
Int J Softw Tools Technol Transfer This is a preprint. The final article differs with respect to editorial changes
DOI 10.1007/s10009-008-0075-0 such as capitalisation and formatting. c© Springer-Verlag 2008

An approach to quality engineering of TTCN-3 test specifications

Helmut Neukirchen · Benjamin Zeiss · Jens Grabowski

Received: 9 February 2007 / Revised version: 4 July 2007

Abstract Experience with the development and mainte-
nance of large test suites specified using the Testing and
Test Control Notation (TTCN-3) has shown that it is diffi-
cult to construct tests that are concise with respect to quality
aspects such as maintainability or usability. The ISO/IEC
standard 9126 defines a general software quality model that
substantiates the term “quality” with characteristics and sub-
characteristics. The domain of test specifications, however,
requires an adaption of this general model. To apply it to
specific languages such as TTCN-3, it needs to be instanti-
ated. In this paper, we present an instantiation of this model
as well as an approach to assess and improve test specifica-
tions. The assessment is based on metrics and the identifi-
cation of code smells. The quality improvement is based on
refactoring. Example measurements using our TTCN-3 tool
TRex demonstrate how this procedure is applied in practise.

Keywords Test Specification · TTCN-3 · Quality Model ·
Code Smells ·Metrics · Refactoring

1 Introduction

The Testing and Test Control Notation (TTCN-3) [16,22] is
a mature standard which is widely used in industry and stan-
dardisation to specify abstract test suites. Nowadays, large

Benjamin Zeiss is supported by a PhD scholarship from Siemens AG,
Corporate Technology.

H. Neukirchen (B) · B. Zeiss · J. Grabowski
Software Engineering for Distributed Systems Group,
Institute for Computer Science, University of Göttingen,
Lotzestr. 16–18, 37083 Göttingen, Germany
E-mail: neukirchen@cs.uni-goettingen.de

B. Zeiss
E-mail: zeiss@cs.uni-goettingen.de

J. Grabowski
E-mail: grabowski@cs.uni-goettingen.de

TTCN-3 test specifications with a size of several ten thou-
sand lines of code are developed [2,13–15]. Like any other
large software, such large test specifications tend to have
quality problems. The roots of these quality problems are
manifold, for example inexperienced test developers [2] or
software ageing [39]. Usually, statements on quality defi-
ciencies of test suites are made in a subjective manner. How-
ever, to obtain a dependable quality assurance for TTCN-3
test suites, an impartial quality assessment for TTCN-3 test
specifications is desirable. Hence, a model for test suite
quality is required.

In this article, a method and a tool for quality engineer-
ing of TTCN-3 test suites are presented. To this aim, we
use an adaption of the ISO/IEC 9126 [26] software prod-
uct quality model which is suitable for test specifications.
For the automated quality assessment of TTCN-3 test suites,
we apply metrics and code smells measuring attributes of
the quality characteristics that constitute the test specifica-
tion quality model. Metrics are a common means to quan-
tify properties of software. More sophisticated deficiencies
in source code structures which cannot be identified by using
metrics require a pattern-based analysis. These patterns in
source code are described by code smells. For the improve-
ment of test suites, we use refactoring. A refactoring is “a
change made to the internal structure of software to make it
easier to understand and cheaper to modify without chang-
ing its observable behavior” [20]. This means, a refactoring
is a behaviour preserving transformation which is able to im-
prove internal source code quality. For an automation of the
complete quality assessment and improvement process, we
have developed the TTCN-3 Refactoring and Metrics tool
TRex which is available as open-source software.

This article is structured as follows: Section 2 describes
the ISO/IEC 9126 software product quality model and intro-
duces its adaptation to the domain of test specification. Sub-
sequently, Section 3 surveys metrics and smells and presents

2 H. Neukirchen, B. Zeiss, J. Grabowski

External and Internal
Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality
Compliance

Maturity

Fault Tolerance

Recoverability

Reliability
Compliance

Understand-
ability

Learnability

Operability

Attractiveness

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Testability

Maintainability
Compliance

Adaptability

Installability

Co-Existence

Replaceability

Portability
Compliance

Ch
ar

ac
te

ris
tic

s
Su

bc
ha

ra
ct

er
is

tic
s

Fig. 1 The ISO/IEC 9126-1 model for internal and external quality

TTCN-3 specific metrics and code smells. An application of
metrics and smells for the quality assessment of TTCN-3
specifications is demonstrated in Section 4. In Section 5, the
TRex tool for assessing and improving TTCN-3 test specifi-
cations is presented. Finally, a summary and an outlook are
given.

2 Quality of test specifications

Quality models are needed to evaluate and set goals for
the quality of a software product. The ISO/IEC stan-
dard 9126 [26] defines a general quality model for soft-
ware products that requires an instantiation for each con-
crete target environment (e.g. a programming language). In
this section, we briefly introduce ISO/IEC 9126 and present
an adaption to the domain of test specifications [56].

2.1 Software quality (ISO/IEC 9126)

ISO/IEC 9126 [26] is an international multipart standard
published by the International Organization for Standard-
ization (ISO) and the International Electrotechnical Com-
mission (IEC). It is based on earlier attempts for defin-
ing software quality [5,30] and presents a software product
quality model, quality characteristics, and related metrics.

Part 1 of ISO/IEC 9126 contains a two-part quality
model: the first part of the quality model is applicable for
modelling the internal and external quality of a software
product, whereas the second part is intended to model the
quality in use of a software product. These different quality
models are needed to be able to assess the quality of a soft-
ware product at different stages of the software life cycle.

Typically, internal quality is obtained by reviews of specifi-
cation documents, checking models, or by static analysis of
source code. External quality refers to properties of software
interacting with its environment. In contrast, quality in use
refers to the quality perceived by an end user who executes
a software product in a specific context.

As shown in Figure 1, ISO/IEC 9126 defines the same
generic model for modelling internal and external quality.
This generic quality model can then be instantiated as a con-
crete model for internal or external quality by using different
sets of metrics. The model itself is based on the six charac-
teristics functionality, reliability, usability, efficiency, main-
tainability, and portability. Each characteristic is structured
into further subcharacteristics.

The model of quality in use is based on the charac-
teristics effectiveness, productivity, safety, and satisfaction
and does not elaborate on further subcharacteristics. In the
further parts of ISO/IEC 9126, metrics are defined which
are intended to be used to measure the properties of the
(sub)characteristics defined in Part 1. The provided metrics
are quite abstract which makes them applicable to various
kinds of software products, but they cannot be applied with-
out further refinement.

The actual process of assessing the quality of a software
product is not part of ISO/IEC 9126. It is defined in the
ISO/IEC standard 14598 [25]: the assessment requires the
weighting of the different (sub)characteristics and the selec-
tion of appropriate metrics.

2.2 Test specification quality

Our quality model for test specification is an adaptation of
ISO/IEC 9126 to the domain of test specification. While

An approach to quality engineering of TTCN-3 test specifications 3

Test Specification
Quality

Test Effectivity
(Functionality)

Reliability
(Reliability)

Usability
(Usability)

Efficiency
(Efficiency)

Maintainability
(Maintainability)

Portability
(Portability)

Reusability
(—)

Test Coverage
(Suitability)

Test
Correctness
(Accuracy)

Fault-
Revealing
Capability

(—)

Test Effectivity
Compliance
(Functionality
Complicance)

Test
Repeatability

(—)

Maturity
(Maturity)

Fault-Tolerance
(Fault-

Tolerance)

Security
(—)

Recoverability
(Recoverability)

Reliability
Compliance
(Reliability

Compliance)

Understand-
ability

(Understand-
ability)

Learnability
(Learnability)

Operability
(Operability)

Test
Evaluability

(—)

Usability
Compliance

(Usability
Compliance)

Time Behaviour
(Time

Behaviour)

Resource
Utilisation
(Resource
Utilisation)

Efficiency
Compliance
(Efficiency

Compliance)

Analysability
(Analysability)

Changeability
(Changeability)

Stability
(Stability)

Maintainability
Compliance

(Maintainability
Compliance)

Adaptability
(Adaptability)

Portability
Compliance
(Portability

Compliance)

Coupling
(—)

Flexibility
(—)

Comprehen-
sibility
(—)

Reusability
compliance

(—)

Bold text: Quality characteristic
(Text in parentheses): Corresponding characteristic in ISO/IEC 9126-1
(—): No corresponding characteristic in ISO/IEC 9126-1

Ch
ar

ac
te

ris
tic

s
Su

bc
ha

ra
ct

er
is

tic
s

Fig. 2 The test specification quality model

the ISO/IEC 9126 model deals with internal quality, exter-
nal quality, and quality in use, the remainder of this article
will only address internal quality characteristics. Due to our
participation in standardisation, our primary interest is the
quality of abstract test specifications.

An overall view of our quality model for test specifi-
cations is shown in Figure 2. The model is structured into
seven characteristics: test effectivity, reliability, usability, ef-
ficiency, maintainability, portability, and reusability. Each
characteristic comprises several subcharacteristics.

Even though most of those characteristics defined in
ISO/IEC 9126 can be generously re-interpreted and thus
applied for test specifications as well, we preferred to in-
troduce names which are more appropriate in the context
of testing. In Figure 2, the relationship of our model to
ISO/IEC 9126 is indicated by providing the corresponding
name of the ISO/IEC 9126 characteristics in parentheses. In
that figure, test quality characteristics are printed in bold let-
ters. Test quality characteristics which have no correspond-
ing characteristic in ISO/IEC 9126, are denoted by the sign
(–).

The characteristic reusability (right-hand side of Fig-
ure 2) is not considered in the ISO/IEC 9126 model. We
added it to our model, because test specifications and parts
of them are often reused for different kinds of testing. Thus,

design for reusability is an important internal quality crite-
rion for test specifications.

Each characteristic contains a compliance subcharacter-
istic which denotes the degree to which the test specification
adheres to potentially existing standards or conventions con-
cerning this characteristic. Since such standards and conven-
tions also exist for test design, a compliance subcharacteris-
tic is also part of each characteristic in our model. However,
compliance to standards and conventions will not be cov-
ered any further in the following descriptions because they
are often company- or project-specific.

In the following, we describe the characteristics and sub-
characteristics of our quality model (Figure 2) in more de-
tail. Subcharacteristics that are not applicable for test speci-
fications are also reviewed.

2.2.1 Test effectivity

The test effectivity characteristic describes the capability of
the specified tests to fulfil a given test purpose. The test ef-
fectivity characteristic corresponds to the functionality char-
acteristic in ISO/IEC 9126. It is renamed to emphasise the
test specific meaning of this characteristic.

The test coverage subcharacteristic relates to test com-
pleteness and can be measured on different levels, e.g. the

4 H. Neukirchen, B. Zeiss, J. Grabowski

degree to which the test specification covers system require-
ments, system specification, or test purpose descriptions.

Test correctness refers to the correctness of the test spec-
ification with respect to system requirements, system speci-
fication or test purposes. Furthermore, a test specification is
only correct when it always returns correct test verdicts and
when it has reachable end states, i.e. it terminates.

The fault-revealing capability is a new subcharacteristic.
It has been added, because obtaining a good coverage with
a test suite does not make any statement about the capability
of a test specification to actually reveal faults. Indicators for
increased attention to the fault-revealing capability may be
the usage of cause-effect analysis [34] for test creation or
usage of mutation testing [6].

The interoperability subcharacteristic has been omitted
from the test specification quality model. Test specifications
are too abstract for interoperability to play a role. The secu-
rity subcharacteristic has been moved to the reliability char-
acteristic.

2.2.2 Reliability

The reliability characteristic describes the capability of a test
specification to maintain a specific level of performance un-
der different conditions. In this context, the term “perfor-
mance” expresses the degree to which needs are satisfied.

The reliability subcharacteristics maturity, fault-
tolerance, and recoverability of ISO/IEC 9126 apply to test
specifications as well.

The new subcharacteristic test repeatability refers to the
requirement that test results should always be reproducible
in subsequent test runs if generally possible. Otherwise, the
report of a defect may become imprecise and debugging the
System Under Test (SUT) to locate a defect may become
hard or even impossible. Test repeatability includes the de-
mand for deterministic test specifications.

The security subcharacteristic covers issues such as in-
cluded plain-text passwords that play a role when test spec-
ifications are made publicly available or are exchanged be-
tween development teams.

2.2.3 Usability

Usability characterises the ease to instantiate and execute a
test specification. This explicitly does not include usability
in terms of difficulty to maintain or reuse parts of the test
specification. These aspects are included in other character-
istics of our model.

Understandability covers aspects that establish under-
standing of a test specification. Documentation and descrip-
tion of the overall purpose of the test specification are key
factors for the test engineer to decide whether a test specifi-
cation is suitable for his or her needs and also to find suitable
test selections.

The learnability subcharacteristic focuses on under-
standing for usage. For the proper use of a test suite, the
test engineer must understand details of the test configura-
tion, what kind of parameters are involved, and how they
affect test behaviour. A comprehensive documentation and
the usage of style guides may have positive influence on this
quality subcharacteristic.

A test specification has a poor operability if it, e.g.
lacks appropriate default values, or a lot of external or non-
automatable actions are required in the actual test execution.
Such factors make it hard to setup a test suite for execution
or they make execution time-consuming due to a limited de-
gree of automation.

Test evaluability is a new test-specific subcharacteris-
tic. It refers to the requirement that a test specification must
make sure that the provided test results are detailed enough
for a thorough analysis. This can be achieved by, e.g. pro-
ducing meaningful log messages during the test run.

Lastly, the ISO/IEC 9126 characteristic usability in-
cludes attractiveness which we omitted in our quality
model. Attractiveness is not relevant for test specifications.
It may play a role for the user interface of test execution en-
vironments and tools, but for plain test specifications, there
simply is no user interface involved.

2.2.4 Efficiency

The efficiency characteristic relates to the capability of a test
specification to provide acceptable performance in terms of
speed and resource usage. The ISO/IEC 9126 subcharacter-
istics time behaviour and resource utilisation apply without
change.

2.2.5 Maintainability

The maintainability of a test specification characterises its
capability to be modified for error correction, improvement,
or adaption to changes in the environment or requirements.
This quality characteristic is important, because test speci-
fications are often modified and expanded due to changing
product requirements and new product versions.

The analysability subcharacteristic covers the ability to
examine a test specification for deficiencies. For example,
deficiencies may be detected statically by means of code re-
views. Well-structured code is a prerequisite for an efficient
code review. Further elements that influence the analysabil-
ity of test code are mandatory style guides or a complete and
comprehensive documentation.

The changeability subcharacteristic describes the capa-
bility of the test specification to enable the implementation
of required modifications. Examples for negative impacts on
this quality subcharacteristic are unstructured spaghetti code
or a test architecture that is not expandable.

An approach to quality engineering of TTCN-3 test specifications 5

Depending on the test specification language used, un-
expected side effects due to a modification have negative
impact on the stability subcharacteristic.

The testability subcharacteristic from the ISO/IEC 9126
model does not play any role for test specifications and is
therefore removed from our quality model.

2.2.6 Portability

The portability plays only a limited role in the context
of test specifications, because test specifications are not
yet instantiated. Therefore, the subcharacteristics installa-
bility (ease of installation in a specified environment), co-
existence (with other test products in a common environ-
ment), and replaceability (capability of the product to be re-
placed by another one for the same purpose) are elements of
the ISO/IEC 9126 model, but not of our quality model.

However, the adaptability subcharacteristic is relevant
for our model since test specifications should be capable
to be adapted to different SUTs or test environments. For
example, hard-coded SUT addresses or access data in the
specification make it hard to adapt the specification for other
SUTs.

2.2.7 Reusability

A reusability quality characteristic is not part of
ISO/IEC 9126. We consider this characteristic to be particu-
larly important for the quality of test specifications, because
test suites and parts of them are often reused for different
types of tests. For example, the test behaviour of a perfor-
mance or stress test specification may differ from a func-
tional test, but the test data, such as predefined messages,
can be reused between those test suites. As well, parts of a
test specification may be reused to test different versions of
the SUT. It is noteworthy that the subcharacteristics corre-
late with the maintainability characteristic to some degree.

The coupling degree is an important subcharacteristic in
the context of reuse. Coupling can occur in-between test be-
haviour, in-between test data, and between test behaviour
and test data. For example, if there is a function call within
a test case, the test case is coupled to this function.

The flexibility of a test specification relates to its cus-
tomiseability regarding unpredictable usage. For example,
fixed values in a part of a test specification deteriorate
its flexibility, and thus a parametrisation likely increases
its reusability. Flexibility is furthermore influenced by the
length of a specification sub-part, because short parts can
usually be more flexible reused in new contexts.

Finally, parts of a specification can only be reused if
there is a good understanding of the reusable parts (compre-
hensibility subcharacteristic). Good documentation, com-
ments, and style guides are necessary to achieve this goal.

3 Test quality assessment

The presented test quality model abstracts from how to de-
termine the quality of a test specification with respect to
each characteristic and subcharacteristic. Hence, this qual-
ity model needs to be instantiated by providing means to
measure attributes of a test specification. There are mainly
two ways to obtain these attributes: static analysis of a
test specification to gather attributes of its internal quality
and dynamic analysis on a specification level to gain at-
tributes of its external quality. In the following, quality as-
sessment based on static analysis is presented. Its applica-
tion is demonstrated in Section 4.

3.1 Software metrics

The ISO/IEC 9126 standard suggests to quantify a software
product’s quality attributes using software metrics. As we
show later, such metrics are not only applicable for imple-
mentations, but also for TTCN-3 test specifications.

According to Fenton et al. [18], the term software met-
rics embraces all activities which involve software measure-
ment. Software measurement can be classified into mea-
sures for properties or attributes of processes, resources,
and products. For each class, internal and external attributes
can be distinguished. External attributes refer to how a pro-
cess, resource, or product relates to its environment (i.e. the
ISO/IEC 9126 notion of external quality); internal attributes
are properties of a process, resource, or product on its own,
separate from any interactions with its environment (i.e. the
ISO/IEC 9126 notion of internal quality).

Internal product metrics can be structured into size and
structural metrics [18]. Size metrics measure properties of
the number of usage of programming or specification lan-
guage constructs, e.g. the number of non-commenting source
statements. Structural metrics analyse the structure of a pro-
gram or specification. The most popular examples are com-
plexity metrics based on control flow or call graphs and cou-
pling metrics.

Concerning metrics for measuring complexity of control
structures, one of the most prominent examples is the cy-
clomatic complexity from McCabe [29,51]. The cyclomatic
complexity v(G) of a control flow graph G can be defined1

as: v(G) = e−n+2, where e is the number of edges and n is
the number of nodes in G. The informal interpretation is that
a linear control flow has a complexity of 1 and each branch-
ing increases the complexity by 1, thus v(G) measures the
number of branches.

1 Several ways of defining v(G) can be found in literature. The
above definition assumes that G has a single entry and a single exit
point. In the presence of several exit points, this assumption can be
maintained by adding edges from all exit points to a single exit point.

6 H. Neukirchen, B. Zeiss, J. Grabowski

The cyclomatic complexity metric is descriptive, i.e. its
value can be objectively derived from source code. By ad-
ditionally using threshold values, this metric becomes also
prescriptive [17], i.e. it helps to control software quality.
For example, when threshold violations of the metric val-
ues are analysed, it can help to identify modules with a lot
of branching which shall thus be split into several simpler
ones [51]. McCabe suggests to use a boundary value of 10.
Behaviour with a higher cyclomatic complexity is consid-
ered to be too complex and should thus be avoided or re-
structured.

To make sure that reasonable metrics are chosen,
Basili et al. suggest the Goal Question Metric (GQM) ap-
proach [3]: First, the goals which shall be achieved (e.g. im-
prove maintainability) must be defined. Then, for each goal,
a set of meaningful questions that characterise a goal is de-
rived. The answers to these questions determine whether a
goal has been met or not. Finally, one or more metrics are de-
fined to gather quantitative data which give answers to each
question.

3.1.1 Test metrics

Tests are a special kind of software and thus metrics are
also applicable to assess their quality. Most of the known
metrics related to tests concern processes and resources, but
not products like test suite specifications. From those known
metrics which relate to tests as product, most are simple
size metrics: Vega et al. [49], for example, propose several
internal and external size metrics for TTCN-3 test suites.
However, they did not provide the goals and questions re-
lated to their metrics, hence it is not clear how these metrics
can be interpreted to assess the actual quality of test suites.
Sneed [45] provides metrics which abstract from a certain
test specification notation. Hence, they are not based on at-
tributes of source code, but on more abstract information.
For example, Sneed measures test case reusability by con-
sidering the ratio of automated test cases to the overall num-
ber of test cases. Some of Sneed’s metrics (e.g. test costs)
even relate to process or resource attributes. As a result,
Sneed’s test metrics are not applicable for an assessment of
TTCN-3 test specifications on their own.

3.1.2 TTCN-3 metrics

We have investigated metrics for different test specification
quality characteristics and came to the conclusion that inter-
nal and external product metrics are not only applicable to
assess source code of implementations, but as well to assess
TTCN-3 test specifications [54–56]. The remainder of this
section focuses on internal product metrics for TTCN-3 test
specifications.

In addition to the taxonomy of metrics described at the
beginning of Section 3.1, the metrics which we use to mea-
sure the different quality (sub)characteristics of a TTCN-3
test specification can be regarded as either TTCN-3 specific
metrics, test specific metrics, or generally applicable (i.e. as
well to programming languages) metrics.

TTCN-3 specific metrics

These kind of metrics take specific concepts of the TTCN-3
language into account. One example is the coupling between
test behaviour and test data descriptions which depends on
whether behavioural TTCN-3 statements refer to test data
using TTCN-3 template references or in-line templates [54]:

Metric 1 (Template Coupling) The template coupling TC
is defined as:

TC :=

|stmt|
∑

i=1
score(stmt(i))

|stmt|

Where stmt is the sequence of behaviour statements refer-
encing templates in a test suite, |stmt| is the number of state-
ments in stmt, and stmt(i), i ∈ N, denotes the ith statement
in stmt. score(stmt(i)) is defined as follows:

score(stmt(i)) :=

1 if (stmt(i) references a template
without parameters)
∨ (stmt(i) uses wildcards only)

2 if stmt(i) references a template
with parameters

3 if stmt(i) uses an in-line template

The template coupling TC measures whether a change of
test data requires changing test behaviour and vice versa.
The value range is between 1 (i.e. behaviour statements re-
fer only to template definitions or use wildcards) and 3 (i.e.
behaviour statements only use in-line templates). For the in-
terpretation of such a coupling score, appropriate boundary
values are required. These may depend on the actual usage
of the test suite. For example, for good changeability a de-
coupling of test data and test behaviour (i.e. the template
coupling score is close to 1) might be advantageous and for
optimal analysability most templates may be in-line tem-
plates (i.e. the template coupling score will be close to 3).

Test specific metrics

In addition to TTCN-3 specific metrics, we identified met-
rics which do not relate to TTCN-3 concepts, but to general
test specific properties. For example, a test case is typically
designed to check a single test purpose. Checking too much
functionality in a single test case makes it hard to compre-
hend the reasons of fail test verdicts. Such a test case can be

An approach to quality engineering of TTCN-3 test specifications 7

recognised when the ratio between the number of statements
that set a verdict and the number of overall statements is
unreasonable. Meszaros [31] describes this situation as test
eagerness.

Metric 2 (Test Eagerness) The test eagerness metric T E of
a single test case is defined as:

T E := 1− |vs|
|stmt|

Where vs is the sequence of all statements that set a verdict
in a test case and stmt is the sequence of all statements in
the same test case. The range of T E is [0..1]. In general, it is
desirable that T E is close to 1 for an average size test case.

General applicable metrics

The third kind of metrics which we considered, are those
which are applicable to source code of implementations as
well as to test specifications.

As an example, we evaluated the applicability of
McCabe’s cyclomatic complexity to the control flow graphs
of TTCN-3 behavioural entities, i.e. the function, testcase,
altstep, and control part constructs (TTCN-3 keywords are
printed in bold). We found out that McCabe’s metric ex-
hibits the same properties for TTCN-3 test suites as for
source code written using general purpose programming
languages. Even though TTCN-3 eases the specification of
branching using the alt and altstep constructs, our measure-
ments show that this does not lead to overly complex con-
trol flow graphs [55]. Thus, those behaviours which violate
McCabe’s upper boundary of 10 are actually of low quality
and this complexity metric can be used to identify behaviour
that is hard to maintain. However, there is one exception: the
cyclomatic complexity of control parts is usually in the same
order of magnitude as the number of test cases in a test suite.
The reason is that a control part often contains many if state-
ments querying module parameters to select the test cases to
be executed depending on sets of capabilities of the imple-
mentation. Hence, it is very probable that the control part of
a test suite which consists of more than 10 test cases does
violate the upper complexity bound. Nevertheless, the struc-
ture of such a control part is usually very simple (a linear
sequence of if statements) and therefore, such control parts
cannot be regarded as very error prone or of low quality.
Thus for control parts, a metric that is purely based on the
nesting level [18] is more appropriate. Alternatively, a pos-
sible approach could be to increase the boundary value for
control parts by the number of statements which execute a
test case and are guarded by a condition [55].

The application of such metrics in order to assess a spe-
cific quality characteristic of a test specification requires a

tailoring of descriptive metrics into prescriptive ones. Sec-
tion 4 exemplifies how this can be achieved by introduc-
ing such metrics and threshold values tailored to analyse the
changeability and analysability quality subcharacteristics.

3.2 Smells in software

Even though we experienced that metrics are able to detect
various issues and can thus be used for an assessment of sev-
eral quality aspects, some issues cannot by detected by sim-
ple metrics. Instead, a complementary, more sophisticated
pattern-based approach is needed. This approach is based
on so called smells. The metaphor of “bad smells in code”
has been coined by Beck and Fowler. They define a smell
as “certain structures in the code that suggest (sometimes
they scream for) the possibility of refactoring” [20]. Smells
are thus indicators of bad quality. According to this defini-
tion, defects with respect to program logic, syntax, or static
semantics are not smells, because these defects cannot be
removed by a refactoring (by definition, a refactoring only
improves internal structure, but does not change observable
behaviour).

Beck and Fowler present smells for Java source code.
They describe their smells using unstructured English text.
The most prominent smell is Duplicated Code. Code du-
plication deteriorates in particular the changeability quality
subcharacteristic: if code that is duplicated needs to be mod-
ified, it usually needs to be changed in all duplicated loca-
tions.

Smells provide only hints: whether the occurrence of an
instance of a certain smell in a source code is considered
as a sign of low quality may be a matter that depends on
preferences and the context of a project. For the same rea-
son, a list of code structures which are considered as smell
is never complete, but may vary from project to project and
from domain to domain [12].

The notion of metrics and smells is not disjoint: each
smell can be turned into a metric by counting the occur-
rences of a smell, and sometimes, a metric can be used to
locate a smell. The latter is the case for the smell of a long
function which can be expressed by a metric which counts
the lines of code of a function. However, the above smell of
duplicated code and other pathological structures in code re-
quire a pattern-based detection approach and cannot be iden-
tified using metrics.

3.2.1 Smells in tests

Even though smells were developed with having implemen-
tation languages in mind, the idea has also been applied to
tests. Van Deursen et al. [7] and Meszaros [31] describe
test smells. Meszaros distinguishes between three kinds of

8 H. Neukirchen, B. Zeiss, J. Grabowski

smells that concern tests (test smells): code smells are prob-
lems that must be recognised when looking at code, be-
haviour smells affect the outcome of tests as they execute,
and project smells are indicators of the overall health of a
project which does not involve looking at code or execut-
ing tests. Within this classification, smells of different kinds
may affect each other, hence the root cause of a behaviour
smell may be a problem in the code. We believe that this
classification is reasonable. Most of the test smells identified
by Meszaros are behaviour smells, e.g. the smell called Er-
ratic Test which refers to tests which are non-deterministic.
Some of the test smells presented by Van Deursen et al. are
specific to the usage of the JUnit Java framework [21] and
can thus be considered as code smells while others are more
general and can be regarded as behaviour smells. In the re-
mainder, we will restrict our investigations on code smells
for TTCN-3.

3.2.2 A TTCN-3 code smell catalogue

Because no TTCN-3 specific code smells have been system-
atically described, we have developed an initial catalogue of
TTCN-3 code smells [4,35]. When investigating candidates
for this catalogue, we have relaxed the above definitions
of code smells a little bit: we added to that catalogue not
only problems in TTCN-3 source code that can be improved
by a behaviour preserving refactoring, but as well problems
which obviously require a change of the behaviour. One ex-
ample is an “idle parallel test component” which is created,
but never started. In this case, either a TTCN-3 start state-
ment needs to be added or the create statement needs to be
removed. However, we adhered to the above definitions of
code smells, in that we did not consider errors in TTCN-3
source code with respect to syntax or static semantics as a
smell.

The code smells that are provided by Beck and
Fowler [20] were a source for our TTCN-3 code smell cata-
logue. Even though those smells are intended for Java code,
some of them are as well applicable for TTCN-3 code. A fur-
ther source was our TTCN-3 refactoring catalogue which we
have developed earlier [48,53,54]. It already refers briefly
to code smell-like quality issues in the motivation of each
refactoring.

While the above sources describe smells only in an in-
formal manner, our TTCN-3 code smell catalogue uses a
structured representation: each entry is listed in the follow-
ing format: each smell has a name; those smells which are
based on other sources have a derived from section which
lists the corresponding references; a description provides a
short prose description of the symptom of the smell; the mo-
tivation part explains why the described code structure is
considered of having a low quality; if several variants of a
smell are possible by relaxing or tightening certain require-

ments on a code structure, this is mentioned in an options
section; one or more actions (typically a refactoring from
our TTCN-3 refactoring catalogue) which are applicable to
remove a smell are listed in the related actions section; fi-
nally, a TTCN-3 source code snippet is provided for each
smell in the example section.

In our catalogue, the names of TTCN-3 code smells
are emphasised using slanted type and TTCN-3 keywords
are printed using bold type. To structure our TTCN-3 code
smell catalogue, we have divided it into 10 sections. This
structure is used in the following list which is an overview
providing the name and the symptom description of each
smell from our TTCN-3 code smell catalogue. So far, we
have identified 37 TTCN-3 code smells:

Duplicated code

– Duplicate Statements: There is a duplicate sequence of
statements in the statement block of one or multiple be-
havioural entities (functions, test cases, and altsteps).
Special cases like code duplication in alt constructs and
conditionals are considered as a separate smell.

– Duplicate Alt Branches: Different alt constructs contain
duplicate branches.

– Duplicated Code in Conditional : Duplicated code is
found in the bodies of a series of conditionals.

– Duplicate In-Line Templates: There are two or more
similar or identical in-line templates.

– Duplicate Template Fields: The fields of two or more
templates are identical or very similar.

– Duplicate Component Definition: Two or more test
components declare identical variables, constants,
timers, or ports.

– Duplicate Local Variable/Constant/Timer: The same lo-
cal variable, constant, or timer is defined in two or more
functions, test cases, or altsteps running on the same test
component.

References

– Singular Template Reference: A template definition is
referenced only once.

– Singular Component Variable/Constant/Timer Refer-
ence: A component variable, constant, or timer is ref-
erenced by one single function, test case, or altstep only,
although other behavioural entities run on the compo-
nent as well.

– Unused Definition: A definition is never referenced.
– Unused Imports: An import from another module is

never used.
– Unrestricted Imports: A module imports more from an-

other module than needed.

An approach to quality engineering of TTCN-3 test specifications 9

Parameters

– Unused Parameter: A parameter is never used within
the declaring unit. For in-parameters, the parameter is
never read, for out-parameters never defined, for inout-
parameters never accessed at all.

– Constant Actual Parameter Value: The actual parameter
values for a formal parameter of a declaration are the
same for all references. Hence, this parametrisation is
unnecessary.

– Fully-Parametrised Template: All fields of a template
are defined by formal parameters. Hence, this template
conveys no information on its own.

Complexity

– Long Statement Block : A function, test case, or altstep
has a long statement block.

– Long Parameter List : The number of formal parameters
is high.

– Complex Conditional : A conditional expression is com-
posed of many Boolean conjunctions.

– Nested Conditional : A conditional expression is unnec-
essarily nested.

– Short Template: The body of a template definition is so
short that it does not justify the creation of a template
declaration.

Default anomalies

– Activation Asymmetry: A default activation has no
matching subsequent deactivation in the same statement
block, or a deactivation has no matching previous acti-
vation.

– Unreachable Default : An alt statement contains an else
branch while a default is active.

Test behaviour

– Missing Verdict : A test case does not set a verdict.
– Missing Log: setverdict is used to set verdict inconc or

fail, but without calling log.
– Stop in Function: A function contains a stop statement.

Test configuration

– Idle PTC: A Parallel Test Component (PTC) is created,
but never started.

Coding standards

– Magic Values: Magic values are literals that are not de-
fined as constants or as part of templates. Numeric liter-
als are called Magic Numbers, string literals are called
Magic Strings.

– Bad Naming: An identifier does not conform to a given
naming convention.

– Disorder: The sequence of elements within a module
does not conform to a given order.

– Insufficient Grouping: A module or group contains too
many elements.

– Bad Comment Rate: The comment rate is too high or
too low.

– Bad Documentation Comment: A documentation com-
ment does not conform to its format.

Data flow anomalies

– Missing Variable Definition: A variable or out parame-
ter is read before its value has been defined. This smell
is also known as UR data flow anomaly [19,23].

– Unused Variable Definition: A defined variable or in-
parameter is not read before it becomes undefined. This
smell is also known as DU data flow anomaly [19,23].

– Wasted Variable Definition: A variable is defined and
defined again before it is read. This smell is also known
as DD data flow anomaly [19,23].

Miscellaneous

– Over-specific Runs On: A behavioural entity (function,
test case, or altstep) is declared to run on a compo-
nent, but uses only elements of this component’s super-
component or no elements of the component at all.

– Goto: A goto statement is used.

To give an impression, how an entry of our TTCN-3 code
smell catalogue looks like, the Duplicate Alt Branches smell
is presented in detail. In addition to the already mentioned
style of type setting TTCN-3 keywords in bold and names
of TTCN-3 code smells in slanted, refactoring names from
our TTCN-3 refactoring catalogue [48,53,54] are printed in
slanted type as well. Please refer to the complete TTCN-3
code smell catalogue [4,48] for a detailed description of all
TTCN-3 code smells.

Smell: Duplicate Alt Branches

Derived from: TTCN-3 refactoring catalogue [48,53,54]
(Motivations for Extract Altstep, Split Altstep, and Re-
place Altstep with Default refactorings).

Description: Different alt constructs contain duplicate
branches.

Motivation: Code duplication in branches of alt constructs
should be avoided just as well as any other duplicated
code. Especially common branches for error handling
can often be handled by default altsteps if extracted into
an own altstep beforehand.

Related action(s): Use Extract Altstep refactoring to sepa-
rate the duplicate branches into an own altstep. Consider
refactoring Split Altstep if the extracted altstep contains
branches which are not closely related to each other and
refactoring Replace Altstep with Default if the duplicate

10 H. Neukirchen, B. Zeiss, J. Grabowski

1 testcase tc exampleTestCase1() runs on ExampleComponent {
2 timer t guard;
3 //...
4 t guard.start(10.0);
5 alt {
6 [] pt.receive(a MessageOne) {
7 pt.send(a MessageTwo);
8 }
9 [] any port.receive {

10 setverdict(fail);
11 stop;
12 }
13 [] t guard.timeout {
14 setverdict(fail);
15 stop;
16 }
17 }
18 }
19
20 testcase tc exampleTestCase2() runs on ExampleComponent {
21 timer t guard;
22 //...
23 t guard.start(10.0);
24 alt {
25 [] pt.receive(a MessageThree) {
26 pt.send(a MessageFour);
27 }
28 [] any port.receive {
29 setverdict(fail);
30 stop;
31 }
32 [] t guard.timeout {
33 setverdict(fail);
34 stop;
35 }
36 }
37 }

Listing 1 Duplicate alt branches

branches are invariably used at the end of alt constructs
as default branches.

Example: In Listing 1, both test cases contain alt constructs
with three alternatives. The last two alternatives in both
alt constructs (lines 9–16 and lines 28–35) are identical
and can be extracted into a separate altstep.

Most of our TTCN-3 code smells are detectable using static
analysis; however, some of the code smells related to test
behaviour can only be detected using a dynamic analysis.

The applicability of each TTCN-3 code smell depends
on the specific project and personal preferences. For exam-
ple, when developing a library, occurrences of the Unused
Definition smell are tolerable, because definitions provided
by a library are usually not referenced until the library is
reused by other TTCN-3 modules.

The smell descriptions can be used to detect either in-
dividual occurrences of a smell or for an overall quality as-
sessment by introducing additional metrics that count occur-
rences of smells. Such complementing metrics will be de-

scribed in the next section together with results from apply-
ing this unified metrics calculation and code smell detection
approach to three large TTCN-3 test suites.

4 Application of metrics and smell detection

For the quality assessment of TTCN-3 test suites, we use
a unified approach in which smells are also represented
by metrics. To demonstrate the practical usefulness of this
approach, we have implemented the calculation of metrics
for the maintainability characteristic of the test specifica-
tion quality model and in particular its analysability and
changeability subcharacteristics. Using the GQM approach,
we chose the subsequently described metrics for the sub-
characteristic assessment. They incorporate complexity met-
rics as described in Section 3.1 as well as metrics that are
based on counting occurrences of the TTCN-3 code smell
defined in Section 3.2.

To ease the subsequent definition of prescriptive metrics,
we define the violation of an upper bound as follows:

Definition 1 (Upper Bound Violation) A measurement m
that exceeds a threshold value u, violates the upper bound
of a metric. The corresponding function bound is defined as
follows:

bound(m,u) :=

{
0 if m < u

1 if m≥ u

4.1 Analysability metrics

The metric listed in this section concerns the degree to which
a test specification can be diagnosed for deficiencies, e.g. a
badly structured test suite affects the difficulty of code re-
views.

Metric 3 (Complexity Violation Ratio) The complexity
violation ratio CVR represents the ratio between the num-
ber of TTCN-3 test cases, functions, and altsteps that ex-
ceed a chosen boundary value u of a complexity measure
and the overall number n of behavioural entities (test cases,
functions, and altsteps). Let elem be the sequence of |elem|
test cases, functions, and altsteps and let elem(i), i ∈ N, de-
note the ith element in elem. The function cm(e) denotes the
complexity measure of an element e from elem. Then, the
complexity violation ratio CVR is defined as follows:

CVR :=1−

|elem|
∑

i=1
bound(cm(elem(i)),u)

|elem|
Since various aspects contribute to the complexity of a
test behaviour, several complexity measures cm(e) may be
used, e.g. McCabe’s cyclomatic complexity [29,55], nesting
level [18], or call-depth.

An approach to quality engineering of TTCN-3 test specifications 11

4.2 Changeability metrics

Changeability is the capability of a test specification to en-
able the implementation of necessary changes. For example,
badly structured code or a non-expandable test architecture
have a negative impact on this subcharacteristic.

Metric 4 (Code Duplication Ratio) The code duplication
ratio CDR describes how much of the code is duplicated. Let
entities be a sequence of entities that could possibly be du-
plicated (such as all branches of alt statements in a test suite)
and let entities(i), i ∈ N, denote the ith element in entities.
With |entities| being the total number of elements in the se-
quence, the code duplication ratio CDR is then defined as:

CDR := 1−

|entities|
∑

i=1
dup(entities, i)

|entities|
where the function dup(entities, i) with i ∈ N being a posi-
tion within the sequence is defined as:

dup(entities, i) :=

0 if @ j ∈ N :

entities(j) = entities(i), j < i

1 otherwise

That means, dup(entities, i) yields 1, if entities(i) is dupli-
cated, and 0 if not.

Metric 5 (Reference Count Violation Ratio) When apply-
ing changes to entities which are referenced very often, a
test developer needs to check for every reference whether a
change may have unwanted side effects or requires follow-
up changes. The reference count violation ratio RCVR de-
termines how often an entity is referenced and penalises the
violation of a given upper boundary value u. With defs being
a sequence indexing distinct entity definitions, the reference
count violation ratio RCVR is defined as follows:

RCVR := 1−

|defs|
∑

i=1
bound(ref (defs, i),u)

|defs|
where the function ref (defs, i), i ∈ N, denotes the number of
references to the ith distinct entity definition:

ref (defs, i) := number of references to defs(i)

Metric 6 (Magic Value Count Violation) Magic numbers
or magic strings, i.e. literals that are not defined as constant,
decrease changeability when used excessively. The magic
value count violation metric MVCV is designed to indicate
bad quality when the total number of magic values exceeds
a given threshold value u. Thus, the result of this metric is
Boolean. With m being the total number of existing magic
values in a test suite, the magic value count violation MVCV
of a test suite is defined as:

MVCV := bound(m,u)

The metrics 3–6 have been designed to yield a value between
0 (the considered quality aspect is not fulfilled at all) and 1
(the considered quality aspect is fulfilled to 100%). The pre-
sented metrics serve as example for the application and do
not represent a complete means to measure these character-
istics.

4.3 Results

The described metrics for assessing the maintainability
quality characteristic have been implemented in our TRex
tool (see Section 5). We applied them to three different
TTCN-3 test suites: the SIP test suite [13], the HiperMAN
test suite [14], and the IPv6 test suite [15] which are stan-
dardised by the European Telecommunications Standards
Institute (ETSI) and publicly available. The calculated met-
ric values for these test suites are shown in Table 1. In the
first third of the table, the number of lines of code and num-
ber of test cases are provided to give an impression of the
size of the three test suites. The next part of the table con-
tains the values that are used as input to calculate the metrics
CVR, CDR, RCVR, and MVCV. The results of these calcula-
tions are shown in the lower third of the table.

To obtain a value for the complexity violation ratio CVR,
the number of exceeded complexity thresholds and the num-
ber of behavioural entities are used. As complexity mea-
sure cm, we have chosen the cyclomatic complexity v(G)
from McCabe. As discussed before (Section 3.1.2), a thresh-
old value u := 10 is reasonable. The code duplication ra-
tio CDR is determined with respect to the number of dupli-
cated branches in alt statements and the number of total alt
branches. For the calculation of the reference count viola-
tion ratio RCVR, the number of exceeded reference thresh-
olds and the total number of distinct entity definitions are re-
quired. As threshold for exceeded referencing, we selected
u := 50. For deciding whether a magic value count violation
occurred, the magic value count is required. As threshold for
the magic value count violation MVCV, we used u := 100.
The latter two threshold values are based on our intuitive
perception of how much work a single change should cause.
For example, changing a definition requires examining the
impact to all its references which may be scattered all over
the test suite. Thus, changing a definition manually may be-
come a really costly task when it is referenced too often.

The measurements of the ETSI test suites show that the
CVR and RCVR metrics yield values which are within rea-
sonable boundaries. However, the CDR measurement of the
SIP test suite indicates that a lot of duplicated branches of
alt statements could be avoided by using altsteps. Listing 2
shows such a generic code fragment (taken from the file
SIP CallControl.ttcn of the SIP test suite) that is repeated
multiple times.

12 H. Neukirchen, B. Zeiss, J. Grabowski

Table 1 Maintainability metrics of ETSI test suites

Metric SIP v4.1.1 HiperMAN v2.3.1 IPv6 v1.1
Lines of Code 61282 54565 41801
Number of Test Cases 609 364 286
Number of Exceeded Complexity Thresholds (cm := v(G), u := 10) 31 35 9
Number of Behavioural Entities |elem| 1478 701 881
Number of Duplicate Alt Branches 938 169 224
Number of Total Alt Branches |entities| 1535 1034 560
Number of Exceeded Reference Thresholds (u := 50) 71 54 49
Number of Distinct Entity Definitions |defs| 2077 2460 1759
Magic Value Count m 2214 545 618
Complexity Violation Ratio CVR (cm := v(G), u := 10) 0.02 0.05 0.01
Code Duplication Ratio CDR (with respect to alt branches) 0.61 0.16 0.40
Reference Count Violation Ratio RCVR (u := 50) 0.03 0.02 0.03
Magic Value Count Violation MVCV (u := 100) 1.00 1.00 1.00

1 [] SIPP.receive (INVITE Request r 1) {
2 repeat;
3 }
4 [] SIPP.receive {
5 all timer.stop;
6 setverdict (fail);
7 rejectInvite(v CSeq);
8 stop;
9 }

10 [] TAck.timeout {
11 setverdict (fail);
12 rejectInvite(v CSeq);
13 stop;
14 }

Listing 2 Duplicated alt branches in the SIP test suite

Not only does the repetition of such a code fragment
increase the size of the overall test suite and reduce its
analysability, but it also decreases changeability as the du-
plicate fragments must be found and adjusted as well.

Furthermore, the values of the MVCV metric indicate
that all test suites make little to no use of constant defi-
nitions and constant references for avoiding magic values.
Listing 3 (taken from SIP CallControl.ttcn as well) demon-
strates this problem in two subsequent statements: in lines
3 and 9, the magic number 302 is used. Without knowing
the details of the SIP protocol, it is hard understand what
this number means. Hence, using a constant with a descrip-
tive name would improve the analysability of the test suite.
Furthermore, the changeability of a test suite is increased by
using constants instead of magic values.

The exemplary investigation of these results demon-
strates that the used metrics are not only descriptive (and
thus able to quantify occurrences of TTCN-3 language con-
structs), but also prescriptive: they help to locate concrete
problems and to make quantified statements on quality as-
pects of TTCN-3 test suites by combining descriptive met-
rics with goal information, e.g. threshold values or ratios.

1 v ptc1.start (
2 ptc1 FinalAnswer(
3 302,
4 ”Moved Temporarily”,
5 loc CSeq ptc s,
6 v CallId));
7 v ptc2.start (
8 ptc2 FinalAnswer(
9 302,

10 ”Moved Temporarily”,
11 loc CSeq ptc2 s,
12 v CallId));

Listing 3 Magic values in the SIP test suite

5 The TRex tool

To practically evaluate our method for the assessment and
improvement of TTCN-3 test specification quality, we have
implemented the TTCN-3 Refactoring and Metrics tool
TRex [48]. The initial version has been developed in collab-
oration with Motorola Labs, UK [1]. TRex currently imple-
ments assessment and improvement techniques for TTCN-3
based on static analysis and TTCN-3 source code restruc-
turing. More precisely, the tool realises the calculation of
internal metrics, automated smell detection, and refactoring
as well as Integrated Development Environment (IDE) func-
tionality for TTCN-3. The latter is provided by a TTCN-3
perspective (Figure 3) which includes typical state-of-the-
art functionality:

– a navigator view for project browsing,
– an editor with syntax highlighting and syntax check-

ing according to the specification of the textual TTCN-3
core language (v3.1.1),

– a code formatter,
– an outline view providing a tree representation of the

structure of the currently edited file,
– content assist which automatically completes identifiers

from their prefix and scope.

An approach to quality engineering of TTCN-3 test specifications 13

Fig. 3 TRex TTCN-3 perspective

Fig. 4 TRex control flow graph view

Furthermore, it is possible to invoke external TTCN-3 com-
pilers from within TRex.

5.1 TTCN-3 metrics functionality

TRex implements a considerable amount of size metrics
(such as number of statements or the number of references
to definitions) and structural metrics (such as the cyclomatic

complexity) including those metrics mentioned in Section 4.
Some structural metrics require the creation of control flow
graphs and call graphs for each TTCN-3 behavioural entity.
For a manual inspection, these graphs can be visualised as
shown in Figure 4.

The calculated metrics are displayed in the metrics view
(Figure 5a). The metrics are hierarchically organised as a
tree which supports different aggregation types (e.g. sum

14 H. Neukirchen, B. Zeiss, J. Grabowski

(a) Metrics view (b) Smell analysis results view

Fig. 5 TRex metrics and smell analysis views

or mean). Hence, it is possible to investigate the calculated
metrics at different scopes.

5.2 TTCN-3 code smell detection functionality

A total number of 11 TTCN-3 code smell detection rules
have been implemented in TRex. By means of static analy-
sis, TRex is able to find

– Activation Asymmetry smells,
– template parameter instances of Constant Actual Tem-

plate Parameter Value,
– Duplicate Alt Branches,
– Fully-Parametrised Template smells,
– Magic Values of numeric or string types,
– instances of Short Template with configurable character

lengths,
– instances of Singular Component Variable/Constant/

Timer Reference,
– instances of Singular Template Reference,
– template definitions with Duplicate Template Fields,
– instances of any local Unused Definition, and
– occurrences of an Unused Definition of a global tem-

plate instance.

As stated in Section 3, whether a certain code structure
is considered as a smell or not, may vary from project to
project. Therefore, TRex supports enabling and disabling in-
dividual TTCN-3 code smell detection rules and to store and
retrieve these preferences as customised analysis configura-
tions.

The results of the smell detection are displayed in the
Analysis Results view (Figure 5b). The listed results are or-
ganised within a tree. Clicking the entries results in a jump
to the corresponding position in the TTCN-3 source code
displayed in the editor window. Some rules, for example Un-
used Definitions, offer the possibility for invoking so called
Quick Fixes. Quick Fixes automatically suggest a TTCN-3
source code change to remove a detected smell. In fact, these
Quick Fixes invoke refactorings.

5.3 TTCN-3 refactoring functionality

To improve the quality TTCN-3 test suites, TRex supports
refactoring of TTCN-3 test suites [1,54]. Refactoring is
based on a systematic behaviour preserving restructuring of
TTCN-3 source code. So far, we have identified 51 refactor-
ings that are suitable for TTCN-3. We have collected them
in our TTCN-3 refactoring catalogue [48,53,54].

The refactoring mechanics, step-by-step instructions of
how to apply each refactoring, are used by TRex to auto-
mate the application of a refactoring. The TTCN-3 refactor-
ings which are currently implemented in TRex emphasise on
improving template definitions. So far, the following refac-
toring are realised:

– the Inline Template refactoring inlines a template,
– the Extract Template refactoring turns one or several

identical in-line templates into a template definition,
– the Inline Template Parameter refactoring inlines a tem-

plate parameter when all its references use a common
actual parameter value,

– the Merge Template refactoring replaces several similar
or even identical template definitions by a single, possi-
bly parametrised, template definition,

– the Decompose Template refactoring decomposes com-
plex templates by referencing to smaller templates,

– the Replace Template with Modified Template refactor-
ing simplifies templates that differ only in few field val-
ues by using modified templates,

– the Move Module Constants to Component refactoring
moves constants that are defined on module level into a
component definition, if the constants are used inside a
single component only or only by behaviour running on
the same component,

– the Rename refactoring changes a definition name when
the name does not reveal its purpose.

There are two ways to apply refactorings in TRex. The first
possibility is that the test engineer specifies the source code
locations which are subject to the refactoring. Then, be-
fore a refactoring is applied, a refactoring wizard displays

An approach to quality engineering of TTCN-3 test specifications 15

(1) Static Analysis

Eclipse Platform User
Interface Text Editor TPTP Language

Toolkit
...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactored
TTCN-3

Core
Notation(3) Quality Improvement

Refactoring

Syntax Tree /
Symbol Table

(2) Quality Assessment

Metrics

Automated Smell Detection

Fig. 6 The TRex toolchain

a preview page where the transformed and original TTCN-3
source code can be compared side by side. The second pos-
sibility is the automated application of refactorings through
Quick Fixes. Since each of our TTCN-3 code smells pre-
sented in Section 3.2.2 has a related actions section, it is
possible to implement and associate a suitable refactoring to
remove the issue. As pointed out at the end of Section 5.2,
TRex is able to automatically invoke the suitable refactor-
ing to remove a smell by means of a Quick Fix. This way, a
manual selection of the source code location to be refactored
becomes unnecessary.

The automated assessment and improvement function-
ality of TRex yields test suites with increased internal qual-
ity [54]. As an experiment, we investigated the effect which
TRex was able to achieve when being applied to the SIP,
the HiperMAN, and the IPv6 ETSI test suites by performing
refactorings for removing unused template definitions, re-
placing template definitions which are only referenced once
by in-line templates, and by refactorings for merging similar
templates: The reduction of the number of template defini-
tions was between 11% (SIP) and 53% (IPv6). The resulting
reduction of the test suite size in terms of lines of code de-
pends on the extent to which template definitions contribute
to the overall size of the test suites: the obtained reduction
was between 1% (SIP) and 12% (IPv6).

5.4 Implementation

TRex is written in Java and is implemented as a set of plug-
ins for the Eclipse Platform [9]. The Eclipse Platform is well
documented and supported. It provides many ready-to-use
components such as project and file management, or a flexi-
ble graphical user interface making it easy to implement an
IDE for new languages. Furthermore, the Eclipse Platform
supports a very flexible plug-in architecture using the con-
cept of extension points. Through the definition of TRex-
specific extension points, it is very easy to add third-party
extensions to TRex. Figure 6 illustrates how TRex is built
on top of existing Eclipse components and infrastructure and
how the different building blocks of TRex interact.

All language-oriented features of TRex are based on a
lexer and parser generated using ‘ANother Tool for Lan-
guage Recognition’ (ANTLR) [40]. ANTLR also supports
the traversal of abstract syntax trees (ASTs) using tree gram-
mars which are syntactically similar to the lexer and parser
grammars. As shown in Block 1 of Figure 6, additionally a
symbol table is used for storing and retrieving information
like the type of an identifier. Using the syntax tree resulting
from the parsing and the created symbol table, it is possi-
ble to realise the static analysis techniques required for the
quality assessment (Block 2 of Figure 6) and quality im-
provement (Block 3 of Figure 6) implemented in TRex.

The metrics implementation in TRex offers its own ex-
tensible infrastructure. A new metric calculation can be im-
plemented easily by adding a new plug-in which makes use
of a special TRex metric extension point. The existing TRex
TTCN-3 metric plug-ins calculate metrics using tree gram-
mars which have been been enriched with semantic actions.
These actions count, for example, the occurrences of certain
language elements, or build and use control flow and call
graphs of TTCN-3 entities. To visualise these graphs, the
Eclipse Graphical Editing Framework (GEF) [10] has been
utilised.

The smell detection in TRex uses the static analysis
framework offered by the Eclipse Test & Performance Tools
Platform (TPTP) [11]. In the context of this framework, each
smell detection capability is represented by a selectable rule.
TPTP provides the underlying programming interface for
these rules as well as configuration dialogues to allow cus-
tom rule selection and analysis profiles and a view for the
result output. Thus, it is possible to concentrate on the actual
rule implementation and analysis aspects. The actual smell
detections are based on the syntax tree traversals and symbol
table lookups.

The refactoring implementation (Block 3 of Figure 6)
makes use of the Language Toolkit (LTK) which is part of
the Eclipse Platform. It provides a programming interface
for transformations of an Eclipse workspace and thus pro-
vides abstract classes and wizards that need to be imple-
mented. The benefit is that certain functionality is already
provided, for example, a preview page in the refactoring

16 H. Neukirchen, B. Zeiss, J. Grabowski

wizard which displays the differences between the origi-
nal and refactored code side by side. Based on the syn-
tax tree and symbol table, the necessary changes for the
workspace transformation are calculated and applied to the
original TTCN-3 source code using a programmatic text edi-
tor which is provided by the Eclipse Platform as well. It sup-
ports all typical text operations such as copy, paste, move,
or delete. The overall formatting of the original TTCN-3
source code is preserved since only the textually changed
parts are modified. In some cases, the refactoring implemen-
tations make use of the TRex code formatter for the neces-
sary changes to obtain valid TTCN-3 core notation from a
transformed syntax tree.

5.5 Related work

Most recent work which realises quality assessment and im-
provement for source code uses Java as target language.
Hence, test-specific quality aspects, e.g. those related to test
verdicts or to the determinism of tests, are not considered
in these tools. Software that calculates metrics of program-
ming languages like C or Java has been around for decades.
A few recent examples of such tools which target the qual-
ity assessment of programming languages are the Metrics
plug-in for Eclipse [44], CodePro AnalytiX from Instantia-
tions [24], or Telelogic Logiscope [46].

Approaches to automatic detection of issues in source
code which are detectable using static analysis and go be-
yond metrics exist for a long time as well. While, e.g. the
Lint tool [28] is older than the notion of smell, it detects
issues which are nowadays considered as code smell.

Fowler suggests not to automate the localisation of code
smells, but rather argues that “no set of metrics rivals in-
formed human intuition” [20]. We think this statement is
correct in the sense that it seems impossible to find univer-
sally valid threshold values for metrics. After all, reasonable
threshold values may differ significantly depending on the
preferred coding style, the language used, and many other
factors. Nevertheless, we think that it is possible to ease the
detection of problems with proper tool support when thresh-
old values are user definable and selected sensibly respect-
ing such factors. To some extent, the selection of threshold
values represents this intuitive aspect mentioned by Fowler.
Related research in this area proves that automatic smell de-
tection is possible and helpful [32,33,43]. In addition to this
research, there are already reasonably mature tools for Java
like FindBugs [41] or PMD [8] that have similar objectives
and are able to detect code smells. However, these tools do
neither consider TTCN-3 nor at least more general test spe-
cific properties at all.

Refactoring for C++ [38] and Smalltalk [42] has been
known for some time, but has actually become popular only
more recently after the publication of Fowler’s book on

refactoring [20] and by the Java refactoring functionality
provided in the JetBrains IntelliJ IDEA [27] and the Eclipse
JDT [9] IDEs. However, an automated assessment and im-
provement as provided by TRex is not a default feature of
those IDEs. The TRex implementation represents the first
publicly available refactoring and metrics tool for TTCN-3
test specifications. The TTCN-3 IDE TTworkbench [47] has
recently been extended to provide initial support for refac-
toring as well.

6 Summary and outlook

In this article, we have presented a procedure and means to
assess and improve the quality of TTCN-3 test suites. The
approach is based on a quality model for test specifications,
which is an adaptation of the ISO/IEC 9126 quality model
to the domain of test specification. The quality model ad-
dresses the different aspects related to quality by defining
several characteristics. The concrete assessment of a qual-
ity characteristic is based on metrics. For each characteristic
under investigation an appropriate set of metrics has to be
selected and applied.

We have instantiated the quality model for the assess-
ment of TTCN-3 test specifications by providing and dis-
cussing metrics. These metrics can be used to measure the
quality of TTCN-3 specifications and they help to detect
quality issues. In addition to metrics, we use code smells
which have been collected and published by us in a TTCN-3
code smell catalogue. It is a first attempt at writing down
problems related to TTCN-3 source code and we have the
intention to allow others to contribute by making it publicly
available as a wiki web page [48] and to extend it contin-
uously. Our means to improve the quality of test specifica-
tions is refactoring, i.e. we remove quality issues by restruc-
turing a test specification without changing its behaviour.

Metrics, smell detection, and refactoring for TTCN-3
have been implemented in our TTCN-3 Refactoring and
Metrics tool TRex. TRex is available as open-source tool
from the project website [48]. We have shown the applica-
tion of TRex to several standardised TTCN-3 test suites. In
this study, we have investigated their maintainability sub-
characteristics.

Currently, we are investigating further TTCN-3 code
smells, e.g. those that relate to the usage of timers or func-
tions in the guards of alt statements. In addition, we are
refining the smell-based approach to detect issues in a test
specification. At the moment, the smell detections in TRex
are implemented using Java. Instead of this hard-coded im-
perative approach, we are currently developing a declarative
method for specifying TTCN-3 code smell patterns using
XQuery [50] expressions [36].

Our intention is to implement further metrics and sup-
port the quality assessment based on user-specific variants

An approach to quality engineering of TTCN-3 test specifications 17

of our quality model. The latter will allow to select appropri-
ate metrics and thresholds for each (sub)characteristics and
to give weights to the different (sub)characteristics to obtain
a general quality verdict. Furthermore, we have started to in-
vestigate means to evaluate whether chosen metrics are rea-
sonable and independent, i.e. orthogonal to each other [52].

Our future work concentrates on the refinement, comple-
tion, and implementation of our quality model. At the mo-
ment, our model covers only internal quality characteristics.
We will start to investigate a generalisation of our model
which also includes external quality characteristics, e.g. per-
formance aspects and properties related to test campaigns.

Finally, we intend to instantiate our quality model
for tests specified with the UML 2.0 Testing Profile
(U2TP) [37]. Thus, aspects of graphical design and object
orientation will be future challenges of our work on quality
assessment and quality improvement for test specifications.

Acknowledgements The test specification quality model presented
in Section 2 has been developed together with Diana Vega and
Ina Schieferdecker [56]. The TTCN-3 smell catalogue has been elabo-
rated as part of the Master’s Thesis [4] of Martin Bisanz who has been
supervised by Helmut Neukirchen. Paul Baker and Dominic Evans
contributed to earlier versions of the TRex tool [1]. Finally, the au-
thors like to thank the anonymous reviewers for valuable comments on
improving this article.

References

1. Baker, P., Evans, D., Grabowski, J., Neukirchen, H., Zeiss, B.:
TRex – The Refactoring and Metrics Tool for TTCN-3 Test Speci-
fications. In: Proceedings of TAIC PART 2006 (Testing: Academic
& Industrial Conference – Practice And Research Techniques),
Cumberland Lodge, Windsor Great Park, UK, 29th–31st August
2006. IEEE Computer Society (2006). DOI 10.1109/TAIC-PART.
2006.35

2. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a
Large Industrial Context – Motorola Case Study. In: L. Briand,
C. Williams (eds.) Model Driven Engineering Languages and Sys-
tems: 8th International Conference, MoDELS 2005, Montego Bay,
Jamaica, October 2–7, 2005, Lecture Notes in Computer Science
(LNCS), vol. 3713, pp. 476–491. Springer, Berlin (2005). DOI
10.1007/11557432 36

3. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid
Software Engineering Data. IEEE Transactions on Software En-
gineering 10(6), 728–738 (1984)

4. Bisanz, M.: Pattern-based Smell Detection in TTCN-3 Test
Suites. Master’s thesis, Center for Computational Sci-
ences, University of Göttingen, Germany, ZFI-BM-2006-44
(2006). URL http://www.swe.informatik.uni-goettingen.

de/publications/MB/bisanz_mastersthesis.pdf

5. Boehm, B., Brown, J., Kaspar, J., Lipow, M., MacLead, C., Merrit,
M.: Characteristics of Software Quality. North-Holland, Amster-
dam (1978)

6. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data
selection: Help for the practicing programmer. IEEE Computer
11(4), 34–43 (1978). DOI 10.1109/C-M.1978.218136

7. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Ex-
treme Programming Perspectives, chap. Refactoring Test Code,
pp. 141–152. Addison-Wesley, Boston (2002)

8. Dixon-Peugh, D.: PMD (2007). URL http://pmd.

sourceforge.net

9. Eclipse Foundation: Eclipse (2007). URL http://www.eclipse.

org

10. Eclipse Foundation: Eclipse Graphical Editing Framework (2007).
URL http://www.eclipse.org/gef

11. Eclipse Foundation: Eclipse Test & Performance Tools Platform
Project (TPTP) (2007). URL http://www.eclipse.org/tptp

12. van Emden, E., Moonen, L.: Java Quality Assurance by Detect-
ing Code Smells. In: Proceedings Ninth Working Conference on
Reverse Engineering WCRE 2002, pp. 97–106. IEEE Computer
Society Press (2002). DOI 10.1109/WCRE.2002.1173068

13. ETSI: Technical Specification (TS) 102 027-3 V4.1.1 (2006-
07): SIP ATS & PIXIT; Part 3: Abstract Test Suite (ATS)
and partial Protocol Implementation eXtra Information for Test-
ing (PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (2006)

14. ETSI: Technical Specification (TS) 102 385-3 V2.2.1 (2006-04):
Conformance Testing for WiMAX/HiperMAN 1.2.1; Part 3: Ab-
stract Test Suite (ATS). European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France (2006)

15. ETSI: Technical Specification (TS) 102 516 V1.1 (2006-04):
IPv6 Core Protocol; Conformance Abstract Test Suite (ATS)
and partial Protocol Implementation eXtra Information for Test-
ing (PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France (2006)

16. ETSI: ETSI Standard (ES) 201 873 V3.2.1: The Testing and Test
Control Notation version 3; Parts 1-8. European Telecommuni-
cations Standards Institute (ETSI), Sophia-Antipolis, France, also
published as ITU-T Recommendation series Z.140 (2007)

17. Fan, C.F., Yih, S.: Prescriptive Metrics for Software Quality As-
surance. In: Proceedings of the First Asia-Pacific Software Engi-
neering Conference, pp. 430–438. IEEE-CS Press, Tokyo, Japan
(1994). DOI 10.1109/APSEC.1994.465237

18. Fenton, N.E., Pfleeger, S.L.: Software Metrics. PWS Publishing
Company, Boston (1997)

19. Fosdick, L.D., Osterweil, L.J.: Data Flow Analysis in Software
Reliability. ACM Computing Surveys 8(3), 305–330 (1976). DOI
10.1145/356674.356676

20. Fowler, M.: Refactoring – Improving the Design of Existing Code.
Addison-Wesley, Boston (1999)

21. Gamma, E., Beck, K.: JUnit (2007). URL http://junit.

sourceforge.net

22. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles,
A., Willcock, C.: An introduction to the testing and test control
notation (TTCN-3). Computer Networks 42(3), 375–403 (2003).
DOI 10.1016/S1389-1286(03)00249-4

23. Huang, J.C.: Detection of Data Flow Anomaly Through Program
Instrumentation. IEEE Transactions on Software Engineering
5(3), 226–236 (1979). DOI 10.1109/TSE.1979.234184

24. Instantiations: CodePro AnalytiX (2007). URL http://www.

instantiations.com/codepro/

25. ISO/IEC: ISO/IEC Standard No. 14598: Information technology
– Software product evaluation; Parts 1–6. International Organi-
zation for Standardization (ISO) / International Electrotechnical
Commission (IEC), Geneva, Switzerland (1999-2001)

26. ISO/IEC: ISO/IEC Standard No. 9126: Software engineering –
Product quality; Parts 1–4. International Organization for Stan-
dardization (ISO) / International Electrotechnical Commission
(IEC), Geneva, Switzerland (2001-2004)

27. JetBrains: IntelliJ IDEA (2007). URL http://www.jetbrains.

com

28. Johnson, S.: Lint, a C Program Checker. Unix Programmer’s Man-
ual, AT&T Bell Laboratories, New Jersey, USA (1978)

29. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Soft-
ware Engineering 2(4), 308–320 (1976)

18 H. Neukirchen, B. Zeiss, J. Grabowski

30. McCall, J., Richards, P., Walters, G.: Factors in Software Quality.
Tech. Rep. RADC TR-77-369, US Rome Air Development Center
(1977)

31. Meszaros, G.: XUnit Test Patterns. Addison-Wesley, Boston
(2007)

32. Moha, N., Guéhéneuc, Y.G., Leduc, P.: Automatic Generation of
Detection Algorithms for Design Defects. In: 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE
2006), 18–22 September 2006, Tokyo, Japan, pp. 297–300. IEEE
Computer Society (2006). DOI 10.1109/ASE.2006.22

33. Munro, M.: Product Metrics for Automatic Identification of ”Bad
Smell” Design Problems in Java Source-Code. In: 11th IEEE In-
ternational Symposium on Software Metrics (METRICS 2005),
19–22 September 2005, Como Italy. IEEE Computer Society
(2005). DOI 10.1109/METRICS.2005.38

34. Myers, G.: The Art of Software Testing. Wiley, New York (1979)
35. Neukirchen, H., Bisanz, M.: Utilising Code Smells to Detect Qual-

ity Problems in TTCN-3 Test Suites. In: A. Petrenko, M. Veanes,
J. Tretmans, W. Grieskamp (eds.) Testing of Communicating Sys-
tems / Formal Approaches to Testing of Software 2007, Tallinn,
Estonia, June 26–29 2007, Lecture Notes in Computer Science
(LNCS), vol. 4581, pp. 228–243. Springer, Berlin (2007). DOI
10.1007/978-3-540-73066-8 16

36. Nödler, J.: An XML-based Approach for Software Anal-
ysis – Applied to Detect Bad Smells in TTCN-3 Test
Suites. Master’s thesis, Center for Computational Sci-
ences, University of Göttingen, Germany, ZFI-BM-2007-36
(2007). URL http://www.swe.informatik.uni-goettingen.

de/publications/JN/noedler-masters-thesis.pdf

37. OMG: UML Testing Profile (Version 1.0 formal/05-07-07). Ob-
ject Management Group (OMG) (2005)

38. Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. the-
sis, University of Illinois at Urbana-Champaign, USA (1992)

39. Parnas, D.: Software Aging. In: Proceedings of the 16th Interna-
tional Conference on Software Engineering (ICSE), May 16–21,
1994, Sorrento, Italy, pp. 279–287. IEEE Computer Society/ACM
Press (1994)

40. Parr, T.: ANTLR parser generator v2 (2007). URL http://www.

antlr2.org

41. Pugh, B.: FindBugs (2007). URL http://findbugs.

sourceforge.net

42. Roberts, D., Brant, J., Johnson, R.: A Refactoring Tool for
Smalltalk. Theory and Practice of Object Systems 3(4),
253–263 (1997). DOI 10.1002/(SICI)1096-9942(1997)3:4〈253::
AID-TAPO3〉3.3.CO;2-I

43. van Rompaey, B., du Bois, B., Demeyer, S.: Characterizing the
Relative Significance of a Test Smell. In: Proceedings of the 22nd
IEEE International Conference on Software Maintenance (ICSM
2006), Philadelphia, Pennsylvania, September 25–27, 2006, pp.
391–400. IEEE Computer Society (2006). DOI 10.1109/ICSM.
2006.18

44. Sauer, F.: Eclipse Metrics Plugin (2007). URL http://metrics.

sourceforge.net

45. Sneed, H.M.: Measuring the Effectiveness of Software Testing.
In: S. Beydeda, V. Gruhn, J. Mayer, R. Reussner, F. Schweig-
gert (eds.) Proceedings of SOQUA 2004 (First International Work-
shop on Software Quality) and TECOS 2004 (Workshop Testing
Component-Based Systems), Lecture Notes in Informatics (LNI),
vol. 58. Gesellschaft für Informatik, Köllen Verlag, Bonn (2004)

46. Telelogic: Logiscope (2007). URL http://www.telelogic.de/

products/logiscope/

47. Testing Technologies: TTworkbench (2007). URL http://www.

testingtech.de/products_services/ttwb_intro.php

48. TRex Team: TRex Website (2007). URL http://www.trex.

informatik.uni-goettingen.de

49. Vega, D.E., Schieferdecker, I.: Towards Quality of TTCN-3 Tests.
In: Proceedings of SAM’06: Fifth Workshop on System Analy-
sis and Modelling, May 31–June 2, 2006, University of Kaiser-
slautern, Germany. University of Kaiserslautern, Germany (2006)

50. XQuery 1.0: An XML Query Language. World Wide Web Con-
sortium (W3C) Recommendation 23 January 2007 (2007)

51. Watson, A.H., McCabe, T.J.: Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metricy. NIST
Special Publication 500-235, National Institute of Standards and
Technology, Computer Systems Laboratory, Gaithersburg, MD,
USA (1996)

52. Werner, E., Grabowski, J., Neukirchen, H., Röttger, N., Waack,
S., Zeiss, B.: TTCN-3 Quality Engineering: Using Learning
Techniques to Evaluate Metric Sets. In: E. Gaudin, E. Najm,
R. Reed (eds.) SDL 2007: Design for Dependable Systems,
13th International SDL Forum, Paris, France, September 18–21,
2007, Proceedings, Lecture Notes in Computer Science (LNCS),
vol. 4745, pp. 54–68. Springer, Berlin (2007). DOI 10.1007/
978-3-540-74984-4 4

53. Zeiss, B.: A Refactoring Tool for TTCN-3. Master’s the-
sis, Center for Computational Sciences, University of
Göttingen, Germany, ZFI-BM-2006-05 (2006). URL
http://www.swe.informatik.uni-goettingen.de/

publications/BZ/zeiss_mastersthesis.pdf

54. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker, P.:
Refactoring and Metrics for TTCN-3 Test Suites. In: R. Gotzhein,
R. Reed (eds.) System Analysis and Modeling: Language Profiles.
5th International Workshop, SAM 2006, Kaiserslautern, Germany,
May 31–June 2, 2006, Revised Selected Papers, Lecture Notes
in Computer Science (LNCS), vol. 4320, pp. 148–165. Springer,
Berlin (2006). DOI 10.1007/11951148 10

55. Zeiss, B., Neukirchen, H., Grabowski, J., Evans, D., Baker,
P.: TRex – An Open-Source Tool for Quality Assurance of
TTCN-3 Test Suites. In: Proceedings of CONQUEST 2006 –
9th International Conference on Quality Engineering in Software
Technology, September 27–29, Berlin, Germany, pp. 117–128.
dpunkt.Verlag, Heidelberg (2006)

56. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H.,
Grabowski, J.: Applying the ISO 9126 Quality Model to Test
Specifications – Exemplified for TTCN-3 Test Specifications. In:
W.G. Bleeck, J. Rasch, H. Züllighoven (eds.) Proceedings of Soft-
ware Engineering 2007 (SE 2007), Lecture Notes in Informatics
(LNI), vol. 105, pp. 231–242. Gesellschaft für Informatik, Köllen
Verlag, Bonn (2007)

