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Introduction
When formal description techniques (FDTs)
such as the Specification and Description Lan-
guage SDL [17] were developed for computer
communication systems, the idea of precise and
rigorous specification were the driving force.
Prose specifications of complex technical mat-
ters are not always sufficient to guarantee inter-
working of products from different vendors.
Also, hidden ambiguities are sometimes only
discovered after the respective systems have
been put into operation. Errors of this kind tend
to be very expensive. FDTs have promised some
help in this matter, because they make possible
rigor, precision, completeness, and so on.

However, it did not take long before these
promises proved to be only partly true. While
FDTs provide the basis for rigor, precision and
completeness, they do not guarantee these quali-
ties. In fact, using FDTs is very similar to pro-
gramming, from which it is known that errors
occur easily. Hence, validation techniques are
very important and will be explained in the sec-
ond section of this paper.

Even if we have a perfectly valid specification,
its value is somehow limited if we cannot relate
it formally to an implementation. In some cases,
this relationship comes for free: If the specifica-
tion is directly translated into an executable
implementation without any manual steps. Un-
fortunately, this is not the common case. Usu-
ally, the SDL specification abstracts from a
number of details which later appear in an im-
plementation. These abstractions are filled with
life during the design and implementation pro-
cess. That is of course a source for errors. We
will therefore devote the third section of this
paper to the aspect of conformance testing, i.e.
to the question on how to show that an imple-
mentation really conforms to a specification.

We conclude this paper with a summary and
a view on current research activities.

Validation
Specifying a system with a formal specification
language like SDL [16] is in some respects simi-
lar to implementing a system with an ordinary
programming language. In both cases, the result
will probably contain errors. Therefore, formal
specifications as well as system implementations
have to be tested in some way. However,
although it is basically the same problem, the
testing of an implementation is different from
the testing of a formal specification.

On a terminology level, implementation testing
is also called verification and it involves activi-
ties concerning the question “Am I building the
system right?”. In contrast, validation deals with
the question “Did I build the right system?” [21].

In the domain of designing and testing computer
protocols using formal methods, both terms are
used in a mixed way. This is due to the fact that
a strict distinction of these two testing terms is
not always possible.

Hence, according to [12], the term validation is
used to describe all activities “used to check that
the formal specification itself is logically consis-
tent”.

Another difference between the testing of an
implementation and a specification is the under-
lying machine. The model specified by the for-
mal language is usually executed on an abstract
machine with potentially infinite resources. Fur-
thermore, several views of one system may be
specified using different models or even differ-
ent specification languages. This is in contrast to
the testing of an implementation module, which
comprises all the different models and runs on a
physical machine.

There are several methods to check the consis-
tency of a formal specification. Static techniques
analyse the formal specification without execut-
ing the model described by the specification.
Dynamic analysis techniques build an execut-
able model from the formal specification in
order to validate it.
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Static analysis
Static analysis techniques evaluate a specified
model without executing it. This can be achieved
manually by reviews, inspections or walk-
throughs, and in an automated way by syntax
and semantic analysis.

Depending on the kind of manual static analysis,
the author, other experts or professional inspec-
tors analyse the documents by following a
checklist. Besides general questions regarding
completeness and consistency, such checklists
may contain questions concerning properties
specific to the formal language used for specifi-
cation.

In the domain of automated static analysis, syn-
tax analysis will just check whether the specifi-
cation is in accordance with the rules describing
correct statements in the particular language.
Semantic analysis uncovers the use of variables
without declaration, data-type clashes or refer-
ences to unspecified parts. In general, syntax and
semantic analysis assure that the specified sys-
tem is well-defined, complete and self-consistent
from a language point of view. A system that has
passed these checks is comparable to a program
that has been successfully compiled [11]. How-
ever, these techniques are not powerful enough
to reveal whether the functionality of a system
is correctly specified or not.

Dynamic Analysis
Dynamic analysis techniques execute the model
described by the behavioural parts of the formal
specification. This allows different approaches
of validation. First of all, it is possible to test the
executable model like any other executable pro-
gram. Test scenarios with suites of test cases can
be applied to the model. Comparing the expected
behaviour with the observed behaviour as a result
of a stimulus sent to the system allows validation
of the specification on a black box basis.

A white box driven approach is to explore the
functional behaviour of the model step by step.
During such an exploration, two classes of prop-
erties can be checked [11]: General properties
that apply to nearly any system independent of
the particular requirements. They can be defined
without reference to a particular system. Exam-
ples of such properties are the absence of dead-
locks and livelocks, no reading of variables
before assignment, or range violations. The
second class of properties is system specific
properties. They concern the special dynamic
behaviour of the model depending on user
requirements. By specifying assertions, invari-
ants or other observable conditions which are
particular to the modeled system, a validation
tool can check whether these conditions hold
during the execution of the model.

While the general properties can be checked
automatically, checking the system specific
properties requires an explicit description of the
properties. Making these property descriptions
is usually time consuming and may in turn be
error-prone.

Figure 1 shows the relationship between model,
formal specification and the corresponding im-
plementation.

Simulation Based Validation
The most common dynamic analysis technique
used in practice is based on a simulation-like
state space exploration [12]. Another application
for simulation is performance validation. This
topic concerns non-functional timed properties
of the examined system and is not covered here.

Exploring the state space of a model allows a
white box based validation of the specification.
Starting from the initial state, the executable
transitions leading to successor states can be
calculated. Analysing each visited state with
respect to general and user-defined properties
enables us to validate the specified model. Two
classes of exploration algorithms have to be dis-
tinguished: exhaustive and non-exhaustive
exploration algorithms.

Exhaustive validation performs an analysis of
the complete model. Thus, definite statements
about properties such as the absence of dead-
locks can be made. The most common exhaus-
tive exploration approach builds the reachability
graph of a system by visiting all reachable states.
The visited states in this graph are used during
the exploration to avoid multiple visits of states.
This ensures the termination of the algorithm. A
reachability graph comprises all execution paths
the system is able to perform. Deadlocks, live-
locks or dead code can be discovered in this way.
The state diagram of a small sample system and
the corresponding reachability graph with a sam-
ple execution path is given in Figure 2. Circles
depict states, arrows correspond to transitions.

Figure 1  Relationship between model,
specification and implementation

Formal

Specification

describes
Model

System

Implementation

may be
    automatically
        translated implements

Helmut Neukirchen (29) studied
Computer Science at the Univer-
sity of Technology Aachen with a
focus on distributed systems and
software construction. He gradu-
ated with a diploma degree in
1999. Since January 2000 Hel-
mut Neukirchen has been
research assistant at the Insti-
tute for Telematics at the Medi-
cal University of Lübeck on the
EU project INTERVAL. His main
research interests are formal
methods in specification and
testing of communication and
real time systems.

neukirchen@itm.mu-luebeck.de

Telektronikk 4.2000



132 Telektronikk 4.2000

Unfortunately, this method is only applicable to
small systems. The number of states grows
exponentially with the complexity of a system.
Non-exhaustive exploration algorithms cope
with this state explosion problem by exploring
only parts of a system. Certainly, this method
cannot prove error-freeness for the whole sys-
tem, but experience has shown that specification
errors manifest themselves in many different
states. Therefore, it is not necessary to cover all
execution paths of the system to spot errors. The
problem is to find a sufficient subset of all paths.

One practical technique is to choose a more or
less random subset of depth-bound paths. Most
tools provide a random walk exploration: Transi-
tions to be executed are chosen randomly, yield-
ing a random exploration of the state space [24].
By repeating random walks, the desired cover-
age of the specification is obtained.

A more elaborate non-exhaustive technique is
the bit-state exploration [12]. Each state is en-
coded via a hash function to represent an array
index. In this way, each state identifies a slot in
a hash table used to indicate whether that state
has already been visited or not. This enables
tools to approximate an exhaustive search of
considerably larger systems, because less mem-
ory is needed for each state – instead of storing
visited states completely, just a one-bit slot per
state is needed. Because of the risk of hash value
conflicts, bit-state exploration is nevertheless a
non-exhaustive validation technique.

Independently of these techniques, the number
of states can be reduced by a controlled partial
search. SDL tools like SDT and ObjectGEODE

offer options to let the user limit the state space
which has to be validated. For example, valida-
tion tools can be guided by Message Sequence
Charts (MSC) [15] describing scenarios for the

model under analysis. Such a guidance is a spe-
cialization of the notion of a validation model
[12]. A validation model is a small, formally
specified executable model describing a certain
aspect of the system being validated. The com-
plete system specification is checked against the
validation model.

In the SDL domain, MSCs and SDL-based
observer processes are used to validate a speci-
fication with regard to user-defined properties.
By giving an MSC that describes some desirable
behaviour of the system, the simulator checks
for execution paths satisfying the following
properties: The execution trace must include all
events that exist in the MSC and must not con-
tain any observable event that is not part of the
MSC. The sequence of observable events must
be consistent with the partial ordering of the
events that is defined by the MSC.

Other Validation Techniques
If a system is specified using a more abstract
specification language than SDL, more sophis-
ticated validation techniques can be employed.
Such languages are not widely used in the com-
mercial area, because they differ from the popu-
lar imperative state machine based specification
languages. An example is the µ-calculus which
is based on temporal logic.

An approach well studied in the academic area
is model checking. The idea behind this is to
express states and possible transitions by means
of logical predicates. Thus, questions concerning
reachability can be answered by automatically
solving logical equations. Symbolic model
checking is still based on state exploration, but
algebraic transformations are used and states are
represented symbolically, not explicitly in a
reachability graph. These symbolic logical for-
mulas can be transformed into boolean expres-
sions which in turn can be represented very effi-
ciently by binary decision diagrams (BDDs) [3].
This allows us to explore larger systems [4]. The
Xeve/Estérelle toolkit is an example of a sym-
bolic model checking tool [1]. Another widely
used model checker is the Spin tool [12]. It uses
a partial order reduction technique to cut down
the state explosion. In [19], a study of the inter-
connection of ObjectGEODE with a model
checker is presented.

The Las tool introduces a new validation
approach [7]. Linear programming is used to
prove properties on communicating automata
yielding a polynomial complexity. Linear pro-
gramming is an efficient technique to solve cer-
tain optimization problems. This approach
avoids the construction of the reachable state
space of a model. Instead, it calculates directly
on the formal model whether or not a certain

Figure 2  A state diagram and
its corresponding reachability
graph
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property holds by searching an execution path
satisfying the property. The practical value of
this approach is not yet clear and further studies
are necessary.

Testing
Testing is an important aspect of today’s product
development cycle. The complexity of new tele-
communications systems increases constantly;
the amount of time needed for testing and its
cost grow accordingly. In order to reduce time
and cost for testing, research institutes, standard-
ization organizations, tool providers and industry
are actively developing formal methods, lan-
guages and tools for test generation and test
execution. In this section, we will focus on test
generation for software systems.

In the domain of software testing, many cate-
gories are distinguished: Domain, risk, load,
stress, scenario, feature, integration or user test-
ing are just some of the common testing meth-
ods. We will concentrate on conformance test-
ing, where the conformance of a system imple-
mentation (the Implementation Under Test
(IUT)) with regard to a (formal) system specifi-
cation is checked. The Conformance Testing
Methodology and Framework (CTMF) has been
standardized with the ISO/IEC 9646 multipart
standard [13]; it provides the foundations for the
methods and tools discussed here.

Figure 3 shows the relationship between speci-
fication, test suite and implementation. A test
suite consists of a set of test cases. Each test case
describes sequences of signals which are ex-
changed between the tester and the IUT through
Points of Control and Observation (PCO). At
the end of each sequence, one of the three possi-
ble test verdicts pass, inconclusive and fail is
assigned. During test execution, the execution
of each test case should end with a pass verdict.
If this is the case, then a conformance statement
can be made about the implementation.

There are two main problems which have to be
solved in order to get high-quality conformance
test suites: First, a set of test cases has to be
identified which as a whole guarantees a certain
level of conformance. Second, a test suite has to
be generated which contains the information
necessary to derive executable tests.

Test Case Generation
There are two approaches to test case generation:
Automatic (exhaustive) test case generation, and
test-purpose-based test case generation.

Exhaustive Test Generation
Exhaustive test generation methods aim at iden-
tifying and generating complete test suites auto-
matically. The input is a Finite State Machine

(FSM) or some variation, e.g. an Extended FSM
(EFSM), Communicating FSM (CFSM) or Com-
municating Extended FSM (CEFSM). EFSM is
the underlying model of a one-process SDL spe-
cification; CEFSMs correspond to SDL specifi-
cations with multiple communicating processes.

An important aspect of exhaustive test generation
methods is the definition of the test suite goal.
One commonly used goal is the establishment of
a guaranteed fault coverage, e.g. 95 %: If a test
suite is executed completely and no error is de-
tected, then the statement can be made that the
implementation is guaranteed to be free of 95 %
of all possible faults (it may contain any number
of the remaining five percent of possible faults,
though). There are several types of faults, the
main ones being output and transfer faults [20].
Output faults occur if the output of a transition
does not match the expected output; transfer faults
occur if a transition ends in the wrong tail state.

Another common test suite goal is to obtain a
certain code coverage. Taking an SDL specifica-
tion as an example, a code coverage of 90 %
would mean that 90 % of all SDL symbols in
the specification are covered by at least one test
case. In general, test suites which obtain a high
fault coverage are considered to be of higher qual-
ity than the ones which rely on code coverage.

Unfortunately, due to the state space explosion
problem, current methods for exhaustive test
generation can only handle specifications which
are very limited in size and often restricted with
regard to the specification possibilities offered
by languages such as SDL. Nevertheless, meth-
ods and tools have been developed which pro-
duce test cases to test the components of a
CEFSM in isolation or in context (embedded
testing); examples can be found in [2] and [5].

Test-Purpose-Based Test Generation
Exhaustive test generation as described in the
previous section has two major drawbacks: First,
it can only be applied to small systems or parts
of systems; it cannot be used for today’s real-
world complex systems, because of state space
explosion and infinite state spaces. The second,
less technical but nevertheless important draw-
back is the lack of test case documentation.
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Automatically generated test cases tend to be
rather non-descriptive sequences of test events
which do not make much sense to the human
reader. Test-purpose-based test generation meth-
ods alleviate both these problems.

The main idea behind test-purpose-based test
generation is the following: Before a system is
specified formally and implemented with some
programming language, there are usually re-
quirements capture and analysis phases. In these
phases, engineers define the important signal
flows. Later on, the system is specified with a
formal specification language. It is obvious that
the specification should exhibit the behavior
defined during requirements capture, so the sig-
nal flows defined there can now be used as test
purpose descriptions. To generate test cases, the
system specification can be simulated against the
test purpose descriptions. During the simulation
run, the signal exchange at predefined Points of
Control and Observation (PCO) is observed.
Signal sequences which correspond to the test
purpose description lead to a pass verdict;
observed signals which are correct according to
the specification but which are not expected in
the test purpose are marked with an inconclusive
verdict. This method has originally been pro-
posed in [10] using SDL as the system specifi-
cation language and MSCs for test purpose
description (Figure 4).

Obviously, with the test-purpose-based app-
roach, the quality of a test suite cannot be mea-

sured with fault coverage criteria.1) The com-
pleteness and quality of the test suite mainly
depends on the experience of the persons defin-
ing the test purposes. However, the generated
test cases are guaranteed to be consistent with
the formal specification. This consistency is not
given by default, since test designers are not
necessarily aware of the formal specification.
Furthermore, efficient algorithms and tools exist
which can generate test cases even for very com-
plex systems [9]. Last but not least, test purpose
descriptions can also be used as documentation
for the system. The applicability of this method
to various real-world systems and protocols has
been shown [22], [23].

Test Generation without 
a Formal System Specification
For many existing systems in industry, formal
system specifications have never been developed
and it would not be cost-effective to do a specifi-
cation just for test generation purposes. In other
cases, only partial specifications exist. Neverthe-
less, the idea of being able to specify test pur-
poses with MSCs instead of directly writing test
cases in a specialized test language has been
widely accepted. For this reason, industry
requires tools which are able to translate test
purpose descriptions directly into test cases.

Test Suite Generation
The road to executable test suites does not end
with the identification and generation of test
cases. Test suites must be saved either in a pro-
prietary language defined by the test equipment
vendor or in the standardized Tree and Tabular
Combined Notation (TTCN) [14]. If TTCN is
chosen and the test suite is supposed to be easily
readable and understandable by humans, then
the following optimizations should be done auto-
matically by the test generation tool:

• All declarations should be generated;

• The number of constraints should be mini-
mized by merging identical constraints and
by supporting constraints parameterization;

• Constraints should get meaningful names;

• The number of test steps should be minimized
through parameterization.

If Concurrent TTCN is used to specify tests for
a distributed test architecture, then the tool has
to support additional features: Test case descrip-
tions have to be split into descriptions for all test
components and synchronization messages
should be generated automatically.

Figure 4  Test-purpose-base
test generation
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The ultimate goal of any industrial-strength
TTCN test generation tool must be to generate
test suites which require no manual postprocess-
ing.

Tools
There are two SDL-based test generation tools
which are available commercially: Autolink [9]
has been developed in a joint project with Tele-
logic AB by the Institute for Telematics of the
University of Lübeck; it is part of the Telelogic
Tau tool suite. TestComposer [18] has been
developed by Verilog as part of the Object-
GEODE tool set. Both tools are based on the test-
purpose-based test generation methodology and
they contain many similarities. Below, we just
give a summary of the distinguishing features
of the tools.

Autolink has been available since 1997 and it
has been evaluated and used in projects of the
European Telecommunications Standards Insti-
tute (ETSI), as well as telecommunications com-
panies. Because of the incorporation of many
features requested by users, its strengths lie in
the readability of generated test suites and in its
adaption to industry realities. Therefore, besides
offering state exploration based test generation,
Autolink also supports the direct translation of
MSCs into test cases without the need of a com-
plete formal system specification. Other unique
features are:

• Generation of Concurrent TTCN output
including the automatic generation of coordi-
nation messages;

• Inclusion of a simple configuration language
which allows to define rules for automatic
constraints naming, constraints parameteriza-
tion and test suite variables (PIXIT);

• Support for distributed test generation.

Although TestComposer has been developed
from scratch, it is based on a relatively long his-
tory of research and tools in the domain of auto-
matic test generation. Its strengths lie in its state
space exploration techniques. For example, Test-
Composer is able to generate test cases from par-
tially defined test purpose descriptions; the miss-
ing parts are filled in automatically. Other distin-
guishing features are:

• Automatic postamble2) computation;

• Comprehensive timer support;

• Output of test suites in a user-definable
format.

Conclusions
Although it may not seem obvious at first sight,
there are several similarities between validation
and automatic test case generation. Both tech-
niques require searching the state space of the
system under investigation. During validation,
the tools look for peculiarities in the state space
such as unspecified reception or deadlocks. Dur-
ing exhaustive test case generation, the whole
state space is searched for those test cases which
can detect faults in an implementation. In the
test purpose based method, the state space is ex-
plored to check if a trace exists which matches
a predefined and formally specified test purpose.
This way, test cases are generated which lead to
pass and inconclusive test execution verdicts.
Due to these similarities, tools such as Autolink
[9] and TestComposer [18] make use of tech-
niques originally developed for validation, such
as described in [12].

Validation and test case generation both suffer
from the state space explosion problem which
makes it impossible to exhaustively validate or
test systems of practical size. However, the use
of available tools is already beneficial and
highly recommendable: For validation, advanced
state space exploration algorithms have been
developed which allow to explore significant
parts of the state space of real-world system
specifications in a feasible amount of time.
For test generation, support of the pragmatic
approach of using (human specified) test pur-
poses combined with state space exploration has
made tool-assisted development of high-quality
test suites a reality.

Experience in industry and ETSI has shown that
the initial effort to develop a formal specification
can be quite high. However, this effort is offset by
the ability to detect design errors at an early
development stage through validation, by the pos-
sibility of automatic code generation and the abil-
ity to easily develop test suites through automatic
test generation. All in all, relevant reductions in
time-to-market and development cost can be
expected through the use of formal techniques.

A lot of research is going on in the field of for-
mal specification, validation and test generation.
At the end of 1999, new versions of SDL and
MSC have been standardized by the Interna-
tional Telecommunication Union (ITU). With
the Unified Modeling Language (UML), a new
notation for object-oriented software develop-
ment has been standardized by the Object Man-
agement Group (OMG). At ETSI, guidelines are
developed on how to use object-orientation in
the standardization and specification process of
telecommunication systems. Also at ETSI, a

2) A postamble is a sequence of test events to bring the IUT into a stable, well-defined state.



136 Telektronikk 4.2000

completely new version of the testing notation
TTCN is in the final stages of development.
Meanwhile, research institutes and tool pro-
viders continue to develop enhanced methods
and tools for validation and test generation.
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