
TIMEDTTCN-3 Based Graphical
Real-Time Test Specification

Zhen Ru Dai, Jens Grabowski, and Helmut Neukirchen

Institute for Telematics, University of Lübeck
Ratzeburger Allee 160, D-23538 Lübeck, Germany

Tel.: +49 451 500 3721 Fax: +49 451 500 3722
{dai,grabowsk,neukirchen}@itm.uni-luebeck.de

Abstract. The textual Testing and Test Control Notation (TTCN-3)
is frequently used in combination with Message Sequence Chart (MSC)
and the MSC-based Graphical Presentation Format for TTCN-3 (GFT).
Both, MSC and GFT allow an automatic generation of TTCN-3 test case
descriptions.
TIMEDTTCN-3 is an extension of TTCN-3 for testing real-time prop-
erties and has been submitted for standardization. For a complete inte-
gration of TIMEDTTCN-3 into the TTCN-3-based testing process, the
usage of TIMEDTTCN-3 in combination with MSC and GFT needs to
be established.
This paper presents our approach for graphical real-time test specifica-
tion based on MSC and TIMEDGFT, which is our real-time extension
of GFT. We explain how MSC can be used for the description of real-
time test purposes and define TIMEDGFT. Our approach includes the
automatic generation of TIMEDTTCN-3 test cases based on MSC test
purposes and TIMEDGFT diagrams.

1 Introduction

The Testing and Test Control Notation (TTCN-3) [8, 13] of the European Tele-
communications Standards Institute (ETSI) becomes more and more popular
for test specification and test implementation. Several TTCN-3 tools support-
ing the design, documentation, compilation and execution of test campaigns
are under development or are already commercially available [4, 5, 22, 23]. Trials
have shown that TTCN-3 is a modular and flexible test language that can be
used effectively for testing numerous applications like, e.g., SIP [17], IPv6 [21],
IDL-based interfaces [6] or XML-based interfaces [18]. Like the previous edition
of TTCN-3, in the following called TTCN-2++ [7], TTCN-3 focusses on the
description of test cases for functional black box testing.

The need for testing non-functional properties has been discussed in literature
and several real-time and performance extensions for TTCN-2++ have been
proposed [19, 24]. Based on these experiences TIMEDTTCN-3, [3] a real-time
extension for TTCN-3, has been developed and submitted for standardization.
TIMEDTTCN-3 provides the concepts for testing hard real-time requirements.

neukirchen
(c) Springer Verlag

II Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

The test of soft real-time properties, e.g., arrival or loss rates, may be realized
in TTCN-3 by executing identical test cases several times or by using external
load generators that are controlled by TTCN-3 test components.

In most cases, the testing process is not only based on one, but on several
languages: Graphical languages like Message Sequence Chart (MSC), the Spec-
ification and Description Language (SDL) or the Unified Modelling Language
(UML) are used as a basis for test generation, test specification or test visual-
isation [1, 10, 15, 20] and data languages like the Interface Definition Language
(IDL) or the Abstract Syntax Notation One (ASN.1) define the information to
be exchanged between the System Under Test (SUT) and the test system during
the test execution.

The usage of MSC [25] in functional black-box testing, including the stan-
dardized OSI conformance testing, as a graphical language for test purpose spec-
ification and test behaviour visualization has been thoroughly investigated by
several authors [1, 2, 12, 15]. MSC is very well suited for the specification of test
purposes and allows an automated generation of TTCN-2++ test cases. TTCN-3
is backwards compatible with TTCN-2++ and thus, an automated generation
of TTCN-3 test cases is also possible. The visualization of TTCN-2++ and
TTCN-3 test cases by means of MSC is more problematic. The reason is that
MSC does not provide the right level of abstraction. Test cases are implementa-
tions that are written for specific test configurations and include implementation
details that cannot be represented easily by MSC diagrams. Furthermore, lots
of test information is related to test data and MSC does not support a graphi-
cal representation of data. To overcome this problem, the MSC-based Graphical
Presentation Format for TTCN-3 (GFT) [9] focusses on the presentation of test
behaviour and extends MSC with special constructs that emphasize test and
TTCN-3 specific concepts in behaviour definition, e.g., setting of test verdicts or
activation and deactivation of default behaviour. The GFT extensions of MSC
are defined as shorthand notations for (in some cases more complex) MSC con-
structs, i.e., GFT is compatible to MSC.

This paper is about the usage of MSC and GFT for real-time testing. We
discuss the specification of real-time test purposes by means of MSC and ex-
plain how TIMEDTTCN-3 test cases can be generated from MSC real-time test
purposes. For the visualization of TIMEDTTCN-3 test cases we present a real-
time extension for GFT (TIMEDGFT), which allows a graphical presentation
of TIMEDTTCN-3 concepts. For simplicity, all concepts and extensions are ex-
plained by using the same simple Inres-based example, which is used in [3] to
explain TIMEDTTCN-3.

2 Foundations

In this section, we describe the usage of MSC and GFT in the TTCN-3-based
testing process, explain the principles of TIMEDTTCN-3 and summarize the
time concepts of MSC. For the complete understanding of this paper, a basic
knowledge of MSC, GFT and the TTCN-3 core notation is required.

Graphical Real-Time Test Specifications III

Test purpose
generate

Test behaviour
mapping

GFTMSC TTCN−3

Fig. 1. MSC test purposes, TTCN-3 test behaviour and GFT diagrams

2.1 Test Purpose Definition and Test Behaviour Visualization

The difference between test purposes described in form of MSCs and a test
behaviour1 visualized by GFT diagrams are the different levels of abstraction
and points of view. The relations between test purposes and the behaviour of
test cases are shown in Fig. 1.

An MSC test purpose is an abstract description of a test. It describes the
test from the perspective of the SUT and makes no assumptions about the im-
plementation of the test configuration. By providing information about the test
configuration, it is possible to generate TTCN-3 test behaviours. Test behaviour
descriptions define tests from the perspective of the test system. They are writ-
ten for a specific test configuration and include all the activities to coordinate
the test components. A TTCN-3 test behaviour description can be visualized
in form of a GFT diagram, i.e., there exists a bidirectional mapping between a
TTCN-3 test behaviour and a corresponding GFT diagram.

An example may clarify these differences. We want to test an Initiator im-
plementation of the Inres protocol [14]. The SUT can be accessed by using the
interfaces ISAP and MSAP. The test purpose is the test of 100 data transfers.
For doing this, a connection needs to be established and after the test, the con-
nection has to be released. A formalization of this test purpose in form of an
MSC is shown in Fig. 2b2.

The MSC describes the test purpose from the point of view of the SUT, i.e.,
only the required information exchange at the ISAP and MSAP is shown. It in-
cludes no assumptions about implementation of the test system, e.g., the number
of test components and the required synchronization among test components are
not specified.

The test case InresRTexample shown in the lines 6-29 of Fig. 33 is generated
automatically from our test purpose example (Fig. 2b) and the test configura-
tion presented in Fig. 2a. The test configuration only consists of one Main Test
Component (MTC), which controls both interfaces of the SUT. The test case In-
resRTexample can be visualized by the GFT diagram shown in Fig. 82. A simple
comparison of GFT diagram and textual TTCN-3 description shows that there
exists a bi-directional mapping between text and graphics.
1 In the following, the term test behaviour refers to TTCN-3 test cases, altsteps, func-

tions and module control.
2 The meaning and usage of the MSC time constructs, i.e., the dashed lines and arrows

with annotations, in Fig. 2b and Fig. 4 will be explained in the following sections.
3 The TIMEDTTCN-3 statements, e.g., now and resume, in Fig. 3 are explained in

the following sections.

IV Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

Medium Service

Initiator

ISAP MSAP

Main Test Component

SUT

Test System

Implementation

(a) Test configuration

inres
MSAPSUTISAP

loop <100>

Connection_Release

Connection_Establishment

msc InresRTexample

MDATreq (AK, number)

MDATind (DT, number, ’data’)

IDATreq
[10ms]

[0ms,5ms)

(’data’)

(b) Real-time test purpose

Fig. 2. Test architecture and test purpose for the Inres test case example

2.2 TIMEDTTCN-3

TIMEDTTCN-3 has been defined in [3]. It introduces the concept of absolute time
into TTCN-3, provides a means to specify time synchronized test components,
extends the TTCN-3 logging mechanism, supports online and offline evaluation
of tests and adds the new test verdict conf to the existing TTCN-3 test verdicts.

Absolute time is introduced by means of clocks. Each test component has an
associated local clock, which can be read by using a now operation (lines 13, 19
and 22 in Fig. 3). In addition, a resume statement can be used to wait until a cer-
tain point in time (line 16). For example, the statement resume(self.now+3.0)
defines that the following statement or operation will be performed 3 seconds
after the invocation of the resume statement. Time is represented as a float
value that represents the number of seconds counted from a fixed starting point.
The starting point is considered to be test system specific and therefore, not
defined by TIMEDTTCN-3.

TIMEDTTCN-3 allows to specify time synchronized test components by means
of timezones. A timezone is an (optional) attribute, which can be assigned to a
test component when the component is created. Test components with the same
attribute are considered to be synchronized, i.e., they have the same absolute
time. Components without timezone attribute are considered to be not time
synchronized with other components.

The TTCN-3 logging mechanism is improved by allowing to put TTCN-3
data structures into the the logfile and by giving access to the logfile in module
control after test case termination. This allows to store timestamps of time
critical test events as records in the logfile by using log statements (lines 19
and 22 in Fig. 3).

Graphical Real-Time Test Specifications V

(1) module InresRTexample module() {
(2) type record TimestampType {
(3) float logtime,
(4) charstring id
(5) }
(6) testcase InresRTexample() runs on inres {
(7) var float sendTime1:=-1.0;
(8) var integer iterator1:=0;
(9) var default OtherwiseFailDefault:=activate(OtherwiseFailAltStep);

(10) Connection Establishment();
(11) for (iterator1:=0; iterator1<100; iterator1:=iterator1+1) {
(12) if (sendTime1==-1.0) {
(13) sendTime1:=self.now+0.01;
(14) }
(15) else {
(16) resume(sendTime1);
(17) sendTime1:=sendTime1+0.01;
(18) }
(19) log(TimestampType:{self.now,”IDATreq1”});
(20) ISAP.send(IDATreq:{”data”});
(21) MSAP.receive(MDATind:{DT,number,”data”});
(22) log(TimestampType:{self.now,”MDATind2”});
(23) MSAP.send(MDATreq:{AK,number});
(24) }
(25) Connection Release();
(26) deactivate(OtherwiseFailDefault);
(27) setverdict(pass);
(28) stop;
(29) }
(30) control {
(31) var testrun myTestrun;
(32) var logfile myLog;
(33) var verdicttype myVerdict;
(34) myTestrun:=execute(InresRTexample);
(35) myVerdict:=myTestrun.getverdict;
(36) if (myVerdict==pass) {
(37) myLog:=myTestrun.getlog;
(38) myVerdict:=evalMultipleDelays(”IDATreq1”,”MDATind2”,

0.0,incl,0.005,excl,myLog);
(39) myTestrun.setverdict(myVerdict);
(40) }
(41) }
(42) }

Fig. 3. TIMEDTTCN-3 Inres test case generated from the test purpose in Fig. 2

TIMEDTTCN-3 distinguishes between online and offline evaluation of real-
time properties. Online evaluation refers to an evaluation during test execution,
i.e., the final test verdict is calculated during the test, whereas offline evaluation

VI Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

Inst1 Inst2

[8,10]

@[10]

msc constrained_stimulus

m1

m3

m2

(a) Time constraint

Inst1 Inst2

[0,10)

@(8,10)

msc constrained_observation

m1

m2

m3

(b) Time constraints

Inst1 Inst2

&t2

@t1

msc measure

m1

m3

m2

(c) Time measurements

Fig. 4. MSC time constructs

means that the final evaluation is done after test case termination. Offline evalu-
ation is realized by giving access to the logfile produced by a test case execution.
For this, a testrun handle (line 31 in Fig. 3) has been introduced, which gives
access to the logfile (line 32) and the final verdict of the functional test execution
(line 35). Special functions allow to sort, read and navigate in a logfile. A logfile
may be passed into a library function (line 38) that performs the evaluation of
the logfile and calculates the final verdict of the TIMEDTTCN-3 real-time test
case. The final verdict can be assigned by using setverdict operation (line 39).

The additional test verdict conf has been introduced by TIMEDTTCN-3 as
an indication that a test case executed correctly with respect to the functional
behaviour but failed with respect to a non-functional property. The existing
verdict pass is used to indicate success with respect to both criteria.

2.3 Time Constructs in MSC

MSC allows to attach time annotations to events. MSC distinguishes between
time constraints and time measurements.

Time constraints are shown in Fig. 4a and 4b. They can be either absolute,
i.e., refer to the absolute time of occurrence of one single event, or relative,
i.e., constrain the duration between two events. The values of the constraint is
specified using intervals. The interval boundaries may be open or closed. An open
boundary is indicated by a parenthesis, i.e., ’(’ or ’)’, and a closed boundary is
defined by a square bracket, i.e., ’[’ or ’]’. An omitted lower bound is treated as
zero, an omitted upper bound as ∞. A single value in square brackets represents
an interval which contains just that single element. If a time annotation defines
no time unit, the default unit seconds is used.

Time measurements are presented in Fig. 4c. A measurement may measure
the absolute time when a single event occurs or the relative delay between two
events. The value of a measurement is stored in a variable which is local to the
instance that owns that variable.

In addition to a relative time constraint, Fig. 2 contains a time constraint
for a cyclic event (sending message IDATreq(”data”) every 10ms) inside a loop
inline expression. The definition of such periodic events is not supported in the

Graphical Real-Time Test Specifications VII

MSC standard. Therefore, we use an extension proposed in [16]. An alternative
extension with similar expressive power has been presented in [26].

3 Generating TIMEDTTCN-3 from MSC Test Purposes

Using MSC for test purpose specification and the consecutive test case generation
as suggested in this paper is not new and has already been implemented in several
academical and industrial tools like, e.g., Autolink, Testcomposer or ptk.

Autolink [20] and Testcomposer [15] support the generation of TTCN-2++
test cases either from SDL specifications and MSC test purposes or directly
from MSC test purposes. Both tools focus on the generation of tests for testing
functional requirements.

The ptk tool [1] also generates TTCN-2++ test cases from MSC test pur-
poses. The test generation for real-time constraints, which can be implemented
by the TTCN-2++ timer mechanism, is supported by non-standard time anno-
tations in the MSC test purposes. Autolink and ptk also support the generation
of test cases for concurrent test architectures [1, 11].

None of the tools mentioned above is currently able to generate TTCN-3 out-
put. Therefore, we developed an MSC to TTCN-3 generator as an internal case
study. While past versions only accepted MSC test purposes containing func-
tional requirements, the latest prototype supports also the real-time constructs
described in Section 2.3. Our current prototype does not support concurrent
test architectures, i.e., the prototype generates test cases with one main test
component (MTC) only. For future versions, we plan to support concurrent test
architectures by implementing the approach described in [11].

In the following, we explain how MSC can be used for specifying real-time
test purposes and how these test purposes can be automatically transformed into
TIMEDTTCN-3 test cases. For simplicity, we restrict ourselves to non concurrent
test architectures. For concurrent test architectures, the synchronization among
test components has also to be taken into consideration.

3.1 Specification of MSC Real-Time Test Purposes

We use the common practice to specify test purposes using system level MSCs.
A system level MSC has one designated instance representing the SUT. All
other instances correspond to the different interfaces of the SUT. Together with
the contained message exchange from and to the interfaces of the SUT, this
information can be used to derive corresponding test cases.

In contrast to other approaches (e.g., [1]), we do not generate one test case for
each of the traces which is possible due to the interleaving semantics of MSC.
Instead, we extract just one single representative path from the test purpose
MSC, which takes the queue semantics of TTCN-3 into consideration. This will
be explained in the next section.

For the specification of MSC real-time test purposes, the MSC real-time
constructs described in Section 2.3 are used. We allow to attach MSC time

VIII Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

constraints and measurements (see Fig. 2b) to the communication events along
the instances that represent the interfaces of the SUT.

While the meaning of allowed MSC time measurements (Fig. 4c) in test
purpose descriptions is straightforward (i.e., observation of the point in time
when an event occurs and its storage in a TIMEDTTCN-3 variable), MSC time
constraints can be used with two different aims: They may either describe a
timely stimulation of the SUT (time constrained stimulus) or a response from the
SUT shall arrive within a certain period of time (time constrained observation).
Both cases look similar, but can be distinguished as follows:

The test system should perform a time constrained stimulus if an absolute
time constraint is attached to a send event, or a relative time constraint is
attached to a pair of events, where the second event is a send event4 (cf. Fig. 4a,
where Inst2 represents the SUT).

The test system should perform a time constrained observation, if an absolute
time constraint is attached to a receive event, or a relative time constraint is
attached to a pair of events, where the second event is a receive event4 (cf. Fig. 4b,
where Inst2 represents the SUT).

In our test purpose example (Fig. 2b), both types of relative time constraints
are used. The cyclic real-time requirement constraint can be unrolled to a se-
quence of relative time constraints and requires to send a stimulus every 10ms.
The other constraint ([0ms,5ms)), which is attached to the messages IDATreq
and MDATind, describes a passive observation of MDATind.

An MSC time measurement and an MSC time constraint used for time con-
strained observation, result in a similar test behaviour. In both cases the current
time is acquired. But, only observing time constraints allow to attach the ac-
tual intervals of real-time requirements to the graphical symbols. This identifies
them as real-time requirements. In contrast, a real-time requirement cannot be
specified by MSC time measurements, because they only allow to specify names
for observations, but no concrete time values. As a result of these considerations,
MSC time constraints should be the preferred means for specifying real-time test
purposes. Nevertheless, MSC time measurements may be useful for gathering
time information, which is re-used later as part of other MSC time constraints.

3.2 Transformation of Functional Concepts from MSC to TTCN-3

The transformation of the static aspects of an MSC test purpose into TTCN-3
is very simple. The interfaces of the SUT are described by MSC instances. They
are mapped to TTCN-3 ports. For the mapping of MSC events to TTCN-3
statements, only the events along the interface instances are relevant. MSC send
events are mapped to TTCN-3 send operations and MSC receive events are
mapped onto TTCN-3 receive operations. The MSC message names refer to
TTCN-3 data types or signature definitions. MSC message parameters, refer to
TTCN-3 templates or define inline templates.

4 The type of the first event involved in the relative time constraint is irrelevant, since
the time constraint is essentially imposed on the second event.

Graphical Real-Time Test Specifications IX

Configuration and data descriptions, like the definition of port types, compo-
nent types, data types, signatures and templates, cannot be generated automat-
ically from MSC test purposes. They have to be specified manually or imported
from other TTCN-3 modules.

An MSC test purpose specification may also include references and the in-
line expressions alt, loop and par. We consider each usage of a reference or
an inline expression as one single event, which in case of references or inline
expressions may include partially ordered events. This means, these constructs
are synchronization points, even though this violates the official MSC seman-
tics [25]. The MSC semantics assumes a weak sequential composition seman-
tics. However, many test case specifiers regard this as counter-intuitive. Hence,
the corresponding TTCN-3 constructs suggested in our mapping do not allow
that sort of interleaving. Our transformation algorithm maps MSC references to
TTCN-3 function calls, MSC alt inline expressions to TTCN-3 alt statements,
MSC loop inline expressions to TTCN-3 for statements and MSC par inline
expressions to TTCN-3 interleave statements.

Our generation algorithm uses the Autolink approach [20] for the calculation
of the control flow of TTCN-3 test cases.5 The algorithm computes a so-called
path from the partially ordered set of MSC events. Such a path specifies a set
of traces, which includes no nondeterminism due to non-receiving events, but
considers all interleavings due to receiving events. This path representation takes
the port queue semantics of TTCN-3 into consideration. A path can be visualized
in form of a tree, where branching is related to alternative receiving events. Our
TTCN-3 generation algorithm computes a TTCN-3 test case that allows to test
all sequences of events described by the corresponding path.

The TIMEDTTCN-3 test case shown in the lines 6-29 of Fig. 3 has been gen-
erated automatically from the MSC test purpose shown in Fig. 2b. A comparison
of both figures may indicate how functional concepts in MSCs are transformed
into TTCN-3.

In this paper, we only have space to present the basic ideas of our TTCN-3
generation procedure. For test purpose specification, we also support HMSCs
and allow the usage of timers, actions and conditions in MSC test purposes. The
treatment of these constructs and the handling of complex MSC test purposes
is investigated in [1, 11, 20]. Our implementation follows these approaches.

3.3 Transforming MSC Real-Time Constructs to TIMEDTTCN-3

For deriving test cases, the different usages of real-time constructs in MSC test
purposes identified in Section 3.1 have to be handled separately.

Time Constrained Observations
Time constrained observations in test purposes are translated to TIMEDTTCN-3
5 Both, TTCN-2++ and TTCN-3 support asynchronous communication over message

queues. Therefore, the Autolink approach for the generation of TTCN-2++ test cases
from MSC test purposes can also be used for the generation of TTCN-3 test cases.

X Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

by generating timestamps for the observed events. For offline evaluation, the
timestamps are stored in the logfile produced by the test case. In the online
evaluation approach timestamps are compared during the test run, because they
are stored in variables. In the following, we focus on offline evaluation, but all
considerations can be generalized to online evaluation, because both approaches
are based on the generation of timestamps.

The example test purpose in Fig. 2b contains a time constrained observation.
Since the constraint is attached to the messages IDATreq and MDATind, the
TIMEDTTCN-3 statements for generating timestamps (lines 19 and 22 of Fig. 3)
are placed directly before and after the associated communication operations
(lines 20–21).

Our TTCN-3 generator generates timestamps that contain the value of the
local clock when the timestamp is generated and a label of type charstring,
which is used to identify timestamps afterwards. The value of the label is gen-
erated from the message name used in the MSC plus a consecutive number to
distinguish between different occurrences of the same message. The type defini-
tion for the TimestampType is added automatically at the top of the generated
module (lines 2–5). At the bottom, i.e., in the control part, a call to an evalua-
tion function is added (line 38) for each time constrained observation defined in
the MSC test purpose.

Evaluation functions may be provided in form of TIMEDTTCN-3 libraries.
For example, the predefined evaluation function evalMultipleDelays is used to
retrieve and evaluate a sequence of matching pairs of timestamps from a given
logfile. The parameters of the function identify the timestamps to be compared,
define the time interval between two timestamps6 and refer to the logfile, which
should be analyzed. If the time difference of each timestamp pair found in the
logfile fulfills the given requirement, the verdict pass is returned. If the real-time
requirement is violated, conf is returned and indicates a non-functional failure.
This result contributes to the final verdict of the test case (line 39).

Placement of Timestamping Statements
In a perfect world, no time passes between a send or receive event and the
corresponding timestamp generation. Hence, the time stored in the timestamp
is the actual time of the event. However, test cases are implemented on real
hardware, some time passes between both statements. Thus, we have the choice
of putting the log statement before or after a time constrained event derived from
a test purpose. For receive operations, we have to put the log statement after
the receive (lines 21–22 in Fig. 3), because a receive operation is blocking. But
for a send operation, we have the option to put a timestamping log statement
before or after the send operation.

In our example, for the time constraint related to the messages IDATreq and
MDATind, the log statement associated to the send operation in line 20 of
Fig. 3 may be inserted before or after this send operation. In the first case,
6 Upper and lower bound of the interval are defined by two float values. The param-

eters incl and excl define whether a boundary is closed or open.

Graphical Real-Time Test Specifications XI

(1) float sendTime;

(2) port.receive / port.send
(3) sendTime:=self.now+d;

. . .
(4) resume(sendTime);
(5) port.send

Fig. 5. TIMEDTTCN-3 skeleton for timed stimulus

the observed duration would be longer than in the second case. The choice
of placement depends on whether the time constraint stipulates a minimal or
maximal duration.

If the time constraint only has an upper bound (or the lower bound is zero
as in e.g., [0ms,5ms)), a maximal duration is specified. In this case, choosing
the placement which yields the shorter observed duration might result in a pass
verdict even though the actual duration violated slightly the real-time constraint.
Instead, we place in this case the log statement before the send operation as
shown in lines 19–20.

The opposite considerations hold for testing minimal durations, e.g., (1ms,).
We are on the safe side with an observed duration which is shorter than the
actual duration. Thus, we insert the log statement after the send operation.

In the combined case7, i.e. neither the lower interval bound is omitted or zero
nor the upper bound is omitted (e.g. [8ms,10ms]), it is a matter of preference
which bound is given the priority. If we assume that encoding for sending and
decoding for receiving takes a similar amount of time, we put the log statement
after the send operation because we have to put it also after the receive oper-
ation. This may lead to a measurement, which is closer to the reality since the
extra delay introduced by both operations will eliminate each other.

Time Constrained Stimuli
A time constrained stimulus in an MSC test purpose description is translated into
a TIMEDTTCN-3 resume statement, which is used to schedule the execution
of the related send operation. A generic TIMEDTTCN-3 skeleton for a time
constrained stimulus is shown in Fig. 5.

If the time constraint consists of a single point in time, e.g., [d], this value
can be used as relative offset to the self.now expression in line 3 of Fig. 5.

If the time constraint is an interval, e.g., [x,y], any of the values inside the
interval is possible as delay of the send operation. This may lead to an infinite
number of test cases, which is infeasible in practice. Using test data selection
heuristics, like domain boundary analysis, an appropriate number of test cases
can be selected, e.g., d=x for testing the extreme lower and d=y for testing the
extreme upper allowed point in time.

7 Note, that specifying a single element as interval for a time constrained observation
is not recommended, because it is very unlikely, that exactly that value is matched.

XII Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

port SUT

alt

[x,y]

msc time_constrained_alt

m1

m2

m0

(1) port.receive(m0);
(2) log(TimestampType:{self.now,”m0”});

. . .
(3) alt {
(4) [] port.receive(m1); {
(5) log(TimestampType:

{self.now,”Either m1 or m2”}); }
(4) [] port.receive(m2); {
(5) log(TimestampType:

{self.now,”Either m1 or m2”}); }
(6) }

(a) Test purpose (b) Derived test case

Fig. 6. Time constrained observation attached to first event of alternative

Time Constraints Attached to Inline Expressions and References
For MSC inline expressions and references several special cases have to be con-
sidered. In this paper, we are only able to cover a few of them.

A cyclic time constraint contained in a loop, can be treated nearly like or-
dinary relative time constraints: In a time constrained cyclic observation, time-
stamps are not generated for a pair of two communication events, but for a
sequence of a single communication event. Hence, a call to a different evaluation
function, working on sequences of a single timestamp only, is necessary. For a
time constrained cyclic stimulus, a different set of statements than presented in
Fig. 5 is required: the first execution of the send operation has to be performed
immediately, while all subsequent executions need to adhere to the cyclic time
constraint. This is achieved by the statements given in lines 7, 12–18 of Fig. 3.

For MSC inline expressions and references, MSC allows to impose time con-
straints on the first or last occurring MSC event which is contained in the inline
expression or reference, respectively. This means, that for every possible first
or last event, a timestamp has to be generated. Since a magnitude of different
permutations is possible, we present just the example in Fig. 6.

4 TIMEDGFT

GFT [9] is one of the standardized presentation formats of TTCN-3. It provides
an exact way of displaying TTCN-3 behaviour descriptions, i.e., test cases, alt-
steps, functions and module control, graphically. An one-to-one mapping from
TTCN-3 behaviour descriptions to GFT diagrams and vice versa can be found
in the appendices C and D of [9].

GFT is based on the MSC standard. It uses a subset of MSC and extends
this subset with test specific symbols and keywords. For all TTCN-3 statements,
there exists an appropriate GFT symbol. Thus, only the real-time extensions of
TIMEDTTCN-3 have to be considered in order to define our real-time extension
of GFT, which is called TIMEDGFT. The TIMEDGFT presentation of the special
TIMEDTTCN-3 concepts and statements is summarized in Fig. 7.

Graphical Real-Time Test Specifications XIII

MyTestCase(Berlin)

setverdict(fail)
myTestrun.

@[t+3.0]

new parameter of
MyTC:=CType.create (Berlin)

no special symbol

no special symbol

no special symbolsfirst, next, previous

conf

and

new parameter of

Non−functional verdict

Logging

Absolute time

Timezones

Realization

TimedTTCN3

Presentation

TimedGFT

getlog no special symbol

overwriting of verdicts
in control part

conf verdict

extension of
log

resume statement

now operation

timezone

create statement

statement execute

operation

statement

retrieve operations

operation

Concept

Logfile handling

Testrun handling

MyTemplate

Fig. 7. Real-time constructs of TIMEDGFT

4.1 Timezones

For the specification of clock synchronized test components, TIMEDTTCN-3 in-
troduced the concept of timezones. A timezone is an attribute, which is assigned
to a test component during its creation. In TIMEDGFT, the creation of a test
component is related to create and execute symbols. The assignment of a time-
zone is an additional parameter in a create or execute symbol (Fig. 7).

A test component may read its timezone attribute by means of a timezone
operation. TIMEDGFT provides no special symbol for the timezone operation.
Depending on the usage, the timezone operation may appear in several symbols.
For example, a timezone operation will appear in an action box, if it is used
in an assignment, or a timezone operation will be presented within a reference
symbol, if it defines the actual parameter of an altstep or function call.

4.2 Absolute Time

TIMEDTTCN-3 supports the usage of absolute time by providing the now op-
eration and the resume statement.

XIV Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

{"data"}

activate

{DT, number, "data"}

{AK, number}

for (iterator1:=0; iterator1 < 100; iterator1 := iterator1 + 1)

inres
mtc ISAP MSAP

pass

deactivate

IDATreq
{ "IDATreq1"}self.now,

{ "MDATind2"}self.now,

runs on

if (sendTime1==1.0)

InresRTExample()testcase

sendTime1 :=
self.now+ 0.01

sendTime1 :=
self.now+ 0.01

inres

float
sendTime1 := −1.0

iterator1 := 0
var integer

var

]sendTime_1

MDATind

MDATreq

@[

TimestampType:

TimestampType:

(OtherwiseFailAltStep)

Connection_Establishment ()

(OtherwiseFailAltStep)
OtherwiseFailDefault :=var default

Connection_Release ()

Fig. 8. TIMEDGFT presentation of the Inres test case in Fig. 3

The now Operation
The now operation is used for the retrieval of the current local time of a test
component. The local character of the now operation is reflected by its appli-
cation to the self handle. TIMEDGFT provides no special symbol for the now
operation. Depending on its usage, the now operation appears in different sym-
bols. In Fig. 8, the now operation is used in assignments and in log statements.
Therefore, they appear as inscriptions in action boxes and log symbols.

The resume Statement
The resume statement provides the ability to delay the execution of a test
component until a specified absolute time is reached. TIMEDGFT has adopted
the absolute time constraint symbol of MSC to present the resume statement
graphically. In Fig. 8, the visualization of resume(sendTime1) can be found.
Contrary to MSC, the dashed time line is attached to an instance and not to an

Graphical Real-Time Test Specifications XV

event. The reason is that the resume statement is a statement of its own and
can not be related to other events. For the mapping of TIMEDGFT to MSC, the
dashed time line may be attached to the event, which is deferred by the resume
statement.8

4.3 Logging Mechanism

TIMEDTTCN-3 refines the TTCN-3 log statement by allowing to write struc-
tured TIMEDTTCN-3 timestamp data values into logfiles. In GFT, log state-
ments are presented in action boxes. TIMEDGFT introduces a new log symbol.
The reason for this new symbol is that we want to emphasize places in the test
behaviour, where time and other information are collected in the logfile. Figure 8
presents the new symbol. It is used for logging the two timestamps {self.now,
“IDATreq1”} and {self.now, “MDATind2”} of type TimestampType.

4.4 Testrun and Logfile Handling

The result of the execution of a TIMEDTTCN-3 test case is a test verdict and
a log file. In the module control part, TIMEDTTCN-3 gives access to both by a
testrun handle, which is returned by the execute statement.

For the graphical presentation of a module control part, GFT provides a con-
trol diagram, which includes one control instance only. Fig. 9 shows the control
diagram of the example Inres TIMEDTTCN-3 module.

The getlog operation can be applied to a testrun handle in order to access the
log file, e.g. for offline evaluation. The context of the getlog operation determines
the symbol in which it is presented. For example, in Fig. 9, the getlog operation
is used in an assignment and therefore, presented in an action box.

The actual evaluation function evalMultipleDelays, which might be imported
from a library, is not shown. Such functions typically operate on logfiles. In order
to sort and navigate in logfiles, TIMEDTTCN-3 provides the functions first,
next, previous and retrieve. They have no special TIMEDGFT presentation.
In the same manner as for the getlog operation, their presentation depends on
the context in which they are used.

4.5 Verdict Handling

In addition to the existing verdicts, TIMEDTTCN-3 extends the verdict handling
of TTCN-3 by introducing the additional verdict conf and by allowing to access
and overwrite a test verdict in the control part of a module.

The handling of verdicts in TIMEDGFT is almost identical to their handling
in GFT. The setverdict operation is always presented in a condition symbol
(bottom of Fig. 9). There exists no special symbol to emphasize the getverdict
operation. The context determines the symbol in which it is presented.
8 The mapping of GFT to MSC is defined in Annex F of [9]. A similar mapping of the

TIMEDGFT to MSC will be defined when TIMEDGFT becomes part of GFT.

XVI Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

control

execute (InresRTexample)
myTestrun:=

module InresRTexample_module

pass)(myVerdict ==if

var logfile
var testrun

myVerdict :=

evalMultipleDelays

myTestrun. getverdict

("IDATreq1", "MDATind2",
0.0, incl, 0.005, excl, mylog)

myTestrun;
myLog;

var verdicttype

myVerdict:=

myLog :=
myTestrun. getlog

myVerdict

myTestrun.
setverdict (myVerdict)

Fig. 9. TIMEDGFT control diagram for Fig. 3

The only difference of TIMEDGFT to GFT with respect to verdict handling
is the setting of verdicts in the module control part or in functions called by
the module control part. In these cases, the complete TIMEDTTCN-3 statement
including the testrun handle has to be written into the condition symbol, because
without the testrun handle, the relation between verdict and testrun would not
be clear. The retrieval and the setting of a verdict by means of a testrun handle
inside a control diagram is shown in Fig. 9.

4.6 Evaluation Functions

On- and offline evaluation involves the application of different pre-defined func-
tions and operators which operate on the gathered timestamps. TIMEDGFT
provides no special symbols for the call of evaluation functions. They may be
presented in action or reference symbols.

5 Outlook

In this paper, we presented the MSC-based specification of real-time test pur-
poses and the generation of TIMEDTTCN-3 test cases from MSC test purposes.

Graphical Real-Time Test Specifications XVII

Furthermore, we introduced TIMEDGFT, a real-time extension of GFT, which
allows to present TIMEDTTCN-3 graphically. This paper can be seen as the
continuation of our work on TIMEDTTCN-3 [3].

At present, we develop tools, which support the generation of TIMEDTTCN-3
test cases from MSC test purposes. A first prototype of our tool is already
available and our experiments with more complex test purposes are promising.
Furthermore, we work on the prototype of a TIMEDGFT tool.

We also started to define the semantics of TIMEDTTCN-3 by enriching the
semantics of TTCN-3 with real-time concepts. We plan to submit this semantics
extension together with TIMEDGFT to the ETSI standardization process in order
to have a full integration of TIMEDTTCN-3 into the TTCN-3 standards series.

References

1. P. Baker, P. Bristow, C. Jervis, D. King, and B. Mitchell. Automatic Generation
of Conformance Tests From Message Sequence Charts. In Proceedings of the 3rd
SAM (SDL and MSC) Workshop, 2002.

2. P. Baker, E. Rudolph, and I. Schieferdecker. Graphical Test Specification – The
Graphical Format of TTCN-3. In R. Reed and J. Reed, editors, SDL2001 – Meeting
UML. Springer, 2001.

3. Z.R. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 – A Real-Time Ex-
tension for TTCN-3. In I. Schieferdecker, H. König, and A. Wolisz, editors, Testing
of Communicating Systems, volume 14, Berlin, March 2002. Kluwer.

4. Danet TTCN Toolbox – TTCN-3.
http://www.bss.danet.de/solution/ttcn/ttcn toolbox ttcn-3 uk.htm, 2002.

5. Da Vinci Communications Terzo tools product information.
http://www.davinci-communications.com/products ttcn3.html, 2002.

6. M. Ebner, A. Yin, and M. Li. Definition and Utilisation of OMG IDL to TTCN-3
Mappings. In I. Schieferdecker, H. König, and A. Wolisz, editors, Testing of Com-
municating Systems - Application to Internet Technologies and Services, volume 14.
Kluwer, 2002.

7. ETSI Technical Report (TR) 101 666 (1999-05): Information technology - Open
Systems Interconnection Conformance testing methodology and framework; The
Tree and Tabular Combined Notation (TTCN) (Ed. 2++). European Telecommu-
nications Standards Institute (ETSI), Sophia-Antipolis (France), 1999.

8. ETSI European Standard (ES) 201 873-1 V2.2.1 (2002-08): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis (France), 2002.

9. ETSI European Standard (ES) 201 873-3 V2.2.1 (2002-09): The Testing and Test
Control Notation version 3; Part 3: Graphical Presentation Format for TTCN-
3 (GFT). European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis (France), 2002.

10. N. Goga. Comparing TorX, Autolink, TGV and UIO Test Algorithms. In R. Reed
and J. Reed, editors, SDL2001 – Meeting UML. Springer, 2001.

11. J. Grabowski, B. Koch, M. Schmitt, and D. Hogrefe. SDL and MSC Based Test
Generation for Distributed Test Architectures. In R. Dssouli, G. von Bochmann,
and Y. Lahav, editors, SDL’99 - The next Millenium. Elsevier Science Publishers
B.V., 1999.

XVIII Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen

12. J. Grabowski and T. Walter. Visualisation of TTCN test cases by MSCs. In Y. La-
hav, A. Wolisz, J. Fischer, and E. Holz, editors, Proceedings of the 1st Workshop
of the SDL Forum Society on SDL and MSC - SAM’98, 1998.

13. J. Grabowski, A. Wiles, C. Willcock, and D. Hogrefe. On the Design of the New
Testing Language TTCN-3. In H. Ural, R.L. Probert, and G. von Bochmann,
editors, Testing of Communicating Systems, volume 13. Kluwer, 2000.

14. D. Hogrefe. Report on the Validation of the Inres System. Technical Report
IAM-95-007, Universität Bern, November 1995.

15. A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL speci-
fications. In R. Dssouli, G. von Bochmann, and Y. Lahav, editors, SDL’99 - The
next Millenium. Elsevier Science Publishers B.V., 1999.

16. H. Neukirchen. Corrections and extensions to Z.120, November 2000. Delayed
Contribution No. 9 to ITU-T Study Group 10, Question 9.

17. I. Schieferdecker, S. Pietsch, and T. Vassiliou-Gioles. Systematic Testing of Internet
Protocols - First Experiences in Using TTCN-3 for SIP. In Proceedings of the 5th
IFIP Africom Conference on Communication Systems, Cape Town (South Africa),
May 2001.

18. I. Schieferdecker and B. Stepien. Automated Testing of XML/SOAP based Web
Services. In Proceedings of the 13th. Fachkonferenz der Gesellschaft für Infor-
matik (GI) Fachgruppe ”Kommunikation in verteilten Systemen” (KiVS), Leipzig
(Germany), Feb. 26.–28. 2003.

19. I. Schieferdecker, B. Stepien, and A. Rennoch. PerfTTCN, a TTCN Language
Extension for Performace Testing. In M. Kim, S. Kang, and K. Hong, editors,
Testing of Communicating Systems, volume 10. Chapman & Hall, 1997.

20. M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Koch. Autolink – Putting
SDL-based test generation into practice. In A. Petrenko and N. Yevtuschenko,
editors, Testing of Communicating Systems, volume 11. Kluwer, 1998.

21. J.Z. Szabó. Experiences of TTCN-3 Test Executor Development. In I. Schiefer-
decker, H. König, and A. Wolisz, editors, Testing of Communicating Systems -
Application to Internet Technologies and Services, volume 14. Kluwer, 2002.

22. Telelogic Tau/Tester product information. http://www.tautester.com/, 2002.
23. Testing Technologies TT Tool Series product information.

http://www.testingtech.de/products/TTToolSeries.html, 2002.
24. T. Walter and J. Grabowski. A Framework for the Specification of Test Cases for

Real Time Distributed Systems. Information and Software Technology, 41:781–798,
1999.

25. Recommendation Z.120: Message Sequence Charts (MSC). International Telecom-
munication Union (ITU-T), Geneve, 1999.

26. T. Zheng and F. Khendek. An extension to MSC-2000 and its application. In
Proceedings of the 3rd SAM (SDL and MSC) Workshop, 2002.

