated with the fully automatic method in TestComposer.
These events have to be removed from the test suite manually. On the other
hand, while Autolink offers complete flexibility regarding timers, the manual
specification with MSC-96 may be laborious. This is especially true if an SUT
response has to fall within a time interval: with the MSC-96 notation used by
Autolink, two timers must be drawn, which increases the effort to specify the test
purpose MSC and reduce its readability (see Figure 1). Neither tool supports
the reading of timer values.

A SUT B

MSC TimerExample

d

c

a
b

T_Guard1

T_Guard2

T_Wait
(1 s)

(2 s)

(5 s)

Fig. 1. Timer specification for Autolink with MSC-96

5 Improving the Test Generation Process

Both TestComposer and Autolink are test-purpose-based test generation tools.
This means that they need a formal description of the test purpose which they
can transform into a TTCN test case. The transformation is done either by direct
translation from MSC to TTCN or by performing a state space exploration of

an SDL specification. Test purpose descriptions may be provided in the form of
MSC-96 diagrams for both tools.

CATG tools may benefit from the use of formal languages with time exten-
sions in a number of ways:

– reduction of the state space during exploration-based test generation with
timed SDL;

– automatic generation of time requirements for test equipment with timed
SDL;

– improvement of the capabilities to efficiently describe timing constraints in
test purpose descriptions by using MSC-2000.

5.1 Test Case Generation with Timed SDL

The extensions proposed by the Interval consortium for SDL are mainly intended
for verifying and validating a specification with respect to time properties. Nev-
ertheless, automatic test generation benefits for two reasons from such time
annotations.

First, the state space of a timed SDL model can be reduced in comparison
to an untimed specification. The reason is that an untimed specification allows
a lot of unrealistic scenarios which cannot occur in practice, because it contains
paths where time does not progress at all. By using a real-time semantics and a
timed SDL model, the state space can be reduced to the realistic scenarios. As
CATG is mainly based on representing observable events of paths allowed by an
SDL model, unrealistic test cases can be avoided.

Second, if additional timing information is given for all symbols contained
in an SDL transition, the exact moment when observable events are allowed
to take place can be determined. Test cases which take this information into
account can be derived automatically. However, this topic is subject to further
study. If additional timing information is not available for a whole transition, it
is still possible to specify real-time requirements using MSC-2000. The usage of
MSC-2000 for test description is shown in Section 5.3.

5.2 Generation of Time Requirements for Test Equipment

TTCN assumes that the test equipment is always fast enough to test the IUT.
While this assumption is legitimate if only time non-critical functional behavior
is tested, it may not hold for real-time applications. The processing speed of the
tester may not be fast enough to keep track with the test events that happen
at the PCOs. As an example, during the development of the GSM test suite at
ETSI, there were various occasions where the possible lack of sufficient speed of
the test devices had to be taken into account. In some cases, this problem was
resolved by letting the tester respond to a signal from the SUT before it even
receives the signal, just by assuming that the signal will arrive eventually. If the
tester had to wait for the reception of the signal, it would be not fast enough
to respond to it. While such workarounds are possible, they are problematic,

because the order of test events has to be changed. As a consequence, the prose
test purpose description does no longer correspond to the formal description.

In general, it seems more feasible to require some speed of the tester and
treat these requirements as part of the test suite. If this approach is taken, time
constraints for the tester have to be defined somehow. This means that the tester
is required to execute test events within a certain time interval in order to test
the SUT accurately and successfully.

A very detailed idea about the timing behavior of the SUT is required to
determine the time intervals between test events. The test designer or a test gen-
eration tools need to know at which points in time the SUT may be stimulated
or events from the SUT may be observed. Traditionally, this timing information
has not been part of the SDL specification. However, if such timing information
is added to the SDL specification, the minimal time interval between test events
can be derived which the test equipment must be able to process. Based on this
information, it is possible to generate benchmarks for the tester. An example
for a tester benchmark is given below using the TTCN-3 notation. This bench-
mark checks whether the test equipment is fast enough to send two consecutive
messages within a duration specified by required time:

1: timer T;
2: T.start(required_time);
3: A.send(a);
4: A.send(b);
5: if (T.running)
6: {
7: T.stop;
8: verdict.set(pass);
9: }
10: else
11: {
12: verdict.set(fail);
13: MyComponent.stop;
14: }

5.3 Using MSC-2000 for Test Purpose Description

Figure 2 shows the test description of Figure 1 in MSC-2000 notation. The use of
the time interval notation instead of four separate timer symbols (two set events,
one reset and one timeout) to specify two guarding timers makes the diagram
much more readable. Given a time interval where the start event is a send to
the SUT and the end event is a receive from the SUT, the test generation tool
has to perform the following actions:

1. Check the time interval to establish the number of timers which are needed
to represent the interval with TTCN. If just one boundary value is specified,
only one timer is needed. If both a minimal and a maximal time point are

A SUT B

MSC TimerExample_MSC2000

d

c

a

b

T_Wait
[1 s]

(2 s, 5 s]

Fig. 2. Time constraint specification with MSC-2000

specified, two TTCN timers are needed. Since no timer name is specified with
the time interval notation, the tool has to select the timer names by itself.
Preferably, the user should be able to define timer name templates such as
T Guard Min and T Guard Max. The tool then must check if timers with
these name are in use already. If they are, new timers (e.g., T Guard Min 2
and T Guard Max 2) must be declared. In order to minimize the number of
timers which have to be declared, the test configuration has to be taken into
account in this step.

2. If the time interval contains expressions with measurements (see Section 5.3),
replace the time patterns with the corresponding variable identifier. If nec-
essary, convert time values to seconds.

3. Create the appropriate TTCN timer statements. This step depends on the
number of time points specified in the MSC. In the examples below, TTCN-3
is produced from the MSC in Figure 2, assuming that there is a test com-
ponent handling just PCO A. A similar transformation can be done for
TTCN-2.

If only the lower boundary value is specified, create the following statements:

1: timer T_Guard_Min;
2: A.send(a); T_Guard_Min.start(2);
3: alt {
4: [] T_Guard_Min.timeout;
5: [] A.receive(d)

6: { verdict.set(fail);
7: MyComponent.stop;
8: }
9: }
10: A.receive(d);

The case where d is received prematurely by PCO A (lines 5 to 8) may as
well be handled in a default. If only the upper boundary value is specified, create
the following statements:

1: timer T_Guard_Max;
2: A.send(a); T_Guard_Max.start(5);
3: alt {
4: [] A.receive(d)
5: { T_Guard_Max.stop; }
6: [] T_Guard_Max.timeout
7: { verdict.set(fail);
8: MyComponent.stop;
9: }
10: }

If the lower and the upper boundary values are specified, create the following
statements:

1: timer T_Guard_Min;
2: timer T_Guard_Max;
3: A.send(a); T_Guard_Min.start(2); T_Guard_Max.start(5);
4: alt {
5: [] T_Guard_Min.timeout;
6: [] A.receive(d)
7: { verdict.set(fail);
8: MyComponent.stop;
9: }
10: }
11: alt {
12: [] A.receive(d)
13: { T_Guard_Max.stop; }
14: [] T_Guard_Max.timeout
15: { verdict.set(fail);
16: MyComponent.stop;
17: }
18: }

The case where d is received prematurely by PCO A (lines 6 to 9) may as
well be handled in a default. TTCN-3 has a special notation to put a timeout
value on a procedure call. If the start event of a timer interval in an MSC is a
method call (cf. Figure 3), then the following code should be generated in order
to guard the call by an upper time bound of e.g. 3 seconds:

1: A.call(x, 3);
2: {
3: [] A.getreply(x);
4: [] A.catch(timeout);
5: { verdict.set(fail);
6: MyComponent.stop;
7: }
8: }

A SUT B

MSC TimeGuardedCall

replyFromX

c

call x

b

[, 3 s]

Fig. 3. Time constraint for a method call in MSC-2000

Time Measurement. In MSC-2000, time can be measured and stored in vari-
ables. These measurements can be reused, e.g. to specify time intervals. Figure 4
shows the two kinds of time measurements provided by language: &t1 is a rel-
ative measurement; the time which passes between the sending of a and the
reception of d is stored in a variable t1 of type Time. @t2 is an absolute mea-
surement, which means that the value of an existing global clock is stored in a
variable t2 of type Time. The global clock is started when the first event in the
MSC is executed.

Transforming a relative time measurement into TTCN is straight-forward.
The test generation tool needs to declare a special timer used for the measure-
ment. This timer is activated after the first event in the MSC has occurred. After

A SUT B

MSC TimeMeasurement

d

c

a

b

&t1

@t2

Fig. 4. Time measurements in MSC-2000

the second event, the timer is read and deactivated. The only problem is the fact
that to start a timer in TTCN, a duration has to be defined, which in this case is
not known in advance. As a solution, the test designer has to provide a maximum
value for time measurement. Most likely, this value is available anyway because
a timeout period has to be defined for a global test case timer. From the MSC
in Figure 4, the tool should generate the following TTCN-3 statements:

1: timer T_Measure := 10000;
2: var float t1;
3: A.send(a); T_Measure.start;
4: A.receive(d); t1 := T_Measure.read;
5: T_Measure.stop;

To measure an absolute time value, a global timer has to be started at the
beginning of the test case. The measurement can then be done by using the
read operation on the global timer. Below is the TTCN-3 code generated for the
measurement of t2 :

1: timer T_Global = 10000;
2: var float t2;
3: T_Global.start;
4: B.receive(b); t2 := T_Global.read;
5: B.send(c);

MSC-2000 also allows to measure or to constrain the amount of time which
passes between a pair of events on different instances. This kind of time interval
cannot be represented with standard TTCN-3 timers, since the start and read
or timeout operations of the same timer cannot be distributed between different
parallel test components. If there is more than one test component, coordination
messages might be used to synchronize the parallel test components concerning
the two relevant events. However in this case, the time needed to transmit these
coordination messages has to be taken into account.

6 Conclusion

In this paper, the current state of SDL, MSC, TTCN and test generation tools
with regard to timer support has been presented. Commercially available test
generation tools already allow to generate TTCN-2 test suites which reflect time
requirements expressed by standard MSC-96 timers. However, due to the simple
timer concepts of MSC-96, the specification of time constraints in test purpose
descriptions may be quite laborious. It has been shown that the use of the MSC-
2000 time interval notation can facilitate the specification of time constraints
for events on the same instance. A translation of MSC-2000 time constructs
into TTCN-3 code has also been presented. The mapping of MSC-96 timers to
MSC-2000 time constructs and the transformation of TTCN-2 to TTCN-3 is
straightforward. Therefore it will be possible to automatically generate TTCN-3
test cases which test the conformance to such MSC-2000 time constraints.

Nevertheless, many challenges remain. The testing of time constraints in a
distributed test architecture has not been solved yet. Currently, it is neither pos-
sible to derive test cases in an automated way nor to test real-time requirements
if several parallel test components observing time critical events are involved.
Care has to be taken to synchronize these parallel test components not only in
a functional manner but also with regard to their local clocks.

It has also not been shown yet that it is possible to generate real-time tests
from time extended SDL models. The accuracy of automatically derived test
cases depends on how exhaustively an SDL model is enriched with time anno-
tations. Research by the Interval consortium will show whether this is feasible.
Moreover, as an underlying basis, existing test theory has to be extended in the
area of real-time testing.

Due to the problems introduced by the snapshot semantics of TTCN, stan-
dard timers should not be used to test real-time constraints where a high res-
olution of timing information is required. Therefore in the testing domain, the
next step which will be done in the Interval project is to present a real-time
extensions for TTCN-3 which allows deterministic real-time testing.

Acknowledgements

Part of this work has been sponsored by the European Commission under con-
tract IST-1999-11557.

References

1. C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. Automatic executable test
case generation for extended finite state machine protocols protocols. In IWTCS’97
[17], pages 75–90.

2. C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico. A test case generation tool
for conformance testing of SDL systems. In SDL’99 [23], pages 405–419.

3. M. Bozga, S. Graf, A. Kerbrat, L. Mounier, I. Ober, and D. Vincent. SDL for real-
time: what is missing? In SAM 2000 – 2nd Workshop on SDL and MSC, pages
108–122, Grenoble, France, June 2000.

4. M. Bozga, S. Graf, L. Mounier, I. Ober, J.-L. Roux, and D. Vincent. Timed
extensions for SDL. In SDL Forum 2001, Copenhagen, Denmark, June 2001.

5. M. Clatin, R. Groz, M. Phalippou, and R. Thummel. Two approaches linking a
test generation tool with verification techniques. In Proceedings of IWPTS ’95 (8th
Int. Workshop on Protocol Test Systems, pages 151–166, Evry, France, September
1995.

6. A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, and M. Schmitt. Towards
the industrial use of validation techniques and automatic test generation methods
for SDL specifications. In SDL’97 [22], pages 245–259.

7. ETSI, Sophia Antipolis, France. Methods for Testing and Specification (MTS); The
Tree and Tabular Combined Notation version 3; TTCN-3: Core Language, v1.0.10
edition, November 2000. DES/MTS-00063-1.

8. J.-C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of
Computer Programming, 29, 1997.

9. J. Grabowski. Test Case Generation and Test Case Specification with Message
Sequence Charts. PhD thesis, University of Bern, Bern, Switzerland, February
1994.

10. J. Grabowski, D. Hogrefe, and R. Nahm. Test case generation with test purpose
specification by MSCs. In SDL’93: Using Objects, pages 253–265, Darmstadt,
Germany, October 1993. Elsevier Science Publishers B.V.

11. S. Graf. Timed extensions for SDL, November 2000. Delayed Contribution No. 13
to ITU-T Study Group 10, Questions 6&7.

12. ISO/IEC. Information technology – Open Systems Interconnection – Conformance
testing methodology and framework, 1994. International ISO/IEC multipart stan-
dard No. 9646.

13. ITU-T, Geneva, Switzerland. Message Sequence Charts, 1996. ITU-T Recommen-
dation Z.120.

14. ITU-T, Geneva, Switzerland. Information technology – Open Systems Intercon-
nection – Conformance testing methodology and framework – Part 3: The Tree
and Tabular Combined Notation, 1997. ITU-T Recommendation X.293-ISO/IEC
9646-3.

15. ITU-T, Geneva, Switzerland. Message Sequence Charts, November 1999. ITU-T
Recommendation Z.120.

16. ITU-T, Geneva, Switzerland. Specification and Description Language (SDL), 1999.
ITU-T Recommendation Z.100.

17. Testing of Communicating Systems, Cheju Island, Korea, September 1997. Chap-
man & Hall.

18. A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL specifi-
cations. In SDL’99 [23], pages 135–151.

19. A. Mitschele-Thiel. Systems Engineering with SDL – Developing Performance-
Critical Communication Systems. Wiley, Chichester, England, 2001.

20. H. Neukirchen. Corrections and extensions to Z.120, November 2000. Delayed
Contribution No. 9 to ITU-T Study Group 10, Question 9.

21. Interval Consortium Web Page. http://www-interval.imag.fr/, 2000.
22. SDL’97 – Time for Testing, Evry, France, September 1997. Elsevier.
23. SDL’99 – The Next Millennium, Montréal, Québec, Canada, June 1999. Elsevier.
24. G. v. Bochmann, A. Petrenko, O. Bellal, and S. Maguiraga. Automating the process

of test derivation from SDL specifications. In SDL’97 [22], pages 261–276.
25. Th. Walter and J. Grabowski. Real-time TTCN for testing real-time and multi-

media systems. In IWTCS’97 [17].

