
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2006-05

Masterarbeit
im Studiengang ”Angewandte Informatik”

A Refactoring Tool for TTCN-3

Benjamin Zeiß

am Institut für

Informatik

Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

15. März 2006

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, daß ich die vorliegende Arbeit selbständig verfaßt und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 15. März 2006

Master’s thesis

A Refactoring Tool for TTCN-3

Benjamin Zeiß

March 15, 2006

Supervised by Dr. Helmut Neukirchen
Software Engineering for Distributed Systems Group

Institute for Informatics
Georg-August-University Göttingen

Abstract

Software is continuously growing in size and getting more and more complex while de-
velopment cycles are getting shorter. The resulting software aging effect leads to a decay
in software quality causing maintainability problems and bugs. Software engineering tech-
niques like modularization, object-orientation, design patterns, aspect-oriented program-
ming or refactoring have been developed to slow down the software aging effects, increase
flexibility and support reuse.

Software tests written in the TTCN-3 core notation also suffer from the effects of software
aging. Huge efforts are spent to maintain TTCN-3 test suites, but even standardized test
suites often consist of few files with a length of several ten-thousand lines each. Refac-
toring is a proven technique to systematically restructure code to improve its quality and
maintainability while preserving the semantics which can also be applied to TTCN-3.

In this thesis, existing well known refactorings have been investigated for their applicabil-
ity and a catalog with 20 specific refactorings for TTCN-3 is presented. In addition, a tool
called TRex based on the Eclipse Platform has been implemented which provides the infras-
tructure for automating TTCN-3 refactorings and corresponding sample implementations
of TTCN-3 refactorings.

Contents

1 Introduction 6

2 Foundations 8
2.1 TTCN-3 . 8

2.1.1 Language Basics . 8
2.1.2 Concepts . 9

2.2 ANTLR . 14
2.3 Eclipse . 15

3 Evolution of Software and TTCN-3 Tests 19
3.1 Bad Smells . 20
3.2 Refactoring . 22
3.3 Refactoring Formalisms . 23
3.4 Refactoring Automation . 24
3.5 Related Work . 25

4 A TTCN-3 Refactoring Catalog 27
4.1 General Refactorings Applied to TTCN-3 . 28

4.1.1 TTCN-3 Compatible Classical Refactorings 28
4.1.2 Extract Function . 30

4.2 TTCN-3 Specific Refactorings . 33
4.2.1 Extract Altstep . 35
4.2.2 Split Altstep . 37
4.2.3 Replace Altstep with Default . 41
4.2.4 Add Explaining Log . 43
4.2.5 Distribute Test . 45
4.2.6 Inline Template . 49
4.2.7 Inline Template Parameter . 51
4.2.8 Extract Template . 53
4.2.9 Replace Template with Modified Template 55
4.2.10 Parameterize Template . 57

4

Contents

4.2.11 Decompose Template . 59
4.2.12 Subtype Basic Types . 61
4.2.13 Extract Module / Move Declarations to Another Module 62
4.2.14 Group Fragments . 65
4.2.15 Restrict Imports . 66
4.2.16 Prefix Imported Declarations . 69
4.2.17 Parameterize Module . 71
4.2.18 Move Module Constants to Component 73
4.2.19 Move Local Variables/Constants/Timer to Component 74
4.2.20 Move Component Variable/Constant/Timer to Local Scope 77
4.2.21 Generalize Runs On . 78

5 The TRex Refactoring Tool 81
5.1 The TRex Architecture . 81
5.2 The Pretty Printer . 86

5.2.1 The Tree Walker . 86
5.2.2 Token Weaving for Comments . 88

5.3 Symbol Table . 90
5.3.1 Data Structure . 90
5.3.2 Design . 90

5.4 TTCN-3 Refactorings in Eclipse . 93
5.4.1 The Language Toolkit (LTK) . 93
5.4.2 The Identifier Range Map . 96
5.4.3 The Rename Refactoring . 98
5.4.4 The Inline Template Refactoring . 103

5.5 Further Functionality in TRex . 105
5.5.1 Text hover . 106
5.5.2 Open Declaration . 106
5.5.3 Content Assist . 107
5.5.4 Find References . 108
5.5.5 AST View . 108

5.6 Testing and Building TRex . 109
5.6.1 Unit Tests . 109
5.6.2 The Build System . 111

6 Conclusion 113

Abbreviations and Acronyms 116

Bibliography 118

5

1 Introduction

Software is critical for everybody’s daily life and is continuously becoming more and more
complex. In software development, techniques have been developed and proven to increase
the development speed, improve flexibility, reduce costs and decrease the number of errors.
Concepts related to these techniques are modularization, object-orientation, design pat-
terns [40] or refactoring [35]. In addition, software tests (e.g. unit tests) are used to verify
the correctness of software modules in an automated way. A tremendous amount of money
is spent on quality assurance which includes such software tests.

The automated test suites must not only keep up with the development speed of the
product itself, but often, they need to be improved as well in terms of test coverage. However,
they suffer from the same effects that is visible in ordinary software. This effect is called
software aging and describes the decay of quality within the code. In the worst case, this
decay of quality makes the code unmaintainable. Even automatically generated test suites
are affected when the actually generated code must be analyzed, e.g. when a test failed. In
addition, maintenance of automatically generated test suites can be hard when they need to
be manually modified, e.g. because the corresponding model is incomplete or too abstract
to derive complete test suites.

The Testing and Test Control Notation version 3 (TTCN-3) [31, 43] is widely used for test
specification and implementation of distributed systems. While its predecessor TTCN-2 [44]
has been primarily used for OSI conformance testing and the testing of other protocols in
the telecommunications sector, the successor TTCN-3 is more flexible and not limited to
this domain any more. In addition, the newly introduced core notation in TTCN-3 provides
the flexibility of modern programming languages that are known to suffer from aging. For-
tunately, the same or at least similar techniques from the classical software engineering can
be used to fight these effects.

Refactoring [35] is such a technique. It provides a way to systematically restructure
software in a behavior preserving way to improve its quality and therefore counteract the
software aging process. In this thesis, refactoring is suggested as a reasonable method to
improve the quality of TTCN-3 test suites and is comprised of the following contributions:

• Research on the applicability of well known refactorings for Java and a catalog pre-
senting 21 refactorings specific to TTCN-3.

• An infrastructure for the realization of automated refactorings in TTCN-3 named
TRex(TTCN-3 Refactoring and Metrics Tool).

• Two refactorings implemented on the basis of this infrastructure.

6

The structure of this thesis is as follows: following this introduction, the foundations for
this thesis are given in chapter 2. This includes a short introduction to the TTCN-3 core no-
tation as well as the technical base for the implementation of the refactoring infrastructure.
ANTLR and the Eclipse Platform are the two of its key components.

In chapter 3, the process of software and test aging is explained. It is discussed how
problematic code pieces can be identified and to what extent refactoring is a solution to
these problems in TTCN-3.

A refactoring catalog for TTCN-3 is presented in chapter 4. A total of 72 refactorings for
Java [35] have been studied for their applicability to TTCN-3. In addition, 21 refactorings
specific for TTCN-3 have been developed and are presented in this chapter. These descrip-
tions can be used for manual application of the refactorings, but also as a guideline for the
implementation of automated refactorings which reduce errors and save time in comparison
to manually applied refactorings.

The implementation of the infrastructure for automated TTCN-3 refactorings as well as
the implementation of two concrete refactorings (Rename and Inline Template) is described
in chapter 5. In addition, several functionalities have been implemented on top of the same
infrastructure to enhance the programming and development experience with the TRex tool.

Finally, an overall summary and conclusion is given in chapter 6.

7

2 Foundations

Before TTCN-3 refactoring is dealt with in detail, the thesis foundations are presented in this
chapter. It provides a brief introduction to TTCN-3 as a language for test specification and
implementation and introduces the tools used for the implementation of TRex (i.e. ANTLR
and the Eclipse Platform).

2.1 TTCN-3

TTCN-3 (Testing and Test Control Notation Version 3) is a test specification and imple-
mentation language standardized at the European Telecommunications Standards Institute
(ETSI). It is the successor of TTCN-2 (Tree and Tabular Combined Notation) which was
originally designed for the conformance testing of OSI (Open Systems Interconnection) pro-
tocol implementations and was widely used for the testing of telecommunication protocols
like GSM, UMTS or DECT. These tests are black-box tests based on the protocol specifica-
tion (i.e. no internal details about the implementation of the system under test (SUT) are
known). TTCN-3 is more flexible than TTCN-2 and can also be used for other purposes
such as the testing of internet protocols (e.g. IPv6 or SIP) or APIs while it retains the
proven features. Although system test is still the main field of interest for TTCN-3, it is
basically capable of handling lower level tests such as integration tests and unit tests as well.
Test cases in TTCN-2 were written using a tabular notation. TTCN-3 introduces the core
notation [31] which is a textual syntax similar to other modern programming languages. It
is therefore easy to learn and easy to use for any programmer.

While the core notation may look similar to other modern programming languages, it is
designed with testing in mind and contains concepts not part of other languages (e.g. build-in
data matching, extended type system, integrated timer support or concurrent test compo-
nent execution). The TTCN-3 core language can be represented in different formats besides
the core notation. Two other presentation formats, the tabular presentation format [33]
and the graphical presentation format [30], are standardized by the ETSI as well. The core
notation is the only presentation format discussed in the following sections and chapters.

2.1.1 Language Basics

The most basic construct in TTCN-3 is the module. A module can contain a whole test
suite or it may contain library code. Such library code can be used in other modules through

8

2.1 TTCN-3

Figure 2.1: TTCN-3 Module Structure

the import statement. The import statement can be specified finely grained and therefore
allows minimal interfaces between modules. Modules consist of a definitions part and a
control part (of which both are optional). The definitions part contains declarations1 for
constants, types, templates, functions, altsteps, testcases, signatures and module parame-
ters. Figure 2.1 illustrates the module structure.

TTCN-3 contains a very large number of built-in types. The most basic data types and
most widely used ones are the types integer, boolean, charstring, float and record. The
built-in data types can be used to declare user-defined types. Both, built-in data types
as well as user-defined types, can be used to declare templates (data descriptions) which
are subsequently used for the message-based communication using the send and receive
operations on the ports of a test component.

Constants, types, functions and basic statements (such as conditionals, assignments or
loops) are similar to other well known programming languages and are hence not discussed
in this thesis (details can be found in [74] or [31]).

2.1.2 Concepts

Unlike a regular modern programming language, TTCN-3 contains functionalities and con-
cepts that are specific for testing. The refactorings presented in chapter 4 are based on
these specific concepts. Therefore, a subset of these concepts is introduced in this section.

1The difference of the terms ”definition” and ”declaration” in the context of TTCN-3 is not entirely
clear as it is primarily a specification language rather than a programming language that allocates memory.
Therefore, the term ”declaration” is used exclusively throughout this thesis to avoid confusion.

9

2 Foundations

Subtypes

Subtypes are used to restrict the allowed range of an existing type declaration. This can
avoid manual value verifications as subtype violations automatically lead to an error either
at compile time or runtime. Listing 2.1 shows a few subtype examples. In line 1, a bit is
defined as a range of integer values between zero and one. A second possibility is the use of
value list as found in line 3. In this type declaration, the value of charstring MyStringList can
only be one of the specified character strings. In line 5, the length of the string is limited
to a length between 2 and 8 characters. There are several other subtyping mechanisms
available (such as matching character patterns).

1 type integer MyBit (0 . . 1) ;
2
3 type charstring MyStringList ("abcd" , "rgy" , "xyz") ;
4
5 type charstring MyString length (2 . . 8) ;

Listing 2.1: Subtypes

Components

A test configuration in TTCN-3 consists of one or more test components. Each component
contains one or more communication ports which describe its interface. In the more simple
test scenarios, the test system interface (TSI) of the system under test (SUT) is defined
within a single component which is then called the main test component (MTC). Every test
configuration has one MTC and may have any number of parallel test components (PTC).
Initially, a test case is executed on the MTC. This test case may dynamically create PTCs
using the create operation. In addition, components can have local constants, timers,
templates and variables.

1 type port MyPort message {
2 in charstring
3 }
4
5 type component MyComponent {
6 port MyPort msgInPort ;
7 }
8
9 type component MyExtendedComponent extends MyComponent {

10 var integer myValue ;
11 }

Listing 2.2: Components

10

2.1 TTCN-3

Listing 2.2 shows a component declaration. First, in lines 1–3, a port is declared. This port
is able to receive character string messages. Secondly, the component is declared in lines 5–7.
The previously defined port is used in this component and therefore declaring its interface.
Finally, components can be extended, i.e. the extended component implicitly contains all
declarations of the parent type. This concept is similar to inheritance of classes as known
from Java. However, components do not contain any behavior and therefore there is no such
thing as polymorphism in TTCN-3. Lines 9–11 show the extended component declaration.
The extended component contains an additional integer variable called myValue.

Test Cases

Test cases are behavioral descriptions much like functions (in TTCN-3) or methods in other
languages. However, they are specifically run on a test component (through the runs
on clause). If only the MTC is instantiated, this test component provides the interface
towards the SUT implicitly. Otherwise, the test system interface must be specified through
the system clause. Every component contains an implicit local test verdict which can be
used with the setverdict and getverdict operations. Test cases are executed from the
control part of a TTCN-3 module. The control part is the entry point of the execution of a
TTCN-3 module much like the main method in Java or C++.

1 testcase myTestcase () runs on myComponent {
2 setverdict (f a i l) ;
3 }
4
5 control {
6 var verdicttype v := execute (myTestcase) ;
7 }

Listing 2.3: Test Case

Listing 2.3 demonstrates the use of a test case using its local verdict. In line 1, a test
case myTestcase is declared which uses the interface of the component myComponent. The
use of the setverdict operation is shown in line 2. The local verdict of this test case is
set to fail. Of course, real test cases would set the local verdict depending on the result of
the test case behavior. The control part starting at line 5 is then used to execute the test
case (line 6). The execute operation returns the test case verdict which can be stored in a
variable and used for subsequent control part behavior.

Templates

On the one hand, templates are data descriptions for the messages that are send to the SUT
or parallel components and on the other hand, they are used to test whether a received

11

2 Foundations

message corresponds or matches to a template specification. In the simplest case, a template
is just a concrete instance of a type with values assigned to it. However, templates can
contain more complicated values such as patterns for matching a set of messages.

1 type record PersonType {
2 charstring f irstName ,
3 charstring middleName optional ,
4 charstring lastName
5 }
6
7 template PersonType Turing {
8 f i rstName := "Alan" ,
9 middleName := omit ,

10 lastName := "Turing"

11 }
12
13 template PersonType TuringFul l modifies Turing {
14 middleName := Mathison
15 }
16
17 template PersonType MyPerson (charstring p firstName , charstring p lastName) {
18 f i rstName := p firstName ,
19 middleName := omit ,
20 lastName := p lastName
21 }

Listing 2.4: Templates

The declaration of templates is demonstrated in listing 2.4. The type declaration used by
the template can be found in lines 1–5. There are several possibilities to declare templates.
The most simple one is to just assign values to a template of a given type. This is shown in
lines 7–11. The second way to declare templates is to use another template definition and
only change the values that differ. These declaration are called modified templates (lines 13–
15). Finally, templates can be parameterized as shown in lines 17–21 and inlined (i.e. an
in-place value list notation directly within the test behavior). In the behavior, templates
are typically sent and received using the send and receive statements.

Alt Statements

The receive operation or the timeout operation are blocking operations, e.g. when they are
used as normal statement, they would block the execution of the remaining behavior until
the specified message is received or a specified timer expires. The alt statement provides the
possibility to provide alternatives for such blocking statements allowing fine grained error
handling (e.g. when an unexpected message arrives) and alternative behavior for different
messages received.

12

2.1 TTCN-3

1 testcase myTestcase () runs on myComponent {
2 alt {
3 [] pt . receive (expectedMessage) ;
4 pt . send (answerMessage) ;
5 }
6 [] any port . receive {
7 setverdict (f a i l) ;
8 }
9 }

10 }

Listing 2.5: Alt Statements

Listing 2.5 demonstrates such an alt statement (lines 2–9). It is located within a test case
myTestcase (line 1). Two alternatives are provided: either the message expectedMessage is
received on port pt (line 3) and as a result a message answerMessage is sent back or an
unexpected message is received on any port (line 6). In this case, the verdict is set to false
(line 7).

Altsteps

Quite often alt statements resemble each other. For this reason, altsteps can be used to
combine several alt statements. The duplicate alternatives are replaced with a reference to
the name of the altstep. Actually, altsteps can be comprehended as a function especially
for alternatives of an alt statement.

1 altstep myErrorHandler () {
2 [] any port . receive {
3 setverdict (f a i l) ;
4 }
5 }
6
7 testcase myTestcase () runs on myComponent {
8 alt {
9 [] pt . receive (expectedMessage) ;

10 pt . send (answerMessage) ;
11 }
12 [] myErrorHandler () { }
13 }
14 }

Listing 2.6: Altsteps

An example is given in listing 2.6. In line 1, an altstep with the name myErrorHandler is
declared. The sole purpose of this altstep is to handle all message received on an unexpected
port (line 2). As in the previous example (listing 2.5), the test case verdict is set to fail

13

2 Foundations

(line 3) if such a message is received. This altstep is used in the test case myTestcase
(line 7). The alt statement handles expected messages (lines 9–10) and then calls the
altstep myErrorHandler to do the error handling (line 12).

As altsteps are often called at the end of alt statements, there is a concept called default
altsteps. The concept is similar to the concepts of aspect-oriented programming. Altsteps
are activated as default altstep using the activate statement and deactivated using the
deactivate statement. Once, an altstep is activated, it is implicitly attached to the end of
each alt statement.

2.2 ANTLR

ANTLR (Another Tool for Language Recognition) [1] is a tool using grammatical descrip-
tions (similar to EBNF) of languages to generate code for lexical analysis (lexer) and syn-
tactical analysis (parser) in Java, C++, Python or C#. Tools like ANTLR are used since
typical hand-written lexers and parsers involve a lot of similar code making it a laborious
task to write them. Code generators like ANTLR take this burden off the programmer and
reduce the amount of work to specifying a grammar enhanced with semantic action rou-
tines. Semantic actions are code pieces that are associated to rules within the grammar and
executed when the rules are applied by the parser. These actions, for example, support cre-
ating parse trees. In addition to the generation of lexers and parsers, ANTLR supports the
generation of code to traverse syntax trees. This code is again generated from a grammatical
description called tree grammar which essentially is a tree specification. Tree grammars can
be enriched with semantic actions as well. For example, symbol tables, translators or pretty
printers can be implemented using tree grammar actions. The resulting code is called tree
parser or tree walker.

Figure 2.2 shows the processing order. First, text is read and tokenized by the lexer
according to the rules specified in the lexer grammar. The result is a stream of tokens
which is used as input of the parser. The parser matches the specified parser grammar
rules on the token stream and uses either built-in functions or semantic actions to create
an abstract syntax tree (AST) or a parse tree. The resulting tree is walked in a depth-
first manner using the tree grammar specification. An example tree grammar is shown in
listing 2.7. This grammar is used to evaluate a typical arithmetic expression syntax tree.
In line 1, the ExprTreeParser is declared and extended from an abstract TreeParser class.
The node specification for the expression node expr is located in lines 3–9. The tree parser

Text Lexer Token
Stream Parser AST Tree

Parser

Figure 2.2: ANTLR Processing Order

14

2.3 Eclipse

evaluates only expressions using integer values. Therefore, the return value is an integer
and is initialized with zero (line 3). a and b are declared as local integer variables in line 4
and are assigned return values in lines 5–7 or the token value in line 8. In lines 5–7, the
expressions are evaluated within the curly brackets depending on the subnode (i.e. the return
values are added when the subnode is a PLUS etc.). The syntax within the curly brackets
is inlined into the generated code and hence is written in the target language.

1 c l a s s ExprTreeParser extends TreeParser ;
2
3 expr r e tu rn s [i n t r=0]
4 { i n t a , b ; }
5 : #(PLUS a=expr b=expr) { r = a+b ;}
6 | #(MINUS a=expr b=expr) { r = a−b ;}
7 | #(STAR a=expr b=expr) { r = a∗b ;}
8 | i : INT { r = (i n t) In t eg e r . pa r s e In t (i . getText ()) ; }
9 ;

Listing 2.7: Simple Calculator Evaluation Tree Parser

Unlike other popular code generators for language recognition such as Lex and Yacc [14]
which generate code on the basis of an LALR algorithm (bottom-up parsers), ANTLR uses
a predicated LL(k) algorithm (top-down parsers). As a result, the generated code is easy
to understand and similar to what a hand-written parser would look like.

ANTLR is developed by Terence Parr and colleagues since 1989 and was formerly known
as PCCTS. It is available under the BSD license [13].

2.3 Eclipse

The term Eclipse is often used as synonym for the Eclipse Platform or a Java IDE, but in
fact, Eclipse is essentially an open source community managed through the Eclipse Foun-
dation that builds Java based tools with the Eclipse Platform being the most important
and most popular subproject. The most important Eclipse project is the Eclipse Project
which includes the Eclipse Platform, the Eclipse Rich Client Platform (RCP) and the Java
Development Tools (JDT). The Eclipse nomenclature is therefore slightly confusing. Other
important Eclipse projects include AspectJ (an aspect-oriented language extension for Java),
the Web Tools Platform (WTP) which extends the Eclipse Platform with tools for the de-
velopment of J2EE web applications or the Eclipse Modeling Framework (EMF) which is a
modeling framework and code generation facility for building tools and applications based
on a structured data model.

15

2 Foundations

Eclipse was originally developed by IBM, but is now independent. In fact, many known
tool vendors such as Borland or BEA joined the Eclipse foundation to support the Eclipse
development. In TRex, only the Eclipse Platform is used.

Eclipse Platform

The Eclipse Platform is a generic tooling platform and software framework which can be
conceived as the generic foundation for an integrated development environment (IDE). The
popular JDT are a prime example for a successful IDE on the basis of the Eclipse Platform.

The architecture of the Eclipse Platform is shown in figure 2.3. At its core is the Platform
Runtime which provides the plug-in infrastructure and is responsible for booting Eclipse as
well as discovering, loading and managing the installed plug-ins. The plug-in infrastructure
is based on the OSGi framework R4.0 specification [10]. It forms a framework for defining,
composing and executing components or bundles. Bundles can be thought of as plug-in
implementations. In fact, every Eclipse plug-in is a bundle and the term plug-in in the
context of Eclipse is merely used for historical reasons as the Eclipse vocabulary (e.g. in the
documentation) was not adjusted when the underlying plug-in infrastructure was switched
to an OSGi framework implementation (project Equinox) in Eclipse 3.0.

One key characteristic of the Eclipse Platform is the fact that almost every functionality
is implemented as plug-in (also called extension). Plug-ins are loaded lazily, i.e. they are
only loaded when they are really needed. As a result, the number of installed plug-ins has
only little effect on the startup time of Eclipse. Instead of loading all classes belonging
to a plug-in at startup, only a plug-in XML specification located in plugin.xml files are
loaded. In this specification, there is a definition of extensions the plug-in provides for
certain extension points. These extension points are either part of the Eclipse Platform or
of other plug-ins. Hence, plug-ins can in turn be extended by other plug-ins if they provide
their own extension points. Eclipse features are a set of plug-ins or other features belonging
together. They are mainly used for distribution and branding. Distribution of a product’s
Eclipse plug-ins is typically realized through an update site which is a directory on a web
server with a fixed layout and an XML specification file site.xml containing information
about the contents of the update site. These update sites are feature driven, i.e. update
sites distribute features and not plug-ins directly. Feature-based branding is concerned with
customizing the appearance of an Eclipse product, e.g. using custom icons. Features are
also specified through an XML file called feature.xml. Thus, a lot of Eclipse configuration
is driven through XML. Fortunately, an Eclipse Developer does not need to deal with the
corresponding XML Schemas directly in most cases as Eclipse provides plug-ins especially
designed for Eclipse development. These plug-ins are called PDE (Plug-In Development
Environment). It adds views and wizards for creating, maintaining and publishing Eclipse
plug-ins and takes care of the XML generation.

16

2.3 Eclipse

Eclipse Platform

Workspace

Workbench

SWT

Language Toolkit (LTK)

JFace

Eclipse Components (Help, Search, etc.)

Platform Runtime

Figure 2.3: The Eclipse Platform

On the right of figure 2.3 is the workspace which manages one or more projects. A project
is comprised of files and folders which (in Eclipse 3.2) map to an abstract file system layer
(e.g. the local file system). When developing plug-ins using PDE, Eclipse differentiates
between the host workbench (the one which is used for working on the plug-in sources) and
the runtime workbench which is used when a second eclipse instance is started for testing
the plug-in.

The Standard Widget Toolkit (SWT) provides a standard widget set for the user interface
based on the native elements of the underlying operating system. JFace is built on top of
SWT and supports common UI tasks, e.g. by offering classes for wizard generation. In
comparison to Swing which is part of the Java API, SWT and JFace provide a native look
and feel (i.e. they use the widgets offered by the operating system) for each platform and
the UI typically feels a little more responsive than Swing UIs. On the downside, SWT uses
JNI (Java Native Interface) for platform specific binary code on each platform.

The Workbench is the actual user interface which is the base for any IDE developed on top
of the Eclipse platform. The UI paradigm centers around editors, views and perspectives.
A view is the part that makes up a window in the Workbench. Editors are actually a
similar concept as views. The main difference is that editors can only appear in one region
of the Workbench, they have different content states (e.g. dirty state for an editor with
modified content), editors can be associated with a filename and multiple instances of an
editor can be opened. In addition, several abstract editors are provided making it easy to
create source editors with syntax highlighting for example. Figure 2.4 shows a screenshot
of a typical Eclipse workbench. On the left is the Package Explorer view which displays
projects and the classes/files belonging to each project, but based on packages instead of
folders. In the center, there is a Java source editor, on the right the Outline displaying

17

2 Foundations

Figure 2.4: Eclipse Workbench

clickable declared elements within the opened Java source. On the bottom are typically
views like the problem view displaying the results of on-the-fly syntactical and semantical
analysis. View arrangements as just described can be stored and are called perspectives. For
example, when debugging a Java program, another more appropriate debugging perspective
is used which contains views with the variable contents or breakpoints.

Several other components are part of the Eclipse platform. This includes typical IDE
functionality such as a search dialog or an online help. These components are partially
based only on the core or core-based extensions and partially depended on the workbench.
For TRex, the Language Toolkit (LTK) component is of particular interest as it provides a
framework for the implementation of semantic preserving workspace transformations.

While the Eclipse Platform was originally designed to be a tooling platform, it has also
become a generic software platform for rich-client applications (as opposed to thin-client
applications). The Eclipse Platform is released under the Eclipse Public License (EPL) [5].

18

3 Evolution of Software and TTCN-3 Tests

Software aging [63] is a common cause for software failures and system outages. The degra-
dation of software over time is exhibited in reduced extensibility, reusability, maintainability,
efficiency and increased complexity. This process is inevitable as software is complex and
never free of errors. Verification that a software system is completely bug free is usually
impossible. Even successful and well designed software is affected by this process. It is ex-
pensive to change software properly and new customer-demanded functionality is therefore
often added without adapting the architecture accordingly to reach short-term goals. The
code loses its structure in a cumulative way and maintenance of such a software becomes a
burden, changes are difficult and the software becomes unreliable.

TTCN-3 test suites are also complex pieces of software. They only have the special
purpose to black-box test other software or hardware systems. However, while it is true
that regression tests, for example, are usually run with the same test suites for comparative
reasons, test suites are nevertheless under constant development to improve the test coverage
on the one hand and on the other hand to reflect the evolution of the SUT. TTCN-3 test
suites may also be generated from specifications on model level (e.g. UML models) and they
are high quality in terms of correctness. Unfortunately, they are hard to understand and
reuse. In practice, changes to test suites are rarely implemented at model level, but directly
in the generated core notation. As a result, test engineers often deal with generated or
outgrown hand-written test suites that must be extended and maintained on core notation
level. The same problems apply as in ordinary software: to reach short-term goals, test suite
maintenance is disregarded and the test suites lose structure. Similar to ordinary software,
the test suite verdicts may become unreliable. While this may not be instantaneously impact
the product (the SUT), there are still subtle consequences:

• Defects may be reported that are actually working properly and as a result unneces-
sarily consume time of the development team.

• Real defects covered through the test suite may not be detected and the SUT quality
decreases.

• Unmaintainable test suites can not be extended or changed and the resulting effects
are:

– The test coverage can not be improved. Uncovered bugs stay undetected.

– The test suite can not be adapted to the evolving SUT.

19

3 Evolution of Software and TTCN-3 Tests

Hence, software aging and disregarded maintenance of test suites also directly affects the
quality of the tested product. This is especially the case for TTCN-3 test suites. Unlike
its predecessor TTCN-2 which guided test development and structure due to its predefined
tables, the TTCN-3 core notation has the look and feel of a general purpose programming
language. Hence, TTCN-3 gains the flexibility of modern programming languages and offers
the test engineer a lot of freedom, but also inherits the associated maintenance challenges.

There are techniques to slow down the aging process though. Refactoring has been a
successful technique for continuous systematic restructuring of software on code level to
improve its quality.

3.1 Bad Smells

Before systematic software restructuring is possible, the problematic code parts must be
identified first. The indicators that lead to finding those parts are called bad smells [35].
There are various ways to find bad smells. Currently, the most important techniques are
the usage of software metrics, pattern recognition and human intuition. Fowler [35] claims
that no set of metrics rivals the informed human. Still, informal code smell descriptions are
useful as starting point for creating formalized metrics and pattern recognition algorithms
and therefore a few useful ones are presented subsequently.

The most important bad smell is Duplicated Code. Any expressions which are exactly
the same and occur at several different locations are better when they are unified as a
change is only needed in one place. The Long Function [Long Method]1 smell states that
long functions are hard to understand and indirection can be better supported by small
functions. As a guideline, a subroutine should be moved when there is a need to write a
comment otherwise. Actually, Comments is a smell by itself. When something needs to be
explained, it is probably better to move into a method with a descriptive name. The Long
Parameter List smell criticizes that long parameter lists are hard to understand, become
inconsistent and difficult to use as they are always changed when more data is needed. A
Large Module [Large Class] indicates that the module may be trying to do too much. It
becomes hard to read and it likely combines too many distinct code parts which are better
off in multiple modules. Several other smells in [35] concern object-oriented concepts and
paradigms and cannot be used in TTCN-3.

Bad smells are closely related to antipatterns [24]. Antipatterns are organized and written
similarly to design patterns, but actually describe the opposite: solutions to reoccurring
problems that are wrong and bad practice. The intention is to show by example what
should not be done. The most famous antipattern is probably Spaghetti Code which is
described as software with little structure due to ignorance and sloth as root causes. Unlike

1The bad smells from [35] were described with Java in mind, but are in parts applicable to TTCN-3–
either directly or slightly reinterpreted. However, it is necessary to rename some smell names to reflect their
meaning in the context of TTCN-3. The original names are given in square brackets in these cases.

20

3.1 Bad Smells

bad smells, antipatterns are also applied on processes outside software engineering such as
project management. They are therefore more general and not as code centric as bad smells.

1 testcase t c f i r s tExampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // . . .
4 t guard . start (10 .0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] t guard . timeout {
14 setverdict (f a i l) ;
15 stop ;
16 }
17 }
18 }
19
20 testcase tc secondExampleTestCase () runs on ExampleComponent {
21 timer t guard ;
22 // . . .
23 t guard . start (10 .0) ;
24 alt {
25 [] pt . receive (a MessageThree) {
26 pt . send (a MessageFour) ;
27 }
28 [] any port . receive {
29 setverdict (f a i l) ;
30 stop ;
31 }
32 [] t guard . timeout {
33 setverdict (f a i l) ;
34 stop ;
35 }
36 }
37 }

Listing 3.1: Bad Smell: Duplicated Code

In Figure 3.1, a typical bad smell in TTCN-3 is shown. In this example, there are two
test cases tc firstExampleTestCase and tc secondExampleTestCase which are very similar2.
Each test case contains an alt statement where it communicates with the SUT. At the end
of each alt statement, there are two branches treating unexpected behavior (lines 9–35 and

2The comments in lines 3 and 22 indicate there might be additional behavior or code in general at
these locations that is irrelevant for the example. This notation is also used in the subsequent sections and
chapters.

21

3 Evolution of Software and TTCN-3 Tests

lines 28–35) which is exactly the same in each alt statement and therefore duplicated. A
programmer would intuitively want to move such code segments into an altstep.

Although [35] suggests to find bad smells using the programmers intuition, there are
several reasons why automatic bad smell detection is favorable [49]. First, there must be
developers who spend their time on code analysis. As a result, either the actual development
speed and productivity slows down or there are additional costs for more personnel. In
commercial situations, both alternatives are hardly acceptable. In addition, the longer a
developer participates in a project, the more he loses the ability to objectively judge the
quality of its code. Hence, there is ongoing research into the automatic detection of bad
smells and defects [56, 57].

3.2 Refactoring

Refactoring is the term used for the systematic way of restructuring source code in order
to improve its quality. A concrete definition of refactoring is given in [35]: ”a change
made to the internal structure of software to make it easier to understand and cheaper
to modify without changing its observable behavior“. Hence, another important aspect of
refactoring is the preservation of the semantic context in the original code. As opposed
to simple code cleanup, refactoring provides a more efficient and controlled way for the
source transformation by providing a mechanic which can be executed step by step either
manually or automatically. The changes in each step of the mechanics are predictable. In
addition, refactorings are always applied with the intention to make the code clearer and
better to understand. Thus, it mitigates the effects of software aging and helps in keeping
the software maintainable. This does not necessarily mean that the resulting code is more
efficient performance wise. On the contrary, some refactorings arguably deteriorate the
code performance. On the other hand, performance optimizations often result in code that
is hard to understand. As a result, there is sometimes a trade-off between performance and
code quality. This is not always the case though as [75] proves. Also, to actually optimize
the performance of software which is considered too slow, it must be understood well and
in this case, refactoring the code will help.

Some roots of refactoring [64] are actually found in compiler optimization and therefore
code transformations can be actually designed to improve performance (e.g. inlining a func-
tion call). Other origins are program transformation (e.g. stepwise refinement), maintenance
of object-oriented databases (e.g. schema evolution). The first detailed work on refactoring
was written in 1992 by William Opdyke [61] and treats refactoring of C++ code. The tech-
nique has been successfully applied and automated [65] in the Smalltalk community [19].
Popularity was finally achieved through the book ”Refactoring“ by Martin Fowler in 1999.
This book presented a catalog containing 72 refactorings for Java (with additions on its
website [36]).

22

3.3 Refactoring Formalisms

Most refactorings are independent from the language actually used. However, each lan-
guage has its own paradigms and concepts which result in specific refactorings. For example,
TTCN-3 is not an object-oriented language and therefore a lot of refactorings from [35] that
concern class relationships are not applicable to TTCN-3. TTCN-3 on the other hand in-
cludes concepts (section 2.1.2) specific for writing test cases and test suites which are not
found in any other language. Hence, there are several refactorings for TTCN-3 (e.g. refac-
torings operating on templates) that are unique.

A simple example for a refactoring is the Rename refactoring which provides a simple
way to rename identifiers such as variable names, function names or module names while
taking the scoping rules of the underlying programming language into consideration. The
Encapsulate Field refactoring replaces direct field accesses by calls to corresponding getter
and setter methods or other refactorings are concerning with the extraction of a group of
statements into a function. More complex refactorings are sometimes composites of smaller
refactorings. For example, the conversion of a procedual design into an object-oriented
design involves encapsulating fields, conversion of record types into classes or move and
extracting behavior into class methods. The bad smell shown in figure 3.1 can be removed
by applying the Extract Altstep refactoring (section 4.2.1).

3.3 Refactoring Formalisms

One problem often recognized in the context of refactoring is the fact that semantical preser-
vation cannot be taken for granted. In fact, [52] identifies missing formal proofs as one of
the key problems in the current research concerning refactorings. The initial work by [61]
and [66] provide only a formal way to express conditions written in predicate calculus that
must be satisfied to guarantee that a change is behavior preserving. However, they fail
to proof formally that the refactoring itself is in fact behavior preserving. It is merely ar-
gued that the provided conditions satisfy seven properties which are related to inheritance,
scoping, type compatibility and semantic equivalence. In fact, Tokuda [72] recognizes that
the invariants introduced by Opdyke are not sufficient, argues that a mature refactoring
implementation should be treated as trusted tool and compares the refactoring transforma-
tions to compiler transformations to assembly where also typically no mathematical proof
is provided. Compilers are still used despite this fact.

The authors of [66] and [35] take the position that a program is correct when it meets its
specification. Such as specification can be provided by a test suite, e.g. unit tests. Therefore,
a refactoring preserves the behavior of a program when it still meets its specification after
the application of a refactoring. Especially in agile development processes such as Extreme
Programming (XP) [20], the unit testing and refactoring interaction is a key concept. For
refactoring test cases, this poses a problem as unit testing against a test suite is not practical
or even possible. Van Deursen et al. [73] suggest to run the test suite which is subject of a

23

3 Evolution of Software and TTCN-3 Tests

refactoring against the same implementation before and after the refactoring. Afterwards,
the same verdict should be assigned to the test suite. This solution, however, is not sufficient
since not all paths of the test suite may be executed. Bisimulation [55, 62] of the refactored
and the original test suite may be a possibility to prove the equivalence of both. Whether
this solution is practical remains to be seen.

Other more suitable techniques for proving behavior preservation are based on concept
analysis [69] and graph rewriting [51]. In addition, there is one recent work [27] that deals
with behavior preservation of refactorings using algebraic refinement rules. However, there
is no single genuinely accepted method by all researchers. Therefore, proofing behavioral
preservation itself is still a topic for ongoing research and out of the scope for this the-
sis. Nevertheless, 20 refactorings specific for TTCN-3 have been identified and informally
described in chapter 4.

3.4 Refactoring Automation

Refactoring provides a disciplined way for code restructuring with the goal to improve the
design while the meaning stays the same. However, the process has problems when it is
applied manually. Although the mechanic provides small predictable steps, it is still easy to
make mistakes in the execution. Therefore, a tool that automates these steps is desirable:

• Automated refactorings are time-saving as the programmer does not have to apply all
steps from the concerned mechanic by hand. Especially refactorings like Rename can
be very time consuming by hand.

• They are supposed to guarantee a certain level of correctness in the transformation.

The latter reason for automated refactorings raises a critical concern. The programmer
must have confidence that the automated refactorings really do what he expects. Automated
refactorings can automatically verify conditions like the ones described in [61] and therefore
improve the trust in the transformation. As a result, running unit tests or other verifica-
tions is not necessarily needed after each refactoring. As tool support makes refactoring
inexpensive with respect to the time spent on the restructuring (as opposed to manually
applied refactorings), it becomes an activity that is used during programming rather than
a separate activity.

There are various well working refactoring tools available. The Java Development Tools
(JDT) [29] and IntelliJ IDEA [45] are two prime examples for refactoring tools for Java.
However, current refactoring tools are only semi-automatic. Bad smells are not automat-
ically detected and refactoring configuration (e.g. the name of the target identifier in the
Rename refactoring) has to be specified by the programmer. Particularly automatic bad
smell detection is likely to be a part of next-generation refactoring tools.

24

3.5 Related Work

3.5 Related Work

Existing work on refactoring deals almost exclusively with the refactoring of production
source code rather than tests (e.g. [35, 61, 66]). The refactoring of unit tests is often
informally recommended in publications dealing with agile development processes such as
Extreme Programming (XP) [20] where the tests are written and maintained continually.
The context is different in most cases though: the unit tests verify that a refactoring did
not change the behavior of the implementation.

The article ”JUnit Best Practices“ [8] deals with best practices for testing with JUnit [39]
and does not specifically cover refactoring of test codes. The article, nevertheless, identifies
problems in test code that can be considered as bad smells and gives advice how to avoid
the associated problems. The identified problems are again specific for unit tests and cannot
be applied to TTCN-3.

There is only one single publication dealing with the refactoring of unit test code [73]. The
authors find refactoring test code different from refactoring production code and present a
distinct set of 11 bad smells and 6 specific refactorings that apply to unit tests. The
refactorings are concerned with the handling of external test resources (e.g. external files used
for testing), the minimization of needed test data, explanatory log messages for assertions
and the implementation and usage of equality methods rather than toString methods. The
Add Assertion Explanation refactoring presented in this paper is the only refactoring which
can be applied to TTCN-3 test code. All other refactorings deal with problems specific for
unit tests.

A few publications, however, deal with transformations in TTCN-3 and its predecessor
TTCN-2 that can be regarded as refactoring. Schmitt [68] involves the automatic structuring
of TTCN-2 constraint descriptions and presents an algorithm of 4 steps in which each step is
comprised of a transformation that can effectively be considered as a refactoring. Although
his thesis deals with constraints instead of TTCN-3 templates as data descriptions, some of
these steps can be reformulated into refactorings and are therefore part of section 4.2.

The paper ”High-Level Restructuring of TTCN-3 Test Data“ [75] presents an algorithm
to automatically restructure TTCN-3 test data definitions (i.e. templates) to reduce redun-
dancy and their length to improve run-time inefficiencies. According to their empirical ex-
periences, test data definitions occupy at least 60-70 percent of a complete test specification
and are highly redundant. Due to this fact and the situation that current TTCN-3 compilers
only insufficiently perform code optimization, the time for the compilation of a TTCN-3 test
suite dramatically sets back the development process. Therefore, a model for TTCN-3 tem-
plates is introduced and a graph-based algorithm operating on this model which removes
the redundancies. Therefore, the paper is more concerned with optimizing the compilation
process rather than improve the quality of the test code itself. The work nevertheless iden-
tifies that there are problems involved in the way TTCN-3 test suites are currently written
or generated which can be improved through restructuring of the test code. Both [68] and

25

3 Evolution of Software and TTCN-3 Tests

[75] are based on concepts that are available in TTCN-2 as well as TTCN-3. These involve
specialization, parametrization and referencing of constraints and templates.

A presentation from Deiss [28] is concerned with the automated conversion of a TTCN-2 test
suite to TTCN-3. The resulting generated code contains awkward constructs such as altsteps
only containing a single else branch with a send statement. Such constructs are improved by
applying refactoring-like transformations (e.g. transforming such an altstep into a function).
The improvements presented are specialized for automatically converted test suites are not
generally useful or too general. The conversion of test suites from TTCN-2 to TTCN-3 is
motivated by the fact that TTCN-3 offers better modularization and flexibility and therefore
reduces the maintenance.

Mäki-Asiala [48] investigates the reusability of TTCN-3 code. He differentiates between
vertical reuse (reuse between different testing levels, e.g. reusing tests in functional testing
and scalability testing), horizontal reuse (reuse of tests between various products) and his-
torical reuse (reuse of tests between product generations). He proposes 10 non-systematic
guidelines to improve TTCN-3 code reusability.

Neukirchen [59] suggests to apply reuse techniques from classical engineering to test
development as well to improve productivity, quality, development speed, preservation of
knowledge and to reduce costs. The reuse concepts Modules, Object-Orientation, Aspect-
Orientation, Refactoring, Applications, Components, Libraries, Frameworks and Patterns
from classical engineering are analyzed for their relevance to test development with TTCN-3,
the UML Testing Profile [60] and JUnit. Refactoring is considered a reasonable technique
for test development as large test suites suffer from aging just like ordinary software and
huge efforts are spent for the maintenance of standardized test suites. To ensure the behav-
ior preservation, bi-simulation and tool supported or formally proven transformation steps
are proposed. It reveals that refactoring for TTCN-3 has not yet been studied while the
refactoring of JUnit tests and UML models is well known and supported by tools.

26

4 A TTCN-3 Refactoring Catalog

To counteract or at least slow down the effects of software aging within TTCN-3 test suites,
refactoring can be used for TTCN-3 tests as well. With the TTCN-3 refactorings presented
in this chapter, test suite maintenance and readability is improved and their application is
reasonable for both hand-written tests or generated tests. The refactorings are presented
in the form of a catalog which is inspired by the catalog in Fowler’s book [35]. Hence, the
same fixed format is used for the refactoring descriptions: each refactoring is described by
its name, a summary, a motivation, mechanics and an example. The name of a referenced
refactoring is always written in slanted type and is used to build a common vocabulary for
developers. The summary is a short description of the refactoring in one or two sentences.
The motivation explains when and why a refactoring can be applied. In addition, the
motivation may refer to possible subsequent refactorings. The mechanic contains precise
step by step instructions on how to perform the refactoring. In the mechanics section, the
term ”source“ is used to refer to the original code which is addressed by a refactoring or a
location or elements in the original code which are used for the change. The term ”target“
refers to the resulting code after applying a refactoring to the source or other elements that
are changed due to the refactoring. The terms ”source“ and ”target“ may also be used to refer
to unchanged declarations whose references are replaced in a refactoring. The mechanics
can be used as a manual step-by-step instruction for predictable restructuring or as a guide
for tool implementation. Since manual refactorings are error-prone, the mechanics contain
instructions ”compile“ and ”validate“. The compile step is used to check whether syntax
and static semantics of the test cases are still valid. The validate step means to start a
bisimulation process (i.e. validation of test equivalence using all possible execution paths)
to validate that original and refactored test suite still behave equivalently. The compile
and validate steps are suggested as soon and as often as they are applicable. The example
section illustrates the refactoring by showing TTCN-3 core notation excerpts before and
after the refactoring is applied.

The refactorings presented in this chapter can be classified into refactorings for test be-
havior, refactorings for data descriptions and refactorings improving the overall structure of
a test suite. Refactorings for test behavior simplify behavioral statements or reduce behav-
ioral duplication for example. Refactorings for data descriptions concern primarily test data
in TTCN-3 such as templates, but also subtyping. Refactorings for improving the overall
structure of a test suite are concerned with modularization, proper naming or the correct
locations of declarations for example.

27

4 A TTCN-3 Refactoring Catalog

4.1 General Refactorings Applied to TTCN-3

In this section a list of classical refactorings is presented which can be applied to TTCN-3.
For this purpose, all 72 refactorings from [35] have been investigated for their relevance.
Even though they were intended for Java, some of them are language independent or can
be reinterpreted in a way that they are applicable to TTCN-3. For their reinterpretation, it
is necessary to replace the notion of Java methods by TTCN-3 functions or test cases. As
TTCN-3 lacks most important object-oriented features in the conventional sense (e.g. classes,
polymorphism), many well known refactorings cannot be applied. However, some of the Java
refactorings are nevertheless applicable if the notion of Java classes and fields is replaced by
TTCN-3 component types and variables, constants, timers and ports local to the component
respectively.

There are some refactorings which can be applied in the TTCN-3 language, but lack a
comparable code improving effect. The Encapsulate Collection refactoring, for example,
could surely be applied by wrapping access to an array, for instance, in functions on a
module level (instead of classes). However, the use would be limited as array sizes can only
be assigned at declaration and if there is really a demand to hide internal data structures,
it is likely the language is used in the wrong context. Therefore, such borderline cases are
omitted within this list of reinterpreted refactorings.

As a complete catalog would be a book in itself, the extent of the chapter is limited to
one exemplary refactoring (section 4.1.2) and a list of the ones working (4.1.1).

4.1.1 TTCN-3 Compatible Classical Refactorings

In the following, a list of 28 refactorings from [35] is presented which can be applied to
TTCN-3 with only little or no modification apart from syntactical differences.

If a reinterpretation as described is needed, the original name from [35] is given in square
brackets:

Refactoring for Test Behavior

• Consolidate Conditional Expression,

• Consolidate Duplicate Conditional Fragments,

• Decompose Conditional,

• Extract Function [Extract Method],

• Introduce Assertion,

• Introduce Explaining Variable,

28

4.1 General Refactorings Applied to TTCN-3

• Inline Function [Inline Method],

• Inline Temp,

• Remove Assignments to Parameters,

• Remove Control Flag,

• Replace Nested Conditional with Guard Clauses,

• Replace Temp with Query,

• Separate Query From Modifier,

• Split Temporary Variable,

• Substitute Algorithm.

Refactorings for Improving the Overall Structure of a Test Suite

• Add Parameter,

• Extract Extended Component [Extract Subclass],

• Extract Parent Component [Extract Superclass],

• Introduce Local Port/Variable/Constant/Timer [Introduce Local Extension],

• Introduce Record Type Parameter [Introduce Parameter Object],

• Parameterize Testcase/Function/Altstep [Parameterize Method],

• Pull Up Port/Variable/Constant/Timer [Pull Up Field],

• Push Down Port/Variable/Constant/Timer [Push Down Field],

• Replace Magic Number with Symbolic Constant,

• Remove Parameter,

• Rename [Rename Method]1,

• Replace Parameter with Explicit Functions [Replace Parameter with Explicit Meth-
ods],

• Replace Parameter with Function [Replace Parameter with Method].

1Fowler [35] refers only to renaming a method. However, not only corresponding altsteps, test cases and
functions qualify for renaming, but also variables, types, constants, ports, etc.

29

4 A TTCN-3 Refactoring Catalog

Note that some refactorings like Move Method or Move Field don’t work in the sense
they are presented in the book. However, they do with modifications in their interpretation.
Instead of diffusing and widening their meaning, they are reintroduced with a more precise
name (e.g. Move Method/Field to Module) in chapter 4.2.

Unsurprisingly, there are no refactorings from [35] that concern data descriptions. Refac-
torings for data descriptions include concepts which are unique to TTCN-3 (e.g. templates)
and not part of Java. However, some of Fowler’s refactorings like Inline Method or Add and
Remove Parameter are quite generic and may also be reinterpreted for TTCN-3 templates.
Where the mechanics of these refactorings differs significantly when applied to templates,
they are considered as TTCN-3 specific refactorings and described in section 4.2.

An example for additional complexity in TTCN-3 and therefore changed mechanics is
that functions can be run globally or on components. In section 4.1.2, a classical refactoring
with such a change in mechanics is presented. Altogether, these changes are manageable
though and this single example is sufficient as a demonstration.

4.1.2 Extract Function

A group of statements can be moved into its own function.

Motivation

Typical smells for this refactoring are long functions or test cases and repeated code frag-
ments. Extracting parts from a long function or test case increases the possibility for reuse
or on the other hand may reduce code duplication. In either case it improves reusability,
readability and reduces maintenance effort. Method names should be chosen with care as
they should exactly represent the semantics of the method.

Usually, the concerned statements are extracted into a TTCN-3 function. Only in rare
cases, however, the statements may be extracted into a test case. Hence, the refactoring
name reflects only extraction into a function.

Mechanics

• Create a new function and name it by what it does.

• Copy the extracted code from the source location into the new target function.

• Examine the extracted code for references to any variables, constants and timers that
are local in scope of the source location, i.e. either locally defined temporary elements
or elements passed as parameters to the source function. Port cannot be locally
defined, but passed as parameters; in this case, they have also local scope.

30

4.1 General Refactorings Applied to TTCN-3

– Locally defined temporary elements which are only used in the extracted code
are declared in the new target function again as local temporary elements. In a
later step, their declaration can also be removed from the source location.

– Temporary local-scope elements which are used before and after the extracted
code must be passed to the target function as follows:
∗ Timers and ports are always passed as reference, i.e. as inout.
∗ Elements which are only read but not modified by the extracted code or read

and modified by the extracted code but not read afterwards at the source
location are passed as in parameter.

∗ Elements that are modified but not read in the extracted code and read
afterwards at the source location can be treated in two different ways: either
they are passed as out parameters or they are returned by the function. The
latter solution is only possible if only a single elements needs to be returned
though. Other possibilities to improve the code for refactorings in these cases
are the Split Temporary Variable and Replace Temp with Query refactorings.
Mixing the return statement and out parameters is not recommended as it
makes the function harder to understand and has to functional advantage.

∗ Elements that are both read and modified in the extracted code and also read
afterwards need to be passed as inout parameters or using in parameters
and a return value if applicable.

• Check whether the source method runs on a component. If so, find out whether any
component specific variables are used in the extracted code. In this case, the extracted
method needs to run on this component as well. Hence, the runs on specification
from the source behavior needs to be added. Afterwards, Generalize Runs On may
be appropriate or the runs on specification may even be removed by applying Move
Component Variable/Constant/Timer to Local Scope (section 4.2.20).

• Compile.

• Replace the extracted code in the source behavior with a call to the new target function
and provide any required parameters.

– If any declarations of local temporary elements have been copied to the target
function, remove their declaration from the source compound.

– If the extracted code is duplicated at other locations, repeat the previous step
for these alternate source locations. If these additional duplicated locations are
not in the same module as the extracted target function, a corresponding import
statement must be added or adjusted in the module of the additional duplicated
code locations to import the target function.

• Compile and validate.

31

4 A TTCN-3 Refactoring Catalog

Example

Sometimes, there needs to be a delay between two successive events in a TTCN-3. In
listing 4.1, it is easy to detect the code duplication in the timer code of the f sendMessages
method (lines 15–16 and 20–21). The Extract Function refactoring is used remove this
duplication.

1 module ExtractFunctionExample {
2 // . . .
3
4 type component ExampleComponent {
5 timer t ;
6 port ExamplePort pt ;
7 }
8
9 // . . .

10
11 function f sendMessages (in f loat p durat ion)
12 runs on ExampleComponent {
13
14 timer t ;
15 t . start (p durat ion) ;
16 t . timeout ;
17
18 pt . send (a MessageOne) ;
19
20 t . start (p durat ion) ;
21 t . timeout ;
22
23 pt . send (a MessageTwo) ;
24 }
25 }

Listing 4.1: Extract function example (unrefactored)

The result of the applied Extract Function refactoring to remove the code duplication is
shown in listing 4.2. The new function f wait contains the extracted code. According to the
mechanic, the duration element is passed as in parameter as it is read, but not modified
within the extracted code. As the timer accessed within the extracted code is a local element
of the component, the f wait function needs to run on ExampleComponent as well.

1 module ExtractFunctionExample {
2 // . . .
3
4 type component ExampleComponent {
5 timer t ;
6 port ExamplePort pt ;
7 }
8
9 // . . .

32

4.2 TTCN-3 Specific Refactorings

10 function f wa i t (in f loat p durat ion)
11 runs on ExampleComponent{
12 t . start (p durat ion) ;
13 t . timeout ;
14 }
15
16 function f sendMessages (in f loat p durat ion)
17 runs on ExampleComponent {
18 timer t ;
19
20 f wa i t (p durat ion) ;
21 pt . send (a MessageOne) ;
22
23 f wa i t (p durat ion) ;
24 pt . send (a MessageTwo) ;
25 }
26 }

Listing 4.2: Extract function example (refactored)

4.2 TTCN-3 Specific Refactorings

In the following, refactorings are introduced which are specific to TTCN-3. While the
refactorings presented in the previous section were essentially language independent, the
ones presented in this section consider language constructs specific to TTCN-3 such as
altsteps, templates, grouping, modules and importing from modules, components, restricted
sub-types, logging and concurrent test cases. Some of the techniques presented in the
following are not new and have been introduced in [68] or [74] for example. However, these
code optimizations have never been presented as refactorings providing a mechanical step
by step instruction to clean up the code. Until now, 21 refactorings specific to TTCN-3 have
been identified. The 21 refactorings are grouped as follows (using the categories introduced
in section 4) and are explained in detail in the following sections:

Refactoring for Test Behavior

• Extract Altstep,

• Split Altstep,

• Replace Altstep with Default,

• Add Explaining Log,

• Distribute Test.

33

4 A TTCN-3 Refactoring Catalog

Refactorings for Data Descriptions

• Inline Template,

• Inline Template Parameter2,

• Extract Template,

• Replace Template with Modified Template,

• Parameterize Template,

• Decompose Template,

• Subtype Basic Types.

Refactorings for Improving the Overall Structure of a Test Suite

• Extract Module / Move Declarations to Another Module,

• Group Fragments,

• Restrict Imports,

• Prefix Imported Declarations,

• Parameterize Module,

• Move Module Constants to Component,

• Move Local Variable/Constant/Timer to Component,

• Move Component Variable/Constant/Timer to Local Scope,

• Generalize Runs On.

2The necessity for this refactoring became clear through a collaboration with Motorola UK.

34

4.2 TTCN-3 Specific Refactorings

4.2.1 Extract Altstep

Move alternative branches of an alt statement into an altstep when used more than once.

Motivation

Quite often, identical alternative branches in an alt statement are used more than once in
a test suite. To avoid code duplication, reduce maintenance load and improve readability,
identical alternative branches should be extracted into their own altstep. An altstep invoca-
tion inside an alt statement can provide code as ”tail“ for the altstep. Hence, the identical
branches may even differ in their end-piece which would then be left in the calling alt state-
ment. Note that altsteps need to be properly named to be self-explanatory. Depending on
the content of the extracted alternative branches, it may be necessary to add parameters to
the altstep. A refactoring that may be used after extracting altsteps is the Replace Altstep
with Default (section 4.2.3) refactoring.

Mechanics

• Create a new target altstep and name it by what the alternative branch to be extracted
does. If the alternative is so simple that it is hard to come up with a good name, usage
of this refactoring should possibly be reconsidered.

• Copy the source branches to be extracted from the alt statement into the target
altstep.

• Check the extracted alternative branch for references to any variables, constants and
timers that were local to the scope of the source alt statement or its surrounding com-
pound respectively, i.e. either locally defined temporary elements or elements passed
as parameters to the surrounding compound. Ports cannot be locally defined, but
passed as parameters; in this case, they have also local scope.

– Locally defined temporary elements which are only used in the extracted branches
are declared in the new target altstep again as temporary elements.

– All other local-scope elements must be passed in or out of the altstep as follows:

∗ Timers and ports are always passed as reference. i.e. as inout.
∗ Elements which are only read but not modified by the extracted branches or

read and modified by the extracted branches but not read afterwards at the
source location are passed as in parameter.

∗ Elements that are modified but not read before modification in the extracted
branches and read afterwards at the source location must be passed as out
parameter.

∗ Elements that are both read and modified in the extracted code and also
read afterwards need to be passed as inout parameters.

35

4 A TTCN-3 Refactoring Catalog

• Check if any elements declared in the component on which the alt statement runs
on are used in the extracted branches. If so, the target altstep must have a runs
on specifying this component as well. Afterwards, Generalize Runs On may be ap-
propriate or the runs on specification may even be removed if Move Component
Variable/Constant/Timer to Local Scope (section 4.2.20) is applicable.

• Compile.

• Replace the extracted code in the source alt statement with a call to the new target
altstep and provide any required parameters.

– If any declarations of local temporary elements have been copied to the target
altstep, remove their declaration from the source compound.

– If the extracted branches are duplicated at other locations, repeat the previous
step for those locations as well. If the additional duplicated branches to be
replaced are located in different modules than the target altstep, a corresponding
import statement must be added or adjusted in the module of the additional
duplicated branches to import the altstep.

• Compile and validate.

Example

alt statements can easily block when no alternative matches as expected. Therefore, it is a
good idea to use a timer that can stop the alt statement when it takes unexpectedly long
on the one hand and on the other hand unexpected messages should be handled as well.
Such error handling distracts from the core behavior, is very generic and can therefore be
reused. The concerned branches are located in lines 9–16 of listing 4.3.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // [. . .]
4 t guard . start (10 .0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] t guard . timeout {
14 setverdict (f a i l) ;
15 stop ;
16 }
17 }
18 }

Listing 4.3: Extract Altstep (unrefactored)

36

4.2 TTCN-3 Specific Refactorings

By applying the Extract Altstep refactoring, the identified branches are moved from the
alt statement into the new altstep alt otherwiseFail as shown in lines 14–24 of listing 4.4.
Because the local timer t guard needs to be initialized before the alt statement, it cannot
be moved to the altstep and cannot be declared as temporary variable. Instead, it is passed
as parameter. Since the altstep uses ports from the ExampleComponent, the runs on
specification is required as well.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // [. . .]
4 t guard . start (10 .0) ;
5
6 alt {
7 [] pt . receive (a MessageOne) {
8 pt . send (a MessageTwo) ;
9 }

10 [] a l t o t h e rw i s eF a i l (t guard) { }
11 }
12 }
13
14 altstep a l t o t h e rw i s eF a i l (inout timer p t)
15 runs on ExampleComponent {
16 [] any port . receive {
17 setverdict (f a i l) ;
18 stop ;
19 }
20 [] p t . timeout {
21 setverdict (f a i l) ;
22 stop ;
23 }
24 }

Listing 4.4: Extract Altstep (refactored)

4.2.2 Split Altstep

Altsteps that contain branches which are not closely related to each other are split to
maximize reuse potential.

Motivation

Altsteps sometimes contain branches that are not really related to each other, e.g. processing
of expected messages paired with generic error handling. To maximize the reuse of branches
which are possibly more generic, the altstep should be split into two separate altsteps. The
generic parts can then be reused and are not coupled to branches that may be more specific
for a certain test case. A typical smell leading to this refactoring is duplicate code, i.e. a

37

4 A TTCN-3 Refactoring Catalog

number of subsequent branches in various alt statements or altsteps that are equal. The
altstep names must be adjusted to reflect the new separate meaning of both altsteps and
the unrelated branches in the source altstep must not be mixed in their order. Unlike
the Extract Altstep refactoring, the Split Altstep refactoring does not extract any selected
branches, but is a real split between two subsequent unrelated sections. As a result, the
newly created altstep is not called from a branch within the source altstep, but the behavior
calling the source altstep.

Mechanics

• Identify two subsequent semantically unrelated sections of alt branches in the source
altstep.

• Create a new target altstep and give it a temporary name. The new altstep should
also have the same parameters as specified in the source altstep. If the source altstep
runs on a component, the target altstep should run on this component as well.

• Copy one section (source section) to the target altstep.

• Compile.

• Remove the the source section from the source altstep.

• Find all alt statements with calls to the source altstep. Add a new alt branch before
or after this call to the source altstep containing a call to the target altstep with the
same actual parameters. The position of this new branch depends on the order of the
original source altstep: if the branch section moved to the target altstep came first in
the source altstep, then a call to the target altstep is inserted before the existing call.
Otherwise, it is inserted after the existing call.

• Find all standalone calls to the source altstep. Add a new standalone call statement
to the target altstep with the same actual parameters. The position of this statement
depends on the order of the original altstep (see previous step).

• Compile and validate.

• Apply the Rename refactoring [35] on both the source and target altstep. The new
names should reflect semantics of the separated branches.

• Verify if the parameters of both the source and target altstep are still referenced
within the altstep. If there are unused parameters within an altstep signature, apply
the Remove Parameter [35] refactoring.

• Compile and validate.

38

4.2 TTCN-3 Specific Refactorings

• Apply the Generalize Runs On (section 4.2.21) refactoring on the source and target
altstep to exploit further reuse possibilities due to this restructuring.

• Find duplicate branches which are completely equal to either of the split altsteps and
replace these branches with their according altstep.

Example

In listing 4.5, the test case tc exampleTestCase (lines 1–14) contains an alt statement which
calls the altstep alt handleExpectedMessages (line 9). Within this altstep (lines 16–32), there
are two different sections: in the first section (lines 18–23) expected messages are handled
and in the second section, there is typical and generic TTCN-3 error handling (lines 24–31).

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3
4 // [. . .]
5
6 t guard . start (10 .0) ;
7
8 alt {
9 [] a l t handleExpectedMessage (t guard) { }

10 [] pt . receive (a expectedMessage) {
11 pt . send (a answerMessage) ;
12 }
13 }
14 }
15
16 altstep al t handleExpectedMessages (inout timer p t)
17 runs on ExampleComponent {
18 [] pt . receive (a MessageOne) {
19 pt . send (a MessageTwo) ;
20 }
21 [] pt . receive (a MessageThree) {
22 pt . send (a MessageFour) ;
23 }
24 [] any port . receive {
25 setverdict (f a i l) ;
26 stop ;
27 }
28 [] p t . timeout {
29 setverdict (f a i l) ;
30 stop ;
31 }
32 }

Listing 4.5: Split Altstep (unrefactored)

As these two sections are unrelated and the generic error handling can definately be
reused, the Split Altstep refactoring is applied (listing 4.6). The error handling is now

39

4 A TTCN-3 Refactoring Catalog

located in the altstep alt otherwiseFail (lines 15–24) while the other branches remain in
alt handleExpectedMessages. The altstep alt otherwiseFail was called from the test case
tc exampleTestCase and was located in the second section of the source altstep. Hence,
another alternative branch is inserted after the original call to alt handleExpectedMessage
in line 7 with a call to alt otherwiseFail.

As no parameters are necessary anymore in alt handleExpectedMessages, the parameter
p t was removed by the Remove Parameter refactoring. The Generalize Runs On refactoring
caused the removal of the runs on clause in alt otherwiseFail (line 15).

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // [. . .]
4 t guard . start (10 .0) ;
5
6 alt {
7 [] a l t handleExpectedMessage () { }
8 [] a l t o t h e rw i s eF a i l (t guard) { }
9 [] pt . receive (a expectedMessage) {

10 pt . send (a answerMessage) ;
11 }
12 }
13 }
14
15 altstep a l t o t h e rw i s eF a i l (inout timer p t) {
16 [] any port . receive {
17 setverdict (f a i l) ;
18 stop ;
19 }
20 [] p t . timeout {
21 setverdict (f a i l) ;
22 stop ;
23 }
24 }
25
26 altstep al t handleExpectedMessages ()
27 runs on ExampleComponent {
28 [] pt . receive (a MessageOne) {
29 pt . send (a MessageTwo) ;
30 }
31 [] pt . receive (a MessageThree) {
32 pt . send (a MessageFour) ;
33 }
34 }

Listing 4.6: Split Altstep (refactored)

40

4.2 TTCN-3 Specific Refactorings

4.2.3 Replace Altstep with Default

When subsequent alt statements have an equal branch at the end that is calling an altstep,
the altstep can be activated as default and hence reduce code clutter.

Motivation

Subsequent alt statements often contain an duplicate branch at the end that is calling
an altstep. Such a branch is typically used for error handling (e.g. handling of unexpected
messages or timeouts). Such error handling is a typical cross-cutting concern in TTCN-3 and
can be further simplified by using default altsteps. By using a default altstep, the equal
alternative branches can be removed, but need to be activated prior to the first alt statement
and deactivated after the last. While it may simplify the alt statements, it can also make
code hard to understand when used too much as tracking of the activated altsteps can be
hard. Activating and deactivating altsteps at different nesting levels is strongly discouraged
as it makes the code very hard to understand. Also note that semantic preservation can
only be guaranteed when the equal branches calling an altstep are at the end of the alt
statement since default altsteps are automatically attached to these positions. Reordering
of branches may be possible to achieve equal ends, but this depends on the semantics of the
alt statement.

Mechanics

• Find the first and the last source alt statement referencing a duplicate tail altstep. If
the alt statement tails have more than one altstep call in common and they all should
be activated, it is easier to apply the following steps at once.

• Activate the target altstep before the first source alt statement and store the returned
reference in a newly declared variable of type default. Typically, this variable is
declared in the local scope of the test case or function.

– If there are other default altstep activations before this first source alt statement,
place the new target default altstep activation before the first existing default
altstep activation (TTCN-3 default altsteps are executed in the reverse order of
their activation, i.e. the first altstep activated is executed last).

• Deactivate the target altstep using the stored reference after the last source alt state-
ment. If the last source alt statement is nested one or more levels below the activation
level, deactivation should be delayed until returned to the activation level.

• Remove the last branch of each source alt statement.

• Compile and validate.

41

4 A TTCN-3 Refactoring Catalog

Example

In listing 4.7, there are two subsequent alt statements (lines 7–10 and 15–18) with
equal branches at their end (lines 9 and 17). These branches are calling the same alt-
step alt timeGuard (lines 22–26) which makes sure that the local test case verdict of
tc exampleTestCase fails when no expected message is received in time. The Replace Altstep
with Default refactoring can be applied on these alt statements.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3
4 // [. . .]
5
6 t guard . start (10 .0) ;
7 alt {
8 [] // [. . .]
9 [] a lt t imeGuard (t guard) { }

10 }
11
12 // [. . .]
13
14 t guard . start (10 .0) ;
15 alt {
16 [] // [. . .]
17 [] a lt t imeGuard (t guard) { }
18 }
19
20 }
21
22 altstep alt t imeGuard (inout timer p t) {
23 [] p t . timeout {
24 setverdict (f a i l) ;
25 }
26 }

Listing 4.7: Replace Alternatives with Default Altstep (unrefactored)

After the refactoring is applied (listing 4.8), the alt timeGuard altstep is activated before
the first alt statement (lines 5–6) and deactivated after the last (line 20). As a timer was
started immediately before the first alt statement, the altstep activation is placed before
the timer launch.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3
4 // [. . .]
5 var default v de f au l tRe f ;
6 v de f au l tRe f := activate (a lt t imeGuard (t guard)) ;
7

42

4.2 TTCN-3 Specific Refactorings

8 t guard . start (10 .0) ;
9 alt {

10 [] // [. . .]
11 }
12
13 // [. . .]
14
15 t guard . start (10 .0) ;
16 alt {
17 [] // [. . .]
18 }
19
20 deactivate (v de f au l tRe f) ;
21 }
22
23 altstep alt t imeGuard (inout timer p t) {
24 [] p t . timeout {
25 setverdict (f a i l) ;
26 }
27 }

Listing 4.8: Replace Alternatives with Default Altstep (refactored)

4.2.4 Add Explaining Log

Add explanatory log statements where verdicts are changed.

Motivation

A problem often occurring is that the tester does not know what went wrong when a test
case fails. This is especially the case when a test case can fail due to several reasons (e.g. an
unexpected message arrived, the message content is unexpected, a timeout occurs) and the
implicit logging is not sufficient. Therefore, it is recommended to add logging statements
to the code that make it easier to comprehend why a test case failed. As a result, less time
is spent for analyzing test case verdicts.

Mechanics

• Find code locations in the source (source locations) where the verdict is changed to
fail or inconc.

• Add an explanatory log statement before the verdict change is performed which gives
the tester sufficient information on why the verdict is changed. Repeat this step for
all source locations.

• Compile and validate.

43

4 A TTCN-3 Refactoring Catalog

Example

In listing 4.9, the alt statement contains typical error handling where unexpected messages
or timeouts lead to a failed test case verdict (lines 9–12 and 13–16). However, when this
test suite with this test case is executed and the test case fails, there is no possibility to
know if the reason was an expected message or a timeout. Hence, log statements are added.

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // [. . .]
4 t guard . start (10 .0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 setverdict (f a i l) ;
11 stop ;
12 }
13 [] t guard . timeout {
14 setverdict (f a i l) ;
15 stop ;
16 }
17 }
18 }

Listing 4.9: Add Explaining Log Altstep (unrefactored)

After applying the Add Explaining Log refactoring (listing 4.10), the setverdict state-
ments are explained through a log statement before them (lines 10 and 14)

1 testcase tc exampleTestCase () runs on ExampleComponent {
2 timer t guard ;
3 // [. . .]
4 t guard . start (10 .0) ;
5 alt {
6 [] pt . receive (a MessageOne) {
7 pt . send (a MessageTwo) ;
8 }
9 [] any port . receive {

10 log ("tc_exampleTestCase: unexpected message received.") ;
11 setverdict (f a i l) ; stop ;
12 }
13 [] t guard . timeout {
14 log ("tc_exampleTestCase: no messages received in time.") ;
15 setverdict (f a i l) ; stop ;
16 }
17 }
18 }

Listing 4.10: Add Explaining Log (refactored)

44

4.2 TTCN-3 Specific Refactorings

4.2.5 Distribute Test

Transform a non-concurrent test case into a distributed concurrent test case.

Motivation

Non-concurrent TTCN-3 test cases using one main test component (MTC) are called local
tests. However, in a distributed architecture, the test system may have to control several
interfaces of the SUT and each interface has a different role towards the SUT. In a local
test, the behavior is strictly sequential. Hence, several different roles in a local test result
in a behavior mixture which is hard to understand and extend. In addition, the concurrent
behavior is not adequately modeled. Therefore, it makes sense to distribute a test with
different roles across multiple parallel test components (PTCs). Role-specific behavior can
be separated through the test components, the behavior mixture of code concerning different
roles is reduced.

However, distributed tests are more complicated since they are concurrent. For behavior
preservation, it is necessary to synchronize the behavior between the parallel test compo-
nents. Otherwise, messages may be sent or received when the other test components or the
SUT do not expect them due to the missing sequential behavior. For this purpose, each
parallel test component must have one or more coordination points where the parallel test
components exchange synchronization messages. Due to these messages, there is some over-
head involved in the communication though. There are arbitrary different ways to realize
this synchronization and the choice highly depends on the test architecture. Therefore, the
synchronization is handled universally in the mechanics. The example shows a concrete way
to synchronize the PTCs.

This refactoring can be considered a ”big“ refactoring. Hence, it involves more work and
time than the other refactorings presented in this chapter and involves careful considerations
and decisions on behalf of the test engineer.

Mechanics

• Identify the different roles of the local test. Find out to which roles each port of the
test system interface belongs to.

• For each role, create a component declaration with an appropriate name. Copy the
ports belonging to this role into this component declaration. In a local architecture,
different roles may share ports. In this case, the shared ports are duplicated in the
PTCs.

• Declare synchronization ports for the MTC and the PTCs and include them in the
MTC and PTC component declarations accordingly. Make sure the communication
directions are supported as needed.

45

4 A TTCN-3 Refactoring Catalog

• Each PTC needs to have a startup function from where the behavior is controlled.
This function is used later-on as parameter when the MTC starts the behavior on the
concurrent PTCs.

• The MTC behavior is described by using the testcase construct which must now
contain the test system interface in the system clause.

• In the MTC, add variable declarations (or a set of variables) for each PTC. Add a
TTCN-3 statement calling the create operation on the corresponding test component
instances and add statements to map their ports to the test system interface. Also,
insert statements to connect the synchronization ports as needed.

• Add a TTCN-3 statement to start the PTCs in the MTC.

• Rewrite the test behavior and split it across the PTCs according to their roles.

– Where necessary to maintain the correct ordering, add synchronization points to
each PTCs behavior in order to preserve the message exchange order.

– Interleave constructs which were used in the local architecture to simplify the
notation of parallel behavior where the order of the received messages did not
matter can be simplified in some cases: an alt statement can then be used instead
of the interleave construct which is then distributed across the components
according to their roles without synchronization.

∗ If there are multiple branches in the interleave statement using ports in
its receiving operation of the matching criteria belonging to the same role,
the resulting split behavior belonging to this role must be written in an
interleave statement and not in an alt statement. The remaining branches
must be handled as described in the following steps.

∗ If the behavior of a branch in the interleave statement uses ports belonging
to different roles, the distribution is not mechanical and needs additional
synchronization and an individual behavior distribution.

∗ If the distributed alt statements contain only a single branch and there is no
default altstep activated, the alt statement can be rewritten using standalone
statements.

Example

Listing 4.11 shows a non-current local test. The test system interface MyTestSystemInterface
contains two ports p1 and p2 (lines 1–4). It is used in the test case tc myTestCase
(lines 6–15). In this test case, the behavior of two roles is mixed.

46

4.2 TTCN-3 Specific Refactorings

1 type component MyTestSystemInterface {
2 port MyPort1 p1 ;
3 port MyPort2 p2 ;
4 }
5
6 testcase tc myTestCase () runs on MyTestSystemInterface {
7 p1 . send (a m1) ;
8 p1 . receive (a m2) ;
9 p2 . send (a m3) ;

10 p1 . receive (a m4) ;
11 interleave {
12 [] p1 . receive (a m5) { p1 . send (a m6) ; }
13 [] p2 . receive (a m7) { p2 . send (a m8) ; }
14 }
15 }

Listing 4.11: Distribute Test (unrefactored)

After applying the Distribute Test refactoring, the behavior is distributed across the
parallel components FirstEntity (lines 10–13) and SecondEntity (lines 15–18). Both contain
the port p which they use for communication with the SUT. In addition, the PTCs have
a synchronization port which is used for the communication with the other PTC (lines 12
and 17). The PTC ports to the SUT are mapped to the test system interface (lines 44–45)
and the synchronization ports are connected to each other (line 47).

The actual behavior is distributed to the corresponding components. When the compo-
nents are started (lines 49–50), they are given functions which are then executed on the
respective parallel component. These functions are f firstRoleStartComponent (lines 20–30)
and f secondRoleStartComponent (lines 32–38). The behavior is split according to the ports
of the test system interface. In addition, the behavior is synchronized (e.g. lines 24 and
33). That way, messages are received and send when they are expected. The synchroniza-
tion messages contain simple boolean values. In more realistic scenarios, the component
synchronization would probably need to send and receive messages containing more infor-
mation than a boolean value. The interleave construct is rewritten as an alt statement
which is split across the PTC behavior. As only a single branch would be left and no default
altsteps are activated, the alt statements are written standalone receive operations (lines
28–29 and 36–37).

1 type port SyncPort message {
2 inout syncmsg ;
3 }
4
5 type component MyTestSystemInterface {
6 port MyPort1 p1 ;
7 port MyPort2 p2 ;
8 }
9

47

4 A TTCN-3 Refactoring Catalog

10 type component F i r s tEnt i t y {
11 port MyPort1 p ;
12 port SyncPort secondEntitySyncPort ;
13 }
14
15 type component SecondEntity {
16 port MyPort2 p ;
17 port SyncPort f i r s tEnt i t ySyncPor t ;
18 }
19
20 function f f i r s tRo l eStar tComponent () runs on F i r s tEnt i t y {
21 p . send (a m1) ;
22 p . receive (a m2) ;
23
24 secondEntitySyncPort . send (boolean : true) ;
25
26 p . receive (a m4) ;
27
28 p . receive (a m5) ;
29 p . send (a m6) ;
30 }
31
32 function f secondRoleStartComponent () runs on SecondEntity {
33 f i r s tEnt i t ySyncPor t . receive (boolean : true) ;
34 p . send (a m3) ;
35
36 p . receive (a m7) ;
37 p . send (a m8) ;
38 }
39
40 testcase tc myTestCase () runs on MasterComponent system MyTestSystemInterface {
41 var F i r s tEnt i t y v f i r s tR o l e := F i r s tEnt i t y . create ;
42 var SecondEntity v secondRole := SecondEntity . create ;
43
44 map(v f i r s tR o l e : p , system : p1) ;
45 map(v secondRole : p , system : p2) ;
46
47 connect (v f i r s tR o l e : secondEntitySyncPort , v secondRole : f i r s tEnt i t ySyncPor t) ;
48
49 v f i r s tR o l e . start (f f i r s tRo l eStar tComponent ()) ;
50 v secondRole . start (f secondRoleStartComponent ()) ;
51 }

Listing 4.12: Distribute Test (refactored)

48

4.2 TTCN-3 Specific Refactorings

4.2.6 Inline Template

A template that is used only once can be inlined for improved readability.

Motivation

In some cases, a template declaration is referenced only once throughout the whole
TTCN-3 code. Using the value list notation instead of a reference for this template may
improve readability as the programmer does not have to search through the code to find
the corresponding declaration and it may shorten the code length. Candidates for this
refactoring are only simple templates as inlined templates are typically written in a single
line.

Mechanics

• Identify the source template declaration. It should be used only once throughout the
TTCN-3 code and it should be simple. Otherwise, the use of this refactoring may not
be appropriate.

• Find the code location where the source template declaration is referenced. This is
the source reference.

• Replace the source reference with the value list notation of the source template.

– When a normal template is inlined, its notation has the standard notation of an
inlined template.

– When a modified template is inlined, its notation must be adjusted to reflect the
notation of modified inlined templates.

– When a parameterized template is inlined, the actual parameter values of the
reference must be inlined into this value list notation.

• Compile and validate.

• Remove the source template declaration. If the source template declaration is located
in a different module than the source reference, the corresponding import statement in
the module of the source reference should be adjusted to exclude the source template
declaration.

• Compile and validate.

49

4 A TTCN-3 Refactoring Catalog

Example

Listing 4.13 shows the unrefactored version. The module contains the record declara-
tion MyMessageType (lines 2–6) and the source template declaration a myMessageTemplate
(lines 8–12). In the test case (line 15), a message is sent by using a reference to the source
template declaration a myMessageTemplate (line 17). As this is the only reference to the
template, it is the source reference.

1 // . . .
2 type record MyMessageType {
3 integer f i e l d 1 optional ,
4 charstring f i e l d 2 ,
5 boolean f i e l d 3
6 }
7
8 template MyMessageType a myMessageTemplate := {
9 f i e l d 1 := omit ,

10 f i e l d 2 := "My string" ,
11 f i e l d 3 := true
12 }
13
14 // . . .
15 testcase tc exampleTestCase () runs on ExampleComponent {
16 // . . .
17 pt . send (a myMessageTemplate) ;
18 // . . .
19 }

Listing 4.13: Inline Template (unrefactored)

Listing 4.14 demonstrates the result of applying Inline Template. The source template
declaration is inlined into the send statement (line 10) and replaces the source reference. No
imports must be adjusted as the the source template declaration and the source reference
are both in the same module.

1 // . . .
2 type record MyMessageType {
3 integer f i e l d 1 optional ,
4 charstring f i e l d 2 ,
5 boolean f i e l d 3
6 }
7 // . . .
8 testcase tc exampleTestCase () runs on ExampleComponent {
9 // . . .

10 pt . send (MyMessageType :{omit , "My string" , true}) ;
11 // . . .
12 }

Listing 4.14: Inline Template (refactored)

50

4.2 TTCN-3 Specific Refactorings

4.2.7 Inline Template Parameter

Inline a template parameter when all its references use a common actual parameter value.

Motivation

Templates are typically parameterized to avoid multiple template declarations that differ
only in few values. However, as test suites grow and change over time, the usage of its
templates may change as well. As a result, there may be situations when all references
to a parameterized template have one or more actual parameters with the same values.
This can also happen when the test engineer is overly eager: he parameterizes templates
as he thinks it might be useful, but it turns out to be unnecessary after all. In any case,
there are template references with unneeded parameters creating code clutter and more
complexity than useful. Thus, the template parameter should be inlined and removed from
all references.

The concept of inlining parameterized templates is used within this refactoring. Therefore,
it is partially related to the Inline Template.

Mechanics

• Verify that all template references to the parameterized source template declaration
have a common actual parameter value. The parameter with the common actual
parameter values is the source parameter. Note down the common value.

– If you have more than one common actual parameter value in all references, it
is easier to inline them together. Therefore, perform each step that concerns the
source parameter for each source parameter at once.

• Copy the source template declaration and give the copied declaration a temporary
name. It is the target template declaration.

• In the target template declaration body, replace each reference to the source parameter
with the noted value from step 1. In the target template declaration signature, remove
the parameter corresponding to the source parameter.

• Compile.

• Remove the source template declaration.

• Rename the name of the target template declaration using the name of the source
template declaration.

• Find all references to the target template declaration. Remove the source parameter
from the actual parameter list of each reference.

51

4 A TTCN-3 Refactoring Catalog

• Compile and validate.

• Consider usage of the Rename refactoring to improve the target template declaration
name.

Example

Listing 4.15, contains the parameterized template exampleTemplate in lines 6–9. All refer-
ences to this template use the same actual parameter value (lines 12 and 13). Hence, the
corresponding parameter addressParameter in Line 6 is inlined.

1 type record ExampleType {
2 boolean ipv6 ,
3 charstring ipAddress
4 }
5
6 template ExampleType exampleTemplate (charstring addressParameter) := {
7 ipv6 := false ,
8 ipAddress := addressParameter
9 }

10
11 testcase exampleTestCase () runs on ExampleComponent {
12 pt . send (exampleTemplate ("127.0.0.1")) ;
13 pt . receive (exampleTemplate ("127.0.0.1")) ;
14 }

Listing 4.15: Inline Template Parameter (Unrefactored)

After applying the Inline Template Parameter refactoring (Listing 4.16), the string value
”127.0.0.1” is inlined into the template body of exampleTemplate (Line 8), the corresponding
formal parameter of the template (Line 6) and the corresponding actual parameter of each
reference to exampleTemplate (lines 12 and 13) are removed.

1 type record ExampleType {
2 boolean ipv6 ,
3 charstring ipAddress
4 }
5
6 template ExampleType exampleTemplate := {
7 ipv6 := false ,
8 ipAddress := "127.0.0.1"

9 }
10
11 testcase exampleTestCase () runs on ExampleComponent {
12 pt . send (exampleTemplate) ;
13 pt . receive (exampleTemplate) ;
14 }

Listing 4.16: Inline Template Parameter (Refactored)

52

4.2 TTCN-3 Specific Refactorings

4.2.8 Extract Template

A template with the same values inlined more than once should be extracted into a template
on its own to support code reuse and maintenance.

Motivation

Inlined templates of simple structured types are nice as they can improve readability. In
fact, the Inline Template refactoring (section 4.2.6) even recommends the use of inlined
templates when a simple template declaration is referenced only once. However, when a
template with the same values is inlined more than once, there are reduced possibilities for
code reuse due to code duplication and the maintainability is bad. Hence, the duplicate
inlined templates (sources) should be extracted into a single target template declaration.
The duplicate inlined source templates are replaced with a reference to the target template
declaration and the code duplication is thus removed.

Mechanics

• Identify duplicate inlined source templates having the same value list notation.

• Create a new target template declaration containing the values of the duplicate inlined
source templates. Give it a meaningful name describing the content of the values.

• Compile.

• Replace the duplicate inlined source templates with a reference to the new target
template declaration. If the template declaration is located in a different module than
the inlined source template, an import statement must be added or adjusted to include
the target template declaration.

• Compile and validate.

Example

The example illustrates the Extract Template refactoring as a reversed Inline Template
refactoring (section 4.2.6). In listing 4.17, two send statements (line 10 and 12) use inlined
source templates with the exactly the same values.

1 // . . .
2 type record MyMessageType {
3 integer f i e l d 1 optional ,
4 charstring f i e l d 2 ,
5 boolean f i e l d 3
6 }

53

4 A TTCN-3 Refactoring Catalog

7 // . . .
8 testcase tc exampleTestCase () runs on ExampleComponent {
9 // . . .

10 pt . send (MyMessageType :{omit , "My string" , true}) ;
11 // . . .
12 pt . send (MyMessageType :{omit , "My string" , true}) ;
13 }

Listing 4.17: Extract Template (unrefactored)

After applying the Extract Template refactoring (listing 4.18), this code duplication is
removed. A new target template declaration a myMessageTemplate is created (line 9).
The duplicate inlined source templates are replaced with a reference to the target template
declaration (lines 19 and 21). As the duplicate inlined source templates are all within the
same module, the import statement is not changed.

1 // . . .
2
3 type record MyMessageType {
4 integer f i e l d 1 optional ,
5 charstring f i e l d 2 ,
6 boolean f i e l d 3
7 }
8
9 template MyMessageType a myMessageTemplate := {

10 f i e l d 1 := omit ,
11 f i e l d 2 := "My string" ,
12 f i e l d 3 := true
13 }
14
15 // . . .
16
17 testcase tc exampleTestCase () runs on ExampleComponent {
18 // . . .
19 pt . send (a myMessageTemplate) ;
20 // . . .
21 pt . send (a myMessageTemplate) ;
22 }

Listing 4.18: Extract Template (refactored)

54

4.2 TTCN-3 Specific Refactorings

4.2.9 Replace Template with Modified Template

Templates of structured or list types of the same type with similar content values that differ
in few different fields can be simplified by using modified templates.

Motivation

When several templates of the same structured or list types have mostly the same content
values and differ only in few fields, these templates (targets) can be simplified by using
modified templates. A modified template declaration uses another template declaration as
base (source), but redefines only the fields where it differs. All other values are inherited
from the base template.

While this may sound similar to what the Parameterize Template refactoring does (sec-
tion 4.2.10), the difference is that a parameterized template can combine only templates
where one or more of the same fields differ (a template parameter is referenced in those
fields) while a modified template simplifies the declaration of templates where the values
are different mostly in varying fields. Replacing a target template declaration with a mod-
ified template improves maintenance and reusability as value changes in the source base
template can be made at a single location (i.e. the source base template).

Mechanics

• Find template declarations of the same structured or list types that differ only in few
values.

• Choose the source base template declaration from the template declarations found
in the previous step. The source base template declaration is the template declara-
tion which has the most non-differing values if compared with all other remaining
templates. All other template declarations found in the previous step are the target
templates.

• For each target template, repeat the following steps:

– Modify the target template declaration to be a modified template of the source
base template, i.e. remove all duplicate value entries and add a modifies specifi-
cation.

– Compile and validate.

Example

In the unrefactored example (listing 4.19), three templates with varying values are declared
which are very similar (lines 7–12, 13–7 and 19–24). After careful inspection, the template

55

4 A TTCN-3 Refactoring Catalog

a firstTemplate is chosen as the source base template as it is necessary to redefine only one
single value for each target template.

1 type record ExampleType {
2 boolean ipv6 ,
3 integer examplePort ,
4 charstring ipAddress ,
5 charstring id
6 }
7 template ExampleType a f i r s tTemp la t e := {
8 ipv6 := false ,
9 examplePort := 80 ,

10 ipAddress := "127.0.0.1" ,
11 id := 1
12 }
13 template ExampleType a secondTemplate := {
14 ipv6 := false ,
15 examplePort := 80 ,
16 ipAddress := "134.72.13.2" ,
17 id := 1
18 }
19 template ExampleType a thirdTemplate := {
20 ipv6 := false ,
21 examplePort := 80 ,
22 ipAddress := "127.0.0.1" ,
23 id := 2
24 }

Listing 4.19: Replace Template with Modified Template (unrefactored)

After applying the refactoring Replace Template with Modified Template (listing 4.20),
the target templates a secondTemplate (lines 7–9) and a thirdTemplate (lines 10–12) are now
declared with a firstTemplate as base template (lines 1–6) using the modifies keyword. The
common values from a secondTemplate and a thirdTemplate are removed.

1 template ExampleType a f i r s tTemp la t e := {
2 ipv6 := false ,
3 examplePort := 80 ,
4 ipAddress := "127.0.0.1" ,
5 id := 1
6 }
7 template ExampleType a secondTemplate modifies a f i r s tTemp la t e := {
8 ipAddress := "134.72.13.2"

9 }
10 template ExampleType a thirdTemplate modifies a f i r s tTemp la t e := {
11 id := 2
12 }

Listing 4.20: Replace Template with Modified Template (refactored)

56

4.2 TTCN-3 Specific Refactorings

4.2.10 Parameterize Template

Replace several template declarations of the same type using different values for the same
fields with one single parameterized template.

Motivation

Occasionally, there are several template declarations of the same type which are basically
similar, but vary in values at the same fields (source template declarations). These template
declarations are candidates for parametrization. Instead of keeping all of them, they are
replaced with one single target template declaration where the variations are handled by
template parameters. Such a change removes code duplication, improves maintainability
and increases flexibility. If the template declarations are similar, but the values vary in
differing fields, the Replace Template with Modified Template refactoring (section 4.2.9)
may be a better choice.

This refactoring is similar to Add Parameter from [35] when reinterpreted for the use of
templates. However, the mechanic of Parameterize Template is improved while the mechanic
of Remove Parameter does not need such a change.

Mechanics

• Create the parameterized target template signature. It is of the same type as the
source templates. Introduce a parameter for each field in which the source template
values differ. The target template declaration’s name should additionally reflect the
meaning of the non-parameterized values.

• Copy one source template body to the parameterized target template declaration and
replace the varying parts with their newly introduced template parameters.

• Compile.

• Repeat the following steps for all references to the source template declarations:

– Replace the reference with a reference to the parameterized target template. As
parameter values, use the values of the originally referenced template declaration
corresponding to the parameterized values in the target template.

– Compile and validate.

• Remove the source template declarations from the code. They should not be referenced
anymore.

• Compile and validate.

57

4 A TTCN-3 Refactoring Catalog

Example

Listing 4.21 shows the unrefactored example. The source template declarations
a firstTemplate (lines 6–9) and a secondTemplate (lines 11–14) differ only in the values
of ipAddress.

1 type record ExampleType {
2 boolean ipv6 ,
3 charstring ipAddress
4 }
5
6 template ExampleType a f i r s tTemp la t e := {
7 ipv6 := false ,
8 ipAddress := "127.0.0.1"

9 }
10
11 template ExampleType a secondTemplate := {
12 ipv6 := false ,
13 ipAddress := "134.72.13.2"

14 }
15
16 testcase tc exampleTestCase () runs on ExampleComponent {
17 pt . send (a f i r s tTemp la t e) ;
18 pt . send (a secondTemplate) ;
19 }

Listing 4.21: Parameterize Template (unrefactored)

The resulting code after applying Parameterize Template is shown in listing 4.22. A
new target template declaration a parameterizedTemplate (lines 6–9) is created which has
a parameter for the varying ipAddress field in the source template declarations. The
references to a firstTemplate (line 12) and a secondTemplate (line 13) are replaced with
a parameterizedTemplate and their corresponding IP addresses as parameters.

1 type record ExampleType {
2 boolean ipv6 ,
3 charstring ipAddress
4 }
5
6 template ExampleType a parameter izedTemplate (charstring p ipAddress) := {
7 ipv6 := false ,
8 ipAddress := p ipAddress
9 }

10
11 testcase tc exampleTestCase () runs on ExampleComponent {
12 pt . send (a parameter izedTemplate ("127.0.0.1")) ;
13 pt . send (a parameter izedTemplate ("134.72.13.2")) ;
14 }

Listing 4.22: Parameterize Template (refactored)

58

4.2 TTCN-3 Specific Refactorings

4.2.11 Decompose Template

Decompose complex template declarations into smaller templates using references.

Motivation

Template declarations for complex types can easily be very long. They become hard to
read and maintain. In addition to this, the longer a single template declaration is, the
more likely that it is highly specialized and cannot be reused in other places. It may
be possible though to reuse single parts of the complex template. A template may be
decomposed into smaller templates in TTCN-3. The originally complex template then
references the small subtemplates instead of defining every value within itself. Application
of this refactoring should not be exaggerated. Too many subtemplates or too many small
templates are confusing as well. Refactorings that may be used after decomposing a template
are Parameterize Template or Replace Template with Modified Template.

Mechanics

• Create a new target template for each field of the source template which contains a
record or list type. The type of the target template is determined by the type of the
corresponding field of the source template. The name usually relates to the name of
the corresponding field of the source template.

• Copy each value specification from the source template into its corresponding smaller
target template.

• Compile.

• Repeat the following steps until all record or list type fields of the source template are
replaced with references to the corresponding target template:

– Replace one value specification from the source template with a reference to its
corresponding target template.

– Compile and validate.

Example

The example is derived from an ETSI SIP test suite [32]. Listing 4.23 shows the rather
complex template a contactAddress which specifies all fields right in the template declaration
(lines 7–18).

59

4 A TTCN-3 Refactoring Catalog

1 type record ContactAddress
2 {
3 Addr Union addres sF ie ld ,
4 SemicolonParam List contactParams optional
5 }
6
7 template ContactAddress a contactAddress := {
8 addre s sF i e ld := {
9 nameAddr := {

10 displayName := "ETSI Tester" ,
11 addrSpec := omit
12 }
13 } ,
14 contactParams := {{
15 id := "transport" ,
16 paramValue := PX TRANSPORT
17 }}
18 }

Listing 4.23: Decompose Template (unrefactored)

Listing 4.24 shows the refactored version. The values of addressField and contactParams
have been moved to their own templates (lines 7–12 and 14–19) and are then referenced
within the originally complex template (lines 21–24).

1 type record ContactAddress
2 {
3 Addr Union addres sF ie ld ,
4 SemicolonParam List contactParams optional
5 }
6
7 template Addr Union a s p e c i f i cAdd r e s sF i e l d := {
8 nameAddr := {
9 displayName := "ETSI Tester" ,

10 addrSpec := omit
11 }
12 }
13
14 template SemicolonParam List a spec i f i cContactParams := {
15 {
16 id := "transport" ,
17 paramValue := PX TRANSPORT
18 }
19 }
20
21 template ContactAddress a contactAddress := {
22 addre s sF i e ld := a sp e c i f i cAdd r e s sF i e l d ,
23 contactParams := a spec i f i cContactParams
24 }

Listing 4.24: Decompose Template (refactored)

60

4.2 TTCN-3 Specific Refactorings

4.2.12 Subtype Basic Types

Use subtypes on basic type declarations to improve code flaw detection.

Motivation

It is possible to restrict types in TTCN-3 by using subtypes (such as lists, ranges and length
restrictions) on basic types. This is good for two reasons. Firstly, it forces the test engineer
to think about what he wants to achieve and what values he expects the type instantiations
to have. Secondly, it allows early detection of code flaws either in the test suite or the
SUT. A tool making a thorough semantic analysis of the code can partially detect when an
assignment is outside its declared range and report this error for example. Other violations
(e.g. range violations) can only be detected at test execution, but entirely undetected range
violations can possibly lead to unexpected behavior that may lead to false test verdicts
which is, needless to say, a bad thing for a test.

Mechanics

• Copy the source type declaration and give it a carefully decided subtype. Give it a
temporary name. This is the target type declaration.

• Compile.

• Remove the source type declaration and rename the name of the subtyped target type
declaration to the name of the source type declaration.

• Compile and validate.

• Consider if applying the Rename refactoring to the target type declaration may im-
prove the meaningfulness of its name now that it is subtyped.

Example

The example uses subtyping for early detection when values are out of range. In listing 4.25,
a variable v byte of type integer is declared (line 4) and then assigned 1024 (line 5). A byte
is of course only 8 bits long and its range is between 0 and 255. Hence, assigning 1024
to a variable that is supposed to be within this range is illegal and will probably result in
unexpected behavior when not detected early by the compiler.

61

4 A TTCN-3 Refactoring Catalog

1 // . . .
2 control {
3 // . . .
4 var integer v byte ;
5 v byte := 1024 ;
6 }

Listing 4.25: Subtype Basic Types (unrefactored)

Listing 4.26 improves this weak point by introducing a type byte (line 2) with a range
restriction which is then used instead of type integer (line 6). The compiler is now able to
detect this flaw at compilation.

1 // . . .
2 type integer byte (0 . . 255) ;
3
4 control {
5 // . . .
6 var byte v byte ;
7 v byte := 1024 ;
8 }

Listing 4.26: Subtype Basic Types (refactored)

4.2.13 Extract Module / Move Declarations to Another Module

Move parts of a module into a newly created module or into another existing module to
improve structure and reusability.

Motivation

Modules are essential and necessary for flexibility and structure of TTCN-3 test suites.
Structuring code is essential for readability on the one hand and on the other hand allows
to apply other refactorings that can improve the reuse of certain parts of code (e.g. using
Parameterize Module (section 4.2.17)). Therefore, it should be considered to move parts that
share a meaningful relationship of a long test suite into its own module (i.e. Extract Module)
or into another more suitable module that already exists (i.e. Move Declarations to Module).
Except for the different target modules, both refactorings are the same and thus described
together in this section. Good candidates for extracting/moving may already be collected
in a group. If not, a possible preceding refactoring is Group Fragments (section 4.2.14).

62

4.2 TTCN-3 Specific Refactorings

Mechanics

• If the target module does not exist already, create a new module as target using a
name describing the identified code part in a good way.

• Copy the identified code into the target module. Copy also the complete import
declarations from the source module to the target module. Dependencies between
modules should generally be kept to a minimum. This should be kept in mind when
extracting a module or moving declarations. Furthermore, make sure that the result
of moving the chosen declarations does not create a cyclic dependency between the
source module and the target module. If such a dependency occurs, this refactoring
is not applicable.

• Compile.

• Remove the identified code from the source module and put an import from ... all
statement at the top of the source module to import all declarations from the new
module.

• Compile and validate.

• Use the Restrict Imports refactoring on the import statement in both, source and
target, modules.

Example

The Example module from listing 4.27 contains type (lines 2–17) and template declara-
tions (lines 18–21). It is desirable to separate type and templates declarations for a better
structure.

1 module Example {
2 group types {
3 type charstring Answer ;
4 type integer I d en t i f i c a t i onCode ;
5 }
6
7 group s t ruc tu r ed {
8 type record PersonType {
9 charstring f irstName ,

10 charstring middleName ,
11 charstring lastName
12 }
13 type record ExampleMessageType {
14 PersonType Person ,
15 Id en t i f i c a t i onCode idCode
16 }
17 }

63

4 A TTCN-3 Refactoring Catalog

18 template ExampleMessageType a tes tMessage := {
19 Person := { "Arthur" , "Dent" } ,
20 idCode := 42
21 }
22 }

Listing 4.27: Extract Module (unrefactored)

A new module with the name ExampleTypes is created (lisiting 4.28) which is the target
module. The type declarations from module Example are copied to the target module
ExampleTypes (lines 1–19) and the corresponding declarations from the source module are
removed while the template declarations reside in module Example. No import is necessary
as the extracted code in module ExampleTypes does not refer to any external declarations.
The source module, however, needs needs to import from ExampleTypes to have access to
the required type declarations (lines 22–24). The imports have been minimized by applying
the Restrict Imports (section 4.2.15) refactoring afterwards.

1 module ExampleTypes {
2 group types {
3 type charstring Answer ;
4 type integer I d en t i f i c a t i onCode ;
5 }
6
7 group s t ruc tu r ed {
8 type record PersonType {
9 charstring f irstName ,

10 charstring middleName ,
11 charstring lastName
12 }
13
14 type record ExampleMessageType {
15 PersonType Person ,
16 Id en t i f i c a t i onCode idCode
17 }
18 }
19 }
20
21 module Example {
22 import from ExampleTypes {
23 type PersonType , Id en t i f i c a t i onCode , ExampleMessageType ;
24 }
25
26 template ExampleMessageType a tes tMessage := {
27 Person := { "Arthur" , "Dent" } ,
28 idCode := 42
29 }
30 }

Listing 4.28: Extract Module (refactored)

64

4.2 TTCN-3 Specific Refactorings

4.2.14 Group Fragments

Add additional structure to a module by putting logically related declarations into groups.

Motivation

Although TTCN-3 groups have only little semantical meaning, they can help to improve
the code in two ways. Firstly, the general structure of a module may be improved as the
grouping collects elements that logically belong together. The benefit is good readability
and easy navigation if the used TTCN-3 development environment supports navigation
using groups. Secondly, proper grouping can be helpful for fine grained import statements
since groups can be used in the import restrictions. Therefore, Group Fragments is related
to the Restrict Imports (section 4.2.15) refactoring which can make use of groups. Groups
are also often candidates to move into another module using the Extract Module / Move
Declarations to Another Module refactoring (section 4.2.13).

Mechanics

• Find declarations which can be logically grouped and find a name for this group
reflecting its contents. These are the source declarations. All declarations must be
located in the same module. Otherwise, Extract Module / Move Declarations to
Another Module should be used beforehand (section 4.2.13).

• Check whether a target group with the same name or with a corresponding meaning
already exists. If not, create the target group with the chosen name.

• Move the source declarations to the target group.

• Compile and validate.

• Consider using the Restrict Imports (section 4.2.15) refactoring afterwards.

Example

Listing 4.29 shows a module containing declarations which can be logically grouped by
constants (lines 2–3), types (lines 5–6) and structured types (lines 8–10).

1 module ExampleModule {
2 const integer c defaultSmtpPort := 25 ;
3 const integer c defaultSmtpSSLPort := 465 ;
4
5 type charstring Answer ;
6 type charstring Question ;
7

65

4 A TTCN-3 Refactoring Catalog

8 type record SmtpMessage {
9 // . . .

10 }
11
12 }

Listing 4.29: Group Fragments (unrefactored)

In the refactored version (Listing 4.30), these declarations are surrounded by groups with
names corresponding to the declaration types (lines 2–5, 7–10 and 12–16).

1 module ExampleModule {
2 group cons t s {
3 const integer c defaultSmtpPort := 25 ;
4 const integer c defaultSmtpSSLPort := 465 ;
5 }
6
7 group types {
8 type charstring Answer ;
9 type charstring Question ;

10 }
11
12 group s t ruc tu r ed {
13 type record SmtpMessage {
14 // . . .
15 }
16 }
17
18 }

Listing 4.30: Group Fragments (refactored)

4.2.15 Restrict Imports

Restrict import statements for smaller inter-module interfaces and less processing load for
TTCN-3 tools.

Motivation

TTCN-3 offers the possibility to restrict import statements. The inter-module interfaces
are minimized when only declarations are imported that are actually used. As a result, mod-
ularity and reuse possibilities are improved and the possibility for name clashes is reduced.
Furthermore, the module dependencies and relationships become more clear. Depending on
the implementation, the processing load of TTCN-3 tools may be reduced when the inter-
module dependencies are minimized. Restrict Import can be applied whenever module

66

4.2 TTCN-3 Specific Refactorings

dependencies or the internal structure of type declarations change (e.g. through applica-
tion of Group Fragments (section 4.2.14). Note that the provided mechanics do not exploit
all restriction possibilities of TTCN-3. Specifically group exceptions can make an import
statement hard to understand and should be used only when absolutely necessary.

Mechanics

• Find the declarations for all references which are imported from other modules and
used in the source module.

• Replace the existing import statements in the source module with new import state-
ments (one import statement for each module on which the source module depends on)
which are restricted by listing the concrete declarations names found in the previous
step.

• Compile.

• If all declarations of a kind are listed within a restriction, remove all concretely listed
declaration names of this kind and add a kind import for all elements of this kind
(e.g. type all, altstep all, etc.).

• Compile.

• If all declarations of a group are listed within a restriction, remove all concretely listed
declaration names of this group and add a group import.

• Compile.

• Compare the number of all concretely listed elements of a kind or a group to the total
number of elements of their corresponding kind or group within their module. As a
loose rule, if the difference is equal or less than three and the number of concretely
listed elements is greater than three, this concrete kind or group import list should be
replaced by a statement importing all elements of a kind or a group with these few
elements as exceptions (e.g. type all except concreteDeclaration)

• Compile and validate.

Example

Listing 4.31 contains two modules. ExampleModule (lines 1–17) contains declarations
which are grouped according to their types (lines 2–5, 7–10 and 12–16). DependantMod-
ule (lines 19–27) uses only the constants from ExampleModule, but imports all declarations
(line 20). Hence, the inter-module interface is bigger than it needs to be.

67

4 A TTCN-3 Refactoring Catalog

1 module ExampleModule {
2 group cons t s {
3 const integer c defaultSmtpPort := 25 ;
4 const integer c defaultSmtpSSLPort := 465 ;
5 }
6
7 group types {
8 type charstring Answer ;
9 type charstring Question ;

10 }
11
12 group s t ruc tu r ed {
13 type record SmtpMessage {
14 // . . .
15 }
16 }
17 }
18
19 module DependantModule {
20 import from ExampleModule a l l ;
21
22 testcase tc exampleTestCase () runs on ExampleComponent {
23 // . . .
24 theAddress . po r tF i e ld := c defaultSmtpPort ;
25 theAddress . portFie ldSSL := c defaultSmtpSSLPort ;
26 }
27 }

Listing 4.31: Restrict Imports (unrefactored)

After applying the Restrict Imports refactoring, the situation is improved by adding a re-
striction to the import statement. In the first step, the restriction contains the concrete vari-
able names c defaultSmtpPort and c defaultSmtpSSLPort. In the second step (listing 4.32),
this is optimized by replacing the two concrete imports with a group import (line 19).

1 module ExampleModule {
2 group cons t s {
3 const integer c defaultSmtpPort := 25 ;
4 const integer c defaultSmtpSSLPort := 465 ;
5 }
6
7 group types {
8 type charstring Answer ;
9 type charstring Question ;

10 }
11
12 group s t ruc tu r ed {
13 type record SmtpMessage {
14 // . . .
15 }
16 }
17 }

68

4.2 TTCN-3 Specific Refactorings

18 module DependantModule {
19 import from ExampleModule { group cons t s } ;
20
21 // . . .
22
23 testcase tc exampleTestCase () runs on ExampleComponent {
24 // . . .
25 theAddress . po r tF i e ld := c defaultSmtpPort ;
26 theAddress . portFie ldSSL := c defaultSmtpSSLPort ;
27 }
28 }

Listing 4.32: Restrict Imports (refactored)

4.2.16 Prefix Imported Declarations

References to imported declarations are prefixed to avoid possible name clashes.

Motivation

References to imported declarations can be prefixed with the module name where they
originate from. Usage of this refactoring should only be considered when name clashes are
inevitable (e.g. when an imported module cannot be changed) and should not be applied
generally as prefixed references are typically harder to read. Also, in the case of name clashes,
it should be verified if the Rename refactoring applied to the local clashing declaration would
not yield a better result.

Mechanics

• In the source module, find the module from which the declaration to be prefixed is
imported from and find the module’s name.

• For each reference to this imported declaration, add a prefix containing the module
name.

• Compile and validate.

Example

Listing 4.33 shows the unrefactored version. In the ExampleModule (line 1–6), a type Sip-
Method (lines 3–4) is declared which is then imported by the DependantModule (lines 8–18).
In line 11, there is a second type declaration with the name SipMethod which causes a name
clash. According to the scoping rules, v method (line 15) uses SipMethod as a charstring,
but the actual value hints that the imported SipMethod is meant.

69

4 A TTCN-3 Refactoring Catalog

1 module ExampleModule {
2 group types {
3 type charstring SipMethod ("REGISTER" , "INVITE" , "ACK" , "BYE" ,
4 "CANCEL" , "OPTIONS") ;
5 }
6 }
7
8 module DependantModule {
9 import from ExampleModule a l l ;

10
11 type charstring SipMethod ;
12
13 testcase tc exampleTestCase () runs on ExampleComponent {
14 // . . .
15 var SipMethod v method := "QUIT" ;
16 }
17
18 }

Listing 4.33: Prefix Imported Declarations (unrefactored)

Listing 4.34 solves this problem by prefixing SipMethod with ExampleModule on decla-
ration of v method (line 15). It is clear now that v method should use the imported type
declaration.

1 module ExampleModule {
2 group types {
3 type charstring SipMethod ("REGISTER" , "INVITE" , "ACK" , "BYE" ,
4 "CANCEL" , "OPTIONS") ;
5 }
6 }
7
8 module DependantModule {
9 import from ExampleModule a l l ;

10
11 type charstring SipMethod ;
12
13 testcase tc exampleTestCase () runs on ExampleComponent {
14 // . . .
15 var ExampleModule . SipMethod v method := "QUIT" ;
16 }
17
18 }

Listing 4.34: Prefix Imported Declarations (refactored)

70

4.2 TTCN-3 Specific Refactorings

4.2.17 Parameterize Module

Parameterize modules to specify environment specific parameters at tool level.

Motivation

TTCN-3 test cases are executed in an automated way and there is no possibility to interact
with the user through a GUI at TTCN-3 level for example. Therefore, information that
is specific to a local test environment (such as IP addresses of SUTs) may sometimes be
found in constants. However, through module parameters, this task can be deferred to
the TTCN-3 tooling. As a result, TTCN-3 code does not have to be changed when used in
different test environments in the ideal case. Hence, reusability is improved and maintenance
work reduced.

Mechanics

• Find constants and magic numbers that are specific to the test environment in the
source module. For magic numbers, apply the Replace Magic Number with Sym-
bolic Constant refactoring [35]. The resulting constant declarations are the source
declarations.

• Move all source constant declarations into the modulepar section. If there is no
modulepar section yet, it must be created. Remove the const keyword from each
declaration.

• Specify custom environment-specific actual parameters for the module parameters at
tool level.

• Compile and validate using the original magic numbers from the source module as
module parameters at tool level.

Example

Listing 4.35 shows the unrefactored version. There are two templates where custom IP
addresses are specified (lines 6–9 and 11–14). Apparently, this is not optimal as the specified
IP addresses (lines 8 and 13) would have to be modified for each test environment.

1 type record ExampleType {
2 boolean ipv6 ,
3 charstring ipAddress
4 }
5
6 template ExampleType a f irstRemoteAddressTemplate := {
7 ipv6 := false ,
8 ipAddress := "64.233.187.99"

9 }
10

71

4 A TTCN-3 Refactoring Catalog

11 template ExampleType a secondRemoteAddressTemplate := {
12 ipv6 := false ,
13 ipAddress := "134.72.13.2"

14 }
15 testcase tc exampleTestCase () runs on ExampleComponent {
16 pt . send (a f i rstRemoteAddressTemplate) ;
17 pt . send (a secondRemoteAddressTemplate) ;
18 }

Listing 4.35: Parameterize Module (unrefactored)

After application of the Replace Magic Number with Symbolic Constant refactoring, two
constants are introduced for the local (line 1) and remote IP address (line 2). The templates
a localAddressTemplate and a remoteAddressTemplate now reference these constants (lines 6
and 10).

1 const charstring c f i r s tRemoteIPAddress := "64.233.187.99" ;
2 const charstring c secondRemoteIPAddress := "134.72.13.2" ;
3
4 template ExampleType a f irstRemoteAddressTemplate := {
5 ipv6 := false ,
6 ipAddress := c f i r s tRemoteIPAddress
7 }
8 template ExampleType a secondRemoteAddressTemplate := {
9 ipv6 := false ,

10 ipAddress := c secondRemoteIPAddress
11 }

Listing 4.36: Parameterize Module (intermediate step)

In the next and final step, the constants are converted to module parameters by putting
them into the modulepar section (lines 1–4) and removing the const keyword from the
declaration. Now, they can be overwritten externally by TTCN-3 tools.

1 modulepar {
2 charstring mp firstRemoteIPAddress := "64.233.187.99" ;
3 charstring mp secondRemoteIPAddress := "134.72.13.2" ;
4 }
5
6 template ExampleType a f irstRemoteAddressTemplate := {
7 ipv6 := false ,
8 ipAddress := mp firstRemoteIPAddress
9 }

10 template ExampleType a secondRemoteAddressTemplate := {
11 ipv6 := false ,
12 ipAddress := mp secondRemoteIPAddress
13 }

Listing 4.37: Parameterize Module (refactored)

72

4.2 TTCN-3 Specific Refactorings

4.2.18 Move Module Constants to Component

When the declaration of a constant at module level is used exclusively by a module compo-
nent or functions/altsteps/test cases running on this component, it should be moved into
the component declaration.

Motivation

Constant declarations at module level can introduce problems when constants with the same
name from other modules are imported. This is especially the case when unspecifically all
declarations from a module are imported. The programmer may not be aware of the name
clash and in the worst case, his IDE or compiler does not provide useful error messages which
makes this implicit mistake hard to find. So the constant declarations that are used only
within a single component anyway should always be moved into the component declaration
to limit its scope. Another method to avoid these kinds of problems is the Prefix Imported
Declarations refactoring (section 4.2.16). When constants are moved to the component, their
tie to the component is fortified. Therefore, the decision whether to use Prefix Imported
Declarations or Move Module Constants to Component when name clashes happen, depends
on the overall context.

Mechanics

• Copy the source constant declaration to the target component.

• Compile.

• Remove the source constant declaration.

• Compile and validate.

Example

Listing 4.38 shows the module ExampleModule which has a constant declaration
v exampleVariable (line 2) at module scope. This variable is only used by the test case
tc exampleTestCase (lines 8–10). Hence, it can be moved from the module scope into the
component.

1 module ExampleModule {
2 const charstring v exampleConstant = "teststring" ;
3
4 type component TestComponent {
5 // . . .
6 }
7 // . . .

73

4 A TTCN-3 Refactoring Catalog

8 testcase tc exampleTestCase () runs on TestComponent {
9 // . . .

10 f doSomething (v exampleConstant) ;
11 }
12 }

Listing 4.38: Move Module Constants to Component (unrefactored)

Listing 4.39 shows the refactored version. Instead of a declaration at module level, the
constant declaration is now part of the component (line 4).

1 module ExampleModule {
2 type component TestComponent {
3 // . . .
4 const charstring v exampleConstant = "teststring" ;
5 }
6 // . . .
7 testcase tc exampleTestCase () runs on TestComponent {
8 // . . .
9 f doSomething (v exampleConstant) ;

10 }
11 }

Listing 4.39: Move Module Constants to Component (refactored)

4.2.19 Move Local Variables/Constants/Timer to Component

Local declarations of variables, constants and timers can be moved to a component when
used in different functions, test cases or altsteps running on the same component to reduce
code clutter.

Motivation

When a local variable, constant or timer in a function, test case or altstep that runs on
a component is used in more than one function, test case or altstep running on the same
component by parameter passing, it might be a good idea to move it to the component. This
way, accessibility of this variable and its value is improved within the component scope. The
test engineer avoids unnecessary passing of parameters and therefore avoids code clutter.
Note that usage of this refactoring should always be used with care as moving variables to
the component level can introduce problems similar to global variables depending on the
complexity of the component and the number of component variables. Using component
variables within functions and test cases fortifies its tie to the component. Hence, detaching
such a function, test case or altstep from a component using component variables can be
hard.

74

4.2 TTCN-3 Specific Refactorings

Mechanics

• Find the declaration of the local source variable/constant/timer in its function, altstep
or test case.

• Copy this local source variable/constant/timer declaration to the target component
as component declaration.

• If a source variable is initialized with a value at its local declaration, choose whether the
initialization must be moved to the target component declaration as well or whether
it should be converted into an assignment at the location of the source declaration.
This depends on the semantics of the component behavior.

• Compile.

• Remove the local source declaration from the function, altstep or test case.

• Compile and validate.

• Find functions, altsteps and test cases running on the same target component and
called from the scope or subscope of the source declaration where a reference to the
source declaration was passed as parameter. For each of these functions, altstep or
test cases, remove the corresponding parameter and adjust its body to use references
to the target component variable, constant or timer instead.

• Compile and validate.

Example

In this example (Listing 4.40), there are two functions f exampleFunction (line 6) and
f anotherExampleFunction (line 12). A local variable v exampleVariable is declared in
f exampleFunction and then assigned the value 16 (line 8). This variable passed as an
in parameter to the function f anotherExampleFunction (line 10) where it is used in a
conditional statement (line 15).

1 // . . .
2 type component ExampleComponent {
3 // . . .
4 }
5
6 function f exampleFunct ion () runs on ExampleComponent {
7 // . . .
8 var integer v exampleVar iable := 16 ;
9 // . . .

10 f anotherExampleFunction (v exampleVar iable) ;
11 }

75

4 A TTCN-3 Refactoring Catalog

12 function f anotherExampleFunction (in integer p exampleParam)
13 runs on ExampleComponent {
14 // . . .
15 i f (p exampleParam > 0) {
16 // . . .
17 }
18 }
19
20 // . . .

Listing 4.40: Move Local Variables/Constants/Timer to Component (unrefactored)

The refactored version (listing 4.41) moved the local variable declaration including its
initialization to the component (line 4) and adjusts the signature and body of the function
f anotherExampleFunction (line 12) to use the component variable instead of a parameter.

1 // . . .
2 type component ExampleComponent {
3 // . . .
4 var integer v exampleVar iable := 16 ;
5 }
6
7 function f exampleFunct ion () runs on ExampleComponent {
8 // . . .
9 f anotherExampleFunction () ;

10 }
11
12 function f anotherExampleFunction () runs on ExampleComponent {
13 // . . .
14 i f (v exampleVar iable > 0) {
15 // . . .
16 }
17 }
18 // . . .

Listing 4.41: Move Local Variables/Constants/Timer to Component (refactored)

76

4.2 TTCN-3 Specific Refactorings

4.2.20 Move Component Variable/Constant/Timer to Local Scope

A component variable, constant or timer is moved to a local scope when only used in a
single function, altstep or test case.

Motivation

When a local variable, constant or timer declaration of a component is referenced only by a
single function, altstep or test case, the reusability of this function, altstep or test case can be
improved when the component declaration is moved to the local scope of the function, altstep
or test case. This way, its coupling to the component is reduced or removed. As a result,
the runs on clause can possibly be generalized with the Generalize Runs On refactoring
(section 4.2.21) to allow its use on other components or it may even become superfluous
when no other component declaration is referenced. Hence, component declarations should
always be used by multiple functions, altsteps or test cases.

Mechanics

• Inspect all functions, altsteps and test cases running on the source component to
ensure the target function, altstep or test case is indeed the only one referencing the
concerned declaration in the source component.

• Copy the declaration (including a possible initialization value) from the source com-
ponent to the target function, altstep or test case. The copied declaration should be
the first statement within the target.

• Compile

• Remove the declaration from the source component.

• Compile and validate.

• Consider the application on Generalize Runs On (section 4.2.21) or remove the runs
on clause when no more declarations from the source component are referenced within
the target.

Example

The component MyComponent (lines 1–4) in listing 4.42 contains a local declaration myInt
(line 3) which is used in the function f myFunction (lines 6–8).

77

4 A TTCN-3 Refactoring Catalog

1 type component MyComponent {
2 // . . .
3 var integer myInt ;
4 }
5
6 function f myFunction () runs on MyComponent {
7 myInt := 255 ;
8 }

Listing 4.42: Move Component Variable/Constant/Timer to Local Scope (unrefactored)

As f myFunction is the only function, altstep or test case referencing this component
declaration, it is moved as local declaration to the function itself (listing 4.43). As a result,
f myFunction no longer depends on MyComponent as no ports or other declaration local to
the component are used. Therefore, the runs on clause is removed from line 5.

1 type component MyComponent {
2 // . . .
3 }
4
5 function f myFunction () {
6 var integer myInt ;
7 myInt := 255 ;
8 }

Listing 4.43: Move Component Variable/Constant/Timer to Local Scope (refactored)

4.2.21 Generalize Runs On

Change the component in the runs on clause of a function, test case or altstep to a more
general component to improve reusability.

Motivation

Functions, test cases and altsteps running on a component typically use ports, constants,
variables or timers which are part of this component (source component). When another
component (target component) is available that contains exactly the ports, constants, vari-
ables and timers that are used in this function, test case or altstep and the target component
is a subset of the source component (in terms of the declarations local to the component), the
runs on clause of the function, test case or altstep may be generalized and hence changed
to the target component. As a result, the reuse is improved since it may be used with any
component which is an extension or superset of the target component. In the extreme case,
the runs on clause can be removed entirely when no component element is referenced at
all.

78

4.2 TTCN-3 Specific Refactorings

Note that the source component is not necessarily an extension of the target component.
Type compatibility rules in TTCN-3 allow the use of a function, test case or altstep running
on component a to be used with any component b that contains all declarations of a with
the same identifier names, types and initialization values. In addition, note that the runs
on clause in a local test architecture implicitly defines the interface towards the SUT and
should not simply be changed.

Mechanics

• If no element of the source component is referenced in a function or altstep, the runs
on clause can be removed entirely. Otherwise, follow the subsequent steps. Test cases
must always have a runs on clause.

• Find all components containing a subset of the declarations in the source component.
These components must have the same identifier names, types and initializations values
for its elements.

• From these found components, find the most minimal component which is still compat-
ible with the concerned function, test case or altstep, i.e. it must have all declarations
which are referenced in the function, test case or altstep and it must have the fewest
declarations. This is the target component.

• Change the runs on specification in concerned function, test case or altstep to use
the target component instead of the source component.

• Compile and validate.

Example

In listing 4.44, there are three components MySuperComponent (lines 1–3), mySecondSu-
perComponent (lines 5–7) and MySubComponent (lines 8–10). MySuperComponent and
mySecondSuperComponent are extensions of MySubComponent and hence the declaration
myIntegerVar (line 9) is also part of MySuperComponent and MySecondSuperComponent.
The function f myFunction runs on MySuperComponent, but actually uses only myInte-
gerVar (line 13).

1 type component MySuperComponent extends MySubComponent {
2 var charstring myCharstring ;
3 }
4
5 type component MySecondSuperComponent extends MySubComponent {
6 var boolean myBoolean ;
7 }

79

4 A TTCN-3 Refactoring Catalog

8 type component MySubComponent {
9 var integer myIntegerVar ;

10 }
11
12 function f myFunction () runs on MySuperComponent {
13 myIntegerVar := 255 ;
14 }

Listing 4.44: Generalize Runs On (unrefactored)

In order to use f myFunction with MySecondSuperComponent as well, the runs on clause
must be generalized. The only component which is a subset of MySuperComponent and is
compatible with f myFunction is MySubComponent. Hence, after applying the General-
ize Runs On refactoring (listing 4.45), the runs on clause of f myFunction is changed to
MySubComponent (line 13) and f myFunction can be used with the components MySuper-
Component, MySecondSuperComponent and MySubComponent now.

1 type component MySuperComponent extends MySubComponent {
2 var charstring myCharstring ;
3 }
4
5 type component MySecondSuperComponent extends MySubComponent {
6 var boolean myBoolean ;
7 }
8
9 type component MySubComponent {

10 var integer myIntegerVar ;
11 }
12
13 function f myFunction () runs on MySubComponent {
14 myIntegerVar := 255 ;
15 }

Listing 4.45: Generalize Runs On (refactored)

80

5 The TRex Refactoring Tool

The refactoring mechanics presented in chapter 4 can be applied manually. However, au-
tomated refactorings are significantly less error-prone and can be time saving. For exam-
ple, many refactorings involve source changes which are spread across multiple files and
many different positions within the source code making them error-prone and time con-
suming. Therefore, the idea to automate or partially automate this process is obvious. To
prove that refactoring automation is possible with TTCN-3, such a tool has been developed
within the context of this thesis. The result is TRex, a refactoring tool based on the Eclipse
Platform [29].

Using the Eclipse Platform is advantageous as it provides many ready to use compo-
nents necessary when writing an IDE and related functionalities. Such components are a
user interface specifically designed for software development (Workbench) or project and
file management (workspace) for example. Other integrated development environments like
IDEA or Netbeans [9] are similarly useful. Eclipse however, is well designed, open source
and above all very well documented. Books like [25], [38], [18] or [50] are very useful when
implementing support for new languages in Eclipse. The Eclipse Platform and TRex are
both written in Java (TRex requires a Java 5.0 runtime). It is not only a refactoring tool,
but also the foundation for an Eclipse based integrated development environment (IDE) for
TTCN-3. It already provides several functionalities of advanced development tools like the
Eclipse Java Development Tools (JDT) [29] or IntelliJ IDEA [45]. The concrete implementa-
tion provided valuable insights into the practical realization of semantic preserving program
transformations of the TTCN-3 core notation and will be the basis for further research.

This chapter describes the key components of the refactoring tool and the implemented
refactorings in detail. The key components for the infrastructure are the pretty printer
(section 5.2) and the symbol table (section 5.3). Section 5.4 describes the implemented
refactorings. Other TRex features mostly unrelated to the refactorings can be found in
section 5.5. Finally, information on the unit test infrastructure and the build system is
provided in section 5.6

5.1 The TRex Architecture

Figure 5.1 shows the architecture of the tool. The TRex feature bundles two plug-ins: The
TRex ANTLR plug-in and the TRex plug-in. The TRex ANTLR plug-in merely provides
the ANTLR runtime bundled within an Eclipse plug-in. This runtime provides classes that

81

5 The TRex Refactoring Tool

TRex Feature

TRex Plug-In

TRex ANTLR Plug-In

TTCN-3 Parser

Syntax Tree

Pretty Printer Symbol Table

Refactoring Tool Code Completion Find References Texthover

Eclipse Platform

TTCN-3 Editor / Syntax Highlighting

Figure 5.1: TRex Extension Diagram

are necessary for the usage of the syntax tree. The TRex core plug-in provides the key
functionality of TRex. The very essential functionality for any IDE is the editor. The
TTCN-3 editor is based on an abstract editor of the Eclipse Platform and therefore has the
look and feel known from JDT for example. Naturally, like any other proper editor designed
to edit source code, the editor provides syntax highlighting for TTCN-3.

The TRex project consists of 6 subprojects:

• The de.ugoe.cs.swe.trex project contains an Eclipse feature. Eclipse features primarily
collect sets of Eclipse plug-ins that form a unit. They are essential for update sites
and product branding.

• The de.ugoe.cs.swe.trex.antlr project contains the ANTLR runtime as an Eclipse plug-
in. It is necessary for the usage of the syntax tree.

• The de.ugoe.cs.swe.trex.build project contains the build system.

82

5.1 The TRex Architecture

Figure 5.2: TRex Core Package Diagram

• The de.ugoe.cs.swe.trex.core project contains the actual TRex extension. It includes
UI code, data structures and the algorithms for TRex.

• The de.ugoe.cs.swe.trex.tests project contains unit tests.

• The sitexmlTask is a task for Apache ANT which was written to generate an update
site specification file site.xml directly from ANT [2].

The overall package structure of TRex is shown in figure 5.2. The first package with
source code is de.ugoe.cs.swe.trex.core. Only general UI (User Interface) classes for the
workbench extension are located here. The packages editors, preferences, ui, properties,

83

5 The TRex Refactoring Tool

views, actions are also concerned with the UI provided by the plug-in. The analyzer.rfparser,
analyzer.astutil and misc packages provide the parser, the symbol table and the necessary
data structures for the implementation of refactorings. Finally, the refactoring package
has three subpackages: actions, core and ui. The actions and ui packages are concerned
with the user-interface of the refactorings while the core packages implements the source
transformations. The UI code for the refactoring implementations is maintained separately
as the refactoring implementation might be moved into its own Eclipse plug-in in the future.

The edited source code is parsed using ANTLR. The parser is based on the work of Wei
Zhao [76]. However, the grammar files were heavily modified to create a syntax tree that
is syntactically non-ambiguous. This change was imperative as refactorings often contain
tree transformations and such transformed subtrees need to be converted into core notation
again with the same syntactical notation as before. The syntactical analysis provided by the
TTCN-3 parser is integrated into the user interface through problem markers. These markers
interpret exceptions thrown by the parser and mark syntactically incorrect lines using a
special problem view and editor annotations. The basic Eclipse editor with syntactical
problem markers is based on the bachelor thesis of Jochen Kemnade [46]. His work also
provides a basic semantical analysis and a symbol table. A symbol table is a data structure
used in source analysis where each symbol in a source code is associated with information
belonging to it, e.g. its type or scope. However, the semantical analysis and symbol table
from this work was not used in TRex. The symbol table from [46] was incomplete and too
simple in its design for the purpose of refactoring and further work. Therefore, the symbol
table has been completely reimplemented. As a result the semantical analysis from [46]
became completely incompatible and was therefore removed.

The symbol table and the pretty printer are implemented on top of the syntax tree which
is created by the ANTLR parser. Although a metal-model as presented in [67] could have
been used for the implementation of the refactorings, such an additional layer was not
used. There is no complete documentation of a TTCN-3 meta-model and the extra effort
would have been enormous compared to the benefits in the context of refactoring. The
TRex syntax tree is syntactically non-ambiguous, i.e. it contains more information than a
regular abstract syntax tree which only contains semantically complete information. Each
node in this tree is an instance of the LocationAST class. The LocationAST class contains
attributes for the parent node, corresponding start and end offsets as well as the line in the
parsed source file, the associated token in the token stream and the associated scope.

This tree is used for the implementation of a pretty printer which traverses the tree for re-
construction of the TTCN-3 core notation. The pretty printer is used for two functionalities
in TRex: it can be used for formatting the TTCN-3 source code according to rules specified
in the IDE preferences and it is used to transform syntax subtrees into TTCN-3 core nota-
tion. The latter use is part of the infrastructure which can be used for the implementation
of TTCN-3 refactorings.

84

5.1 The TRex Architecture

TTCN-3
Core Notation

ANTLR
Lexer / Parser

Syntax Tree / Symbol
Table

Refactoring Processor

Refactored TTCN-3
Core Notation

Transformed Subtree of
the Syntax Tree

Pretty Printer Change Weaver

Figure 5.3: The Refactoring Tool

The TTCN-3 refactoring implementations are based on the syntax tree, the symbol table
and the pretty printer. Other typical IDE features like the content assist use either the
syntax tree, the symbol table or both.

Figure 5.3 shows the essential steps involved in a refactoring implementation. As stated
before, source code in the TTCN-3 core notation is lexed and parsed using an ANTLR
grammar. The resulting syntax tree is used to generate a symbol table. The refactoring
implementations subsequently use the information provided by the syntax tree and the
symbol table to generate the changes needed to transform the source code. These changes
are generated in the refactoring processor. The changes can either be created directly from
the symbol table and the syntax tree or they involve a tree transformation as well. The
transformed subtree uses the pretty printer to create TTCN-3 core notation. The generated
changes are then weaved into the original source code using a programmatic text editor to
obtain the refactored core notation.

85

5 The TRex Refactoring Tool

Refactorings as implemented in the current version of TRex are not completely automated.
Like other popular refactoring tools, the developer still has to decide which refactoring he
wants to apply and he has to specify where the affected code regions are located. Most
refactorings need some additional information, e.g. how some identifier in the refactored
code should be named.

5.2 The Pretty Printer

One part of the refactoring infrastructure in TRex is the TTCN-3 pretty printer. While
the pretty printer can also be used on its own for source code formatting, its main pur-
pose in the context of the refactoring tool is to recreate core notation from subtrees of the
syntax tree. The pretty printer implementation consists of two core steps. The first step
reconstructs core notation from a syntax tree (section 5.2.1) and the second step post pro-
cesses the reconstructed core notation, e.g. for reintegrating single and multi-line comments
(section 5.2.2).

5.2.1 The Tree Walker

The TRex pretty printer is primarily implemented through an ANTLR tree grammar used
for structured tree traversal. ANTLR tree grammars are basically tree specifications which
can be enriched with actions that are executed on tree traversal. In the case of TRex,
such actions always contain Java code. The pretty printer is implemented in a special tree
grammar file which contains actions. These actions have the sole purpose to reconstruct
the TTCN-3 core notation from the information that is gathered while walking the tree.
Certain aspects of the way how the code should be formatted can be configured through a
Java Bean. Such aspects are the spacing type (tabs or spaces) or the placement or the curly
braces (e.g. Kernighan and Richie style indentation [23]).

The Visitor design pattern is a popular alternative to the tree grammar approach. In the
case of the available TTCN-3 parser, this would result in several hundred classes though.
The tree grammar approach also has its drawbacks though. Concretely, having multiple tree
walker grammars entails a maintenance problem as a change in the parser always results in
a manual change every single tree grammar file. Unfortunately, there is no such thing as a
tree grammar merge tool.

Pretty Print Tree
WalkerSyntax TreeLexer / ParserUnformatted Core

Notation
Formatted Core

NotationToken Weaver

Figure 5.4: The Pretty Printer

86

5.2 The Pretty Printer

Figure 5.4 shows the steps involved in pretty printing. A syntax tree from a source core
notation is created through lexing and parsing. This tree is traversed using a special tree
grammar for pretty printing. Finally, some post processing is done using a token weaver
(see section 5.2.2) before finally the formatted core notation is ready.

1 pr Funct ionDef r e tu rn s [S t r i ngBu f f e r s]
2 { s=new St r i ngBu f f e r () ;
3 S t r i ngBu f f e r a , b , c , d , e ; } :
4 #(FunctionDef
5 { s . append (” func t i on ”) ; }
6 a=p r I d e n t i f i e r
7 { s . append (a) . append (”(”) ; }
8 (b=pr Funct ionFormalParList
9 { s . append (b) ; }

10)?
11 { s . append (”) ”) ; }
12 (c=pr RunsOnSpec
13 { s . append (” runs on ” + c) ; }
14)?
15 (d=pr ReturnType
16 { s . append (” ” + d) ; }
17)?
18 { s . append (getOpeningBrace ()) ;
19 cur rentNes t ing++;
20 }
21 e=pr StatementBlock
22 { currentNest ing −−;
23 s . append (e) . append (getSpac ing () + ”} ”) ;
24 }
25) ;

Listing 5.1: Pretty Printer Tree Grammar Example

Listing 5.1 shows a typical tree grammar rule with pretty printer actions. In line 1, the
rule pr FunctionDef is declared with a StringBuffer return value. This return value is used
by rules which call pr FunctionDef. Lines 2–3 contain rule initialization code where the
variables needed for the actions are initialized. The subtree specification starts in line 4
where the rule tries to match a FunctionDef node. This specification is enriched with Java
actions. For example, the action in line 5 makes sure that any matched FunctionDef node
appends a string containing ”function” to the result buffer. Lines 6–7 show how return
values of rules are used for the core notation reconstruction. Finally, special Java methods
and variables are sometimes used when the formatting should be configurable. The use of
the getSpacing method in line 23 demonstrates this case. Depending on the pretty printer
configuration, the spacing can use tabs or spaces. The number of tabs or spaces per nesting
level is also configurable. Therefore, the spacing must be obtained by a configuration-aware
function.

87

5 The TRex Refactoring Tool

cd pretty printer

TTCN3Formatter

~ parser: TTCN3Parser
- tracker: TokenStreamTracker

- configureTokenStreamTracker(TokenStreamTracker) : void
+ displayTokenStream(TTCN3Lexer) : void
- parseTTCN3File(String) : TokenStreamTracker
+ printTokenStream(TokenStreamTracker) : void
+ formatTTCN3Source(String, TTCN3FormatterParameters) : String
+ formatTTCN3SourceStripComments(String, TTCN3FormatterParameters) : String
+ prettyPrintWalker(TTCN3FormatterParameters) : String
+ displayTree() : void

TTCN3FormatterParameters

~ tabs: boolean = false
~ unixNewline: boolean = false
~ spacesBetweenAssignment: boolean = true
~ spaceAfterComma: boolean = true
~ KRstyle: boolean = true
~ spacesCount: int = 4
~ linesBetweenModules: int = 2
~ linesAfterControlPart: int = 1
~ linesAfterModuleDefinition: int = 1

+ isTabs() : boolean
+ setTabs(boolean) : void
+ getSpacesCount() : int
+ setSpacesCount(int) : void
+ getLinesBetweenModules() : int
+ setLinesBetweenModules(int) : void
+ isUnixNewline() : boolean
+ setUnixNewline(boolean) : void
+ getLinesAfterControlPart() : int
+ setLinesAfterControlPart(int) : void
+ isSpacesBetweenAssignment() : boolean
+ setSpacesBetweenAssignment(boolean) : void
+ isSpaceAfterComma() : boolean
+ setSpaceAfterComma(boolean) : void
+ getLinesAfterModuleDefinition() : int
+ setLinesAfterModuleDefinition(int) : void
+ isKRstyle() : boolean
+ «property set» setKRstyle(boolean) : void

antlr.TreeParser
rfparser::TTCN3FormatterTreeParser

~ parameters: TTCN3FormatterParameters
~ currentNesting: int = 0

+ pr_FieldSpecList(AST) : StringBuffer
+ pr_ArrayValueOrAttrib(AST) : StringBuffer
+ pr_SingleValueOrAttrib(AST) : StringBuffer
+ pr_FieldSpec(AST) : StringBuffer
+ pr_FieldReference(AST) : StringBuffer
+ pr_StructFieldRef(AST) : StringBuffer
+ pr_ArrayOrBitRef(AST) : StringBuffer
+ pr_ParRef(AST) : StringBuffer
+ pr_PredefinedType(AST) : StringBuffer

~parameters

Figure 5.5: Pretty Printer Class Diagram

Figure 5.5 shows a high-level class diagram. The TTCN3FormatterTreeParser class is
generated from the ANTLR tree grammar file (attributes and methods of this class have been
shortened). This class is configured with a Java Bean called TTCN3FormatterParameters
which carries information about specific formatting aspects. The TTCN3Formatter class is
a facade providing a small, unified and easy to use interface.

5.2.2 Token Weaving for Comments

There is one major problem involved when writing a pretty printer on syntax tree level. This
problem is related to the typical single and multi-line comments that are found in almost
every source code. Scanners and parsers usually skip comment tokens, because they don’t
have any semantical meaning. At best, the parser can be modified to attach comment tokens
to the nodes found in the syntax tree. However, normally syntax trees don’t store every
token, but only the ones needed to preserve the semantics (e.g. normally, semicolons are not
stored in a syntax tree1). Therefore, comment tokens can’t always be directly attached to

1In TRex, semicolons are actually stored in the syntax tree as they are often optional and must be
reconstructed the way they are in the source notation. However, it is also possible to reconstruct the
semicolon tokens using the token weaving technique.

88

5.2 The Pretty Printer

Token Weaver

Source Token
Stream:

Target Token
Stream:

module test //start \n { \n \n type integer myint \n ; }

module test \n { \n \t type integer myint \n; }\n

module test \n { \n \t type integer myint \n; }\n//start
Weaved Token

Stream:

Figure 5.6: The Token Weaver

the tokens that follow or precede them. As a result, pretty printers based completely on
syntax trees can’t always restore comment tokens at their proper positions.

Another possible solution to overcome this problem is to write the pretty printer scanner-
based. In this approach, the token stream of the unformatted source code would be analyzed
and transformed into an formatted token stream using rules. Working completely on token
streams can be complicated though as formatting decisions often have to be made from the
context of a token which results in forward and backward token inspections per rule.

The TRex approach is different. It uses the syntax tree to generate pretty printed source
code without comments. In a post-processing step, the missing comments tokens from the
unformatted source code are weaved into the formatted source code. To do this, two token
streams are needed and unfortunately, the formatted source code must be lexed again for
this approach. Using this technique, the pretty printer benefits from the context information
provided by the syntax tree and is able to place the comments at their correct positions.
Figure 5.6 illustrates the token weaving process. The source token stream is the lexed token
stream of the unformatted source code. The target token stream is obtained by lexing the
output of the pretty printer tree walker which contains no comments. The tokens streams
are then traversed token by token skipping whitespaces. Whitespaces must be skipped
as they differ between the two token streams due to different formatting. Whenever a
comment token is found in the source token stream, it is inserted into the target token
stream. In practice, various special cases need to be handled within the weaving process to
ensure correct formatting. For example, multiple subsequent multi-line comments should
not generally be separated with a newline as they typically belong together.

89

5 The TRex Refactoring Tool

5.3 Symbol Table

Generally, a symbol table can be defined as a data structure that stores information as-
sociated with each symbol found in the analyzed source code. This information is most
importantly the symbol type, its scope and its location. A symbol table is needed in nearly
every task that involves semantics simply because the type and scope information of an iden-
tifier is necessary to assess whether a statement in the analyzed source makes any sense.
A simple example is an assignment to an undeclared variable. Such a variable must be
declared and visible within the statement’s scope. Otherwise, the statement would be ille-
gal. Another common verification is called type checking where usage consistency between
identifiers and their declarations is validated. For example, a string should not be assigned
to a variable that is declared as integer. The step that involves such verifications is called
semantic analysis.

5.3.1 Data Structure

Refactorings are transformations that need to maintain the semantics of the underlying
source code. Hence, a symbol table is needed. A common data structure used for symbol
tables are hash tables. A hash table looks up a key to find an associated value by trans-
forming the key into a hash. This hash is then used to directly access the value’s position.
Thus, values are always stored unsorted. Hash tables provide a constant-time O(1) lookup
on average. In the worst case, lookup can be O(n).

The TRex symbol table, however, is implemented using a red-black tree which essentially
is a balanced binary tree (using the TreeMap class from the Java API). While averagely
slower than hash tables, red-black trees have a good worst-case performance O(log n) and
maintain a sorted structure. The primary reason for choosing the red-black tree over the
hash table was that the performance of the code-completion would benefit of a sorted struc-
ture (section 5.5.3).

Simpler data structures like arrays or linked-lists are inappropriate for symbol tables as
the number of symbols within a source code can be very high. The performance would
suffer.

Symbol tables can be implemented dynamically or statically. Dynamic symbol tables
destroy symbol information as they walk along the tree. Therefore, dynamic symbol tables
only make sense in the context of a single-pass analysis. In TRex, complete symbol informa-
tion is needed as the source is edited or processed at all time. In addition, TRex is designed
to work in multiple passes. Therefore, the symbol table is stored statically.

5.3.2 Design

Figure 5.7 shows the key classes participating in in the symbol lookup. The SymbolTable
class encapsulates the underlying data structure of the symbol table making it easy to switch
to a hash table for example. The scope class represents a single scope in a TTCN-3 source.

90

5.3 Symbol Table

cd Symbol Table

Symbol

- name: String
- scope: Scope = null
- declarationNode: LocationAST = null
- surroundingScope: Scope
- groupName: String = null

+ Symbol()
+ Symbol(String)
+ getName() : String
+ setName(String) : void
+ getScope() : Scope
+ setScope(Scope) : void
+ getDeclarationNode() : LocationAST
+ setDeclarationNode(LocationAST) : void
+ getSymbolDescription() : String
+ getSymbolDescriptionPlain() : String
+ getSymbolDescriptionContentAssist() : String
+ getSurroundingScope() : Scope
+ setSurroundingScope(Scope) : void
+ getGroupName() : String
+ setGroupName(String) : void

SymbolTable

- symbolMap: TreeMap<String, Symbol> = new TreeMap<Str...

+ SymbolTable()
+ resolve(String) : Symbol
+ put(String, Symbol) : Symbol
+ toString() : String
+ getSymbols() : TreeMap<String, Symbol>

Scope

- symbolTable: SymbolTable = new SymbolTable()
- parent: Scope = null
- children: ArrayList<Scope> = new ArrayList<S...
- knownScopes: ArrayList<Scope> = new ArrayList<S...
- scopeSymbol: Symbol = null
- importConfiguration: ImportConfiguration = null
- searchParent: boolean = true
- startOffset: Integer = null
- endOffset: Integer = null
- scopeLevel: int = 0
- associatedFilename: String = null

+ Scope()
+ Scope(Scope, boolean)
+ getAssociatedFilename() : String
+ setAssociatedFilename(String) : void
+ getEndOffset() : Integer
+ setEndOffset(Integer) : void
+ getStartOffset() : Integer
+ setStartOffset(Integer) : void
+ getScopeSymbol() : Symbol
+ setScopeSymbol(Symbol) : void
+ getChildren() : ArrayList<Scope>
+ addChild(Scope) : void
+ getSymbolTable() : SymbolTable
+ setSymbolTable(SymbolTable) : void
+ getParent() : Scope
+ setParent(Scope) : void
+ getKnownScopes() : ArrayList<Scope>
+ addKnownScope(Scope) : void
- resolveSkipModuleLookup(String) : Symbol
+ resolve(String) : Symbol
+ resolve(LocationAST) : Symbol
+ getSymbols() : TreeMap<String, Symbol>
+ isSymbolImportAllowed(Symbol, AbstractImport) : boolean
+ addSymbol(Symbol) : Symbol
+ getImportConfiguration() : ImportConfiguration
+ getModuleScope() : Scope

«interface»
ITTCN3EclipseSymbol

+ getSymbolDescription() : String
+ getSymbolDescriptionPlain() : String
+ getSymbolDescriptionContentAssist() : String

FunctionSymbol

- external: boolean = false

+ isExternal() : boolean
+ setExternal(boolean) : void
+ getSymbolDescription() : String
+ getSymbolDescriptionPlain() : String
+ getSymbolDescriptionContentAssist() : String

importconfiguration::ImportConfiguration

- moduleName: String
- imports: ArrayList<AbstractImport> = new ArrayList<A...

+ ImportConfiguration()
+ getModuleName() : String
+ setModuleName(String) : void
+ getImports() : ArrayList<AbstractImport>
+ addImport(AbstractImport) : void
+ toString() : String
+ importsFromModule(String) : boolean

-surroundingScope-scope-scopeSymbol

-parent

-symbolTable

-importConfiguration

Figure 5.7: Symbol Table Class Diagram

Every scope contains a symbol table object. In addition, the scope provides several functions
which are necessary or useful while working with symbols and scopes. For example, the scope
contains attributes specifying the start and end offset within the source code file or its parent
source filename.

A scope may have known scopes. Known scopes are used when the symbol lookup must
also be performed in a different scope than the parent scopes. For example, when a function
runs on a component, lookup through the parent scopes is not sufficient. The function
scope must inspect the component scope as well. Similarly, super components are also
known scopes to their sub components that extend them.

The scopes are organized within an n-ary tree2. While traversing the tree to build the
symbol table, the scopes are tracked with a stack (as suggested in [22] for example). When-

2There are different interpretations about the meaning of n-ary trees in the literature. In some interpre-
tations, n-ary implies that each node has n fixed children. Here, n-ary means that each node can have any
number of children.

91

5 The TRex Refactoring Tool

Scope Tree

charstring
myString

charstring
myString

charstring
myString

myString
myVar

charstring
myString

myString
myVar

charstring
myString

myString
myVar

Integer
myVar2

1. 2. 3. 4. – 5. 6. 7. – 8.

Scope Stack
1. 2. 3. 4. 5. 6. 7. 8.

charstring
myString

charstring
myString

charstring
myString

integer
myVar2

charstring
myString

charstring
myString

charstring
myString

myString
myVar

charstring
myString

Figure 5.8: Scope Stack

ever a new scope is created, it is linked with the stack’s top element and then pushed. If
the scope end is reached, the stack is popped to get the last element again. Due to the tree
linking on scope creation, the popped element is not lost though. A scope can be associated
to a scope symbol, i.e. a symbol introducing a new scope. This can be a function symbol
for example.

1 module scopeStackExample {
2
3 type charstring myString ;
4
5 function myFunc1 () {
6 var myString myVar ;
7 }
8
9 function myFunc2 () {

10 var integer myVar2 ;
11 }
12 }

Listing 5.2: Scope Stack Example

Listing 5.2 and figure 5.8 illustrate the way the scope stack works. The initial scope stack
is empty. In line 1, a new module is encountered and hence a new scope is created (stage 1).
Within the module scope, there is a type declaration myString (line 3) which is written into
the scope’s symbol table (stage 2). A function myFunc1 (line 5) introduces a new scope
which is pushed on the stack (stage 3) and linked as child to the module scope. The variable
declaration in function myFunc1 (line 6) is written into the symbol table of the stack’s top
scope (stage 4). When the end of myFunc1 is encountered (line 7), the topmost element
of the scope stack is popped (stage 5). However, it is still accessible through the scope

92

5.4 TTCN-3 Refactorings in Eclipse

tree which is static. The handling of myFunc2 (line 9) in stages 6-8 is analogous to stages
3-5. In line 12, the module ends and the module scope is therefore popped from the stack
as well. Subsequently, the scope stack is empty, but the scope tree still exists. The static
scope tree is created once along with lexing and parsing. The analysis of files within Eclipse
projects is handled by the class TTCN3ReconcilingStrategy which is called when new files
are opened, saved or after files have been changed and some time has passed. When the
first file is opened, all files within the project are analyzed3. Once the project has been fully
analyzed, only changed files are reanalyzed.

The Symbol class represents an abstract symbol within the symbol table. All concrete
symbols, e.g. the FunctionSymbol shown in the diagram, are subclasses. In addition, each
Symbol is associated with its surrounding scope and its corresponding node in the syn-
tax tree. The Symbol class implements the ITTCN3EclipseSymbol interface which merely
requires each symbol to implement some methods used for displaying symbol information
within the IDE.

Each module scope contains an ImportConfiguration instance. This class (and its associ-
ated classes not shown in the diagram) handles the various import configuration possibilities
and is used when resolving symbols across different modules.

5.4 TTCN-3 Refactorings in Eclipse

This section discusses the concrete implementation of TTCN-3 refactorings in TRex. First,
the Eclipse refactoring component LTK (Language Toolkit) is introduced (section 5.4.1).
Then, the identifier range map data structure used for identifier lookups is explained
(section 5.4.2) and the Rename and Inline Template implementations are described (sec-
tions 5.4.3 and 5.4.4).

5.4.1 The Language Toolkit (LTK)

The language toolkit is a relatively new Eclipse API component introduced in Eclipse 3.1.
Reoccurring language neutral parts of the JDT refactorings have been pushed down into
this new layer with the aim to ease refactoring development for other languages. Due to its
novelty, the API is not covered in any books and simple examples are rare [37]. Fortunately,
the API is easy to use and the provided Javadoc documentation is detailed enough for actual
usage.

The LTK consists of two library plug-ins: the org.eclipse.ltk.core.refactoring plug-in and
the org.eclipse.ltk.ui.refactoring plug-in. The first plug-in contains classes necessary for the

3This process could be optimized by building a lightweight TTCN-3 parser which is only used to analyze
the dependencies between the different files in the project through the import statements. Then, only
dependent files need to be fully analyzed.

93

5 The TRex Refactoring Tool

sd Refactoring Lifecycle

RefactoringAction Refactoring RefactoringWizardWorkspace Editor

opt Execute Refactoring

[User Confirms Refactoring]

Open Editor

Select Refactoring

Create Refactoring

Check Initial Conditions

Retrieve Refactoring Configuration

Return Refactoring Configuration

Check Final Conditions

Calculate Change

Send Change

Preview Change

Apply Change To Workspace

Figure 5.9: The LTK Refactoring Lifecycle

implementation of refactorings independently from any user interface. The second plug-in
integrates refactorings which are implemented using the LTK core with the Eclipse work-
bench providing abstract wizard classes specifically for refactorings that can be subclassed.
One key benefit of an LTK refactoring wizard is the integrated preview view where the
original version and the refactored version of the source code can be compared side by side.

Figure 5.9 illustrates the typical life cycle of a refactoring in Eclipse. Starting with
the workspace which manages projects, a file is selected and the corresponding editor is
opened. Within the editor, an identifier or a region is selected and a refactoring is chosen
(e.g. through a context menu). The refactoring can be selected since a RefactoringAction
has been linked to an extension point within Eclipse. Selecting the refactoring causes the
RefactoringAction to execute and a new refactoring instance is created. Now, the first
validation Check Initial Conditions is started to assess whether the refactoring is actually
possible within the specified context. If these conditions are met, a RefactoringWizard is
opened and retrieves the information needed to successfully execute the refactoring (e.g. the

94

5.4 TTCN-3 Refactorings in Eclipse

cd refactoring

IAdaptable
Change

IWorkspaceRunnable
CheckConditionsOperation

IWorkspaceRunnable
CreateChangeOperation

- fRefactoring: Refactoring
- fCheckConditionOperation: CheckConditionsOperation
- fConditionCheckingFailedSeverity: int
- fChange: Change

+ CreateChangeOperation(Refactoring)
+ CreateChangeOperation(CheckConditionsOperation, int)
+ getConditionCheckingFailedSeverity() : int
+ run(IProgressMonitor) : void
+ getChange() : Change
+ getConditionCheckingStatus() : RefactoringStatus
+ getConditionCheckingStyle() : int

IWorkspaceRunnable
PerformRefactoringOperation

PlatformObject
Refactoring

- fValidationContext: Object

+ setValidationContext(Object) : void
+ getValidationContext() : Object
+ getName() : String
+ getRefactoringTickProvider() : RefactoringTickProvider
doGetRefactoringTickProvider() : RefactoringTickProvider
+ checkAllConditions(IProgressMonitor) : RefactoringStatus
+ checkInitialConditions(IProgressMonitor) : RefactoringStatus
+ checkFinalConditions(IProgressMonitor) : RefactoringStatus
+ createChange(IProgressMonitor) : Change
+ getAdapter(Class) : Object
+ toString() : String

RefactoringStatus

+ OK: int = 0
+ INFO: int = 1
+ WARNING: int = 2
+ ERROR: int = 3
+ FATAL: int = 4
- fEntries: List
- fSeverity: int = OK

participants::ProcessorBasedRefactoring

- PERF_CHECK_CONDITIONS: String = "org.eclipse.lt...
- PERF_CREATE_CHANGES: String = "org.eclipse.lt...
- fParticipants: RefactoringParticipant ([])
- fSharedParticipants: SharableParticipants = new SharablePar...
- fTextChangeMap: Map
- EMPTY_PARTICIPANTS: RefactoringParticipant ([0]) = new Refactoring...

ProcessorBasedRefactoring()
ProcessorBasedRefactoring(RefactoringProcessor)
+ getProcessor() : RefactoringProcessor
+ isApplicable() : boolean
+ getName() : String
+ checkInitialConditions(IProgressMonitor) : RefactoringStatus
+ checkFinalConditions(IProgressMonitor) : RefactoringStatus
+ getTextChange(Object) : TextChange
- disableParticipant(RefactoringParticipant, Throwable) : void
- addToTextChangeMap(Change) : void

PlatformObject
participants::RefactoringParticipant

- fProcessor: RefactoringProcessor
- fDescriptor: ParticipantDescriptor

+ getProcessor() : RefactoringProcessor
+ initialize(RefactoringProcessor, Object, RefactoringArguments) : boolean
initialize(Object) : boolean
initialize(RefactoringArguments) : void
+ getName() : String
+ checkConditions(IProgressMonitor, CheckConditionsContext) : RefactoringStatus
+ createChange(IProgressMonitor) : Change
+ getTextChange(Object) : TextChange
~ setDescriptor(ParticipantDescriptor) : void
~ getDescriptor() : ParticipantDescriptor

TextChange TextEditBasedChange

TextFileChange CompositeTextFileChange

+ addChange(TextChange) : void

PlatformObject
participants::RefactoringProcessor

- fRefactoring: ProcessorBasedRefactoring

~ setRefactoring(ProcessorBasedRefactoring) : void
+ getRefactoring() : ProcessorBasedRefactoring
+ getElements() : Object[]
+ getIdentifier() : String
+ getProcessorName() : String
+ isApplicable() : boolean
+ checkInitialConditions(IProgressMonitor) : RefactoringStatus
+ checkFinalConditions(IProgressMonitor, CheckConditionsContext) : RefactoringStatus
+ createChange(IProgressMonitor) : Change
+ postCreateChange(Change[], IProgressMonitor) : Change
+ loadParticipants(RefactoringStatus, SharableParticipants) : RefactoringParticipant[]

-fRefactoring

-EMPTY_PARTICIPANTS

-fParent

-fRefactoring

-fStatus

-fParticipants

-fCheckConditionOperation
-fValidationStatus

-fPreconditionStatus

-fRefactoring

-fUndo

-fChange

-fProcessor

-fRefactoring

Figure 5.10: Language Toolkit Core Class Diagram

new identifier name in case of a rename refactoring). This information is then used for a last
applicability verifcation Check Final Conditions. On success, the change for the refactoring
is calculated and handed over to the wizard. There, the change is previewed to the user.
If he accepts, the change is applied to the workspace. Otherwise, the workspace remains
untouched.

Figure 5.10 shows a class diagram containing the key classes within the LTK core. The
most important class is the Refactoring class. This class always needs to be subclassed
by any refactoring implementation. This can be done either by direct subclassing or by
subclassing ProcessorBasedRefactoring. The latter class supports refactoring participants.

Participants are objects that are supplied to the refactoring through an extension point
and take part in the refactoring. This is useful when a refactoring may not only affect the
resources that are changed by it directly, but also parts that are indirectly affected. A simple
example for a participant is the plugin.xml in a PDE (Plug-In Development Environment)

95

5 The TRex Refactoring Tool

project. This XML file refers to Java classes in the PDE project. When a Java class is
renamed, the reference in the XML file becomes obsolete. However, the rename refactoring is
implemented within the JDT and the PDE is a plug-in on its own. Therefore, PDE supplies
a refactoring participant to the JDT rename refactoring that makes sure the plugin.xml is
changed as well. Participants need to subclass RefactoringParticipant.

The class PerformRefactoringOperation is normally called by the LTK wizard. Condi-
tions are checked through the class CheckConditionsOperation and created using the class
CreateChangeOperation. These classes implement the IWorkspaceRunnable interface which
provides an interface for running batch operations on the workspace. Finally, the changes
that are created, are part of the Change class hierarchy. Normally, the changes used in
source code refactorings are based on the class TextEditBasedChange. Specifically, sub-
classes can be created from TextFileChange for example. Should the refactoring affect more
than a single file, changes can be collected in a CompositeTextFileChange class.

Implementing the user interface part involved in a refactoring is simple when using the
classes provided in the org.eclipse.ltk.ui.refactoring package. Any custom wizard pages are
subclasses of UserInputWizardPage and are added to a newly created RefactoringWizard
which is associated with the concrete refactoring object. This wizard object is handed over
to a RefactoringWizardOpenOperation class which is running on the workspace.

5.4.2 The Identifier Range Map

The one problem left before TTCN-3 refactorings can be implemented is finding the right
nodes in the syntax tree depending on the cursor position or the marked text in the source
code editor. The refactoring implementations need these nodes as input in order to calculate
the necessary changes. For example, in the case of the Rename refactoring, the identifier
which is marked by the cursor position should be renamed. However, the corresponding
node must be found somehow and traversing the whole syntax tree for this particular node
is not very efficient as such node lookups are not only needed by the refactorings, but also
other commonly used functionalities like the text hover (section 5.5.1). An efficient and
sorted data structure is needed storing integer ranges as key.

In TRex, every interaction between the syntax tree, the symbol table and the editor is
based on text offset positions rather than lines and columns. This is the case, because
Eclipse interprets tab stops differently in offsets and columns. The columns that Eclipse
calculates uses the tab setting from the user preferences. Therefore, the columns can’t
be calculated consistently if user settings are disregarded. Text offsets on the other hand
have a consistent tab stop interpretation. Some changes in the ANTLR TTCN-3 lexer
and the LocationAST class were needed in order to track offsets though. Internet research
revealed that this is a well known problem for ANTLR users. Unfortunately, all approaches
found involved changing the ANTLR runtime. Yet the TRex offset tracking solution is
implemented without changing it. The following changes were necessary:

96

5.4 TTCN-3 Refactorings in Eclipse

• The custom LocationAST class needs attributes for the start offset and end offset.

• The initialize method in LocationAST must be adjusted to calculate start and end
offsets for the node from a token.

• The setLocation method in LocationAST must be adjusted to set the offsets from start
and end tokens.

• The TTCN-3 lexer needs an offset attribute.

• The TTCN-3 lexer consume and makeToken methods must be overridden to track
offsets.

This way, the ANTLR runtime can be exchanged easily when new versions are available.
Once the offsets are tracked, the tab stop size, i.e. the character length of a tab stop, of the
ANTLR TTCN-3 lexer must be changed to match the tab size of Eclipse offsets. Afterwards,
the Eclipse editor offsets are consistent with the syntax tree offsets.

Now that each node contains start and end offset attributes, they can be stored for efficient
lookup in a data structure. Again, a red-black tree (implemented through a Java TreeMap)
was chosen. The storage keys are not typical though as they must contain information about
the start as well as the end offset (an offset range). A node query should be performed with
single offsets and the lookup ought to find all nodes with a matching range.

Figure 5.11 shows the involved classes. IntRangeMap is a generic class that can store any
value object K using a range key in a red-black tree where K is a LocationAST for the identi-
fier map. The key is implemented in the class Range which must implement the Comparable
interface. This key class needs customized compareTo and equals methods where ranges can
be compared to ranges and points for example. The Point class is merely representing a
single offset in this matter. The result of the get(int, int) method is not directly a K element,
but an object of the type RangeMapValue. This class was introduced to represent multiple
values matching a key when ranges overlap. Support for overlapping ranges is slightly more
complicated and also implemented, but not actually needed in TRex (due to a change in its
usage afterwards). The get(int) method is the method mainly used by TRex. It simplifies
the usage for TRex purposes and only returns a list with the matching Ks while neglecting
the associated (possibly differing) ranges.

The described data structure is not only useful for storing identifiers with ranges, but also
for storing scope information with offset ranges. For the content assist (section 5.5.3), it is
necessary to know the corresponding scope for each position within a source file. Therefore,
this data structure is used to store every scope with its start and end offsets. Once the
right scope could be determined, finding all visible symbols was just a matter of adding a
getSymbols method with the Scope class. In this case, the Scope class is used for K.

97

5 The TRex Refactoring Tool

cd Identifier Rangemap

K

IntRangeMap

treeMap: TreeMap<Range, RangeMapValue<K>> = new TreeMap<Ran...

+ put(int, int, K) : void
+ putRecursion(int, int, RangeMapValue<K>) : void
+ get(int, int) : RangeMapValue<K>
+ get(int) : ArrayList<K>
+ getWithSmallestRange(int) : K
+ clear() : void
+ entrySet() : Set<Entry<Range, RangeMapValue<K>>>
+ keySet() : Set<Range>
+ isEmpty() : boolean
+ size() : int
+ toString() : String

Comparable
Point

~ point: int

+ toString() : String
+ Point(int)
+ compareTo(Object) : int

Comparable
Range

~ from: int
~ to: int
~ matchingRange: Range = null

+ getFrom() : int
+ setFrom(int) : void
+ getTo() : int
+ setTo(int) : void
+ Range(int, int)
+ toString() : String
+ compareTo(Object) : int
+ equals(Object) : boolean

K

RangeMapValue

~ range: Range = null
~ valueList: ArrayList<RangeValue<K>> = new ArrayList<R...

+ getRange() : Range
+ setRange(Range) : void
+ getValueList() : ArrayList<RangeValue<K>>
+ setValueList(ArrayList<RangeValue<K>>) : void
+ putValue(RangeValue<K>, Range) : void
+ toString() : String

K

RangeValue

~ range: Range = null
~ value: K

+ RangeValue()
+ RangeValue(Range, K)
+ getRange() : Range
+ setRange(Range) : void
+ getValue() : K
+ setValue(K) : void
+ toString() : String

~range

~range

~matchingRange

Figure 5.11: Identifier Range Map Class Diagram

5.4.3 The Rename Refactoring

The first TTCN-3 refactoring implemented in TRex is the Rename refactoring. It provides
an easy way to rename identifiers (i.e. declarations and references) such as variable names,
function names or module names. Unlike a simple search and replace function provided
by nearly every text editor, the Rename refactoring regards the TTCN-3 scoping rules.
Typical problem cases like shadowed variables or imported declarations are respected by the
refactoring through symbol table lookups. A normal search and replace operation cannot
guarantee this kind of correctness.

At its core is a reference finder algorithm which is very generic and thus already reused in
several other functionalities of TRex such as the Inline Template Refactoring (section 4.2.6)
and the Find References View (section 5.5.4).

Figure 5.12 shows the participating classes. The Rename refactoring is implemented as
RefactoringProcessor and therefore allows participants if they should become necessary.
TTCN3RenameProcessor is a subclass of RenameProcessor. The RenameProcessor class
from the LTK API is supposed to be subclassed by Rename refactorings, but it actually
does not provide any additional functionality over the RefactoringProcessor class.

98

5.4 TTCN-3 Refactorings in Eclipse

cd Rename Refactoring

ReferenceFinder

- referenceIntroducingTypes: int ([]) = {TTCN3Lexer.Var...
- contextIntroducingTypes: int ([]) = {TTCN3Lexer.TTC...
- contextNodeStack: Stack<LocationAST> = new Stack<Locat...
- referenceIntroducingNode: LocationAST = null
- resolvableParentNodeTypes: int ([]) = {TTCN3Lexer.Fun...

+ ReferenceFinder()
+ findReferences(Symbol, LocationAST) : HashMap<String ,ArrayList<ReferenceWithContext>>
- findReferencesRecursion(LocationAST, LocationAST, LocationAST) : ArrayList<ReferenceWithContext>
- isReferenceIntroducingType(LocationAST) : boolean
- isContextIntroducingType(LocationAST) : boolean

ReferenceWithContext

~ referenceNode: LocationAST = null
~ contextNode: LocationAST = null

+ ReferenceWithContext()
+ ReferenceWithContext(LocationAST, LocationAST)
+ getContextNode() : LocationAST
+ setContextNode(LocationAST) : void
+ getReferenceNode() : LocationAST
+ setReferenceNode(LocationAST) : void
+ toString() : String

core::TTCN3RenameProcessor

- references: HashMap<String, ArrayList<ReferenceWithContext>>
- editor: TTCN3Editor
- referenceText: String
- directAST: LocationAST = null

+ TTCN3RenameProcessor(TTCN3Editor)
+ TTCN3RenameProcessor(LocationAST)
- getReferences() : HashMap<String, ArrayList<ReferenceWithContext>>
- addDeclarationToReferenceList(Symbol, LocationAST, HashMap<String, ArrayList<ReferenceWithContext>>) : void
- getDeclarationSymbol() : Symbol
+ getElements() : Object[]
+ getIdentifier() : String
+ getProcessorName() : String
+ isApplicable() : boolean
+ checkInitialConditions(IProgressMonitor) : RefactoringStatus
+ checkFinalConditions(IProgressMonitor, CheckConditionsContext) : RefactoringStatus
- getProjectFile(String) : IFile
- createChanges() : ArrayList<TextFileChange>
+ createChange(IProgressMonitor) : Change
+ loadParticipants(RefactoringStatus, SharableParticipants) : RefactoringParticipant[]
+ getReferenceText() : String

core::TTCN3RenameRefactoring

~ renameText: String

+ TTCN3RenameRefactoring(RenameProcessor)
+ TTCN3RenameRefactoring(RenameProcessor, IDocument)
+ getRenameText() : String
+ setRenameText(String) : void

participants::
RenameProcessor

PlatformObject
participants::

RefactoringProcessor

ProcessorBasedRefactoring
participants::RenameRefactoring

- fProcessor: RenameProcessor

+ RenameRefactoring(RenameProcessor)
+ getProcessor() : RefactoringProcessor

IEditorActionDelegate
actions::RenameHandler

- editor: TTCN3Editor
- multipageEditor: TTCN3MultiPageEditor

+ RenameHandler()
+ setActiveEditor(IAction, IEditorPart) : void
+ run(IAction) : void
+ selectionChanged(IAction, ISelection) : void

-fProcessor

Figure 5.12: Rename Refactoring Class Diagram

All implemented TRex refactorings support two execution modes. A UI-based mode for
direct use within the editor and a headless mode for refactorings that automatically find bad
smells and for testing automated refactorings. For each mode, there is a different constructor
in TTCN3RenameProcessor. In the UI-based mode, the active editor instance is passed as
parameter. The refactoring then uses this editor instance to locate all necessary information.
The headless mode requires the concerned identifier node as parameter. Due to the use of the
refactoring processor, the complete refactoring logic is located in TTCN3RenameProcessor
while the actual refactoring class TTCN3RenameRefactoring does not contain any behav-
ioral code related to the rename refactoring. It merely carries the single attribute necessary
for this refactoring: the target identifier name. This name is retrieved through the refactor-
ing wizard (not shown in the diagram). The refactoring behavior is executed through the
fProcessor delegate in the RenameRefactoring class.

99

5 The TRex Refactoring Tool

1 public void run (IAct ion ac t i on) {
2 TTCN3RenameProcessor p ro c e s s o r = new TTCN3RenameProcessor (e d i t o r) ;
3 TTCN3RenameRefactoring r e f a c t o r i n g = new TTCN3RenameRefactoring (
4 p ro c e s s o r) ;
5 TTCN3RenameRefactoringWizard wizard = new TTCN3RenameRefactoringWizard (
6 r e f a c t o r i n g , Refactor ingWizard .WIZARD BASED USER INTERFACE) ;
7 wizard . setRenameText (p ro c e s s o r . getReferenceText ()) ;
8 RefactoringWizardOpenOperation openOperation =
9 new RefactoringWizardOpenOperation (wizard) ;

10 try {
11 openOperation . run (Display . getCurrent () . g e tAc t i v eShe l l () ,
12 "Refactoring not possible!") ;
13 I F i l e f f = (I F i l e) e d i t o r . getEdi tor Input () . getAdapter (I F i l e . class) ;
14 ed i t o r . g e tReconc i l i ngS t ra t egy () . ana lyzeAl l (f f) ;
15 } catch (Inter ruptedExcept ion e) {
16 MessageDialog . openInformation (
17 Display . ge tDe fau l t () . g e tAc t i v eShe l l () ,
18 "Rename Refactoring" ,
19 "Error while applying refactoring to workbench/wizard: "

20 + e . getMessage ()) ;
21 e . pr intStackTrace () ;
22 }
23
24 }

Listing 5.3: run method of the Rename Refactoring Action

The refactoring itself is triggered by a context menu extension to the extension point
org.eclipse.ui.popupMenus. The associated action class is RenameHandler which basically
creates the refactoring object and runs the refactoring wizard on the workspace. Listing 5.3
shows the run method of the refactoring action. At first, a refactoring processor is created
(line 2) which is used as delegate in the concrete refactoring (line 3). The refactoring object
is passed to the wizard (line 6) and the wizard is initialized with necessary initial data
(line 7). Finally, a wizard open operation is created and run on the workspace (lines 8–11).
In the last step, the syntax trees are reanalyzed (lines 11–14). The action implementation
is similar for other refactorings.

When the wizard is run on the work space, the initial conditions are checked. The
refactoring cannot be applied when one of the following conditions is true:

• The TTCN-3 source is syntactically incorrect.

• The reference finder has a fatal error.

The final conditions are more interesting as they can incorporate semantical verifications
concerning the new name:

100

5.4 TTCN-3 Refactorings in Eclipse

sm Find References

Find Valid Top-
Lev el Scopes

Get Next Valid
Scope

Find Module
Node

Find Parent
Node

Find References Recursion

Resolv e
Identifier w ith
Symbol Table

Get Next
Node

Add Reference
to Valid

References

[is other node]

find references in
every valid scope

[is a module scope][is a subscope]

[is identifier
node]traverse tree

find references
starting at found
parent node

[is resolvable and
equals declaration
node]

[is not resolvable or does not
equal declaration node]

tree completely traversed

searched for references
in all valid scopes

find references
starting at
module node

Figure 5.13: Find References State Machine Diagram

• The target name must not be empty.

• The target name must be different from the original identifier name.

The implemented conditions are the most simple ones. They can be extended with various
additional verifications such as checking for name clashes in the same scope or subscopes.
A formal description of these additionally possible conditions can be found in [61].

The TTCN3RenameProcessor instance creates a ReferenceFinder object used to retrieve
references of the currently selected identifier’s declaration.

Figure 5.13 shows a state machine diagram with the vital behavior of the reference finder
algorithm. The first step is to find the declaration of the selected reference. The declaration

101

5 The TRex Refactoring Tool

node is passed to the reference finder algorithm. The algorithm starts with finding all scopes
that are candidates for reference inspection. For symbols declared on module scope, every
module scope that imports from the module where the concerned symbol is declared and
where the symbol is actually resolvable is such a candidate. For declarations in subscopes
(e.g. variable declarations in a function), the declaration scope is the candidate directly.
In the next step, every valid scope is inspected for references. For every scope inspection,
a parent node has to be found where the tree traversal starts. In module scopes, this
parent node is a TTCN3Module node while subscopes can have various parent nodes such as
FunctionStatementOrDef or AltstepLocalDefList nodes. Therefore, this parent node lookup
depends on the scope type. Once this node is found, a recursive tree traversal is started. In
this traversal, every identifier node found needs a symbol table lookup. The identifiers that
can be resolved and are equal to their declaration symbol, are references to their declarations.
In any other case, they are not references.

Once all references for the declaration are obtained, renaming is just a matter of in-
voking a programmatical editor which is offered through the Eclipse API. The package
org.eclipse.text.edits provides the classes needed. Concretely, the ReplaceEdit and Multi-
TextEdit classes are used. As the name suggests, the ReplaceEdit class is used to replace
text in a document. The MultiEdit class is really useful as it lets you apply multiple edit
operations on a document using the original offset positions of the file to be edited. Con-
cretely, this means that it is not necessary to account changing offset positions after each
replacement in the source document. The MultiEdit class performs this task already.

The edit operations are added to the change object which is then returned by the refactor-
ing in the createChange method. As refactorings may affect multiple files in the workspace,
this change is a CompositeChange.

Figures 5.14(a) and 5.14(b) show the wizard pages presented to the user. In figure 5.14(a),
the user is presented a page containing a single text field where the concerned identifier name
is inserted as default value. On this page, the user modifies the identified name to reflect
the target identifier name. When finished, the “next” button must be pressed. If the final
conditions are fulfilled and the refactoring change can be generated successfully, the preview
page is presented (figure 5.14(b)). The upper part of this wizard page displays the workspace
files which are affected by this refactoring. In addition, it is possible to deselect the changes
for every single file using a check box next to the file name. In this case, the refactoring
will omit changes to the deselected files when the refactoring is applied to the workspace.
The lower part of the page shows the original source on the left and the refactored source
on the right. Every affected line is marked and connected between the source viewers. This
way, the changes to each line can be carefully reviewed manually. The source code viewers
on the preview page are provided through the classes TTCN3ContentMergeViewer and
TTCN3ContentViewerCreator and reuse the syntax highlighting support from the editor
infrastructure.

102

5.4 TTCN-3 Refactorings in Eclipse

(a) Custom Page for the Refactoring Configuration (b) Preview Page

Figure 5.14: Refactoring Wizard Pages for Rename

5.4.4 The Inline Template Refactoring

The Inline Template refactoring (section 4.2.6) is the second implemented refactoring in
TRex. It is able to replace a template reference with its inline notation and may help to
improve readability of the source code.

The overall class structure (figure 5.15) of the refactoring is very similar to the Rename
refactoring. The refactoring behavior is located in TTCN3InlineTemplateProcessor which
enables the use of participants again. As in the Rename refactoring, there is a headless and
a UI-based mode for the refactoring. TTCN3InlineTemplateProcessor therefore has two dif-
ferent constructors. The TTCN3InlineTemplateRefactoring uses the processor as delegate
through ProcessorBasedRefactoring and contains attributes for the refactoring configura-
tion. Two options are possible for inlining templates:

• Deletion of the declaration if the declaration is referenced only once.

• Apply the pretty printer formatting rules on the inlined template.

The corresponding attributes in TTCN3InlineTemplateRefactoring are deleteDeclaration
and prettyPrintInlinedTemplates. The attributes are initialized on refactoring execution by
a custom wizard page containing a checkbox for each attribute. The action is handled by
the InlineTemplateHandler class and works similar to listing 5.3. There are three main cases
that need to be distinguished in the refactoring behavior:

• The template to be inlined is a normal template.

103

5 The TRex Refactoring Tool

cd Inline Template

TTCN3InlineTemplateProcessor

- editor: TTCN3Editor
- symb: Symbol
- ast: LocationAST
- parList: ArrayList<LocationAST> = new ArrayList<L...
- parRefNameList: ArrayList<String> = new ArrayList<S...
- derivedDef: LocationAST
- templateDefNode: LocationAST
- parameterReferenceNodes: ArrayList<LocationAST> = new ArrayList<L...

+ TTCN3InlineTemplateProcessor(TTCN3Editor)
+ TTCN3InlineTemplateProcessor(LocationAST)
+ getElements() : Object[]
+ getIdentifier() : String
+ getProcessorName() : String
+ isApplicable() : boolean
+ checkInitialConditions(IProgressMonitor) : RefactoringStatus
+ checkFinalConditions(IProgressMonitor, CheckConditionsContext) : RefactoringStatus
- getDeclarationSymbol() : Symbol
- isParameterizedTemplateReference(LocationAST) : boolean
- isFieldSpec(LocationAST) : boolean
+ createChange(IProgressMonitor) : Change
- findParameterReferenceNodes(LocationAST) : void
- buildParameterMap() : HashMap<String, LocationAST>
- generateInlineTemplateChange(LocationAST) : CompositeChange
- rewriteParameterizedTemplateBody(LocationAST) : void
- removeDeclarationForSingleReferences(MultiTextEdit) : void
- retrieveParameters(LocationAST) : void
- getFormalParameters(LocationAST) : void
- getActualParameters(LocationAST) : ArrayList<LocationAST>
- findDerivedDef(LocationAST) : LocationAST
- findTemplateBodyFromTemplateDef(LocationAST) : LocationAST
- findChild(LocationAST, int) : LocationAST
+ loadParticipants(RefactoringStatus, SharableParticipants) : RefactoringParticipant[]

TTCN3InlineTemplateRefactoring

~ processor: RefactoringProcessor
- prettyPrintInl inedTemplates: boolean = false
- deleteDeclaration: boolean = false

+ TTCN3InlineTemplateRefactoring(TTCN3InlineTemplateProcessor)
+ getProcessor() : RefactoringProcessor
+ isDeleteDeclaration() : boolean
+ setDeleteDeclaration(boolean) : void
+ isPrettyPrintInlinedTemplates() : boolean
+ setPrettyPrintInl inedTemplates(boolean) : void

IEditorActionDelegate
actions::InlineTemplateHandler

- editor: TTCN3Editor
- multipageEditor: TTCN3MultiPageEditor

+ InlineTemplateHandler()
+ setActiveEditor(IAction, IEditorPart) : void
+ run(IAction) : void
+ selectionChanged(IAction, ISelection) : void

PlatformObject
participants::

RefactoringProcessor

Refactoring
participants::

ProcessorBasedRefactoring

+processor

-fRefactoring

Figure 5.15: Inline Template Class Diagram

• The template to be inlined is a modified template.

• The template to be inlined is a parameterized template.

The first step in the refactoring behavior (figure 5.16) is to resolve the identifier using the
symbol table to get the template declaration. If this template is a parameterized template,
the template body subtree must be copied and altered to inline the parameters of the
reference. Otherwise, the template body stays the way it is (the differences between normal
templates and modified templates are handled in the rewrite step). In the next step, the
find references algorithm from section 5.4.3 is used to find all references to this declaration.
If only a single reference is found, the selected reference is inevitably the found one. In this
case, the declaration can therefore be removed if the option was chosen in the refactoring
configuration. In the last two steps, the pretty printer is applied on the template body
subtree and rewritten to form a syntactically correct inlined template. The concrete rewrite
step depends on the template declaration and is slightly different for modified templates.

104

5.5 Further Functionality in TRex

sm Inline Template

Get Declaration
Node / Resolv e

Symbol

Inline Reference
Parameters into

TemplateBody

Delete
Declaration

Pretty Print
TemplateBody

Rewrite
TemplateBody to
Inlined Template

[is a parameterized template]

[is not a
parameterized
template]

[only single reference found
and delete reference chosen]

Figure 5.16: Inline Template State Machine Diagram

The initial conditions for Inline Template are:

• The TTCN-3 source must be syntactically correct.

• The identifier must be a template reference.

• The parameter count of the template declaration and the template reference must
match.

Again, these conditions can be extended. Such a possible extension is parameter type
verification. There are currently no implemented final conditions. The actual edit operations
for both replacing template reference with inlined template and declaration removal are
realized with the ReplaceEdit class.

Figures 5.17(a) and 5.17(b) show the wizard pages presented to the user. Similar to the
Rename refactoring implementation, the first page is used for the refactoring configuration
(figure 5.17(a)). The user can choose two options realized through check boxes. If the
first option is checked, the refactoring will remove the template declaration if the inlined
template was the only reference to this declaration. The second options uses the pretty
printer configuration on the inlined template. The default setting is to write the inlined
template in a single line. The preview page on figure 5.17(b) is analogous to the preview
page for the rename refactoring (figure 5.14(b)).

5.5 Further Functionality in TRex

While building the infrastructure necessary for realization of the refactorings, the implemen-
tation of several other useful features known from advanced IDE’s became easy. Therefore,
they have been implemented in TRex as well. Most of this work is based on the information
obtained from the symbol table. An abstract text hover and content assist implementation
is provided by Eclipse.

105

5 The TRex Refactoring Tool

(a) Custom Page for the Refactoring Configuration (b) Preview Page

Figure 5.17: Refactoring Wizard Pages for Inline Template

5.5.1 Text hover

The text hover is used to display information on specific parts of the source code in a pop
up window depending on where the mouse cursor is located. In TRex, this functionality is
used to display symbol information when the mouse cursor is moved over an identifier. This
symbol information displayed is the symbol name, its type and the symbol declaration’s
scope. Figure 5.18(a) shows such a text hover pop up window.

In the text hover implementation, the identifier range map and the symbol table are
used. The range map is used to obtain the identifier node located at the mouse cursor
position. Using the identifier’s scope and the identifier name, the symbol information can
be found easily with the symbol table. The symbol information displayed is formatted
using HTML [15] and is provided by every symbol implementing the ITTCN3EclipseSymbol
interface through the getSymbolDescription method.

5.5.2 Open Declaration

The Open Declaration feature is triggered by the corresponding entry in the context menu
or by using the hot key F3. Its purpose is to directly jump to the declaration of a reference
within the editor. This way, a possibly time consuming search for the declaration is avoided.
If the declaration is located in a file not currently open, the relevant editor window is
made the active window and opened if necessary. The implementation is very similar to
the text hover implementation. First, the identifier node is found through the identifier
range map. Then the identifier symbol is resolved using the symbol table. The obtained
symbol information contains the associated workspace filename and file position necessary
to implement the workbench behavior.

106

5.5 Further Functionality in TRex

(a) Text Hover (b) Content Assist

Figure 5.18: Further Functionality

5.5.3 Content Assist

The content assist functionality is arguably one of the more important functionalities in
modern IDE’s. Being human, programmers don’t remember every detail of their work. This
is especially true when they deal with complex TTCN-3 test suites with thousands of lines
and hundreds of different type and template declarations. Luckily, the content assist feature
can take some guesswork off the programmer by making completion proposals depending
on what is already typed into the editor. For instance, when the programmer starts to type
the name of a variable name he wants to use, but then cannot remember exactly the rest
of the word, he can press CTRL+Space and a pop up window with completion proposals is
shown (figure 5.18(b)). Continued typing narrows down the displayed proposal list on the
fly. Hence, the programmer need not know every single name within his code and he can
easily use long (and therefore possibly more descriptive) identifier names. In the latter case,
content assist mitigates the negative effects such as increased typing effort.

Naturally, these proposals need to be context aware. While simply displaying all declared
identifiers in this list might help to some degree, it is not exactly helpful when the proposal
list possibly has several hundred entries. Therefore, the information from the symbol table
is used once again. However, instead of resolving a single symbol, all symbols visible in the
scope of the current cursor position are collected. That way, all symbols that are not within
the current scope are omitted and not proposed. The scope is obtained by a scope range
map which is created at the same time as the symbol table. This map is very similar to the
identifier range map, but it stores scope information instead of identifier information. As
the symbol table uses a red-black tree, the data-structure is sorted and collecting symbols
depending on the partial identifier already typed is efficient (O(log n)).

107

5 The TRex Refactoring Tool

(a) Find References (b) AST View

Figure 5.19: Further Functionality

The semantical intelligence of the TRex content assist is currently limited to the use of
scope information. It can be extended by using more semantical information. For example,
when typing the right side of an assignment, the proposal list can be narrowed down further
to the symbols compatible with the left side of the assignment.

5.5.4 Find References

Find References is located in the editor context menu and can be used to find all refer-
ences to a declaration within the whole workspace project. It can be triggered either by
positioning the editor’s cursor over the identifier of a declaration or a reference to it. On
execution, the Find References View is opened in the workbench displaying the results in
a tree structure (figure 5.19(a)). The nodes in this tree can be double clicked to jump to
the corresponding line in the editor. Find References can improve the programmer’s under-
standing of the source code he edits and also provide useful information for the realization
of manual refactorings. This is the case as declarations and its references are often part of
refactorings.

The implementation of this view once more uses the reference finder algorithm presented
in section 5.4.3 and directly uses the obtained information to create the result tree in the
Find References View.

5.5.5 AST View

The AST View4 displays the syntax tree of the source code in the active editor window. In
addition, the tree is sensitive to the text marked in the active editor, i.e. the corresponding

4Strictly speaking, the TRex syntax tree is not abstract as it contains syntactical elements without
semantical meaning. The view is still uses the term AST as this abbreviation is used throughout the whole

108

5.6 Testing and Building TRex

nodes are expanded and marked with red color. The view is primarily useful for the devel-
opment of TRex as the tree structure of certain source code parts can be inspected easily.
Figure 5.19(b) shows the AST View coloring and expanding the marked text in the source
editor on the left.

5.6 Testing and Building TRex

Quality assurance is an issue for every software product. Unit tests are an important part
of quality assurance and their purpose is to get confidence that the tested software modules
work as expected. Section 5.6.1 describes the unit test infrastructure of TRex which is based
on JUnit.

Also important and often neglected is a build system which can be executed on a regular
basis (e.g. nightly builds) and are reproducible in their behavior. Section 5.6.2 explains the
build technique used.

5.6.1 Unit Tests

In TRex, there are unit tests for the Rename refactoring (13 Tests) and the Inline Template
refactoring (12 Tests). In addition, there are also unit tests for the pretty printer (6 Tests).
The realization of the tests is similar to the refactoring tests of the JDT [29]. These tests
run on hand-picked scenarios and they should be able to find any crude defects.

The unit tests are located in a separate Eclipse project. While the first intuitive idea may
be to put the unit tests directly into the concerned plug-in, this turns out to be a bad choice
as this results in a dependency to the JUnit plug-in. Obviously, the dependencies of the
TRex plug-in should be kept to a minimum. Therefore, the tests are located in a separate
plug-in called trex.tests.

In this plug-in, there is a folder src containing the JUnit tests and a folder resources
containing the resource files necessary for the tests. The resources are structured using
directories. For example, the tests for inlining modified templates is located in the sub-
directory resources/refactoring/inlinetemplate/InlineModifiedTemplateTest. Starting from
this directory, the resources are consecutively numbered (e.g. test0, test1, test2 etc.). Each
numbered directory contains the subdirectories in and out. The in directory contains the
files in which the refactorings should be applied. The out folder contains the files with the
refactoring correctly applied. Figure 5.20(a) shows this directory structure in the Eclipse
package explorer.

In each unit test, a workspace is created from an in subdirectory. The unit tests then
execute a refactoring on the workspace in headless mode (i.e. the refactoring does not require

ANTLR and TRex API.

109

5 The TRex Refactoring Tool

(a) Unit Tests Resources Direc-
tory Structure

(b) Unit Tests Package Diagram

Figure 5.20: Unit Tests Structure

any user input). Finally, the refactored workspace is compared against the out subdirectory.
If the concerned files are not equal, the refactoring was not successful and the unit test fails.

The folder containing the JUnit source code is structured analogously (figure 5.20(b)).
Each package containing unit test classes contains an additional class where these unit tests
are combined (e.g. AllInlineTemplateRefactoringTests).

Furthermore, the classes TTCN3TestProject and TTCN3RefactoringTestProject are used
for setting up the testing workspace and providing a common infrastructure for the
workspace comparison (figure 5.21). The TTCN3RefactoringTestProject class is a sub-
class of TTCN3TestProject and therefore inherits its functionality to setup a new testing
workspace. The TTCN3RefactoringTestProject provides additional functionality for ap-
plication of refactorings to the workspace and the comparison afterwards. These classes
are used as delegate rather than superclasses by the testcases (e.g. InlineNormalTem-
plateTest, InlineParameterizedTemplateTest or InlineModifiedTemplateTest) to allow mul-
tiple workspaces and tests within a single JUnit test case class. Each testing method in a
test case (e.g. testWithoutImport, TestWithImport etc.) needs to setup its workspace using
the TTCN3RefactoringTestProject instance and when finished, it needs to call the dis-
pose method to destruct the workspace. Due to the use of the TTCN3TestProject and
TTCN3RefactoringTestProject classes, writing the test cases is very easy and code repeti-
tion is minimized. The tests are executed by selecting ”Run As“ and ”JUnit Plug-In Test“
with the AllTests class opened in the Eclipse workbench.

110

5.6 Testing and Building TRex

cd tests

TTCN3TestProject

- sourceResourceDirectory: String
- resourcePath: String
project: IProject
root: IWorkspaceRoot
projectName: String = "testproject"

+ TTCN3TestProject(String)
+ dispose() : void
- createWorkspace() : void
- fi l lWorkspace() : void
+ getResourcePath() : String
+ setResourcePath(String) : void
getPluginDir(String) : String

TestCase
inlinetemplate::InlineModifiedTemplateTest

- testProject: TTCN3RefactoringTestProject

+ InlineModifiedTemplateTest()
setUp() : void
tearDown() : void
+ testWithoutImport() : void
+ testWithImport() : void
+ testWithoutImportDeleteDeclaration() : void
+ test3WithImportDeleteDeclaration() : void
- callTest(String, int, boolean, String[]) : void

refactoring::TTCN3RefactoringTestProject

- fi les: ArrayList<String> = new ArrayList<S...
sourceFileMap: HashMap<String, String> = new HashMap<Str...
targetFileMap: HashMap<String, String> = new HashMap<Str...
refactoredFileMap: HashMap<String, String> = new HashMap<Str...
analyzerFactory: TTCN3AnalyzerFlyweightFactory

+ TTCN3RefactoringTestProject(String)
+ dispose() : void
+ analyze() : void
- loadFiles() : void
analyzeFiles() : void
+ addFile(String) : void
+ loadModifiedFiles() : void
+ performRefactoring(Refactoring) : void
+ verifyRefactoredSourceConstantFiles() : void
+ getAnalyzerFactory() : TTCN3AnalyzerFlyweightFactory

TestCase
inlinetemplate::

InlineParameterizedTemplateTest

- testProject: TTCN3RefactoringTestProject

+ InlineParameterizedTemplateTest()
setUp() : void
tearDown() : void
+ testWithoutImport() : void
+ testWithImport() : void
+ testWithoutImportDeleteDeclaration() : void
+ test3WithImportDeleteDeclaration() : void
- callTest(String, int, boolean, String[]) : void

TestCase
inlinetemplate::InlineNormalTemplateTest

- testProject: TTCN3RefactoringTestProject

+ InlineNormalTemplateTest()
setUp() : void
tearDown() : void
+ testWithoutImport() : void
+ testWithImport() : void
+ testWithoutImportDeleteDeclaration() : void
+ test3WithImportDeleteDeclaration() : void
- callTest(String, int, boolean, String[]) : void

-testProject-testProject

-testProject

Figure 5.21: Refactoring Unit Tests Class Diagram

5.6.2 The Build System

The easiest way to build deliverable Eclipse plug-ins is to use the integrated export wizard.
Exporting can become tedious when more than a single target platform is involved (e.g. plug-
in builds for different Eclipse versions). At some point, every growing software product needs
a consistent, automated and reproducible build system. TRex offers such a build system.
It is based on the same infrastructure as the PDE export wizard and therefore makes use
of all necessary details stored within the project configuration. This infrastructure is called
PDE Build.

The TRex build system is located in its own Eclipse plug-in called de.ugoe.cs.swe.trex.build.
This is common practice for Eclipse plug-ins although they do not actually extend the Eclipse
workbench in any visible way. To build TRex, this single directory is the only needed. The
TRex build system is based on Apache ANT [2] and is actually consisting of two sepa-
rate parts: a custom front-end and PDE Build. The custom front-end is found in the file
build.xml and invokes PDE Build. Although PDE Build itself is also based on Apache ANT,

111

5 The TRex Refactoring Tool

this custom front-end is necessary for two reasons: calling PDE Build is complicated as it
needs to execute Eclipse in headless mode and secondly, PDE Build does not support Sub-
version [11] which is used for version control in the TRex development. In the normal case,
PDE Build uses CVS [3] checkouts and updates to create a directory structure with up to
date plug-in source codes. Due to the use of Subversion, this internal feature could not be
used. Luckily, there is an ANT task available called SVNANT [12]. Using SVNANT, the
source directory creation and the Subversion based update handling is part of the custom
front-end. For ease of use, SVNANT libraries are distributed with the build plug-in and
have been modified to use JAVASVN [7] to avoid dependencies on native external binaries.
In addition, the ANTLR library is included which is used by PDE Build to generate Java
source from the grammar files. So the build.xml basically creates or updates the necessary
source directories for the plug-in and then invokes PDE Build by calling Eclipse in headless
mode.

However, there is some configuration needed to build TRex. After all, the build sys-
tem is flexible and can build against various targets for example. The only file that must
be configured is build.properties. In most cases, only the fields updateSiteLocation, base,
baseLocation, pdeBuildPluginVersion and buildDirectory are relevant for the build configu-
ration. base and baseLocation point to an installed Eclipse SDK which is the build target.
pdeBuildPluginVersion is the directory name of the PDE Build plug-in in the base Eclipse
SDK. This directory varies depending on the Eclipse version used. The updateSiteLocation
points to the location of the update site. This directory should either point to a directory
directly within the access of a web server or it should synchronized to a web server regularly.
Finally, the buildDirectory is the directory where the TRex plug-ins are built. The content
of this directory is automatically created through the ANT front-end through subversion
checkouts and updates. The TRex build system not only creates archives containing a dis-
tributable versions of the plug-in. It also automatically creates an update site. Update sites
consist of a directory structure with a special layout and a file called site.xml containing the
specification for the update site. The update site directory can be uploaded to a web server.
Eclipse clients use the URL to the update site directory to download the latest versions of
the plug-in. These updates can happen automatically which makes update distribution very
easy. Unfortunately, PDE Build does not provide any functionality for directly creating the
update site specification file site.xml. Therefore, a small ANT task called sitexmlTask has
been written to create a valid update site from the directory created by PDE Build.

The PDE Build process itself was customized as well. Luckily, PDE Build provides
hooks in its targets which can be used for extension. These hook targets are located in
customTargets.xml. Using these hooks, the build system is able to generate the TTCN-3 Java
Parser from the ANTLR grammar files before compiling the plug-in and creates the update
site in the very last step. The whole build process is basically started as usual by running
ANT on the build.xml file at the command line.

112

6 Conclusion

Software aging is a problem that concerns not only ordinary software, but also tests written
in TTCN-3. They also need to be maintained and hence must be easy to understand on the
one hand and reusable on the other. Typical pieces of code with quality problems are called
bad smells and are found either by human intuition or techniques that can be automated
(e.g. metrics). A proven technique to systematically restructure such problematic code
pieces is refactoring. Refactorings can be applied either in a disciplined way by hand or
through tools. The success of refactoring is tremendous even though it is still lacking an
established way to prove its behavior preservation. Refactoring automation through mature
tools guarantee reproducible transformations even though they may not be formally proven.
In addition, they save time and reduce errors due to the automated restructuring.

Based on the already existing work for improving structure of TTCN-2 and TTCN-3 test
suites and the TTCN-3 experience gathered while working on this thesis, a refactoring cat-
alog has been developed. In its first part, 72 well known refactorings have been investigated
for their applicability to TTCN-3. As a result, 28 refactorings are essentially language
independent and can be either directly applied to TTCN-3 or they must be slightly rein-
terpreted. In the second part of the catalog, 21 new refactorings specifically designed for
TTCN-3 are presented in detail. Each refactoring is presented with a name, a motivation,
mechanics and an example.

Finally, the TRex implementation is presented. Based on the Eclipse Platform, an in-
frastructure for the implementation of TTCN-3 refactorings has been developed. For the
infrastructure, a new symbol table (including complete import support) and a pretty printer
for TTCN-3 have been written. On top of this infrastructure, two refactorings have been
implemented: Rename and Inline Template. To improve the usage experience of TRex and
ease the refactoring development, several other functionalities have been realized on base
of this infrastructure. For the TRex usage, the content assist, text hover, find references
and open declaration functionalities and for the refactoring development, a syntax tree view
have been implemented. A build system based on PDE Build and ANT has been developed
allowing regular automated and reproducible builds of TRex. Furthermore, unit tests for
the verification of the pretty printer and the implemented refactorings have been written.

113

6 Conclusion

Outlook

The TTCN-3 refactorings presented are informal and based on experience. A formal proof
would be desirable, but there is currently no widely accepted method to realize this although
several recent approaches seem reasonable. Therefore, this is still a research topic in itself
and independent from TTCN-3. The alternative to a formal proof is the development and
usage of a bisimulation tool for TTCN-3 which could prove the preservation of behavior
through execution before and after the refactoring.

The bad smells presented in [35] are partially language independent. However, the lan-
guage independent smells that apply to TTCN-3 still have to be identified in detail and it
is probable that TTCN-3 will have a set of specific smells due to its unique concepts.

Refactoring tools today are mostly semi-automated. The programmer still has to detect
the bad smells by hand. However, finding quality problems in code is time consuming and
hard to do for programmers working on the code for a long time. Therefore, the automation
of bad smell detection is desirable. This can be achieved through the development and
implementation of metrics specific for TTCN-3 for example.

The suggested refactorings (chapter 4) should also be evaluated for their practicability in
a larger case study. This could be, for example, the refactoring of a larger standardized test
suite where the maintainability is evaluated before and after refactoring. Automatic code
smell detection would certainly support this evaluation. However, given the already existing
industry interest in the results of this thesis due to the general deficiency of work concerning
the refactoring of test specifications, there is little doubt that refactoring of TTCN-3 and
the problematic maintainability of TTCN-3 test suites is an existing and important topic.

Finally, the implemented refactorings in TRex are currently rather few. However, the
overall implementation of the infrastructure was the demanding and more challenging part
in the TRex development due to the complexity of the TTCN-3 grammar and the manifold
concepts which are part of TTCN-3. Nevertheless, based on the result of this thesis, the
implementation of more refactorings in TRex is certainly worthwhile.

114

Acknowledgments

This thesis would not have been possible without the expertise, guidance and encourage-
ment of Dr. Helmut Neukirchen. His vast knowledge and attention for important details
contributed a lot to the experience and i would like to thank him very much for the tremen-
dous efforts he put into this project. I am positive I have learned a lot during this time. I
would also like to thank the other members of my research group, Prof. Dr. Jens Grabowski,
Edith Werner and Wafi Dahman for proof reading papers, for listening to my presentations,
giving me important advice when needed and supporting my plans for the upcoming time.
Dr. Daniel Zeiß and Remko Ricanek must be thanked for proof reading my thesis and
finally but most importantly, I would like to thank my parents for their dedication and
unconditional support.

115

Abbreviations and Acronyms

ANTLR Another Tool for Language Recognition

AST Abstract Syntax Tree

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

ETSI European Telecommunications Standard Institute

HTML Hypertext Markup Language

IDE Integrated Development Environment

ISO International Organization for Standardization

JDT Java Development Tools

LALR Look-Ahead LR

LTK Eclipse Language Toolkit

MTC Main Test Component

PDE Plug-In Development Environment

PTC Parallel Test Component

RCP Rich Client Platform

SUT System Under Test

SWT Standard Widget Toolkit

TC Test Component

TRex TTCN-3 Refactoring and Metrics Tool

116

TSI Test System Interface

TTCN Tree and Tabular Combined Notation

TTCN-3 Testing and Test Control Notation Version 3

UML Unified Modeling Language

URL Uniform Resource Locator

WTP Web Tools Platform

XP Extreme Programming

117

Bibliography

[1] ANTLR. http://www.antlr.org.

[2] Apache ANT. http://ant.apache.org/.

[3] CVS. http://www.nongnu.org/cvs//.

[4] Eclipse Platform API Specification. http://www.eclipse.org/documentation/
html/plugins/
org.eclipse.platform.doc.isv/doc/reference/api/.

[5] Eclipse Public License - Version 1.0. www.eclipse.org/legal/epl-v10.html.

[6] JavaCC Project. https://javacc.dev.java.net.

[7] JAVASVN. http://tmate.org/svn/.

[8] JUnit Best Practices. http://www.javaworld.com/javaworld/jw-12-2000/
jw-1221-junit.html.

[9] Netbeans. http://www.netbeans.org.

[10] OSGi. http://www.osgi.org.

[11] Subversion. http://subversion.tigris.org/.

[12] SVNANT. http://subclipse.tigris.org/.

[13] The BSD License. http://www.opensource.org/licenses/bsd-license.php.

[14] The Lex & Yacc Page. http://dinosaur.compilertools.net.

[15] W3C HTML 4.01 Specification. http://www.w3.org/TR/html401/.

[16] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles and Tech-
niques and Tools. Addison-Wesley, 1986.

118

http://www.antlr.org
http://ant.apache.org/
http://www.nongnu.org/cvs//
http://www.eclipse.org/documentation/html/plugins/
http://www.eclipse.org/documentation/html/plugins/
org.eclipse.platform.doc.isv/doc/reference/ api/
www.eclipse.org/legal/epl-v10.html
https://javacc.dev.java.net
http://tmate.org/svn/
http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-junit.html
http://www.javaworld.com/javaworld/jw-12-2000/jw-1221-junit.html
http://www.netbeans.org
http://www.osgi.org
http://subversion.tigris.org/
http://subclipse.tigris.org/
http://www.opensource.org/licenses/bsd-license.php
http://dinosaur.compilertools.net
http://www.w3.org/TR/html401/

Bibliography

[17] ANSI/INCITS. Information Technology - Programming Languages - Smalltalk.
American National Standards Institute / InterNational Committee for Information
Technology Standards 319-1998, 1998.

[18] John Arthorne and Crhis Laffra. Official Eclipse 3.0 FAQs. The Eclipse Series. Addi-
son Wesley, 2004.

[19] Kent Beck. Make it Run, Make it Right: Design Through Refactoring. Smalltalk
Report, 6(4):19–24, 1997.

[20] Kent Beck. Extreme Programming Explained. Addison Wesley, 2000.

[21] Boris Beizer. Black-Box Testing. Wiley, 1995.

[22] Frank Benders, Jan-Willem Haaring, Thijs Janssen, Dennis Meffert, and Alex van
Oostenrijk. Compiler Construction: A Practical Approach. January 2003.

[23] Brian W. Kernigham and Dennis M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[24] William J. Brown, Raphael C. Malveau, III Hays W. McCormick, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
John Wiley & Sons, Inc., New York, NY, USA, 1998.

[25] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-Ins. The
Eclipse Series. Addison-Wesley, 2004.

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. MIT Press, 1990.

[27] Márcio Lopes Cornélio. Refactorings as Formal Refinements. PhD thesis, Universi-
dade Federal de Pernambuco, Brasil, March 2004.

[28] Thomas Deiß. Refactoring and Converting a TTCN-2 Test Suite. Presentation at the
TTCN-3 User Conference 2005, June 6-8, 2005, Sophia-Antipolis, France, May 2005.

[29] Eclipse Foundation. Eclipse. http://www.eclipse.org, 2006.

[30] ETSI European Standard (ES) 201 873-3 V3.1.1 (2005-06): The Tree and Tabular
Combined Notation version 3; Part 3: Graphical Presentation Format for TTCN-3
(GFT). European Telecommunications Standards Institute (ETSI), Sophia-Antipolis,
France, also published as ITU-T Recommendation Z.142, 2005.

119

http://www.eclipse.org

Bibliography

[31] ETSI. European Standard (ES) 201 873-1 V3.1.1 (2005-06): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis, France, also published as
ITU-T Recommendation Z.140, 2005.

[32] ETSI. TS 102 027-3: SIP ATS & PIXIT; Part 3: Abstract Test Suite (ATS) and
partial Protocol Implementation eXtra Information for Testing (PIXIT), 07 2005.

[33] ETSI European Standard (ES) 201 873-2 V3.1.1 (2005-06). The Testing and Test
Control Notation version 3; Part 2: TTCN-3 Tabular Presentation Format (TFT).
European Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France,
also published as ITU-T Recommendation Z.141, 2005.

[34] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

[35] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[36] Martin Fowler. Refactoring Home Page. http://www.refactoring.com/, 2005.

[37] Leif Frenzel. Neutral im Sinne der Qualität. Eclipse Magazin, 5, 2005.

[38] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns and
Plug-Ins. The Eclipse Series. Addison-Wesley, 2003.

[39] Erich Gamma and Kent Beck. JUnit. http://junit.sourceforge.net/, 2006.

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns
Elements of Reusable Object-Oriented Software. Addison-Wesley, Massachusetts,
2000.

[41] Erich Gamma, Eric Meade, and Kent Beck. JUnit. http://junit.sourceforge.
net/, 2004.

[42] James Gosling, Bill Joy, Guy L. Steele, and Gilad Bracha. The Java language specifi-
cation. Java series. Addison-Wesley, second edition, 2000.

[43] Jens Grabowski, Dieter Hogrefe, György Réthy, Ina Schieferdecker, Anthony Wiles,
and Colin Willcock. An Introduction into the Testing and Test Control Notation
(TTCN-3). Computer Networks, Volume 42, Issue 3, pages 375–403, June 2003.

[44] ISO/IEC. International standard ISO/IEC 9646-3:1998: Information Technology –
Open Systems Interconnection – Conformance testing methodology and framework –
Part 3: The Tree and Tabular Combined Notation (TTCN). International Organiza-
tion for Standardization/International Electrotechnical Commission, 1998.

120

http://www.refactoring.com/
http://junit.sourceforge.net/
http://junit.sourceforge.net/
http://junit.sourceforge.net/

Bibliography

[45] Jetbrains. IntelliJ IDEA. http://www.jetbrains.com.

[46] Jochen Kemnade. Development of a Semantics-aware Editor for TTCN-3 as an
Eclipse Plug-in. Bachelor’s thesis, Georg-August-Universität Göttingen, 09 2005.

[47] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina V.
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
M. Aksit and S. Matsuoka, editors, ECOOP ’97 – Object-Oriented Programming, vol-
ume 1241 of Lecture Notes in Computer Science (LNCS). Springer, June 1997.

[48] Pekka Mäki-Asiala. Reuse of TTCN-3 Code. Master’s thesis, University of Oulu,
Department of Electrical and Information Engineering, Finland, 2004.

[49] Mika Mäntylä. Bad Smells in Software - a Taxonomy and an Empirical Study. Mas-
ter’s thesis, Helsinki University of Technology, 2003.

[50] Jeff McAffer and Jean-Michel Lemieux. Eclipse Rich Client Platform. The Eclipse
Series. Addison-Wesley, 2005.

[51] Tom Mens. A Formal Foundation for Object-Oriented Software Evolution. In Proc.
Int. Conf. Software Maintenance, pages 549–552. IEEE Computer Society Press,
2001.

[52] Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter Van Gorp.
Refactoring: Current research and future trends. Electr. Notes Theor. Comput. Sci,
82(3), 2003.

[53] Tom Mens and Tom Tourwe. A Survey of Software Refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, February 2004.

[54] Gerard Meszaros. Patterns of XUnit Test Automation: Refactorings. http://tap.
testautomationpatterns.com:8080/Refactorings.html, 2005.

[55] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science (LNCS). Springer, 1980.

[56] Matthew J. Munro. Product Metrics for Automatic Identification of ”Bad Smell”
Design Problems in Java Source-Code. In IEEE METRICS, page 15, 2005.

[57] Naouel Moha and Yann-Gael Gueheneuc. On the Automatic Detection and Cor-
rection of Design Defects. In Roel Wuyts Serge Demeyer, Kim Mens and Stéphane
Ducasse, editors, proceedings of the 6th ECOOP Workshop on Object-Oriented
Reengineering, July 2005.

121

http://www.jetbrains.com
http://tap.testautomationpatterns.com:8080/Refactorings.html
http://tap.testautomationpatterns.com:8080/Refactorings.html

Bibliography

[58] Helmut Neukirchen. Languages, Tools and Patterns for the Specification of Dis-
tributed Real-Time Tests. PhD thesis, Georg-August-Universität Göttingen, 2004.

[59] Helmut Neukirchen. Re-Usability in Testing. Presentation, TAROT Summer School
2005, June 2005.

[60] UML 2.0 Testing Profile Specification (ptc/04-04-02). Object Management Group
(OMG), April 2004.

[61] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Urbana-
Champaign, IL, USA, 1992.

[62] David Park. Concurrency and Automata on Infinite Sequences. In Peter Deussen, ed-
itor, Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March
23-25, 1981, Proceedings, volume 104 of Lecture Notes in Computer Science (LNCS),
pages 167–183. Springer, 1981.

[63] David L. Parnas. Software Aging. In ICSE ’94: Proceedings of the 16th international
conference on Software engineering, pages 279–287, Los Alamitos, CA, USA, 1994.
IEEE Computer Society Press.

[64] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In Kenneth Baclavski
and Haim Kilov, editors, Tenth OOPSLA Workshop on Behavioral Semantics. Tampa
Bay, Florida, USA, October 15, 2001. Northeastern University, 2001.

[65] Don Roberts, John Brant, and Ralph Johnson. A Refactoring Tool for Smalltalk.
Theory and Practice of ObjectSystems (TAPOS), 3(4):253–263, 1997.

[66] Donald B. Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois, 1999.

[67] Ina Schieferdecker and George Din. A Meta-model for TTCN-3. In Manuel Núñez,
Zakaria Maamar, Fernando L. Pelayo, Key Pousttchi, and Fernando Rubio, editors,
Applying Formal Methods: Testing, Performance and M/ECommerce, FORTE 2004
Workshops The FormEMC, EPEW, ITM, Toledo, Spain, October 1-2, 2004, volume
3236 of Lecture Notes in Computer Science (LNCS), pages 366–379. Springer, 2004.

[68] Michael Schmitt. Automatic Test Generation: Practical Procedures for Efficient State
Space Exploration and Improved Representation of Test Cases. PhD thesis, Georg-
August-Universität Göttingen, 2003.

[69] Gregor Snelting and Frank Tip. Reengineering Class Hierarchies Using Concept
Analysis. Technical Report RC 21164(94592)24APR97, IBM T.J. Watson Research
Center, P.O. Box 704, Yorktown Heights, NY 10598, USA, 1997.

122

Bibliography

[70] Terence Parr. Preserving Original Token Sequence In ASTs. http://www.antlr.
org/article/preserving.token.order/preserving.token.order.tml.

[71] Testing Technologies TT Tool Series product information. http://www.
testingtech.de/products/TTToolSeries.html, 2004.

[72] Lance A. Tokuda. Evolving Object-Oriented Designs with Refactorings. PhD thesis,
University of Texas at Austin, 1999.

[73] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactoring
Test Code. In Michele Marchesi and Giancarlo Succi, editors, Proceedings of the 2nd
International Conference on Extreme Programming and Flexible Processes in Soft-
ware Engineering (XP2001), May 2001.

[74] Colin Willcock, Thomas Deiß, Stephan Tobies, Stefan Keil, Federico Engler, and
Stephan Schulz. An Introduction to TTCN-3. John Wiley & Sons, Ltd, 2005.

[75] Antal Wu-Hen-Chang, Dung Le Viet, Gabor Batori, Roland Gecse, and Gyula
Csopaki. High-Level Restructuring of TTCN-3 Test Data. In Jens Grabowski and
Brian Nielsen, editors, Formal Approaches to Software Testing: 4th International
Workshop, FATES 2004, Linz, Austria, September 21, 2004, Revised Selected Papers,
volume 3395 of Lecture Notes in Computer Science (LNCS), pages 180–194. Springer,
2005.

[76] Wei Zhao. Entwicklung eines Parsers für TTCN-3 Version 3 unter Verwendung des
Parsergenerators ANTLR. Bachelor’s thesis, Georg-August-Universität Göttingen,
2005.

All URLs have been verified on March 8, 2006.

123

http://www.antlr.org/article/preserving.token.order/preserving.token.order.tml
http://www.antlr.org/article/preserving.token.order/preserving.token.order.tml
http://www.testingtech.de/products/TTToolSeries.html
http://www.testingtech.de/products/TTToolSeries.html

	Introduction
	Foundations
	TTCN-3
	Language Basics
	Concepts

	ANTLR
	Eclipse

	Evolution of Software and TTCN-3 Tests
	Bad Smells
	Refactoring
	Refactoring Formalisms
	Refactoring Automation
	Related Work

	A TTCN-3 Refactoring Catalog
	General Refactorings Applied to TTCN-3
	TTCN-3 Compatible Classical Refactorings
	Extract Function

	TTCN-3 Specific Refactorings
	Extract Altstep
	Split Altstep
	Replace Altstep with Default
	Add Explaining Log
	Distribute Test
	Inline Template
	Inline Template Parameter
	Extract Template
	Replace Template with Modified Template
	Parameterize Template
	Decompose Template
	Subtype Basic Types
	Extract Module / Move Declarations to Another Module
	Group Fragments
	Restrict Imports
	Prefix Imported Declarations
	Parameterize Module
	Move Module Constants to Component
	Move Local Variables/Constants/Timer to Component
	Move Component Variable/Constant/Timer to Local Scope
	Generalize Runs On

	The TRex Refactoring Tool
	The TRex Architecture
	The Pretty Printer
	The Tree Walker
	Token Weaving for Comments

	Symbol Table
	Data Structure
	Design

	TTCN-3 Refactorings in Eclipse
	The Language Toolkit (LTK)
	The Identifier Range Map
	The Rename Refactoring
	The Inline Template Refactoring

	Further Functionality in TRex
	Text hover
	Open Declaration
	Content Assist
	Find References
	AST View

	Testing and Building TRex
	Unit Tests
	The Build System

	Conclusion
	Abbreviations and Acronyms
	Bibliography

