
TIMEDTTCN-3 – A REAL-TIME EXTENSION
FOR TTCN-3∗

Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen
Institute for Telematics, University of Lübeck

Ratzeburger Allee 160, D-23538 Lübeck, Germany

Tel.: +49 451 500 3721 Fax: +49 451 500 3722

{dai,grabowsk,neukirchen}@itm.mu-luebeck.de

Abstract The Testing and Test Control Notation(TTCN-3) was originally developed as
successor of the second edition of theTree and Tabular Combined Notation.
TTCN-3 is a standardized test specification and implementation language to
test functional behaviour of distributed systems.TIMEDTTCN-3 is a real-time
extension for TTCN-3 that supports the test and measurement of real-time re-
quirements. TIMEDTTCN-3 introduces absolute time, allows the definition of
synchronization requirements for test components and provides possibilities to
specify online and offline evaluation procedures for real-time requirements.

Keywords: Distributed systems testing, Test specification, TTCN-3, Real-time testing, Test
evaluation, Non-functional requirements

1. Introduction

One of the most challenging research areas in testing is the testing of distributed
real-time systems. Such systems are becoming ever more importance in daily
life, such as for business and administration (e.g., E-Commerce), for home use
(e.g., home brokerage), teaching (e.g., teleteaching and -tutoring) and process
control (e.g., air traffic control). Testing is the most important means to assure
the correctness of distributed real-time systems with respect to functional and
real-time behaviour.

The procedures for testing functional behaviour are defined in the interna-
tional ISO/IEC standard 9646Conformance Testing Methodology and Frame-
work (CTMF) [12]. Even though CTMF focuses on conformance testing of
OSI protocol entities, CTMF has been applied successfully to other types of
functional testing. Part 3 of CTMF defines the test specification languageTree

∗Parts of this work have been funded by the European Commission contract IST-1999-11557 INTERVAL.

1

2

and Tabular Combined Notation(TTCN). The latest version of TTCN has been
published in 1999 as European technical report by the European Telecommuni-
cations Standards Institute (ETSI) [3]. WithPerfTTCN(Performance TTCN)
[15] and RT-TTCN(Real-Time TTCN) [16] two approaches exist to extend
TTCN for real-time and performance testing.

PerfTTCN extends TTCN with concepts for performance testing. These
concepts are: (1)performance test scenariosfor the description of test configu-
rations, (2)traffic modelsfor the description of discrete and continuous streams
of data, (3)measurement pointsas special observation points, (4)measurement
declarationsfor the definition of metrics to be observed at measurement points,
(5) performance constraintsto describe the performance conditions that shall
be met, and (6)performance verdictsfor the judgement of test results. The
PerfTTCN concepts are introduced mainly on a syntactical level by means of
new TTCN tables. Their semantics are described in an informal manner only.

RT-TTCNis an extension of TTCN in order to testhard real-time require-
ments. On the syntactical level, RT-TTCN supports the annotation of TTCN
statements with two timestamps for earliest and latest execution times. On
the semantical level, the TTCN snapshot semantics has been refined and, in
addition, RT-TTCN has been mapped onto timed transition systems [8].

TheTesting and Test Control Notation(TTCN-3) [4, 7] has been developed
from 1998 to 2001 by an ETSI experts team as successor language for TTCN.
TTCN-3 is based on a textual core notation that has the look and feel of a com-
mon programming language. In comparison to TTCN, TTCN-3 includes no
OSI and conformance testing specific constructs, but provides several additional
concepts like, e.g.,dynamic test configurations, procedure-based communica-
tion andmodule control part. The development of TTCN-3 concentrated on
features for functional testing. Thus, some major concepts needed for real-time
and performance testing are missing.

This paper tries to close this gap by proposingTIMEDTTCN-3 as a real-time
extension for TTCN-3.TIMEDTTCN-3 introduces (1) anew test verdictto judge
real-time behaviour, (2) supportsabsolute timeas a means to measure time
and to calculate durations, (3) allows todelaythe execution of statements for
defining time dependent test behaviour, (4) supports the specification ofsyn-
chronization conditionsfor test components and (5) provides a means for the
online and offline evaluationof real-time properties. Our first experiments give
evidence thatTIMEDTTCN-3 covers most PerfTTCN and RT-TTCN features
while being more intuitive in usage. Moreover, theTIMEDTTCN-3 extensions
are more unified than the other extensions by making full use of the expressive-
ness of TTCN-3 . Thus only a few changes to the language are needed.

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 3

TCP

(Responder)
LT

MSAP

IUT
Initiator

(Initiator user)
UT

ISAP

System
Test

Medium Service

SUT

(a) Distributed test architecture

inres LT
MSAP

UT
ISAP

Connection_Establishment

Synchronization

Synchronization

Connection_Release

1

1loop <100>

MSC InresRTexample

IDATreq

(’data’)

MDATind

(DT, number, ’data’)

MDATreq

(AK, number)

(b) Control flow and message exchange

Figure 1. Test architecture and control flow for the Inres test case example

2. An Inres-based Example

The concepts ofTIMEDTTCN-3 will be explained by a test case for theInres
protocol [9]. As shown in Figure 1a, the test case is written for the distributed
test method of CTMF [12]. TheImplementation Under Test(IUT) is anInitiator
implementation. TheUpper Tester(UT) function plays the role of an Initiator
user and theLower Tester(LT) function plays the role of a Responder entity.
The UT has a direct connection with the IUT whereas the LT only has indirect
access to the lower interface of the IUT via aMedium Service. UT and LT
coordinate themselves byTest Coordination Procedures(TCP).

The example is designed to test the real-time propertieslatencyandmean
arrival timefor the exchange of 100 data packets.1 Its principle control flow and
message exchange is presented by the Message Sequence Chart in Figure 1b.
The test case starts with a preamble that establishes a connection between UT
and LT. Afterwards, UT and LT synchronize in order to ensure that both tester
functions are in a correct state to execute the test body. The test body includes
the sending of 100 data packets from UT to LT. The LT must acknowledge
the correct reception of each data packet. Otherwise, the SUT will retransmit
the data packet or, after three retransmissions, release the connection.2 At the

1Please note that in order to perform meaningful non-functional testing as described in this paper, it is
necessary that an IUT has passed the related functional test cases.
2The retransmission of data packets and the exceptional connection release are not shown in Figure 1b.

4

(1) testcaseInresRTexample(integer sequenceStartNum)
(2) runs on InitiatorUserTypesystemInresSystemType{
(3) var ResponderType responder :=null ;
(4) var float sendTime := 0.0;
(5) var default myDefault :=null ;

(6) myDefault :=activate(InitiatorDefault); // Default activation
(7) map(self:ISAP,system:ISAP);

// Creating/mapping/connecting/starting the Responder PTC
(8) responder := ResponderType.create(self.timezone)
(9) map(responder:MSAP,system:MSAP);

(10) connect(self:CP, responder:CP);
(11) responder.start(ResponderBehaviour(SequenceStartNum));

(12) InitiatorPreamble(); // Preamble for connection establishment

(13) CP.send(boolean:true); // Initial synchronization
(14) CP.receive(boolean:true); // Default handles alternatives

(15) sendTime :=self.now+ 5.0; // Send the first time in 5.0s

// Sending of 100 data packets in a loop
(16) for (var integer i := 1; i <= 100; i := i + 1){
(17) resume(sendTime); // Wait until ’sendTime’
(18) log (TimestampType:{self.now, self.timezone, IDATreq});
(19) ISAP.send(IDATreqType:{self.now});
(20) sendTime := sendTime + 0.01; // Send periodically every 10ms
(21) }
(22) CP.send(boolean:true); // Final synchronization
(23) CP.receive(boolean:true); // Default handles alternatives

(24) verdict.set(pass); // Everything is OK
(25) InitiatorPostamble(); // Postamble for connection release
(26) }

Figure 2. TIMEDTTCN-3 test case description

end of the test body, UT and LT synchronize again and perform a postamble to
release the connection.

TheTIMEDTTCN-3 code for the behaviour of themain test component(mtc)
is shown in Figure 2. Themtc is the UT and plays the role of an Initiator user.
Lines 1 and 2 provide the test case interface, i.e., name, formal parameters,
component types formtc (runs on clause) andabstract test system interface
(systemclause). Lines 3-7 describe variable declarations, a default activation
and the mapping ofmtc ports onto ports of the abstract test system interface.

The creation of the LT component, the mapping of LT ports onto ports of the
abstract test system interface, the connection of LT andmtc ports, and the start of
the LT component are specified in lines 8-11. The preambleInitiatorPreamble
is called in line 12 and the initial synchronization by means of an UT-initiated
handshake with boolean synchronization messages is shown in lines 13 and 14.
The time for sending the first data packet is determined in line 15. The body
of the test case consists of thefor loop specified in lines 16-21. The loop body

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 5

(1) function ResponderBehaviour(integer expectedNum)runs on ResponderType{
(2) var float receiveTime := 0.0, sendTime := 0.0;
(3) var MDATindType receivedMessage;

(4) myDefault :=activate(ResponderDefault); // Default activation

(5) ResponderPreamble(); // Preamble for connection establishment

(6) CP.receive(boolean:true); // Initial synchronization
(7) CP.send(boolean:true);

// Receiving 100 data packets in a loop
(8) for (var integer i := 1; i <= 100; i := i + 1){
(9) alt {

(10) [] MSAP.receive(MDATindType:{DT, expectedNum, ?}))
-> value receivedMessage{

(11) receiveTime :=self.now;
(12) log(TimestampType:{receiveTime,self.timezone, MDATind});
(13) sendTime := receivedMessage.data; // Extract the send time

(14) // Latency online evaluation
(15) if (evalLatency(sendTime, receiveTime, 0.001, 0.005) ==conf) {
(16) verdict.set(conf);
(17) }
(18) MSAP.send(MDATreqType:{AK, expectedNum, 0.0});
(19) expectedNum := toggle(expectedNum);
(20) }
(21) [] MSAP.receive(MDATindType:{DT, toggle(expectedNum), ?})) {
(22) MSAP.send(MDATreqType:{AK, toggle(expectedNum), 0.0});
(23) repeat;
(24) }
(25) }
(26) }
(27) CP.receive(boolean:true); // Final synchronization
(28) CP.send(boolean:true);

(29) verdict.set(pass); // Everything is OK
(30) ResponderPostamble(); // Postamble for connection release
(31) }

Figure 3. TIMEDTTCN-3 behaviour of the Responder test component

is repeated 100 times and specifies that a data packet is sent every 10ms (lines
19 and 20). The test case terminates with the final synchronization (lines 22
and 23), the setting of apassverdict (line 24) and the call of the postamble
InitiatorPostamble(line 25).

The behaviour of the LT is specified by theTIMEDTTCN-3 function shown in
Figure 3. The function can be structured into three parts. The first part consist of
declarations (lines 2 and 3), a default activation (line 4), the call of the preamble
ResponderPreamble(line 5) and the initial synchronization (lines 6 and 7).

The second part (test body) consists of afor loop (lines 8-26). The loop
body is repeated 100 times and includes analt statement with two alternatives.
The first alternative (lines 10-20) describes the expected message exchange:
A correct data packet is received (line 10), the actual time is retrieved and

6

recorded (lines 11 and 12), the send time is extracted from the received message
(line 13), the latency is checked (line 15), if the latency requirement is violated,
the new test verdictconf (Section 3) is set (line 16), finally, the data packet
is acknowledged (line 18) and the sequence number of the next correct data
packet is computed (line 19). The second alternative describes the case when
the previous acknowledgement got lost and, therefore, the previous data packet
is re-transmitted by the IUT. The reception of the re-transmitted data packet is
described in line 21 and its re-acknowledgement is specified in line 22.

The third part describes the final synchronization (lines 27 and 28), the setting
of thepassverdict (line 29) and the call ofResponderPostamble(line 30).

The test case specifies the expected message exchange only. Erroneous and
unexpected responses received from the SUT are considered to be handled by
defaults (line 6 in Figure 2 and line 4 in Figure 3).

The TIMEDTTCN-3 code in Figure 2 and Figure 3 includes the real-time
extensionsself.now, resume, self.timezone, the new verdictconf, a modified
syntax for thelog statement and a new parameter for thecreate operation.
These extensions will be explained in the following sections.

3. Non-Functional Verdicts

The TTCN-3 verdicts indicate whether a test case was successful (pass), in-
conclusive (inconc) or faulty (fail) with respect to functional requirements. By
introducing the possibility to test non-functional requirements, additional in-
formation concerning the test outcome is needed: A test case maypasswith
respect to both functional and non-functional behaviour or it maypassonly
with respect to the functional behaviour while the non-functional requirements
are violated.3

Since non-functional behaviour can be observed only in combination with
functional behaviour on which the non-functional requirements are imposed,
it is not meaningful to make any statements on non-functional test results if
the functional behaviour is not conforming to the functional requirements. In
the special case of a tester malfunction which may lead to a wrong real-time
measurement, theerror verdict will be set by the tester.

Even in case of afunctional inconclusive, no statement can be made on non-
functional test results, since such an inconclusive case may have other non-
functional requirements than the pass case which is subject of testing. Hence,
distinctive verdicts are just needed in case of afunctional pass.

Besides the existingpassverdict which is used to indicate afunctional pass
with an associatednon-functional pass, TIMEDTTCN-3 introduces the new ver-

3In the following, the termsfunctional pass, non-functional pass, etc. are used to describe the test outcome
with respect to functional and non-functional behaviour.

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 7

Current value New verdict assignment value
of verdict pass conf inconc fail none

pass pass conf inconc fail pass
conf conf conf inconc fail conf
inconc inconc inconc inconc fail inconc
fail fail fail fail fail fail
none pass conf inconc fail none

Figure 4. TIMEDTTCN-3 overwriting rules for the test verdicts

dict conf (as abbreviation forconforming) to indicate afunctional passwith an
associatednon-functional fail. Due to the introduction of the new verdict, the
overwriting rules for verdicts are refined. They are presented in Figure 4. The
new verdictconf is inserted between the verdictspassandinconc.

An example for the usage of the newconf verdict can be found in Figure 3. If
the latency requirement is violated (checked in theif statement in line 15),conf
is assigned to the local verdict of the Responder test component (line 16). Due
to the overwriting rules ofTIMEDTTCN-3, aconf verdict will not be overwritten
by the verdict.set(pass) statement in line 29 (see also row 2, column 1 of
Figure 4). The existing verdictfail is still available to express afunctional fail
(see Figure 11, lines 13 and 24).

4. Time Extension for TTCN-3

For the handling of time, TTCN-3 provides atimer mechanism. This timer
mechanism is designed for supervising the functional behaviour of an IUT,
e.g., to prevent the blocking of a test case or to provoke exceptional behaviour.
But, it is too slow and too clumsy for the test and measurement of real-time
properties, because the measurement of durations is influenced by the TTCN-3
snapshot semantics and by the order in which the port queues and the timeout
list are examined. TTCN-3 makes no assumptions about the duration for taking
and evaluating a snapshot. Thus, exact times can not be measured.

Furthermore, TTCN-3 has no concept ofabsolute time, i.e., a test component
cannot read and use its local system time. In real-time testing, the absolute
time is necessary to check relationships between observed test events and to
coordinate test activities. In case of synchronized clocks in a distributed test
environment, the system time may be exchanged among test components to
check real-time requirements that cannot be measured locally or for the timely
coordination of test activities.

As a consequence of these considerations,TIMEDTTCN-3 has the concept of
absolute timein order to support real-time testing. In case of a distributed test
environment, the test cases may define the requirements for the synchronization
of clocks of different test components.

8

4.1 Absolute Time

Absolute time is related toclocksthat provide the actual value of time. We
assume that each test component has access to such a clock, but make no
assumptions about the number and the synchronization of these clocks.4 Fur-
thermore, we assume that the resolution of such clocks and the speed of the
tester are adequate for the real-time requirements which are subject of testing.

For the handling of time values either a new type is needed, or the time values
have to be mapped onto an existing basic type. Due to numerous possible time
representations, e.g., the UNIX approach to count the seconds since 1.1.1970
[10] or a structured type with fields for year, month, day, hour etc., a common
new type for time values is not easy to define.

For simplicity, TIMEDTTCN-3 uses the existingfloat type and follows the
UNIX approach, i.e., time is counted in seconds and the absolute time is repre-
sented by the number of seconds since a fixed point in time. In contrast to the
UNIX scheme,TIMEDTTCN-3 does not define a fixed starting point for the time
measurement. For that,TIMEDTTCN-3 supports the usage of absolute time by
the operationsnow andresume:

The now operation is used for the retrieval of the currentlocal time.
The local character of thenow operation is reflected by its application to
theself handle, i.e.,self.now is the expected call statement for thenow
operation. Operationnow returns a float value that equals the current
absolute time when the operation is called. The mapping of the float value
onto a concrete daytime, e.g., year, month, day, hour, etc., is considered
to be outside the scope ofTIMEDTTCN-3 and has to be provided by the
test equipment, e.g., in form of additional conversion functions.

Theresumeoperation provides the ability to delay the execution of a test
component. The argument of theresumeoperation is considered to be an
absolute time value, i.e., the point in time when the test component shall
resume its execution. If required, a relative time can easily be specified
by using the current time as reference time, e.g., waiting for 3 seconds
can be described byresume(self.now+ 3.0).

An example for the usage of the absolute time extension is shown in Figure 2.
The current time is retrieved in line 15. It is used to calculate the sending time
of the first data packet. The sending time is used by theresumeoperation in
line 17. The test component will resume when the specified time is reached.

4From a conceptional point of view, synchronized test components share the same clock, even though in a
real implementation, the clocks are synchronized by using a synchronization protocol [13, 14].

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 9

4.2 Synchronization of Clocks

Time values are observed and used locally by the test components. Time values
that are observed in different test components may be exchanged and used for
further computations. But this only makes sense if the clocks of the involved test
components are synchronized. The synchronization itself is outside the scope
of TIMEDTTCN-3 and should be guaranteed by the test equipment, but require-
ments for clock synchronization may very well be expressed inTIMEDTTCN-3.
These requirements may be used by aTIMEDTTCN-3 compiler to distribute test
components in an adequate manner or by aTIMEDTTCN-3 runtime environment
to execute synchronization procedures for the test devices.

Timezones. Most specification and implementation languages either support
local timeor global time. Local time means that each behavioral entity, e.g.,
an SDL process or a TTCN-3 test component, has its own local time. Global
time means that all behavioral entities share the sameglobal time. Global time
is perfect for the purpose of real-time testing, because all test components have
by definition the same global time and are synchronized.

However, neither local nor global time are realistic assumptions for real-time
testing situations. A real-time test environment typically consists of several
devices. If synchronization among two or more test components is required
to reach the goal of a test case, the components have to be executed either on
the same device or on synchronized devices.

The developer of real-time test cases should not care about synchronization
procedures and the distribution of test components himself, but he can support
their implementation by identifying test components which have to be synchro-
nized. For this purpose,TIMEDTTCN-3 supports thetimezonesconcept.

A timezone is an (optional) attribute that can be assigned to a test component
when the component is created. Test components with the same attribute are
considered to be synchronized, i.e., they have the same absolute time. A test
component can only have one timezone attribute. Components without time-
zone attributes are considered to be not synchronized with other components.

Implementation of the Timezones Concept. TIMEDTTCN-3 implements
the timezones concept by using an enumeration type with the reserved name
timezones. The user has to specify the timezone attribute values by defining
the timezonestype in the module definitions part of aTIMEDTTCN-3 module.
This type has an implicit member of namenone which indicates no clock
synchronization. The usage of an enumeration type only makes sense if the
number of timezones is finite and known.

In TIMEDTTCN-3, a timezone attribute is associated with a test component
when the component is created, i.e., the timezone attribute is an optional pa-

10

rameter of theexecuteand thecreate operations. The timezone attribute of
anmtc is assigned by using anexecuteoperation. Attributes of all other test
components are assigned by means of thecreateoperations.

The flexibility of the timezones concept can be improved by making the time-
zones visible to the test components. This is implemented inTIMEDTTCN-3 by
means of a specialtimezonefunction which returns the timezone of the compo-
nent that called the function. In the case of a non-synchronized test component,
the valuenone is returned. Like thenow operation, thetimezoneoperation
is always applied to theself handle of a test component, i.e.,self.timezoneis
the expected call statement for thetimezoneoperation. The timezone infor-
mation may be exchanged among test components to check if synchronization
conditions are satisfied, or used to create several synchronized components.

(1) type enumerate timezones{
(2) Hamburg, Luebeck, Berlin
(3) }

Figure 5. Definition of timezones

The usage of the timezone concept is shown in Figures 2, 5 and 10. Figure 5
presents the definition of timezonesBerlin, HamburgandLuebeck. In our test
case example, themtc is created by theexecutestatement in line 5 of Figure 10
and receives the timezone attributeLuebeck. The behaviour of themtc is
shown in Figure 2. Themtc creates the test componentResponder(line 8) and
assigns its own timezone to the new component, i.e.,mtc andResponderare
considered to be synchronized. ATIMEDTTCN-3 run-time environment may
use this information to ensure this synchronization condition.

5. Evaluation of Real-Time Properties

While functional behaviour is basically tested by using sequences ofsendand
receiveoperations, real-time requirements can be tested by relating particular
points in time to each other [1, 2, 11]. The essence of the various real-time
requirements can be broken down to the relationship of points in time. Mathe-
matical formulae can be used to evaluate whether the points in time of interesting
events fulfill a certain real-time requirement or not.

To obtain those points in time, functional TTCN-3 test cases are instrumented
by statements which generate timestamps.TIMEDTTCN-3 implements this ap-
proach by making use of the possibility to read absolute time values which
serve as timestamps. The mathematical formulae which are applied on the
timestamps can be coded as TTCN-3 functions. Thoseevaluation functions
return a judgement which indicates whether a requirement is fulfilled or not.
An onlineor anoffline evaluationof timestamps is possible:

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 11

Online evaluationis needed if it is not possible to separate functional and
non-functional requirements, i.e., a non-functional property directly in-
fluences the functional behaviour of a testcase. In such a case, evaluation
of non-functional observations must be performed during the testrun in
order to react on the result of the evaluation. Online evaluation has the
drawback of cluttering the testcase and slowing down the performance
of the testcase which may be undesirable for time-critical testcases.

Offline evaluationmay be used if the non-functional requirements which
are subject of testing have no influence on the functional reaction of a
testcase. In this case, the code just needs to be instrumented by state-
ments that log the relevant timestamps. Based on the timestamps in the
logfile, the non-functional property can be evaluated when the testrun has
finished. Offline evaluation has the advantage of having a low impact on
the performance of a testcase, since timestamps have to be logged only
during the testrun.

5.1 Online Evaluation

For performing online evaluation, timestamps have to be evaluated during the
testrun, e.g., by calling a special evaluation function with timestamps as actual
parameters. In a distributed test architecture, non-functional requirements may
involve timestamps which have been collected by different test components.
In this case, the evaluating component needs to obtain timestamps from other
components. To achieve this, timestamps can either be piggybacked in the pay-
load of some IUT signals or be communicated directly among test components
by using coordination messages. For implementing online evaluation, the new
concepts ofTIMEDTTCN-3 which have been introduced so far, are sufficient.

In our example (Section 2), online evaluation is used to check the fulfillment
of a non-functionallatencyrequirement. In case of a violation, the local test
verdict of the Responder test component is set toconf (line 16 in Figure 3).

The online evaluation of the latency requirement covers timestamps of several
test components. Hence, the remote timestamps have to be transferred to the
evaluating component. The evaluation function is called in the Responder test
component (line 15). Thereceiveoperation for theMDATind signal (line 10)
is local to the Responder component. The related timestamp is obtained by
callingnow and stored in variablereceiveTime(line 11). In contrast, the corre-
spondingsendoperation is performed by themtc and the associated timestamp
is piggybacked to the payload of theIDATind signal (line 19 in Figure 2).5

5In our Inres example, the payload of theIDATind signal is considered to be of typefloat. In the more
general case, thefloat value has to be encoded into the particular payload type.

12

(1) function evalLatency(float timeA, float timeB,
float lowerbound,float upperbound)return verdicttype {

(2) var float latency:=timeB-timeA;
(3) if ((latency<upperbound)and (latency>lowerbound)){
(4) return pass; // non-functional pass
(5) }
(6) else{
(7) return conf ; // non-functional fail
(8) }
(9) }

Figure 6. TIMEDTTCN-3 online evaluation function

The Responder component extracts the piggybacked timestamp from the
received signal and assigns it to variablesendTime(line 13 in Figure 3). After-
wards,evalLatency(line 15) is called. The actual parameters of this online
evaluation function call are send and receive time as well as the boundaries1ms
and5ms which describe the incarnation of the latency real-time requirement.

The evaluation functionevalLatency(Figure 6) checks the condition related
to latency (lowerbound < treceive − tsend < upperbound) of related time-
stamps (line 3). Depending on the result, it returns either apassor aconf verdict
(lines 4 and 5) which may be used by the calling entity for further decisions.

5.2 Offline Evaluation

When using offline evaluation, the evaluation function is merely called after
the test execution.TIMEDTTCN-3 offers a means to record timestamps in a
logfile during a testrun in order to evaluate them afterwards. The final test
verdict is a composition of the functional test verdict and result of the subse-
quent offline evaluation. To enable offline evaluation of real-time requirements,
TIMEDTTCN-3 refines the existing logfile concept of TTCN-3.

TTCN-3 assumes that one global or several local logfiles exist and provides
a log statement to enable logging of comments. The number of logfiles is not
specified, the logging mechanism is not described and neither module control
nor test components can access the global or local logfiles. For an efficient off-
line evaluation, module control and test components need access to the logfiles
and the contents of the logfiles have to be specified more formally.

The Logfile Concept. A TIMEDTTCN-3 logfile is basically a list of values of
arbitrary TTCN-3 types. A logfile is of typelogfile and it is possible to handle
logfiles by means of variables or to pass them into functions.

EachTIMEDTTCN-3 test component has its own local logfile. A local logfile
is initialized when the owning component is created. When test execution
finishes, i.e., the main test component terminates, the local logfiles are merged

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 13

Operation name Return type Function

first (sortkey, value) boolean Select and sort logfile bysortkeyand move
to first matching entry in the logfile

next(value) boolean Move to the next matching entry
previous(value) boolean Move to the previous matching entry
retrieve type of sortkeyused

as parameter offirst
Retrieve entry from current logfile position

Figure 7. Overview ofTIMEDTTCN-3 logfileoperations

into a global one.TIMEDTTCN-3 does not specify the internal mechanisms that
are needed for storing and maintaining logfiles6, but defines four functions for
accessing the entries of a logfile (Figure 7).

Logging of Events. TIMEDTTCN-3 refines the TTCN-3log statement in
order to write information into logfiles. But in TTCN-3, the argument of the
log statement is an arbitrary string. InTIMEDTTCN-3, the argument can be the
value of any arbitrary valid type. For offline evaluation, a special structured type
with a timestamp field may be specified. A corresponding offline evaluation
function may only consider logfile entries of the special type in order to judge
the fulfillment of the real-time requirement.

Logfile Operations. For retrieving entries of a logfile,TIMEDTTCN-3 offers
means for sorting a logfile by a certain field of the logfile’s entries. Since
a logfile may contain values of arbitrary types, sorting and retrieving is only
possible for a certain type which has to be specified. According to the order
which is imposed by sorting, the first, the next or the previous logfile entry
may be retrieved. For this purpose,TIMEDTTCN-3 uses an internal cursor which
points to an entry in the logfile. This cursor can be moved and the value at the
current cursor position may be retrieved.

The operationfirst serves two purposes: It selects the entries of the logfile by
their types and sorts them. In addition, it moves the cursor to the first matching
entry in the logfile. The first parameter offirst specifies the field which is
used as a sorting key. This is done using the TTCN-3 template notation: A
“?” indicates the field which is used as sorting key, all other fields must be set
to “-”. The type of the template is used to select the type of entries which are
regarded by the logfile operations presented in Figure 7. The second parameter
can be used to further restrict the value of the entry, i.e., the internal cursor is

6The mechanisms for storing and maintaining logfiles are considered to be implementation specific and
therefore outside the scope ofTIMEDTTCN-3.

14

Operation name Return type Description

getlog logfile Get logfile
getverdict verdicttype Get global verdict
setverdict(. . .) – Set global verdict

Figure 8. Overview ofTIMEDTTCN-3 operations for testrun handles

(1) type record TimestampType{
(2) float logtime;
(3) timezonescomponentzone;
(4) Messages messagename;
(5) }
(6) type enumerateMessages{
(7) IDATreq, MDATind;
(8) }

Figure 9. Data types used for offline evaluation in the Inres example

moved to the first entry that matches the second parameter. The same matching
mechanisms which are available for TTCN-3receivestatements apply.

The operationsnext andpreviousplace the internal cursor to the next match-
ing entry before or after the current cursor position. The order to whichnext
andprevious refer to is imposed by the sorting resulting from operationfirst .
The parameter ofnext andprevious is used in the same way as the second
parameter offirst . More complex search operations may be build from these
basic search operations. The three operationsfirst , next andprevious return
true when the matching entry is found in the logfile, otherwisefalse. The value
of the last matched entry, i.e., the value at the current cursor position, can be
retrieved by theretrieve operation.

The Testrun Handle. For the handling of global logfiles,TIMEDTTCN-3
introduces the concept oftestrun handlesand changes the semantics of the
executestatement. A testrun handle is basically a pointer of typetestrun which
is returned by theexecutestatement and which gives access to the results of
a testrun, i.e., the test verdict and global testlog. The operations which can be
applied on a testrun handle are shown in Figure 8. Thegetlogoperation is used
to retrieve the logfile of a testrun. The operationsgetverdict andsetverdict
are used to retrieve and set the global verdict after a testrun. The change of the
final testrun verdict might be necessary, if an offline evaluation shows that a
non-functional property is not fulfilled. For thesetverdict operation the same
overwriting rules as defined in Section 3 apply.

Local Handling of Logfiles. Global logfiles can be retrieved by applying
thegetlog function to testrun handles (Figure 8).TIMEDTTCN-3 also allows to

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 15

apply thegetlog function toself handles, i.e., a test component may access its
own logfile in order to perform a local offline evaluation after the collection of
timestamps.

Example. The smooth interworking of allTIMEDTTCN-3 concepts for offline
evaluation will be explained by means of our test case example (Section 2). For
logging test events, the data types shown in Figure 9 have been defined. Values
of type TimestampTypewill be logged. Its field values describe the logtime
(line 2), the timezone of the logging component (line 3) and the type of the
message which causes the log event (line 4). The message type is described by
an enumeration type (lines 6-8).

Local logfile entries are written by themtc before sending anIDATreqmes-
sage (line 18 in Figure 2) and by the Responder test component after the recep-
tion of a correctMDATind message (line 12 in Figure 3).

Figure 10 shows theTIMEDTTCN-3 module control part for the Inres example.
The control part starts with variable declarations for the handling of a testrun, a
logfile and a verdict value (line 2-4). The testcaseInresRTexampleis executed
with Luebeckas timezone attribute for themtc (line 5) and theexecutestatement
returns a testrun handle which is assigned to variablemyTestrun. The verdict
is retrieved from the testrun and stored in variablemyVerdict(line 6).

If myVerdictispass(checked in line 7), the logfile is retrieved (line 8) and the
offline evaluation functionevalMeanArrivalTimeis called (line 9). The actual
parameters are the message identifierMDATind for which the mean arrival time
should be checked, the timezone valueLuebeckfor the identification of relevant
logfile entries, the time bounds of10msand15ms that define the requirement to
be checked, the integer value 100 that defines the number of relevant timestamps
and the reference to the logfile to be evaluated. Finally, the result of the offline
evaluation is assigned to the final verdict of the testrun (line 10).

(1) control {
(2) var testrun myTestrun; // Variable for testrun handling
(3) var logfile myLog; // Variable for testlog handling
(4) var verdicttype myVerdict;

(5) myTestrun :=execute(InresRTexample(0), Luebeck);

(6) myVerdict := myTestrun.getverdict; // Retrieval of verdict
(7) if (myVerdict ==pass) {
(8) myLog := myTestrun.getlog; // Retrieval of testlog
(9) myVerdict := evalMeanArrivalTime(MDATind, Luebeck,

0.01, 0.015, 100, myLog); // Offline evaluation
(10) myTestrun.setverdict(myVerdict); // Change of testrun verdict
(11) }
(12) }

Figure 10. TIMEDTTCN-3 control part for the offline evaluation

16

(1) function evalMeanArrivalTime(Messages messageId,timezoneszone,float lowerbound,
float upperbound,integer count,logfile timelog) return verdicttype {

(2) var float timeSum:=0, averageArrivalTime;
(3) var TimestampType stampA, stampB;

(4) if (timelog.first (TimestampType:{?,-,-},
TimestampType:{?, zone, messageId}) == true) { // search

(5) stampA := timelog.retrieve; // Get current timestamp entry
(6) for (var integer i := 2; i <= count; i := i + 1){
(7) if (timelog.next(TimestampType:{?, zone, messageId}) == true){ // search
(8) stampB := timelog.retrieve; // Get current timestamp entry
(9) timeSum:= (stampB.logtime - stampA.logtime) + timeSum;

(10) stampA := stampB;
(11) }
(12) else{
(13) return fail ; // Wrong number of messages indicates functional problem
(14) }
(15) }
(16) averageArrivalTime := timeSum / (count-1);
(17) if ((averageArrivalTime < upperbound)and (averageArrivalTime > lowerbound)){
(18) return pass; // return non-functional pass
(19) }
(20) else{
(21) return conf ; // return non-functional fail
(22) }
(23) }
(24) return fail ; // Wrong number of messages indicates functional problem
(25) }

Figure 11. TIMEDTTCN-3 offline evaluation function

The offline evaluation functionevalMeanArrivalTimeis shown in Figure 11.
It implements the mathematical formula for mean arrival time based on times-
tamps, namely[

∑n
i:=2(ti − ti−1)] /(n − 1) and subsequently verifies that the

mean arrival time falls within the range (lowerbound, upperbound).
In order to iterate through thetimestamps ofMDATIndmessages,first (line

4 in Figure 11) andnext (line 7) are used. Since thefirst operation in line 4 sorts
the logfile by thelogtimefield, the timestamp entries are matched in ascending
order. If first or next fails, the logfile contains less matching timestamps than
expected. This is an indication for a non-conforming behaviour of the IUT.
Hence, evaluation is aborted with afail verdict (lines 13 and 24).

Theretrieve operation (lines 5 and 8) yields the value of the last successfully
matched entry, which is used to calculate the mean arrival time. Based on the
final value of the calculation, eitherpassor conf is returned (lines 18 and 21).

6. Summary and Outlook

We presentedTIMEDTTCN-3, a real-time extension for TTCN-3, and demon-
strated its usage by applying it to a testcase for the Inres protocol. By introducing
absolute time for test components, it is possible to wait until an absolute point

TIMEDTTCN-3 – A Real-Time Extension for TTCN-3 17

in time and to collect timestamps. Timestamps may be evaluated online during
the testrun or offline afterwards. For offline evaluation,TIMEDTTCN-3 offers
a flexible log mechanism with local and global logfiles. The log mechanism
also enables an evaluation of non-functional properties which are not real-time
related. For example, failure rates for a fixed amount of data packets can be
checked offline by logging correct as well as erroneous message receptions with-
out any time information.TIMEDTTCN-3 can also be used for distributed test
architectures, since it supports the specification of synchronization conditions
for clusters of clock-synchronized test components. This allows to compare
timestamps captured at different, but synchronized test components.

A module of pre-defined timestamp type definitions and evaluation functions
can be provided in order to facilitate the usage ofTIMEDTTCN-3. In this way, the
real-time testcase developer simply needs to select the appropriate evaluation
function from the pre-defined library and instrument the testcase accordingly.

In this paper we did not address the formal semantics of the newTIMEDTTCN-3
constructs. MostTIMEDTTCN-3 extensions can be explained by an extension of
the existing TTCN-3 semantics. Only the concept of absolute time in combi-
nation with the notion of synchronized components and theresumeoperation
requires new real-time semantics. These features allow the description of time
dependencies among test components, i.e., absolute time values influence the
behaviour in different test components.

We also did not cover load generation. For most real-time tests, it is necessary
to establish some background load to obtain a realistic environment. This may
easily be achieved by using either an external load generator or by explicitly
implementing a load generator usingTIMEDTTCN-3 statements. As described
in [6], an external load generator may be controlled from TTCN-3 by abstract
service primitives which are passed to the load generator by an adaptor port.

Furthermore, we did not address the issue of online evaluation functions with
memory, i.e., variables of evaluation functions keep their values between sub-
sequent calls. Such “static” variables are valuable for the online evaluation of
real-time requirements like floating average. A simple workaround for “static”
variables is possible by declaring such variables as component variables.

A further open issue is the graphical presentation ofTIMEDTTCN-3 test cases.
In the same manner as a graphical format (GFT) is currently developed for
TTCN-3 [5], extensions of GFT are needed for a graphical presentation of
TIMEDTTCN-3.

Our current work concentrates on applying the proposed extensions in a larger
case study in order to assess the capabilities ofTIMEDTTCN-3. This includes
also the implementation of the language extensions in our TTCN-3 toolset. Our
future work will focus on the mentioned open issues, especially on the real-time
semantics and the graphical representation ofTIMEDTTCN-3 test cases.

18

References

[1] ATM Forum Performance Testing Specification (AF-TEST-TM-0131.000). The ATM
Forum Technical Committee, 1999.

[2] Traffic Management Specification Version 4.1 (AF-TM-0121.000). The ATM Forum
Technical Committee, 1999.

[3] ETSI Technical Report (TR) 101 666 (1999-05): Information technology - Open Systems
Interconnection Conformance testing methodology and framework; The Tree and Tabular
Combined Notation (TTCN) (Ed. 2++). ETSI, 1999.

[4] ETSI European Norm (EN) 101 873-1 (2001-06): The Tree and Tabular Combined Nota-
tion version 3; Part 3: TTCN-3 Core Language. ETSI, 2001.

[5] ETSI Technical Report (TR) 101 873-3 (2001-06): The Tree and Tabular Combined No-
tation version 3; Part 3: TTCN-3 Graphical Presentation Format (GFT). ETSI, 2001.

[6] Roland Gecse, Ṕeter Kŕemer, and J́anos Szab́o. HTTP Performance Evaluation with
TTCN. In H. Ural, R.L. Probert, and G. von Bochmann, editors,Testing of Communicating
Systems, volume 13. Kluwer Academic Publishers, 2000.

[7] J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe. On the Design of the New Testing
Language TTCN-3. In H. Ural, R.L. Probert, and G. von Bochmann, editors,Testing of
Communicating Systems, volume 13. Kluwer Academic Publishers, 2000.

[8] T. Henzinger, Z. Manna, and A. Pnueli. Timed Transition Systems. InReal-Time: Theorie
and Practice, volume 600 ofLecture Notes in Computer Science, 1991.

[9] D. Hogrefe. Report on the Validation of the Inres System. Technical Report IAM-95-007,
Universiẗat Bern, November 1995.

[10] IEEE Standard 1003.1: Information technology – Portable Operating System Interface
(POSIX) – Part 1: System Application: Program Interface (API) [C Language]. IEEE,
1996.

[11] Request for Comments 1193: Client requirements for real-time communication services.
Internet Engineering Task Force (IETF), 1990.

[12] Information technology – Open Systems Interconnection – Conformance testing method-
ology and framework. ISO/IEC, 1994-1997. International ISO/IEC multipart standard
No. 9646.

[13] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.Commu-
nications of the ACM, 21, 1978.

[14] P. Ramanathan, K.G. Shin, and R.W. Butler. Fault-Tolerant Clock Synchronization in
Distributed Systems.IEEE Computer, 23, 1990.

[15] I. Schieferdecker, B. Stepien, and A. Rennoch. PerfTTCN, a TTCN Language Extension
for Performace Testing. In M. Kim, S. Kang, and K. Hong, editors,Testing of Communi-
cating Systems, volume 10. Chapman & Hall, 1997.

[16] T. Walter and J. Grabowski. A Framework for the Specification of Test Cases for Real-
Time Distributed Systems.Information and Software Technology(41), 1999.

